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A Notes on Retailer Scanner Data

A.1 Aggregation of Variables

We aggregate the variables of interest over days, products, and retailers in the following

way.

1. To construct the price indices and COLIs, we use the formula explained in the main

text for products in each 3-digit product category. We assume that products are

different when they are sold by different retailers even when the brand is identical,

since the timing of sales and the degree of stockpiling differ across retailers. We

then aggregate the price indices and COLIs at the 3-digit product category level

using the sales weight of each product in the month that includes the day for which

the aggregation is done.

2. To construct the aggregate variables except for the price indices and COLIs, we

take the logarithm of variables (unless they are expressed by a rate of change or

ratio) and then aggregate the values over products and retailers (and sales events),

assigning equal weights. Such variables include log(m), log(1− q), log(1− q), and

log((PH − PL)/PH).
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3. In both cases, we aggregate variables at the 3-digit category level only when the

elasticity of substituion (σ) is greater then 1.0.

B Notes on the “Shoku-map” Household Scanner

Data

Table 1 shows the basic statistics for the Shoku-map household scanner data. In the

data, the definition of the number of products seems slightly ambiguous. For example, it

seems that the number of products purchased is recorded as six, rather than one, when a

household purchases a six-pack of beer. On the other hand, it seems that the number of

chocolates purchased is recorded not as 24 but one when a household purchases a pack

of 24 pieces of chocolate.

C Model Details

Proof of Lemmas 1 and 2

Define the Lagrangian as

L(it−1, pt) = maxxt+j ,it+jEt

 ∞∑
j=0

βj


(rt+j(it+j−1 − it+j + xt+j)− pt+jxt+j − C(it+j))

+ψt+jxt+j + µt+jit+j


 .

(1)

The first-order conditions with respect to xt and it are

0 =rt − pt + ψt, (2)

C ′(it) =βEt[rt+1]− rt + µt. (3)

The price to be paid by the consumer (consumer price), rt, satisfies 0 < rt ≤ PH .

The reason is that if rt was strictly higher than PH , consumers would purchase storable

product k directly from product k manufacturers. Thus, PH serves as the upper price

limit.

Furthermore, rt generally lies in the range of [PL, PH ]. If Et [rt+1] was strictly lower

than PL, household producers would experience negative profits, since they purchase

goods at PL or PH . Anticipating this possibility, household producers would not enter
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the market in the first place. However, a large unexpected shock may lead household

producers to conduct fire sales to save inventory costs. Without such a large unexpected

shock, when pt = PL, we have rt = r(It−1, PL, bt) = PL, because consumers can purchase

storable goods directly from manufacturers.

Therefore, we are particularly interested in the consumer price at PH , that is, r(It−1, PH , bt).

It is obvious that r(It−1, PH , bt) ≥ r(It−1, PL, bt) = PL. When pt = PL and when pt = PH ,

equation (3) becomes

C ′(iL; It−1) = β
{

(1− q)r(It, PH , bt) + qPL
}
− PL + µt, (4)

C ′(iH ; It−1) = β {(1− q)r(It, PH , bt) + qPL} − r(It−1, PH , bt) + µt, (5)

respectively. Equation (4) indicates that, at pt = PL, inventory iL is increasing in

r(It, PH , b) and independent of it−1, It−1, and bt. The latter property suggests that all

household producers hold the same amount of inventories at pt = PL. At pt = PH , equa-

tion (5) suggests that iH is increasing in r(It, PH , b) and decreasing in r(It−1, PH , bt). Fur-

thermore, equation (5) leads to µt−C ′(iH) = −β {(1− q)r(It, PH , b) + qPL}+r(It−1, PH , bt),

which suggests that µt = 0 and iH > 0 if β {(1− q)r(It, PH , b) + qPL} > r(It−1, PH , bt).

This means that if the consumer price is expected to increase much, household producers

hold some inventories at pt = PH . Otherwise, household producers do not hold invento-

ries, that is, iH = 0 at pt = PH . Inventory iH is decreasing in r(It−1, PH , bt). If It−1 = 0,

then r(It−1, PH , bt) = PH , that is, consumers purchase directly from manufacturers.

Equations (4) and (5) suggest that if it > 0, expected r(It, PH , b) should increase from

r(It−1, PH , b), because otherwise the right-hand side of the equations would be negative,

while the left-hand sign is positive. Since It decreases over time, this suggests that

r(It, PH , b) is decreasing in It.

Finally, r(It−1, PH , bt) is increasing in bt because consumer demand is increasing in bt

according to the equation for the optimal quantity purchased,

ckt =

(
rkt /b

k
t

rkt′/b
k
t′

)−σ
ckt′ , (6)

which is derived from consumers’ cost minimization problem. At pt = PL, r(It−1, PL, bt) is

independent of bt unless a large negative shock to bt induces fire sales, so that r(It−1, PL, bt)

is increasing in bt when bt � 0.

Equation (2) suggests that ψt > 0, that is, xt = 0, when rt < pt. In other words,

household producers do not purchase goods (xt = 0) if pt = PH .
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Proof of Lemma 3

Proof. Consider a sales period from t+ 1 to t+T (T ≥ 2). For the first part of Lemma

3, we examine the case of pt = pt+T+1 = PH . From the previous lemma, it follows that

household producers do not purchase goods, i.e., xt = xt+T+1 = 0. Because inventories

at PL, iL, are independent of it−1 and It−1, and inventories at PH , iH , are decreasing over

time, we should see It−1 ≤ It+T . Thus, rH(It−1) ≥ rH(It+T ). Because consumers do not

purchase goods from manufacturers when rt < PH , the quantity purchased by consumers

is greater than or equal to that just after a sale.

For the second part of Lemma 3, consider a sales period from t+ 1 to t+ T (T ≥ 3).

It is obvious that It ≤ It+T−1. Because iL is independent of it−1 and It−1, the quantity

purchased by household producers on the first day of a sale is greater than or equal to

that on the final day of the sale. The quantity purchased by consumers is the same on

the first and the last day of the sale, since consumers face the consumer price PL.

Proof of Lemma 4

Proof. In the proof of Lemma 3, we showed that the inventory iH at pt = PH is

decreasing over time. This means that, in aggregate, It is decreasing over time after a

sale ends until It reaches zero. Since rt = r(It−1, pt, bt) is nonincreasing in It−1, rt is

nondecreasing over time. Equation (6) means that ct is decreasing in rt and therefore is

nonincreasing over time.

Proof of Lemma 5

Proof. Note that the cost function, λt = C(rt), is given by

C(rt) =
∑
k∈Kt

rkt c
k
t =

[∑
k∈Kt

(
bkt
)σ (

rkt
)1−σ

U

]1/(1−σ)

. (7)

From equation (7), it follows that the cost function in each period can be written as

C(rt) = C(rt+T+1+TH ) =
[(
bk
)σ

(PH)1−σ U + A
]1/(1−σ)

where A is a constant. It can therefore be immediately seen that the change in the COLI

from t to t+ T + 1 + TH , πCOLI = log
{

ΠT+1+TH
i=1 (C(rt+i)/C(rt+i−1))

}
, equals zero.

The total quantity purchased by household producers and consumers at t equals

Xt =
∫ Nt

0
xtdj +

∫Mt

0
ztdj. Regarding this, we showed in Lemma 3 that Xt ≥ Xt+T+1
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and Xt+1 ≥ Xt+T . Further, if m ≥ 1, inventories at the end of a sale are not zero but

positive, so Xt > Xt+T+1 and Xt+1 > Xt+T . Thus, using
∑

k′∈K0∩Kt p
k′
t x

k′
t = 1, we can

show that the purchase-weighted Törnqvist index is given by

πT =

T+1+TH∑
i=1

πTt+i =
ptXt + pt+1Xt+1

2
log

(
pt+1

pt

)
+
pt+TXt+T + pt+T+1Xt+T+1

2
log

(
pt+T+1

pt+T

)
=
PHXt + PLXt+1

2
log

(
PL
PH

)
+
PLXt+T + PHXt+T+1

2
log

(
PH
PL

)
=
PL (Xt+T −Xt+1) + PH (Xt+T+1 −Xt)

2
log

(
PH
PL

)
< 0.

Similarly, we obtain

πL =

T+1+TH∑
i=1

πLt+i = ptXtlog

(
pt+1

pt

)
+ pt+TXt+T log

(
pt+T+1

pt+T

)
= (PLXt+T − PHXt)log

(
PH
PL

)
∝ (PLP

−σ
L − PHP−σH )log

(
PH
PL

)
> (<)0 if σ > (<)1,

where A ∝ B means that A is positively proportional to B. Note that demand is

proportional to p−σt at t and t + T because there is no demand for further stockpiling.

Also, we have

πP =

T+1+TH∑
i=1

πPt+i = pt+1Xt+1log

(
pt+1

pt

)
+ pt+T+1Xt+T+1log

(
pt+T+1

pt+T

)
= (PHXt+T+1 − PLXt+1)log

(
PH
PL

)
∝ (PHP

−σ
H − PLP−σL )log

(
PH
PL

)
< (>)0 if σ > (<)1,

and

πP =

T+1+TH∑
i=1

πPt+i = (PHXt+T+1 − PLXt+1)log

(
PH
PL

)
<
PL (Xt+T −Xt+1) + PH (Xt+T+1 −Xt)

2
log

(
PH
PL

)
= πT if σ > 1,

because PH (Xt+T+1 +Xt) < 2PHXt < 2PLXt+T < PL (Xt+T +Xt+1) .

If m ≥ 1, the consumption price satisfies PL < rt+T+1 < PH just after a sale and

rt+T+j+1 ≥ rt+T+j for j = 1, 2, · · · , TH . Also, we have rt = PH (i.e., just before a sale)

and rt+j = PL for j = 1, · · · , T (i.e., during a sale).
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We can show that the consumption-weighted Törnqvist index is given by

πT∗ =

T+1+TH∑
i=1

πT∗t+i =
rtct + rt+1ct+1

2
log

(
rt+1

rt

)
+

T+1+TH∑
i=T+1

rt+i−1ct+i−1 + rt+ict+i
2

log

(
rt+i
rt+i−1

)

= −PHct + PLct+1

2
log

(
PH
PL

)
+

T+1+TH∑
i=T+1

rt+i−1ct+i−1 + rt+ict+i
2

log

(
rt+i
rt+i−1

)
.

The consumption price drops from PH to PL in one period and takes more than one

period to increase to PH . If it takes two periods, πT∗ is

πT∗ =

T+1+TH∑
i=1

πT∗t+i = −PHct + PLct+1

2
log

(
PH
PL

)
+

T+2∑
i=T+1

rt+i−1ct+i−1 + rt+ict+i
2

log

(
rt+i
rt+i−1

)

∝−
PHP

−σ
H + PLP

−σ
L

2
log

(
PH
PL

)
+
PLP

−σ
L + rHr

−σ
H

2
log

(
rH
PL

)
+
rHr

−σ
H + PHP

−σ
H

2
log

(
PH
rH

)
=−

PHP
−σ
H + PLP

−σ
L

2
log

(
PH
PL

)
+
PLP

−σ
L + rHr

−σ
H

2
log

(
PH
PL

)
−
PLP

−σ
L + rHr

−σ
H

2
log

(
PH
rH

)
+
rHr

−σ
H + PHP

−σ
H

2
log

(
PH
rH

)
=
r1−σH − P 1−σ

H

2
log

(
PH
PL

)
−
P 1−σ
L − P 1−σ

H

2
log

(
PH
rH

)
≡F (rH).

This equals zero when rH = PH or rH = PL.

The function F (rH) suggests that 2rσHF
′(rH) = (rH/PL)σ−1 − (rH/PH)σ−1 − (σ −

1)log (PH/PL) . Suppose σ > 1. This is increasing in rH , negative when rH = PL, and

positive when rH = PH . This means that there exists a certain r∗H ⊂ (PL, PH) that makes

F ′(r∗H) equal zero. Furthermore, F ′(rH) < 0 when PL ≤ rH < r∗H and F ′(rH) > 0 when

r∗H ≤ rH < PH . Thus, F (rH) is negative when PL < rH < PH .

Although what we show here focuses on the case in which the consumption price

decreases in one period and takes two periods to return to the original price, this logic

also holds in cases where it takes longer than two periods for the price to return to the

original price.

On the other hand, if σ < 1, F (rH) is positive when PL < rH < PH ,which leads to

πT∗ > 0.
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We compare πT∗ and πT in the special case of m = 1:

πT∗ − πT ∝
r1−σH − P 1−σ

H

2
log

(
PH
PL

)
−
P 1−σ
L − P 1−σ

H

2
log

(
PH
rH

)
− PL (Xt+T −Xt+1) + PH (Xt+T+1 −Xt)

2
log

(
PH
PL

)
=
r1−σH − P 1−σ

H

2
log

(
PH
PL

)
−
P 1−σ
L − P 1−σ

H

2
log

(
PH
rH

)
−
PLIL + PH

(
0− P−σH

)
2

log

(
PH
PL

)
=
r1−σH + PLIL

2
log

(
PH
PL

)
−
P 1−σ
L − P 1−σ

H

2
log

(
PH
rH

)
≡G(rH).

Suppose σ > 1. As we showed in the above proof, G′(rH) takes the smallest value at

rH = r∗H , where r∗H satisfies (r∗H/PL)σ−1−(r∗H/PH)σ−1−(σ−1)log (PH/PL) . Substituting

r∗H into the above equation, we find that G(r∗H) is positive. Thus, G(rH) is positive.

Proof of Lemma 6

Proof. Suppose that the unit cost function is given by

C(rt) =

[∑
i∈K

∑
k∈K

αik
(
rit
)(1−σ) (

rkt
)(1−σ)

]1/{2(1−σ)}

(8)

where αik = αki. Using Shephard’s Lemma and equation (8), we obtain

cit = Ut∂C(rt)/∂rit

= Ut
1

2(1− σ)

[∑
i∈K

∑
k∈K

αik
(
rit
)(1−σ) (

rkt
)(1−σ)]1/{2(1−σ)}−1

2(1− σ)
(
rit
)−σ ∑

k∈K

αik
(
rkt
)1−σ

=
UtC(rt)

(
rit
)−σ∑

k∈K α
ik
(
rkt
)1−σ∑

i∈K
∑
k∈K α

ik
(
rit
)(1−σ) (

rkt
)(1−σ) ,

which yields
ritc

i
t

UtC(rt)
=

(
rit
)1−σ∑

k∈K α
ik
(
rkt
)1−σ∑

i∈K
∑
k∈K α

ik
(
rit
)(1−σ) (

rkt
)(1−σ) . (9)

Noting that

sit ≡
ritc

i
t∑

k∈K r
k
t c
k
t

=
ritc

i
t

UtC(rt)

=

(
rit
)1−σ∑

k∈K α
ik
(
rkt
)1−σ∑

i∈K
∑
k∈K α

ik
(
rit
)(1−σ) (

rkt
)(1−σ) , (10)
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we obtain

Pr(r0, r1, c0, c1) =

{∑
i∈K s

i
0

(
ri1
ri0

)(1−σ)}1/{2(1−σ)}

{∑
k∈K s

i
1

(
ri0
ri1

)(1−σ)}1/{2(1−σ)}

=

{∑
i∈K

(ri0)
1−σ ∑

k∈K αik(rk0 )
1−σ∑

i∈K
∑
k∈K αik(ri0)

(1−σ)
(rk0 )

(1−σ)

(
ri1
ri0

)(1−σ)}1/{2(1−σ)}

{∑
i∈K

(ri1)
1−σ ∑

k∈K αik(rk1 )
1−σ∑

i∈K
∑
k∈K αik(ri1)

(1−σ)
(rk1 )

(1−σ)

(
ri0
ri1

)(1−σ)}1/{2(1−σ)}

=

{∑
i∈K

∑
k∈K αik(ri1)

(1−σ)
(rk0 )

(1−σ)∑
i∈K

∑
k∈K αik(ri0)

(1−σ)
(rk0 )

(1−σ)

}1/{2(1−σ)}

{∑
i∈K

∑
k∈K αik(ri0)

(1−σ)
(rk1 )

(1−σ)∑
i∈K

∑
k∈K αik(ri1)

(1−σ)
(rk1 )

(1−σ)

}1/{2(1−σ)}

=

{∑
i∈K

∑
k∈K α

ik
(
ri1
)(1−σ) (

rk1
)(1−σ)∑

i∈K
∑
k∈K α

ik
(
ri0
)(1−σ) (

rk0
)(1−σ)

}1/{2(1−σ)}

=
C(r1)

C(r0)
.

Equilibrium When Inventories are Cleared in Just One Period After a Sale

Household producers’ firm value is written as

V (it−1, pt; It−1) = maxxt,it (rt(it−1 − it + xt)− ptxt − C(it)) + βEt [V (it, pt+1; It)] .

The free entry condition yields

V (it−1 = 0, pt = PL; It−1) = 0, (11)

while V (it−1 = 0, pt = PH ; It−1) < 0. Using this condition, we can show that rH is a

function of It−1, that is, rH(It−1).

If household producers do not hold much inventory, they sell off all their inventory

immediately when pt turns from PL and PH . That is, iH becomes zero in the next period.

The firm value can be divided into four cases:

V (iL, PL; IL) = −C(iL) + β
{

(1− q)V (iL, PH ; IL) + qV (iL, PL; IL)
}
,

V (iL, PH ; IL) = rH(IL)iL − C(0) + β {(1− q)V (0, PH ; 0) + qV (0, PL; 0)} ,

V (0, PL; 0) = −PLiL − C(iL) + β
{

(1− q)V (iL, PH ; IL) + qV (iL, PL; IL)
}

= 0,

V (0, PH ; 0) = −C(0) + β {(1− q)V (0, PH ; 0) + qV (0, PL; 0)} .
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These equations can be summarized as

C(iL) + (1− βq)PLiL +
β(1− q)

1− β(1− q)
C(0) = β(1− q)rH(IL)iL.

Because equation (4) can be rewritten as

C ′(iL) + (1− βq)PL = β(1− q)rH(IL), (12)

we obtain

C ′(iL)iL − C(iL) =
β(1− q)

1− β(1− q)
C(0). (13)

Equations (12) and (13) enable us to solve for iL and rH(IL).

Finally, it is important to check that the above solution satisfies the goods market

clearing condition. When pt = PL, manufacturers supply goods to consumers with no

additional cost until the goods market is cleared, because consumption price rt is equal

to PL. In the case of pt = pt−1 = PH , we have rt = PH . Consumers again purchase goods

directly from manufacturers until the goods market is cleared. In the case of pt = PH

and pt−1 = PL, consumption price rt equals rH and the quantity of goods supplied (which

equals the quantity consumed) is predetermined because inventories are predetermined

and there are no additional purchases (i.e., xt = 0). Thus, if demand in the goods

market is greater (smaller) than supply, rH increases (decreases) until the market is

cleared, which makes household producers’ firm value deviate from its expected value.

In other words, the expected consumption price at t+1, rt+1, conditional on pt = PH and

pt−1 = PL, equals rH , but the realized consumption price may differ from the expected

value. Also, it should be pointed out that rH is independent of factors on the household

side, that is, bkt . Such factors influence the demand for storable product k but do not

influence the consumption price rH , since household producers freely enter the market

and change the aggregate supply of goods.

D Detailed Explanation of Our Approach

D.1 Proof of mcont

Assume time is continuous. If rt increases linearly in t, we can write rH(It) as rH(x) ={
x

mcont

PH−PL
PL

+ 1
}
PL, where x represents the time elapsed after a sale, because rH(0) =

PL and rH(mcont) = PH . The corresponding consumption equals (rH/PL)−σ c∗L. Denote
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the initial inventories outstanding just after a sale ends by IL. At m = mcont, all

inventories are used up, which is given by

IL =

∫ m

0

{
x

mcont

PH − PL
PL

+ 1

}−σ
c∗Ldx

∴ mcont =
PH − PL
PL

σ − 1

1− (PH/PL)−σ+1

IL
c∗L
.

D.2 Conditions under Which Our Approach Holds

When pt = PH , household producers optimize inventories to satisfy

C ′(iH ; It−1) = β {(1− q)rH(It) + qPL} − rH(It−1) + µt. (14)

Positive inventories yield µt = 0. Then, rH(It) − rH(It−1) in equation (14) becomes a

positive constant if

C ′(iH ; It−1) + {1− β(1− q)} rH(It−1) (15)

is constant and larger than βqPL.

Equation (15) suggests that C(·) should satisfy the following conditions. Note that

if rH(It)− rH(It−1) is a positive constant, the consumption price and inventories at time

x (0 ≤ x ≤ mcont) equal

rH(x) =

{
x

mcont

PH − PL
PL

+ 1

}
PL,

I(x) = IL −
∫ x

0

{
x′

mcont

PH − PL
PL

+ 1

}−σ
c∗Ldx

′

=

1−
1−

(
x

mcont

PH−PL
PL

+ 1
)−σ+1

1− (PH/PL)−σ+1

 IL,

respectively. Thus, inserting iH = κIt into equation (15), we can show that the following

term,

C ′


1−

1−
(

x
mcont

PH−PL
PL

+ 1
)−σ+1

1− (PH/PL)−σ+1

κIL

+{1− β(1− q)}
{

x

mcont

PH − PL
PL

+ 1

}
PL,

(16)

needs to be independent of x and larger than βqPL. Defining

x′ ≡

1−
1−

(
x

mcont

PH−PL
PL

+ 1
)−σ+1

1− (PH/PL)−σ+1

κIL
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for 0 ≤ x′ ≤ κIL, we have the following condition for the inventory cost function:

C ′(x′) = C0 − {1− β(1− q)}

{
1−

(
1− x′

κIL

)(
1−

(
PH
PL

)−σ+1
)} 1

−σ+1

PL, (17)

where C0 > βqPL.
1 It can be easily shown that C ′′(·) > 0 provided σ > 1.

D.3 Details of How We Apply Our Approach to the POS Data

Using the POS data, we calculate rH(It−1), m, X∗L, and IL for each sales event for each

product at each retailer, while we calculate σ for each 3-digit product category.

We take the following three steps. First, for each product and retailer, we identify all

sales events using the sales filter.2 We define the first and the last day of a sales event

as t + 1 and t + T , respectively. We record the price and the quantity purchased just

before a sale (i.e., at t) as rH and cH , respectively. Note that, according to the model,

cH should equal consumption unless the effect of stockpiling remains and cH is zero. In

that case, we use the previous values of rH and cH .
3

Second, if a sale lasts more than one day (T > 1), we record the average price and

the quantity purchased in the first half of a sale (i.e., from t + 1 to t + bT/2c − 1) as

P 1
L and X1

L, while the average price and the quantity purchased in the second half of the

sale (i.e., from t+ bT/2c to t+ T ) are defined as P 2
L and X2

L, respectively. If X1
L ≥ X2

L,

we set rL = P 2
L and cL = X2

L. Otherwise, we set rL = P 1
L and cL = X1

L. According

to the model, we should observe X1
L ≥ X2

L, as Lemma 3 showed. In this case, there

is no need for additional stockpiling in the second half of the sale, so X2
L should equal

consumption, which we denote by cL. However, the POS data often show the opposite,

1The inventories outstanding just after a sale ends, IL, are endogenous and determined from the

optimization equation when pt = PL:

C ′(κIL) = β
{

(1− q)rH(x = 1) + qPL
}
− PL.

2Before identifying sales events, we remove outliers by resetting the price and quantity purchased

to zero for product i on day t if the absolute log difference between pit and the median of pit over the

observation period is larger than log(70/10). Additionally, if the number of days with pit > 0 is smaller

than seven, we remove this product from our study.
3In order to avoid a situation such that the first observed cH is zero, we search for the earliest sales

event that satisfies cH > 0 and then go back in time as far as the regular price rH continues to be

observed. We define the first day when the regular price is listed as the starting point of the time series

for estimating consumption paths.
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X1
L < X2

L, which makes sense if the duration of the sale is known ex ante. In this case,

there is no need for stockpiling in the first half of the sale, so that X1
L should equal cL.

In the third step, we calculate the elasticity of substitution, σ. The variables we

obtained in the first two steps, (rH , rL) and (cH , cL), correspond to the consumption

prices and the quantities consumed. Thus, equation (6) should hold for these variables

when the true σ is used. Furthermore, the log ratio of the quantity consumed during

a sale to that when the product is sold at the regular price divided by the log ratio of

the sales price to the regular price, Γ ≡ −log (cL/cH) /log (rL/rH), should equal σ on

average. Thus, we calculate the unweighted average of Γ across sales events, products,

and retailers for each 3-digit product category, which we define as σ.

Fourth, we calculate consumption, the consumption price, the degree of stockpiling,

and inventories for each sales event, each product, and each retailer. If a sale lasts more

than one day (T > 1), we set c∗L = (rL/rH)−σ cH . If a sale is only one day long, we set

rL = pt and c∗L = min
[
0.01, (rL/rH)−σ cH

]
. Inventories at the end of a sale, IL, equal

the cumulative quantity of purchases during the sale minus the cumulative quantity of

consumption during the sale, that is, max
[
0,ΣT

j=1Xt+j − Tc∗L
]
, where we replace IL with

zero if the calculated amount of inventories is negative. Once we have obtained c∗L and

IL, we can calculate m. Note that since the unit of time in our analysis is discrete (i.e., we

use daily observations), we search for the maximum natural number m starting from the

above continuous-time version of mcont, so that inventories at t+T+m are positive, while

those at t+T +m+1 are negative. Once we have obtained m, we can calculate the path

of consumption prices rs = rH(Is−1) and consumption cs as rL+((t′−t−T )/m)(rH−rL)

and (rs/rL)−σ c∗L, respectively, for t+ T + 1 ≤ t′ ≤ t+ T +m.4

4It is possible that the next sale begins at t
′

before t + T + m. In this case, we use rs and cs until

t
′ − 1 and recalculate them for t′ ≥ t′ assuming that inventories are zero (It′−1 = 0) when the new sale

starts. We use the same cH because information on the quantity purchased just before the sale is not

updated.
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E Simulation Results and Comparison with the POS

Data

E.1 Simulation

Table 2 shows that the size of the chain drift increases as the degree of stockpiling, m,

increases, the size of the sale discount increases (PL/PH decreases), and the probability

that a product will go on sale on the following day given that it is not currently on

sale, q, increases. On the other hand, interestingly, an increase in the probability that a

product will continue to be on sale on the following day given that it is currently on sale,

q, decreases the size of the chain drift in the purchase-weighted Laspeyres and Paasche

indices, but not in the purchase-weighted Törnqvist index. The like reason is that the

expectation of longer sales reduces the incentive to stockpile.

E.2 Comparison with the POS Data

To validate our approach, we examine whether the size of the simulated chain drift is

comparable to that of the actual chain drift. To do so, we calculate the daily average of

the inflation rate from January 1989 to December 2011 based on the purchase-weighted

Törnqvist index for each 3-digit product category j (denoted by πj). The first and last

12-month periods of the data are omitted from the calculation because identifying sales

events is difficult when data are censored.

We regress the average inflation rate πj based on the POS data on log(mj), qj,

qj, and log(PL/PH)j, which are also obtained from the POS data. Table 3 shows the

estimation results. The coefficients on log(mj) and qj are negative and significant, that

on log(PL/PH)j is positive and significant, and that on qj is insignificant. These results

are all consistent with the simulation results shown in Table 2; that is, we find that a

high m, a high q, and a low PL/PH all lead to greater deflation, while the effect of q is

negligible.

F Other Approaches

We examine how much the size of the chain drift changes when we use different assump-

tions with regard to the consumption price. Instead of assuming a linear consumption-
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price increase, we use two types of alternative approaches, allowing for some convexity

or concavity in the consumption-price increase.

F.1 Linear Consumption Decrease

The first alternative approach is to assume a linear consumption decrease after a sale

ends until inventories decrease to zero. Assume time is continuous. Denote consumption

before and during a sale by cH and c∗L, respectively (note that cH < c∗L). If consumption

ct decreases linearly in t after a sale, we can write ct as c(x) =
{

x
mcont

cH−c∗L
c∗L

+ 1
}
c∗L,

where x represents the time elapsed after a sale (0 ≤ x ≤ mcont), because c(0) = c∗L and

c(mcont) = c∗H . At m = mcont, all inventories are used up, which is given by

IL =

∫ m

0

{
x

mcont

cH − c∗L
c∗L

+ 1

}
c∗Ldx

∴ mcont =
2

c∗L + cH
IL. (18)

The corresponding consumption price r(x) can be written as

r(x) =

{
x

mcont

cH − c∗L
c∗L

+ 1

}−1/σ

PL. (19)

It can be easily shown that r′(x) > 0 and r′′(x) < 0. Thus, the consumption price

increases in x, and the speed of the consumption-price increase decreases in x (i.e., the

consumption-price increase is concave).

F.2 Convex or Concave Consumption-price Increase

As the second alternative approach, we add or subtract a particular integer ε from m that

is derived from our baseline approach. Denoting the new m by m′ = m+ ε, we calculate

parameters γ0 and γ1 such that it satisfies r(x) =
(
P

1/γ0
L + γ1x

)γ0
, r(m′) = PH , and

IL =
∫ m′

0
(r(x)/PL)−σc∗Ldx. In other words, γ0 and γ1 satisfy

PH =
(
P

1/γ0
L + γ1m

′
)γ0

,

IL =

(P 1/γ0
L + γ1m

′

PL

)−γ0σ+1

−

(
P

1/γ0
L

PL

)−γ0σ+1
 c∗L PL

(−γ0σ + 1)γ1

. (20)

Note that when ε = 0, γ0 equals 1. If γ0 > 1 and γ1 > 0, the speed of the consumption-

price increase increases in x (i.e., the consumption-price increase is convex). If 0 <

γ0 < 1 and γ1 > 0, the speed of the consumption-price increase decreases in x (i.e., the

consumption-price increase is concave).
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F.3 Simulation

We calculate the price indices based on the COLI, the chained order r superlative, the

chained consumption-weighted Törnqvist, the chained purchase-weighted Törnqvist, the

chained purchase-weighted Laspeyres, and the chained purchase-weighted Paasche, using

the method explained in Section 4.2 in the main text. The benchmark value for the degree

of stockpiling is m = 5.

Before simulating the price indices using the alternative approaches, we calculate the

mean values of cH , c∗L, and IL from the simulation results of T = 365 days times N = 100

in the benchmark case to use. In particular, using the value of IL is important, because

we are interested in examining how much the size of the chain drift changes when we

assume different paths of consumption and of the consumption price after a sale ends,

given a certain amount of inventories during a sale.

When we use the first alternative approach, we calculate mcont from 2IL/(c
∗
L + cH)

and the maximum integer of m to satisfy m ≤ mcont. We then calculate the path of

the consumption price from equation (19) (while 0 ≤ x ≤ m), followed by the path of

consumption so that it is consistent with the demand function.5

When we use the second alternative approach, we assume m′ = m + ε, where ε

takes −2, −1, 1, or 2. Solving equation (20), we respectively obtain values of 0.09,

0.46, 1.44, and 1.80 for γ0. This suggests that when inventories are cleared in a shorter

time than m = 5, we have 0 < γ0 < 1; i.e., the consumption-price increase is concave.

When inventories are cleared in a longer time than m = 5, we have γ0 > 1; i.e., the

consumption-price increase is convex.

5We do this, rather than calculating the path of consumption followed by the consumption price,

since consumption ckt of product k should depend on the consumption prices of other products.
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Table 1: Basic Statistics of the Shoku-map Household Scanner Data

Variable Mean S.D. Min Max

# of households 358 78 105 450

per month

# of products purchased 44,260 11,586 9,126 64,660

per month

# of products purchased 123 12 85 152

per month and per household

# of months for which 24 13 1 47

a household answered

Age of the wife 44 11 21 72

in the household

Note: # of households per month is defined as the number of households that made purchases in each month. # of

products purchased per month is defined as the number of records in each month. # of months for which a household

answered is the number of months for which a household made purchases.
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Table 2: Simulation of the Chain Drift

COLI Order r Törnqvist Törnqvist Laspeyres Paasche

superlative (C) (X) (X) (X)

Benchmark 1.000 1.000 0.991 0.163 2.71e+01 1.01e-03

(4.60e-03) (4.60e-03) (4.58e-03) (1.09e-02) (3.80e+00) (2.10e-04)

Low m 1.000 1.000 1.000 0.448 2.73e+00 7.36e-02

(m = 1) (3.88e-03) (3.88e-03) (3.91e-03) (1.15e-02) (1.02e-01) (5.82e-03)

High m 0.999 0.999 0.992 0.054 3.42e+02 9.13e-06

(m = 10) (5.08e-03) (5.08e-03) (5.06e-03) (6.20e-03) (8.82e+01) (3.15e-06)

Low σ 1.000 1.000 0.999 0.177 1.71e+01 1.87e-03

(σ = 2) (4.29e-03) (4.29e-03) (4.29e-03) (1.14e-02) (2.16e+00) (3.63e-04)

Low PL/PH 0.999 0.999 0.808 0.005 2.50e+05 1.44e-10

(PL/PH = 0.75) (1.48e-02) (1.48e-02) (1.33e-02) (1.01e-03) (1.25e+05) (9.40e-11)

High q 1.001 1.001 0.980 0.005 1.87e+05 1.46e-10

(q = 1/7) (6.06e-03) (6.06e-03) (5.94e-03) (3.50e-04) (4.24e+04) (2.59e-11)

High q 1.000 1.000 0.991 0.163 2.71e+01 1.01e-03

(q = 0.5) (4.60e-03) (4.60e-03) (4.58e-03) (1.09e-02) (3.80e+00) (2.10e-04)

Note: The table shows the means of the price levels after 365 days, where the initial price level is set to one (so that a

value of one indicates no change). Standard deviations in parentheses.

Table 3: Regression of the Chain Drift

Coef. SE

log(m) -0.0013*** (0.0005)

q -0.0114*** (0.0043)

q 0.0015 (0.0013)

log(PL/PH) 0.007*** (0.0022)

Constant -0.0003 (0.0005)

Adjusted R2 0.348

Observations 145

Note: The dependent variable is the daily average of the inflation rate from January 1989 to December 2011 based on the

purchase-weighted Törnqvist index for each 3-digit product category. ***, **, and * denote significance at the 1%, 5%,

and 10% levels, respectively.
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