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ABSTRACT. The literature applying information-theoretic ideas to economics has
so far considered only Gaussian uncertainty. Ex post Gaussian uncertainty can be
justified as optimal when the associated optimization problem is linear-quadratic,
but the literature has often assumed Gaussian uncertainty even where it cannot
be justified as optimal. This paper considers a simple two-period optimal saving
problem with a Shannon capacity constraint and non-quadratic utility. It derives
an optimal ex post probability density for wealth in two leading cases (log and lin-
ear utility) and lays out a general approach for handling other cases numerically. It
displays and discusses numerical solutions for other utility functions, and consid-
ers the feasibility of extending this paper’s approaches to general non-LQ dynamic
programming problems. The introduction of the paper discusses approaches that
have been taken in the existing literature to applying Shannon capacity to eco-
nomic modeling, making criticisms and suggesting promising directions for fur-
ther progress.

I. INTRODUCTION

In a pair of previous papers that consider this topic(Sims, 2003, 1998)' 1 have
argued for modeling the observed inertial reaction of economic agents to external
information of all kinds as arising from an inability to attend to all the information
available, and for treating that inability as arising from finite Shannon capacity.
Shannon capacity is a measure of information flow rate that is inherently prob-
abilistic. It uses the reduction in the entropy of a probability distribution as the
measure of information flow. The entropy of a distribution is a global measure of
the uncertainty implied by the distribution, relative to some base distribution. Be-
cause of this dependence on the base, the entropy of a distribution is not uniquely
defined, but if we consider the joint distribution of two random vectors or vari-
ables, the expected reduction in entropy of one of the two achieved by observing
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the other of the two, the mutual information implied by the joint distribution, is
uniquely defined, independent of any base. This measure of mutual information
can be derived from a few reasonable axioms, but it is pervasive less because of its
axiomatic appeal than because has proved to be exactly the concept appropriate
for studying information flows in physical communication channels. A Shannon
“channel” is a set of possible inputs, a set of possible outputs, and a conditional
distribution for outputs given inputs. From these elements, it is possible to calcu-
late a tight upper bound for the mutual information between inputs and outputs,
which is called the channel’s capacity. It is the measure of information flow we
use in characterizing modems or internet connections in bits per second or bytes
per second. Shannon showed that no matter what we might wish to send through
the channel, whether music, text, or spreadsheets, and no matter what the physical
nature of the channel — wires, optical cables, radio transmission, or a messenger
service — it is possible to send information through the channel at a rate arbitrarily
close to capacity.

Economists, particularly macroeconomists, have recognized the need to account
for the inertia in observed economic behavior and have modeled it with a variety of
devices — menu costs, adjustment costs, information delay, implementation delay,
etc. As my two earlier papers argued, these mechanisms can match the observed
pattern — slow, smooth cross-variable responses, combined with less smooth id-
iosyncratic randomness — only by postulating elaborate inertial schemes that are
both difficult to connect to observation or intuition and critically important in mak-
ing model behavior realistic. One appeal of the rational inattention idea (that is,
of modeling agents as finite-capacity channels) is that it can in principle explain
the observed patterns of inertial and random behavior by a mechanism with many
fewer free parameters. Another is that it fits well with intuition; most people every
day encounter, or could very easily encounter, much more information that is in
principle relevant to their economic behavior than they actually respond to. The
notion that this is because their are limits to “attention”, and that such limits might
behave like finite Shannon capacity, is intuitively appealing.

II. RECENT DEVELOPMENTS IN THE LITERATURE

A number of recent papers in macroeconomics and finance have used information-
theoretic ideas (Mackowiak and Wiederholt, 2005; Luo, 2004; Mondria, 2005; Moscarini,
2004; Van Nieuwerburgh and Veldkamp, 2004a,b; Peng and Xiong, 2005; Peng, 2005).
While these papers develop some valuable insights, it is worth noting that they
have made assumptions, to allow tractable modeling, that are hard to defend and
can lead to anomalous results. Some of these limitations are common to all or
nearly all of the papers.
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II.1. Not allowing fully endogenous choice of the form of uncertainty. It is cen-
tral to the idea of modeling individuals as capacity-constrained that the nature,
not just the quantity of their uncertainty about external signals (prices, income,
wealth, asset yields, etc.) is subject to choice. The power of information theoretic
ideas arises from the fact that the available joint stochastic processes for channel
input and channel output are, to an arbitrarily good approximation, limited only
by the capacity of the channel, not by its physical nature. In a model of an opti-
mizing agent, the agents” objective function will therefore determine the stochastic
process for the joint behavior of actions and external signals. The articles cited in
the previous paragraph, with the partial exception of Luo’s, postulate directly a
simple parameteric form for this joint process, without deriving that form from
the model’s objective function.

To be more specific, the papers all assume Gaussian prior uncertainty about a
state variable and Gaussian posterior (after information flow) uncertainty. Fur-
thermore, in some cases they assume that the prior and posterior uncertainty is
over a random vector and is i.i.d., either over the elements of the vector itself or
over a set of factors that generate the distribution of the vector. (Luo and Mondria
do consider endogenous choice of posterior covariance structure.) It is true that
Gaussian posterior uncertainty can be shown to be optimal when the loss function
is quadratic, but only Luo’s paper considers cases of pure quadratic loss. Even if
the loss function is quadratic, it is not generally optimal for a capacity-constrained
agent to have i.i.d. posterior uncertainty across the same variables or factors that
were a prioriii.d. As we will see in some examples below, standard forms of utility
functions in an economic model generate strongly non-Gaussian forms of optimal
posterior uncertainty.

I1.2. Back-door information flows. Several of the papers develop market equilib-
ria, and to avoid complications assume that market prices are observed without
error. But in these equilibria market prices are information-carrying random vari-
ables. Assuming they can be observed without error amounts to assuming un-
bounded information-processing capacity.” Counter-intuitive results can emerge
when we assume perfect observation of prices combined with capacity-constrained
observation of some other source of information.

II.3. Distinguishing human information use, costly external information trans-
mission and costly investigation. The models in Sims (2003) and those presented

2An infinitely long sequence of digits can carry an infinite amount of information. Such a se-
quence, with a decimal point in front of it, is a real number. So if I can transmit an arbitrary real
number without error in finite time, I have an infinite-capacity channel.
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below in this paper are motivated by the idea that information that is freely avail-
able to an individual may not be used, because of the individual’s limited infor-
mation processing capacity. That capacity is unitary, allocatable to control many
dimensions of uncertainty the individual faces. The “price” of this information is
the shadow price of capacity in the individual’s overall optimization problem.

Individuals or firms may also choose Shannon capacities of periodical subscrip-
tions, telephone lines, internet connections, and other “wiring” that brings in in-
formation from the outside world. For a financial firm with a large staff constantly
active in many markets, the wiring costs of information may indeed be more im-
portant, or at least comparable to, the costs of mapping information, once it is
on the premises, into human action. However for most individuals, wiring costs
are likely to be small relative to the costs associated with human information pro-
cessing. In any case the costs of the two kind of information will generally be quite
distinct, on a per-bit basis. One can’t replace the human decision-making that links
prices, incomes and wealth to real actions with a fiber-optic cable.

Both wiring and internal human information processing are reasonably mea-
sured in bits, with costs linear, or at least smooth, in bits. There is another kind
of “information”, however, whose cost is different, and probably usually not well
measured in bits. In the stock market, an individual investor has a vast amount
of information about individual stocks available at practically no or trivial cost, in
newspapers and on the internet. It is likely that he does not use all this information,
due to limited information processing capacity. But it is also possible to develop
information through costly investigation — interviewing experts in a firm’s tech-
nical area, conducting surveys of consumers to determine their reactions to the
company’s product, etc. The CEO of a drug company might contemplate approv-
ing a clinical trial to determine whether or not a new drug is an improvement on
existing treatments, approving a focus group investigation of which of two pack-
ages is most preferred by consumers, or stepping outside to see if it’s raining. Each
of these three actions would (if the answers had 50-50 probability in advance) yield
one bit of information. But it is no help to decision making to think of them as bits
limited by a capacity constraint.

Several of the finance-oriented papers cited above consider at least some models
in which uncertainty about an asset’s yield is quantified as the standard deviation
of its distribution, and information costs are quantified as bits, measured by re-
duction in the log of the standard deviation. But this is only appropriate if the
information is thought of as freely available, with only wiring costs or human ca-
pacity costs preventing it from being known with certainty. In asset markets this
is almost never the case. Sophisticated, continuously trading investors have un-
certainty that is dominated by information that is not freely available, and less
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sophisticated investors, who do fail to use instantly all freely available informa-
tion, do not have the option of reducing the log standard error of their uncertainty
about yields to arbitrarily low levels according to a linear cost schedule.

While failure to make these distinctions does not necessarily make a model unin-
teresting, it can make a model’s interpretation difficult. Especially in highly liquid
financial markets, It is probably important to recognize that wiring capacity and
human information-processing capacity have different costs. It is certainly impor-
tant to to distinguish information about asset returns that is freely available but
costly to act upon from information that can be obtained only through costly in-
vestigation.

III. MOVING BEYOND THE LQ GAUSSIAN CASE

For some purposes linear-quadratic Gaussian (LQG) models may give reason-
able approximations. Luo (2004) applies information-theoretic ideas to optimiza-
tion problems with linearized first order conditions as are commonly used recently
in macroeconomic modeling. The idea is that if uncertainty is fairly small, lin-
ear approximations to the model’s FOC’s may be quite accurate, so that the LQG
framework remains an adequate approximation even with capacity constraints.
While this is an idea worth pursuing, because it yields insights and is tractable,
there is reason to worry about its range of applicability. If rational inattention is
to explain much of observed inertia in behavior, people must be using a small
part of their capacity to monitor economic variables. But in this case information-
processing based uncertainty will be large, and this in itself will tend to undermine
the accuracy of the local LQG approximation. Also, there are many interesting is-
sues, like the interaction of finite capacity with the degree of risk aversion that is
investigated below, that cannot be studied in an LQG framework.

In this section, therefore, we show that moving beyond the LQG framework is
teasible. We consider several variations on a simple two-period saving problem.
The problem is so simple that the information flows we will be looking at are un-
realistically low. Nonetheless it is interesting to see that the model provides some
insights into behavior, is computationally manageable, and suggests that a more
interesting fully dynamic version might be feasible.

The problem is

m;ix /0<c<w log(c- (w—c)) f(c,w)dwdc (1)

subject to

fle,w) >0 ()
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| flweyde = g(w) 3)

/0<C<w log(f(c,w)) - f(c,w) dwdc

e[ ) o)
- [ tog(g(w)) - glw)dw < k. (@

The expression (1) is a standard assertion that we are maximizing expected utility,
where that is the sum of the expected utility of current consumption, log ¢, and that
of next period’s consumption, log(w — ¢). (We could include a gross interest rate
greater than one and a discount factor less than one without changing anything
important.) What is unusual is that the “choice variable” with respect to which we
maximize is not current consumption c, but the joint pdf of ¢ with wealth w. The
constraint (2) recognizes that f = 0 puts us at the boundary of feasible values for
probability densities. The constraint (3) tells us that the marginal distribution of
wealth is fixed, so all that is available for choiceis f (¢, w)/g(w), the conditional pdf
of ¢ given w. The information constraint is (4). The last term in (4) is the entropy of
the marginal distribution of w, the next to last term is the entropy of the marginal
distribution of ¢, and their sum is what the entropy of ¢ and w’s joint distribution
would be if they were independent. The first term is minus the entropy of the
actual joint distribution determined by f. The the three terms together form the
mutual information between ¢ and w. This is also the expected reduction in the
entropy of the w distribution from observing ¢, and also the expected reduction in
the entropy of the c distribution from observing w.
The first order condition for the problem is

log(c- (w—c))
=A (1+logf(c,w) —1—1log (/Coof(c,w) dw)) +u(w) +(c,w). (5)

Here u is the Lagrange multiplier on (3) and ¢(c,w) is a stand-in for the fact
that when f = 0, the FOC’s do not have to hold. (Since at f = 0 we will have
log f = —oo0, no finite value of {(c, w) makes the FOC hold when log(c - (w —c)) is
finite, but the non-convexity of the constraint set means that solutions on the f = 0
boundary can nonetheless occur at such ¢, w values.) If we let g(w | ¢) denote the
conditional pdf of w given ¢, & = 1/A, and v(w) = e~**(®), this expression can, at
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points where f > 0, be rearranged as
g(w | ¢) = v(w)e*(w —c)*. 6)

The function v must, according to (6), make the integral of the right-hand side with
respect to w one, regardless of the value of c. One v that works (the only one?) isa v
proportional to w—2*~1. With this choice of v, if we rewrite in terms of v = w/c — 1,
the integral becomes

/ vow 2 e (w — ¢)* dw = 1/0/ (0 +1) 20 =2 lpagete gy (7)
c 0

Since the terms in c cancel, the integral does not depend on ¢, and by choosing vy
properly we can make the integral one.

The form of the integrand in (7) is proportional to that of an F(2x + 2, 2«) density.
Normalized to have constant spread, this does approach normality asa« = 1/A ap-
proaches infinity, i.e. as the shadow price of information in utility units approaches
zero. The peakisat (2—1/(a —1))c, themeanat (2+1/(a« —1))c, fora > 1. The
distribution is more tightly concentrated around w = 2c the larger is « = 1/A.
In other words, as the shadow price A on the information constraint declines, we
come closer and closer to the certainty solution.

Figure 1 shows a contour map of the pdf of w | c for a case where A = .5. Note
that the conditional distribution of w | c¢ in this case is centered roughly at 2c, as
we expect. The solid line on the figure shows the value of ¢ that would be chosen
under certainty, w/2, and the dotted line shows ¢ = w, which is the lower bound
on w for a given c.

Figure 2 displays these conditional densities in a different way. Each line shows
g(w | c) for a different value of ¢ between zero and .5. These are all of course
truncated, scaled F densities. They have all been scaled to integrate to 1 over the
(0,1) interval, to make them comparable to numerically derived densities we will
show below.

As is true for the LQ case, we find here that the form of the distribution for
w conditional on available information at decision time is invariant to g(w), the
marginal pdf for w before information flow, so long as the density has full support.
This is not to say that the conditional distribution itself is invariant to g. If ¢ has
high entropy, then with a given « it will not be possible to reduce entropy much,
A will be large, and the a parameter that determines how close c is to w/2 will be
small. But there is a single parameter, A, that controls all the possible variation in
the form of the distribution of w | ¢ when f has full support.

The first-order conditions need not hold at points where the joint pdf f(c, w) is
zero. Obviously if g(w) is zero over some range, f(c, w) must also be zero over the
corresponding range of w values. Even where g(w) has the whole non-negative
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p(w|c),y=1 A=0.5, unbounded g(w)
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real line as its support, it is possible for p(c) to emerge as zero over some set of
c values and indeed even possible for the marginal distribution of ¢ to emerge as
discrete. If the conditional distributions of ¢ given w has, over any set of w’s with
non-zero probability, discrete weight on points that do not have discrete weight
in the marginal distribution of ¢, this would imply an infinite information flow.
But so long as any c values getting discrete weight in the conditional distributions
also have discrete weight in the marginal, the information flow is finite. Of course
at discrete values of ¢ that have non-zero probability, the first-order conditions of
the problem hold, so for these c’s, as for any others with positive density value,
we expect g(w | c) to take on the form we derived above, over its support. It is
possible, though, for g(w | c) to have less then full support. This obviously allows
deviation from the F distribution we derived above, but of a particular form, since
it must have the shape of an F density over its support.

While the distribution of w | c is easy to characterize here, it is not easy (for
me, anyway) to characterize the distribution of ¢ | w, even in the case where the
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p(w]c), log utility, A =0.5, unbounded g
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marginal on w is assumed to have the same scaled-F form as the post-observation
distribution for savings, or to find a form for the marginal of c that, together with
the known form for w | ¢, implies that the marginal for w is a scaled F. However
this is just a very simple example. Fully dynamic models are likely to generate
distributions complicated enough to require numerical methods for solution in
any case.

We can see an analytic solution for one other simple special case: where the util-
ity function is linear and the ¢ < w constraint is maintained.’ If the utility function
is undiscounted, so U(c, w) = ¢ + w — ¢ = w, the problem has the trivial solution
¢ = 0, with no information at all used. The problem is a little more interesting if
utility is discounted, so U = ¢+ B(w — ¢) with 0 < B < 1. For any U, the FOC’s
take the same form as (5), but with U(c, w) replacing the log function on the left of

3Without the ¢ < w constraint, and with discounting, agents who can borrow at zero interest
will obviously push ¢ to infinity.
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the equality. For this linear case, the analog of (6) is

g(w | ¢) = v(w)e F+I=F)) )

By choosing v(w) proportional to e~*%, we get this in a form that, when integrated
y g prop g g

from ¢ to oo w.rt. w, gives a constant value. The implied form for the condi-
tional pdf of u = w — ¢ given c is a(1 — B)e~*(1=P)*. Here we can note that as
« increases (so information is flowing more freely) the solution converges toward
¢ = w, which is the optimum without uncertainty. It is also interesting that c and
w are implied to be independent conditional on any rectangle inside the w > c re-
gion. These risk-neutral agents waste no capacity on matching c to w itself, except
as it contributes toward knowing where the w = ¢ boundary is.

In the model with log utility, capacity-constrained agents have expected wealth,
given their consumption, that exceeds the level corresponding to the deterministic
solution w = 2c. The higher are information costs (the lower is capacity), the
longer is the tail on the w | ¢ distribution and the larger the excess E[w | c| — 2c.
There is an effect that seems to go in the opposite direction, of course: the mode of
the w | ¢ distribution falls further below the deterministic value as information costs
increase. However when data are aggregated across many individuals in different
circumstances, we would expect the expectation result to dominate. We thus see a
“precautionary savings due to information costs” effect.

But notice that the model with linear utility produces the opposite result. These
risk-neutral agents who discount the future, while facing a gross rate of return of
1, are constrained from consuming all their wealth in the first period only by their
uncertainty about what what that total wealth is. Relaxing their capacity constraint
produces less saving.

With quadratic utility, the left-hand side of (5) is quadratic. Normalizing the
utility function to U(c,w) = ¢ — 3¢ + (w — ¢) — 3(w — ¢)?* leads to the analog of
(6) as

g(w | ¢) = v(w)e =+ =)/ ©)

If we drop the ¢ < w constraint and also the ¢ > 0 constraint, the right-hand-
side of (9) as a function of w is proportional to a Gaussian pdf with variance 1/«,
with only the mean of the distribution dependent on c. Hence we can make the
right-hand-side’s integral one by choosing v(w) to be constant. It is then easy to
verify that if the exogenously specified marginal pdf for w, ¢(w), is Gaussian, the
joint pdf for ¢ and w is Gaussian. Observe that whatever g(w) we start with, so
long as it allows a solution with f > 0 everywhere, the conditional distribution of
w is Gaussian. Thus if this problem were part of a recursive scheme, all the joint
distributions of successive ¢’s and w’s after the first period would be Gaussian.
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However, this result depends crucially on there being no ¢ < w or ¢ > 0 re-
striction. With these restrictions, despite the form of (9), the dependence of limits
of integration on ¢ will require at least a non-constant v(w), and possibly some
regions of f = 0.

So we can conclude from these examples:

e A hard budget constraint is not incompatible with a finite rate of informa-
tion flow. The conditional distribution of ¢ | w can be confined to the (0, w)
interval, even though observation of neither ¢ nor w ever gives perfect in-
formation about the other variable. An agent behaving this way would be
making decisions that only imperfectly determine ¢, based on his imperfect
knowledge of w. For example, writing checks or using credit cards and oc-
casionally finding that the account is overdrawn, or getting to the checkout
counter of the grocery store and realizing he will have to put a few things
back, or buying $10 worth of gasoline without figuring out in advance how
many gallons that will be.

e Uncertainty arising from information processing can easily be quite non-
normal, even when exogenous shocks are small. In this example, there are
no exogenous shocks. Normality is a good approximation only when the
information constraint is not having a strong effect.

e A capacity constraint can have powerful implications for savings behavior.
This accords with the facts that most people only vaguely aware of their
net worth, are little-influenced in their current behavior (at least if under
50) by the status of their retirement account, and can be induced to make
large changes in savings behavior by minor “informational” changes, like
changes in default options on retirement plans.

IV. SOME MODELS THAT REQUIRE A COMPUTATIONAL APPROACH

I have no recipe for exhaustively identifying cases like log utility, linear utility,
and quadratic utility without borrowing constraints, in which an analytic solution
for g(w | c) is obtainable. Indeed I have the impression that such cases are very
rare. So it is worthwhile to look at some examples of commonly used U(x,y)
functions and see how hard it is to compute solutions.

For an f > 0 solution, the first-order conditions and the constraint that the mar-
ginal pdf for w be the given g(w) lead to the pair of equations

/e"‘u(c'w)v(w)dw =1, allg (10)

/h(c)e“u(c'w)v(w)dc =g(w), alw, (11)
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which have to be solved for v and /i, where h is the marginal pdf of c. This is
a recursive linear system. It looks like we could discretize it, solve the resulting
simple linear system from (10) for v, then use those results in (11) to create another
simple linear equation system to solve for h. This approach does not work.

Each of these equations is what is known as a Fredholm integral equation of type
1, which are notoriously ill-conditioned except in special cases. In other words, a
v that makes the norm of the vector of discrepancies between right and left hand
sides of (10) nearly zero, can differ from the true solution in v-space by a large
amount. Furthemore, it is not going to be uncommon for there to be regions of
¢, w space with f(c,w) = 0 in the solution. If one knew where these were, (10-
11) could be used on the remaining ¢, w values. But in general we will not know
where they are, and searching over all the possible combinations of such regions is
prohibitively complicated.

An approach that I have found to work is simply to discretize f itself and maxi-
mize the Lagrangian

/U(c,w)f(c,w) dcdw — AH(W,C) — u(w) (/f(c,w) dc — g(w)) : (12)

with A fixed at some positive number. Here H(W, C) is the mutual information
between w and c in their joint distribution, the same object that appears on the left-
hand side of the information constraint (4). This can work because points at which
f = 0 simply drop out of both the information constraint and the expected utility.
I have imposed f > 0 by maximizing over log f as the parameter vector. This
means of course that the parameters corresponding to f(c,w) = 0 values are ill-
determined, but gradient-based search methods (at least my own, csminwel .R,
which is what I used) still perform well, converging nicely for the f(c,w) > 0
values and leaving log f extremely negative at points where clearly f(c, w) = 0.

The discretized solutions below all are based on using an equi-spaced grid with
16 c values ranging from .01 to .5 and 31 w values ranging from .02 to 1. The
marginal pdf g for w is given in each case as ¢(w) = 2w. There are then 31 adding-
up constraints, and 8 x 15 = 120 zero constraints on points where ¢ > w, leaving
31 x 16 — 120 — 31 = 345 free parameters. The specific normalization I used was an
unconstrained 15 x 31 matrix 6 of parameters, with the entry f;; of the discretized
f determined as gjexp(0;—1)/(1+0)) fori > 1and as g;/(1+0) fori =1, and
with 8 = ¥, exp(6;).

Though for some problems 345 parameters would be so many as to raise compu-
tational difficulties, here there seems to be no trouble with them. Using interpreted
(in the R language?) code and numerical derivatives, convergence is achieved in

4 Available at http://lib.stat.cmu.edu/R/CRAN/
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p(wic), log utility, A =0.5, triangle g
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about 450 iterations, with each iteration taking about 1.5 seconds (making the
whole computation take about 11 minutes) on a 3GHz Pentium 4 running Linux.
They could be made much faster using analytic derivatives, which would not be
hard to program, and probably also by using compiled code. A more sophisticated
algorithm could also help. We know the solution should be smooth on its support
and should have a density with respect to some product measure on ¢, w space.
Parameterizing the solution to reflect this knowledge should enable accurate ap-
proximations with many fewer free parameters.

Figure 3 shows the same kind of plot as Figure 2 — g(w | c¢) densities with
various values of ¢, log utility, and A = .5. The difference is that here, instead of
showing the theoretical densities for the case where the 4’s (and hence necessarily
also g) have unbounded support, we show the numerically computed densities for
our case of a linearly increasing density with support [0, 1]. The lines on the two
plots should not match exactly, because one shows a discretized approximation to
the solution for continuously distributed ¢ and w, while the other shows an exact
solution for discretely distributed c and w. Nonetheless these conditional pdf’s do
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pdf of ¢, y=1, A =0.5, triangle g(w)
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match up, roughly. Note that in Figure 3 there are fewer lines shown, because the
discreteness and the bounded support for ¢ mean that c does not have full support
even in [0,.5], as can be seen from Figure 4. In fact, with this degree of information
constraint, the solution sets c to .4 with probability .72.

To see the effects of varying degrees of risk aversion, consider calculations for
the same triangular g(w), but with utility given by the CRRA form

=T (w— )7
1=7

The values of A in the two examples we consider have been adjusted so that the

information flow (.88 bits and .85 bits), is about the same for the two cases (A = .5

and A = 2, respectively) considered, so the differences in results are attributable

to the differences in the risk aversion parameters. Of course if the model were

formulated with an actual opportunity cost of information, in consumption goods

units, the solution with lower risk aversion would most likely imply a choice of
lower information flow.

U(c,w) =

(13)
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p(c,w), triangle g(w) y=0.5 A=0.03
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FIGURE 5.

Shaded plots of the joint densities of ¢ and w are shown in Figures 5 and 6. Both
solutions show discretization, with several values of c receiving zero probability.
The v = .5 solution puts probability .70 on the highest value of ¢, which is .37.
The v = 2 solution also puts probability .70 on its highest c value, but the value
is slightly lower — .34. The low risk-aversion solution shows a more discretized
distribution of c at lower values of w, and puts substantially more probability on
c values close to the ¢ = .5w line. This is as would be expected. The v = 2
utility function goes to minus infinity as w — ¢ — 0 or ¢ — 0. It therefore makes it
worthwhile to be well informed about low wealth values, so that ¢ is not forced too
close to zero, and also to keep the probability of choosing c close to w (and hence
w — ¢ small) low.

With these non-log utility functions, we expect to see deviations from the F form
of g(w | ¢). Plots analogous to Figures 2 and 3 for these two non-log utility exam-
ples are shown in Figures 5 and 8. The high-risk-aversion plot shows narrow finite
support for g(w | ¢) at low values of ¢, and then very flat tails on the pdf’s as we
move to higher c values. The lower-risk-aversion plot shows more of a right tail
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p(c,w), triangle g(w) y=2 A=1
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FIGURE 6.

and less narrow support at the low ¢ values, and thin tails at higher ¢ values except
for the highest, which in both plots is the one with the most weight. These results
make sense, with the higher risk aversion solution trading higher probability of
choosing a modest value of c when wealth is in fact high for a lower probability of
a mismatch between ¢ and w when wealth is low.

The fact that discreteness in the distribution of ¢ and finite support, varying with
¢,in g(w | ¢) show up in both these standard cases, despite a continuous marginal
distribution for w, implies that any numerical approach to solution of rational inat-
tention models must allow for these possibilities. They are not an artifact of the
triangular g(w). That ¢(w) was chosen to bring out the differences with degree
of risk aversion, but the discreteness of the c distribution showed up with every g
I considered, including standard Beta, F, and Gamma pdt’s that peaked below .3
and were small or zero at w = 1.

While the discreteness will be a challenge for programmers, it may help the the-
ory rationalize observed patterns of behavior. Actual choices by individuals in
response to external information often do seem to have a discrete character.
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p(w|c), y=0.5, A =0.03, triangle g
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V. OTHER POINTS ON THE RESEARCH FRONTIER

V.1. On to a fully dynamic non-LQG model. Here is the Bellman equation for a
dynamic programming problem with Shannon capacity as a constraint, the current
pdf g of w as the state variable, and f(c, w) as the control:

max/u (c,w dcdw+[3/ (/h ;e,w) f(w | c)dw) f(c,w)dcdw

(14)

subject to
/f(c,w) dc = g(w), allw (15)
flc,w) >0, allc,w (16)

H(C,W) < x. (17)
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p(w|c), y=2, A =1, triangle g
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The function & maps the current ¢, w pair into a conditional density for next pe-
riod’s w. In usual models, it is specified indirectly in the form of an equation like
wy = ¢(wr_1,c-1,€t) together with a specification that ¢; has a certain pdf and
is independent of w;_1 and ¢;_1. The constraint connecting f(c, w) to f(c | w) has
been left implicit. This problem is in the form of a standard dynamic programming
problem, except that the state and control variables are both in principle infinite-
dimensional. But, extending the approach taken above to a two-period problem, I
believe computing solutions to such problems should be feasible. Economists are
already succeeding in calculating solutions to equilibrium models with infinite-
dimensional state spaces.

Note the occurrence of f(w | ¢) in the argument of the value function on the
right-hand side in (14). This reflects the fact that the agent must allow some “noise”
to affect the choice of ¢ in the current period, but can use the noisy observation that
entered determination of c to update beliefs about next period’s w.



RATIONAL INATTENTION 19

V.2. Rational inattention models of general equilibrium. The work cited earlier
by van Niewerburgh and Veldkamp and by Mondria includes calculation of mar-
ket equilibrium with capacity constraints. As already noted in section II, though,
these models assume costless and perfect observation of market prices, which is
both contrary to the notion of finite-capacity agents and a source of anomalous re-
sults. This modeling choice by these authors is not an easily corrected oversight.
Modeling a market equilibrium with agents who do not know exactly what prices
are requires being explicit about aspects of market microstructure that are not stan-
dard parts of the economic theory toolbox and about which we have few stylized
facts or modeling conventions to guide us.

A model populated by capacity-constrained agents will not simply balance sup-
ply and demand via a price mechanism. Agents will not have perfect knowledge
of prices, indeed may have only a very rough idea of what they are, as they take
decisions that affect economic exchange and production. Inventories, retailers,
wholesalers, demand deposits, cash, and credit cards, are all devices that allow
agents to make transactions in which quantities and price are known and cho-
sen only approximately. Few of our models have explicit roles for retailers and
wholesalers, our models of inventory behavior are only modestly successful, and
microfounded models of money that connect to data are non-existent. The idea of
Shannon capacity may be of some help in modeling these phenomena, but they
are inherently difficult, long-standing problems, so realistic general equilibrium
models with capacity-constrained agents may not emerge for some time.

V.3. Macro modeling. Since a standard approach to general equilibrium mod-
eling with rational inattention will not emerge soon, applying rational attention
to the representative agent equilibrium models that now constitute mainstream
macro will also take some time. In the meantime, though, we can see even from
simple linear-quadratic examples that there are implications for current modeling
practice. In the linear-quadratic framework, rational inattention behavior is a con-
strained special case of the behavior of an agent who observes state variables with
error. While there are some examples of such models in the macroeconomic litera-
ture (Lucas, 1973; Woodford, 2001), the rational inattention idea should encourage
us to pay more attention to such models. The objection that there is no physical
interpretation for the observation error such models postulate is answered by the
rational inattention framework, and the RI framework gives us some guidance as
to reasonable properties for the observation error, even when we cannot derive it
analytically.

V.4. Public and private information models. Recently, following the paper by
Morris and Shin (2002), there have been a number of papers considering models
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with public and private information (Hellwig, 2004; Angeletos and Pavan, 2004).
This work raises interesting questions and arrives at conflicting conclusions about
the value of “transparency”, depending on assumptions about externalities that
are difficult to calibrate against an actual economy. But for all the diversity in the
conclusions from this literature, it is all formulated on the assumption that there
are private information sources with exogenously given attributes and a public in-
formation source whose stochastic character we can imagine controlling. From a
rational inattention perspective, this is a strange setup. Capacity-limited agents
will act as if observing the state of the economy with error even if some public
authority announces it exactly. The amount of the error will depend both on the
stochastic properties of the state itself and of any noise in public signals about it. If
private signals carry a lot of information about privately important variables, in-
formation they contain about an aggregate state may be ignored or reacted to very
slowly and erraticly®. Before these abstract models are applied to policy debates
about transparency in monetary policy, they need to be tied closely enough to real
economies that we can judge which of their conflicting conclusions might be cor-
rect, and this should include consideration of how their conclusions are affected
by rational inattention.

VI. IMPLICATIONS FOR MONETARY POLICY

Rational inattention may have far-reaching implications for macroeconomics
and monetary policy generally, once its implications are fully worked out. In the
meantime, though, it may shed some light on transparency in monetary policy.
For a capacity-limited agent, it is necessary to take actions that respond to the true
state of the economy at a low information transmission rate. This means that reac-
tions to the state are either delayed and smoothed, with added idiosyncratic error,
or they are discretized and randomly timed. A central bank may provide the pub-
lic with a heavily filtered view of its actions or judgments, on the assumption that
the public cannot take in the full detail and complexity of its actions and the think-
ing behind them. In the US, this takes the form of discretized, somewhat randomly
timed policy actions (changes in the Federal Funds rate) together with a brief para-
graph rationalizing the action. The paragraph occasionally changes the wording of
a phrase or two, and the market often reacts strongly to these changes. If enough
market participants take this simple, discrete sequence of changes in wording as
a free, low-bit-rate summary of an important state variable, it is unsurprising that
markets respond discretely to these changes in wording. Even market specialists,

5See Mackowiak and Wiederholt (2005) for a model with local and aggregate signals related to
pricing decisions and responded to with capacity constraints.
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who know the true state with high precision, will pay attention to the noise in the
Fed signal because of its effects on other agents.

If this is what is going on currently, what would be the effect of the Fed’s issuing
a much more detailed inflation report, like those issued periodically by inflation-
targeting banks? A naive extrapolation might suggest that since the Fed now pro-
vides very little information, which generates overreaction, overreaction would be
much worse if the Fed proved much more information. But this is unlikely. Mar-
ket participants who need a low-bit-rate summary of the state (of the economy, or
of the Fed’s policy stance) would still look for it, but there would not be a unique
low-bit-rate summary in the Fed’s own statements. Market participants who need
to devote most of their attention elsewhere will still respond noisily and with de-
lay to Fed statements, but the noise will come from other sources, probably many
other sources, instead of mainly from the Fed’s own efforts to provide a filtered
signal. If there are enough other semi-public filterers of monetary news (TV, news-
papers, investment clubs, lunchtable conversation), the signal processing noise in
them may partially cancel out at the aggregate level. But even if not, the Fed would
no longer be itself responsible for generating unnecessary market fluctuations.

There are other, in my view even stronger, arguments for transparency in mon-
etary policy. But a rational inattention perspective does help us understand why
it can be that economies where central banks publish detailed inflation reports do
not seem to have as much of a problem with overreaction to those reports as the
Fed does with overreaction to its single paragraphs.

VII. CONCLUSION

Abstract and single-agent models incorporating rational inattention are already
providing us with some useful insights. There is still a long and interesting road
ahead, though, before we can build models incorporating these insights that can
be matched to observed data, either at the macro or micro level.
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