# Appendix of "Consumer Inventory and the Cost of Living Index: 

Theory and Some Evidence from Japan"

Kozo Ueda* Kota Watanabe ${ }^{\dagger}$ Tsutomu Watanabe ${ }^{\ddagger}$

July 12, 2020

## A Notes on Retailer Scanner Data

## A. 1 Aggregation of Variables

We aggregate the variables of interest over days, products, and retailers in the following way.

1. To construct the price indices and COLIs, we use the formula explained in the main text for products in each 3-digit product category. We assume that products are different when they are sold by different retailers even when the brand is identical, since the timing of sales and the degree of stockpiling differ across retailers. We then aggregate the price indices and COLIs at the 3 -digit product category level using the sales weight of each product in the month that includes the day for which the aggregation is done.
2. To construct the aggregate variables except for the price indices and COLIs, we take the logarithm of variables (unless they are expressed by a rate of change or ratio) and then aggregate the values over products and retailers (and sales events), assigning equal weights. Such variables include $\log (m), \log (1-\bar{q}), \log (1-\underline{q})$, and $\log \left(\left(P_{H}-P_{L}\right) / P_{H}\right)$.

[^0]3. In both cases, we aggregate variables at the 3-digit category level only when the elasticity of substituion $(\sigma)$ is greater then 1.0.

## B Notes on the "Shoku-map" Household Scanner Data

Table 1 shows the basic statistics for the Shoku-map household scanner data. In the data, the definition of the number of products seems slightly ambiguous. For example, it seems that the number of products purchased is recorded as six, rather than one, when a household purchases a six-pack of beer. On the other hand, it seems that the number of chocolates purchased is recorded not as 24 but one when a household purchases a pack of 24 pieces of chocolate.

## C Model Details

## Proof of Lemmas 1 and 2

Define the Lagrangian as
$\mathcal{L}\left(i_{t-1}, p_{t}\right)=\max _{x_{t+j}, i_{t+j}} \mathrm{E}_{t}\left[\sum_{j=0}^{\infty} \beta^{j}\left\{\begin{array}{c}\left(r_{t+j}\left(i_{t+j-1}-i_{t+j}+x_{t+j}\right)-p_{t+j} x_{t+j}-C\left(i_{t+j}\right)\right) \\ +\psi_{t+j} x_{t+j}+\mu_{t+j} i_{t+j}\end{array}\right\}\right]$.

The first-order conditions with respect to $x_{t}$ and $i_{t}$ are

$$
\begin{align*}
0 & =r_{t}-p_{t}+\psi_{t},  \tag{2}\\
C^{\prime}\left(i_{t}\right) & =\beta \mathrm{E}_{t}\left[r_{t+1}\right]-r_{t}+\mu_{t} . \tag{3}
\end{align*}
$$

The price to be paid by the consumer (consumer price), $r_{t}$, satisfies $0<r_{t} \leq P_{H}$. The reason is that if $r_{t}$ was strictly higher than $P_{H}$, consumers would purchase storable product $k$ directly from product $k$ manufacturers. Thus, $P_{H}$ serves as the upper price limit.

Furthermore, $r_{t}$ generally lies in the range of $\left[P_{L}, P_{H}\right]$. If $\mathrm{E}_{t}\left[r_{t+1}\right]$ was strictly lower than $P_{L}$, household producers would experience negative profits, since they purchase goods at $P_{L}$ or $P_{H}$. Anticipating this possibility, household producers would not enter
the market in the first place. However, a large unexpected shock may lead household producers to conduct fire sales to save inventory costs. Without such a large unexpected shock, when $p_{t}=P_{L}$, we have $r_{t}=r\left(I_{t-1}, P_{L}, b_{t}\right)=P_{L}$, because consumers can purchase storable goods directly from manufacturers.

Therefore, we are particularly interested in the consumer price at $P_{H}$, that is, $r\left(I_{t-1}, P_{H}, b_{t}\right)$. It is obvious that $r\left(I_{t-1}, P_{H}, b_{t}\right) \geq r\left(I_{t-1}, P_{L}, b_{t}\right)=P_{L}$. When $p_{t}=P_{L}$ and when $p_{t}=P_{H}$, equation (3) becomes

$$
\begin{align*}
C^{\prime}\left(i_{L} ; I_{t-1}\right) & =\beta\left\{(1-\underline{q}) r\left(I_{t}, P_{H}, b_{t}\right)+\underline{q} P_{L}\right\}-P_{L}+\mu_{t},  \tag{4}\\
C^{\prime}\left(i_{H} ; I_{t-1}\right) & =\beta\left\{(1-\bar{q}) r\left(I_{t}, P_{H}, b_{t}\right)+\bar{q} P_{L}\right\}-r\left(I_{t-1}, P_{H}, b_{t}\right)+\mu_{t}, \tag{5}
\end{align*}
$$

respectively. Equation (4) indicates that, at $p_{t}=P_{L}$, inventory $i_{L}$ is increasing in $r\left(I_{t}, P_{H}, b\right)$ and independent of $i_{t-1}, I_{t-1}$, and $b_{t}$. The latter property suggests that all household producers hold the same amount of inventories at $p_{t}=P_{L}$. At $p_{t}=P_{H}$, equation (5) suggests that $i_{H}$ is increasing in $r\left(I_{t}, P_{H}, b\right)$ and decreasing in $r\left(I_{t-1}, P_{H}, b_{t}\right)$. Furthermore, equation (5) leads to $\mu_{t}-C^{\prime}\left(i_{H}\right)=-\beta\left\{(1-\bar{q}) r\left(I_{t}, P_{H}, b\right)+\bar{q} P_{L}\right\}+r\left(I_{t-1}, P_{H}, b_{t}\right)$, which suggests that $\mu_{t}=0$ and $i_{H}>0$ if $\beta\left\{(1-\bar{q}) r\left(I_{t}, P_{H}, b\right)+\bar{q} P_{L}\right\}>r\left(I_{t-1}, P_{H}, b_{t}\right)$. This means that if the consumer price is expected to increase much, household producers hold some inventories at $p_{t}=P_{H}$. Otherwise, household producers do not hold inventories, that is, $i_{H}=0$ at $p_{t}=P_{H}$. Inventory $i_{H}$ is decreasing in $r\left(I_{t-1}, P_{H}, b_{t}\right)$. If $I_{t-1}=0$, then $r\left(I_{t-1}, P_{H}, b_{t}\right)=P_{H}$, that is, consumers purchase directly from manufacturers.

Equations (4) and (5) suggest that if $i_{t}>0$, expected $r\left(I_{t}, P_{H}, b\right)$ should increase from $r\left(I_{t-1}, P_{H}, b\right)$, because otherwise the right-hand side of the equations would be negative, while the left-hand sign is positive. Since $I_{t}$ decreases over time, this suggests that $r\left(I_{t}, P_{H}, b\right)$ is decreasing in $I_{t}$.

Finally, $r\left(I_{t-1}, P_{H}, b_{t}\right)$ is increasing in $b_{t}$ because consumer demand is increasing in $b_{t}$ according to the equation for the optimal quantity purchased,

$$
\begin{equation*}
c_{t}^{k}=\left(\frac{r_{t}^{k} / b_{t}^{k}}{r_{t^{\prime}}^{k} / b_{t^{\prime}}^{k}}\right)^{-\sigma} c_{t^{\prime}}^{k} \tag{6}
\end{equation*}
$$

which is derived from consumers' cost minimization problem. At $p_{t}=P_{L}, r\left(I_{t-1}, P_{L}, b_{t}\right)$ is independent of $b_{t}$ unless a large negative shock to $b_{t}$ induces fire sales, so that $r\left(I_{t-1}, P_{L}, b_{t}\right)$ is increasing in $b_{t}$ when $b_{t} \ll 0$.

Equation (2) suggests that $\psi_{t}>0$, that is, $x_{t}=0$, when $r_{t}<p_{t}$. In other words, household producers do not purchase goods $\left(x_{t}=0\right)$ if $p_{t}=P_{H}$.

## Proof of Lemma 3

Proof. Consider a sales period from $t+1$ to $t+T(T \geq 2)$. For the first part of Lemma 3, we examine the case of $p_{t}=p_{t+T+1}=P_{H}$. From the previous lemma, it follows that household producers do not purchase goods, i.e., $x_{t}=x_{t+T+1}=0$. Because inventories at $P_{L}, i_{L}$, are independent of $i_{t-1}$ and $I_{t-1}$, and inventories at $P_{H}, i_{H}$, are decreasing over time, we should see $I_{t-1} \leq I_{t+T}$. Thus, $r_{H}\left(I_{t-1}\right) \geq r_{H}\left(I_{t+T}\right)$. Because consumers do not purchase goods from manufacturers when $r_{t}<P_{H}$, the quantity purchased by consumers is greater than or equal to that just after a sale.

For the second part of Lemma 3, consider a sales period from $t+1$ to $t+T(T \geq 3)$. It is obvious that $I_{t} \leq I_{t+T-1}$. Because $i_{L}$ is independent of $i_{t-1}$ and $I_{t-1}$, the quantity purchased by household producers on the first day of a sale is greater than or equal to that on the final day of the sale. The quantity purchased by consumers is the same on the first and the last day of the sale, since consumers face the consumer price $P_{L}$.

## Proof of Lemma 4

Proof. In the proof of Lemma 3, we showed that the inventory $i_{H}$ at $p_{t}=P_{H}$ is decreasing over time. This means that, in aggregate, $I_{t}$ is decreasing over time after a sale ends until $I_{t}$ reaches zero. Since $r_{t}=r\left(I_{t-1}, p_{t}, b_{t}\right)$ is nonincreasing in $I_{t-1}, r_{t}$ is nondecreasing over time. Equation (6) means that $c_{t}$ is decreasing in $r_{t}$ and therefore is nonincreasing over time.

## Proof of Lemma 5

Proof. Note that the cost function, $\lambda_{t}=\mathcal{C}\left(r_{t}\right)$, is given by

$$
\begin{equation*}
\mathcal{C}\left(r_{t}\right)=\sum_{k \in K_{t}} r_{t}^{k} c_{t}^{k}=\left[\sum_{k \in K_{t}}\left(b_{t}^{k}\right)^{\sigma}\left(r_{t}^{k}\right)^{1-\sigma} U\right]^{1 /(1-\sigma)} \tag{7}
\end{equation*}
$$

From equation (7), it follows that the cost function in each period can be written as

$$
\mathcal{C}\left(r_{t}\right)=C\left(r_{t+T+1+T_{H}}\right)=\left[\left(b^{k}\right)^{\sigma}\left(P_{H}\right)^{1-\sigma} U+A\right]^{1 /(1-\sigma)}
$$

where $A$ is a constant. It can therefore be immediately seen that the change in the COLI from $t$ to $t+T+1+T_{H}, \pi^{C O L I}=\log \left\{\Pi_{i=1}^{T+1+T_{H}}\left(\mathcal{C}\left(r_{t+i}\right) / \mathcal{C}\left(r_{t+i-1}\right)\right)\right\}$, equals zero.

The total quantity purchased by household producers and consumers at $t$ equals $X_{t}=\int_{0}^{N_{t}} x_{t} d j+\int_{0}^{M_{t}} z_{t} d j$. Regarding this, we showed in Lemma 3 that $X_{t} \geq X_{t+T+1}$
and $X_{t+1} \geq X_{t+T}$. Further, if $m \geq 1$, inventories at the end of a sale are not zero but positive, so $X_{t}>X_{t+T+1}$ and $X_{t+1}>X_{t+T}$. Thus, using $\sum_{k^{\prime} \in K_{0} \cap K_{t}} p_{t}^{k^{\prime}} x_{t}^{k^{\prime}}=1$, we can show that the purchase-weighted Törnqvist index is given by

$$
\begin{aligned}
\pi^{T}=\sum_{i=1}^{T+1+T_{H}} \pi_{t+i}^{T} & =\frac{p_{t} X_{t}+p_{t+1} X_{t+1}}{2} \log \left(\frac{p_{t+1}}{p_{t}}\right)+\frac{p_{t+T} X_{t+T}+p_{t+T+1} X_{t+T+1}}{2} \log \left(\frac{p_{t+T+1}}{p_{t+T}}\right) \\
& =\frac{P_{H} X_{t}+P_{L} X_{t+1}}{2} \log \left(\frac{P_{L}}{P_{H}}\right)+\frac{P_{L} X_{t+T}+P_{H} X_{t+T+1}}{2} \log \left(\frac{P_{H}}{P_{L}}\right) \\
& =\frac{P_{L}\left(X_{t+T}-X_{t+1}\right)+P_{H}\left(X_{t+T+1}-X_{t}\right)}{2} \log \left(\frac{P_{H}}{P_{L}}\right) \\
& <0 .
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
\pi^{L}=\sum_{i=1}^{T+1+T_{H}} \pi_{t+i}^{L} & =p_{t} X_{t} \log \left(\frac{p_{t+1}}{p_{t}}\right)+p_{t+T} X_{t+T} \log \left(\frac{p_{t+T+1}}{p_{t+T}}\right) \\
& =\left(P_{L} X_{t+T}-P_{H} X_{t}\right) \log \left(\frac{P_{H}}{P_{L}}\right) \\
& \propto\left(P_{L} P_{L}^{-\sigma}-P_{H} P_{H}^{-\sigma}\right) \log \left(\frac{P_{H}}{P_{L}}\right) \\
& >(<) 0 \text { if } \sigma>(<) 1,
\end{aligned}
$$

where $A \propto B$ means that $A$ is positively proportional to $B$. Note that demand is proportional to $p_{t}^{-\sigma}$ at $t$ and $t+T$ because there is no demand for further stockpiling. Also, we have

$$
\begin{aligned}
\pi^{P}=\sum_{i=1}^{T+1+T_{H}} \pi_{t+i}^{P} & =p_{t+1} X_{t+1} \log \left(\frac{p_{t+1}}{p_{t}}\right)+p_{t+T+1} X_{t+T+1} \log \left(\frac{p_{t+T+1}}{p_{t+T}}\right) \\
& =\left(P_{H} X_{t+T+1}-P_{L} X_{t+1}\right) \log \left(\frac{P_{H}}{P_{L}}\right) \\
& \propto\left(P_{H} P_{H}^{-\sigma}-P_{L} P_{L}^{-\sigma}\right) \log \left(\frac{P_{H}}{P_{L}}\right) \\
& <(>) 0 \text { if } \sigma>(<) 1,
\end{aligned}
$$

and

$$
\begin{aligned}
\pi^{P}=\sum_{i=1}^{T+1+T_{H}} \pi_{t+i}^{P} & =\left(P_{H} X_{t+T+1}-P_{L} X_{t+1}\right) \log \left(\frac{P_{H}}{P_{L}}\right) \\
& <\frac{P_{L}\left(X_{t+T}-X_{t+1}\right)+P_{H}\left(X_{t+T+1}-X_{t}\right)}{2} \log \left(\frac{P_{H}}{P_{L}}\right) \\
& =\pi^{T} \quad \text { if } \sigma>1,
\end{aligned}
$$

because $P_{H}\left(X_{t+T+1}+X_{t}\right)<2 P_{H} X_{t}<2 P_{L} X_{t+T}<P_{L}\left(X_{t+T}+X_{t+1}\right)$.
If $m \geq 1$, the consumption price satisfies $P_{L}<r_{t+T+1}<P_{H}$ just after a sale and $r_{t+T+j+1} \geq r_{t+T+j}$ for $j=1,2, \cdots, T_{H}$. Also, we have $r_{t}=P_{H}$ (i.e., just before a sale) and $r_{t+j}=P_{L}$ for $j=1, \cdots, T$ (i.e., during a sale).

We can show that the consumption-weighted Törnqvist index is given by

$$
\begin{aligned}
\pi^{T *}=\sum_{i=1}^{T+1+T_{H}} \pi_{t+i}^{T *} & =\frac{r_{t} c_{t}+r_{t+1} c_{t+1}}{2} \log \left(\frac{r_{t+1}}{r_{t}}\right)+\sum_{i=T+1}^{T+1+T_{H}} \frac{r_{t+i-1} c_{t+i-1}+r_{t+i} c_{t+i}}{2} \log \left(\frac{r_{t+i}}{r_{t+i-1}}\right) \\
& =-\frac{P_{H} c_{t}+P_{L} c_{t+1}}{2} \log \left(\frac{P_{H}}{P_{L}}\right)+\sum_{i=T+1}^{T+1+T_{H}} \frac{r_{t+i-1} c_{t+i-1}+r_{t+i} c_{t+i}}{2} \log \left(\frac{r_{t+i}}{r_{t+i-1}}\right) .
\end{aligned}
$$

The consumption price drops from $P_{H}$ to $P_{L}$ in one period and takes more than one period to increase to $P_{H}$. If it takes two periods, $\pi^{T *}$ is

$$
\begin{aligned}
\pi^{T *}=\sum_{i=1}^{T+1+T_{H}} \pi_{t+i}^{T *} & =-\frac{P_{H} c_{t}+P_{L} c_{t+1}}{2} \log \left(\frac{P_{H}}{P_{L}}\right)+\sum_{i=T+1}^{T+2} \frac{r_{t+i-1} c_{t+i-1}+r_{t+i} c_{t+i}}{2} \log \left(\frac{r_{t+i}}{r_{t+i-1}}\right) \\
\propto & -\frac{P_{H} P_{H}^{-\sigma}+P_{L} P_{L}^{-\sigma}}{2} \log \left(\frac{P_{H}}{P_{L}}\right)+\frac{P_{L} P_{L}^{-\sigma}+r_{H} r_{H}^{-\sigma}}{2} \log \left(\frac{r_{H}}{P_{L}}\right)+\frac{r_{H} r_{H}^{-\sigma}+P_{H} P_{H}^{-\sigma}}{2} \log \left(\frac{P_{H}}{r_{H}}\right) \\
= & -\frac{P_{H} P_{H}^{-\sigma}+P_{L} P_{L}^{-\sigma}}{2} \log \left(\frac{P_{H}}{P_{L}}\right)+\frac{P_{L} P_{L}^{-\sigma}+r_{H} r_{H}^{-\sigma}}{2} \log \left(\frac{P_{H}}{P_{L}}\right) \\
& -\frac{P_{L} P_{L}^{-\sigma}+r_{H} r_{H}^{-\sigma}}{2} \log \left(\frac{P_{H}}{r_{H}}\right)+\frac{r_{H} r_{H}^{-\sigma}+P_{H} P_{H}^{-\sigma}}{2} \log \left(\frac{P_{H}}{r_{H}}\right) \\
= & \frac{r_{H}^{1-\sigma}-P_{H}^{1-\sigma}}{2} \log \left(\frac{P_{H}}{P_{L}}\right)-\frac{P_{L}^{1-\sigma}-P_{H}^{1-\sigma}}{2} \log \left(\frac{P_{H}}{r_{H}}\right) \\
\equiv & F\left(r_{H}\right) .
\end{aligned}
$$

This equals zero when $r_{H}=P_{H}$ or $r_{H}=P_{L}$.
The function $F\left(r_{H}\right)$ suggests that $2 r_{H}^{\sigma} F^{\prime}\left(r_{H}\right)=\left(r_{H} / P_{L}\right)^{\sigma-1}-\left(r_{H} / P_{H}\right)^{\sigma-1}-(\sigma-$ 1) $\log \left(P_{H} / P_{L}\right)$. Suppose $\sigma>1$. This is increasing in $r_{H}$, negative when $r_{H}=P_{L}$, and positive when $r_{H}=P_{H}$. This means that there exists a certain $r_{H}^{*} \subset\left(P_{L}, P_{H}\right)$ that makes $F^{\prime}\left(r_{H}^{*}\right)$ equal zero. Furthermore, $F^{\prime}\left(r_{H}\right)<0$ when $P_{L} \leq r_{H}<r_{H}^{*}$ and $F^{\prime}\left(r_{H}\right)>0$ when $r_{H}^{*} \leq r_{H}<P_{H}$. Thus, $F\left(r_{H}\right)$ is negative when $P_{L}<r_{H}<P_{H}$.

Although what we show here focuses on the case in which the consumption price decreases in one period and takes two periods to return to the original price, this logic also holds in cases where it takes longer than two periods for the price to return to the original price.

On the other hand, if $\sigma<1, F\left(r_{H}\right)$ is positive when $P_{L}<r_{H}<P_{H}$, which leads to $\pi^{T *}>0$.

We compare $\pi^{T *}$ and $\pi^{T}$ in the special case of $m=1$ :

$$
\begin{aligned}
\pi^{T *}-\pi^{T} & \propto \frac{r_{H}^{1-\sigma}-P_{H}^{1-\sigma}}{2} \log \left(\frac{P_{H}}{P_{L}}\right)-\frac{P_{L}^{1-\sigma}-P_{H}^{1-\sigma}}{2} \log \left(\frac{P_{H}}{r_{H}}\right) \\
& -\frac{P_{L}\left(X_{t+T}-X_{t+1}\right)+P_{H}\left(X_{t+T+1}-X_{t}\right)}{2} \log \left(\frac{P_{H}}{P_{L}}\right) \\
& =\frac{r_{H}^{1-\sigma}-P_{H}^{1-\sigma}}{2} \log \left(\frac{P_{H}}{P_{L}}\right)-\frac{P_{L}^{1-\sigma}-P_{H}^{1-\sigma}}{2} \log \left(\frac{P_{H}}{r_{H}}\right) \\
& -\frac{P_{L} I_{L}+P_{H}\left(0-P_{H}^{-\sigma}\right)}{2} \log \left(\frac{P_{H}}{P_{L}}\right) \\
& =\frac{r_{H}^{1-\sigma}+P_{L} I_{L}}{2} \log \left(\frac{P_{H}}{P_{L}}\right)-\frac{P_{L}^{1-\sigma}-P_{H}^{1-\sigma}}{2} \log \left(\frac{P_{H}}{r_{H}}\right) \\
\equiv & G\left(r_{H}\right) .
\end{aligned}
$$

Suppose $\sigma>1$. As we showed in the above proof, $G^{\prime}\left(r_{H}\right)$ takes the smallest value at $r_{H}=r_{H}^{*}$, where $r_{H}^{*}$ satisfies $\left(r_{H}^{*} / P_{L}\right)^{\sigma-1}-\left(r_{H}^{*} / P_{H}\right)^{\sigma-1}-(\sigma-1) \log \left(P_{H} / P_{L}\right)$. Substituting $r_{H}^{*}$ into the above equation, we find that $G\left(r_{H}^{*}\right)$ is positive. Thus, $G\left(r_{H}\right)$ is positive.

## Proof of Lemma 6

Proof. Suppose that the unit cost function is given by

$$
\begin{equation*}
\mathcal{C}\left(r_{t}\right)=\left[\sum_{i \in K} \sum_{k \in K} \alpha^{i k}\left(r_{t}^{i}\right)^{(1-\sigma)}\left(r_{t}^{k}\right)^{(1-\sigma)}\right]^{1 /\{2(1-\sigma)\}} \tag{8}
\end{equation*}
$$

where $\alpha^{i k}=\alpha^{k i}$. Using Shephard's Lemma and equation (8), we obtain

$$
\begin{aligned}
c_{t}^{i} & =U_{t} \partial \mathcal{C}\left(r_{t}\right) / \partial r_{t}^{i} \\
& =U_{t} \frac{1}{2(1-\sigma)}\left[\sum_{i \in K} \sum_{k \in K} \alpha^{i k}\left(r_{t}^{i}\right)^{(1-\sigma)}\left(r_{t}^{k}\right)^{(1-\sigma)}\right]^{1 /\{2(1-\sigma)\}-1} 2(1-\sigma)\left(r_{t}^{i}\right)^{-\sigma} \sum_{k \in K} \alpha^{i k}\left(r_{t}^{k}\right)^{1-\sigma} \\
& =\frac{U_{t} \mathcal{C}\left(r_{t}\right)\left(r_{t}^{i}\right)^{-\sigma} \sum_{k \in K} \alpha^{i k}\left(r_{t}^{k}\right)^{1-\sigma}}{\sum_{i \in K} \sum_{k \in K} \alpha^{i k}\left(r_{t}^{i}\right)^{(1-\sigma)}\left(r_{t}^{k}\right)^{(1-\sigma)}},
\end{aligned}
$$

which yields

$$
\begin{equation*}
\frac{r_{t}^{i} c_{t}^{i}}{U_{t} \mathcal{C}\left(r_{t}\right)}=\frac{\left(r_{t}^{i}\right)^{1-\sigma} \sum_{k \in K} \alpha^{i k}\left(r_{t}^{k}\right)^{1-\sigma}}{\sum_{i \in K} \sum_{k \in K} \alpha^{i k}\left(r_{t}^{i}\right)^{(1-\sigma)}\left(r_{t}^{k}\right)^{(1-\sigma)}} . \tag{9}
\end{equation*}
$$

Noting that

$$
\begin{align*}
s_{t}^{i} & \equiv \frac{r_{t}^{i} c_{t}^{i}}{\sum_{k \in K} r_{t}^{k} c_{t}^{k}} \\
& =\frac{r_{t}^{i} c_{t}^{i}}{U_{t} \mathcal{C}\left(r_{t}\right)} \\
& =\frac{\left(r_{t}^{i}\right)^{1-\sigma} \sum_{k \in K} \alpha^{i k}\left(r_{t}^{k}\right)^{1-\sigma}}{\sum_{i \in K} \sum_{k \in K} \alpha^{i k}\left(r_{t}^{i}\right)^{(1-\sigma)}\left(r_{t}^{k}\right)^{(1-\sigma)}}, \tag{10}
\end{align*}
$$

we obtain

$$
\begin{aligned}
& P_{r}\left(r_{0}, r_{1}, c_{0}, c_{1}\right)=\frac{\left\{\sum_{i \in K} s_{0}^{i}\left(\frac{r_{1}^{i}}{r_{0}^{i}}\right)^{(1-\sigma)}\right\}^{1 /\{2(1-\sigma)\}}}{\left\{\sum_{k \in K} s_{1}^{i}\left(\frac{r_{0}^{i}}{r_{1}^{i}}\right)^{(1-\sigma)}\right\}^{1 /\{2(1-\sigma)\}}} \\
& =\frac{\left\{\sum_{i \in K} \frac{\left(r_{0}^{i}\right)^{1-\sigma} \sum_{k \in K} \alpha^{i k}\left(r_{0}^{k}\right)^{1-\sigma}}{\sum_{i \in K} \sum_{k \in K} \alpha^{i k}\left(r_{0}^{i}\right)^{(1-\sigma)}\left(r_{0}^{k}\right)}\left(\frac{r_{1}^{i}}{(1-\sigma)}\left(\frac{r_{0}^{i}}{r_{0}^{i}}\right)^{(1-\sigma)}\right\}^{1 /\{2(1-\sigma)\}}\right.}{\left\{\sum_{i \in K} \frac{\left(r_{1}^{i}\right)^{1-\sigma} \sum_{k \in K} \alpha^{i k}\left(r_{1}^{k}\right)^{1-\sigma}}{\sum_{i \in K} \sum_{k \in K} \alpha^{i k}\left(r_{1}^{i}\right)^{(1-\sigma)}\left(r_{1}^{k}\right)^{(1-\sigma)}}\left(\frac{r_{0}^{i}}{r_{1}^{i}}\right)^{(1-\sigma)}\right\}^{1 /\{2(1-\sigma)\}}} \\
& =\frac{\left\{\frac{\sum_{i \in K} \sum_{k \in K} \alpha^{i k}\left(r_{1}^{i}\right)^{(1-\sigma)}\left(r_{0}^{k}\right)^{(1-\sigma)}}{\sum_{i \in K} \sum_{k \in K} \alpha^{\alpha k}\left(r_{0}^{i}\right)^{1-\sigma}\left(r_{0}^{k}\right)^{(1-\sigma)}}\right\}^{1 /\{2(1-\sigma)\}}}{\left\{\frac{\sum_{i \in K} \sum_{k \in K} \alpha^{\alpha^{i k}}\left(r_{0}^{i}\right)^{(1-\sigma)}\left(r_{1}^{k}\right)^{(1-\sigma)}}{\sum_{i \in K} \sum_{k \in K} \alpha^{\alpha^{i k}}\left(r_{1}^{i}\right)^{(1-\sigma)}\left(r_{1}^{k}\right)^{(1-\sigma)}}\right\}^{1 /\{2(1-\sigma)\}}} \\
& =\left\{\frac{\sum_{i \in K} \sum_{k \in K} \alpha^{i k}\left(r_{1}^{i}\right)^{(1-\sigma)}\left(r_{1}^{k}\right)^{(1-\sigma)}}{\sum_{i \in K} \sum_{k \in K} \alpha^{i k}\left(r_{0}^{i}\right)^{(1-\sigma)}\left(r_{0}^{k}\right)^{(1-\sigma)}}\right\}^{1 /\{2(1-\sigma)\}} \\
& =\frac{\mathcal{C}\left(r_{1}\right)}{\mathcal{C}\left(r_{0}\right)} \text {. }
\end{aligned}
$$

## Equilibrium When Inventories are Cleared in Just One Period After a Sale

Household producers' firm value is written as

$$
V\left(i_{t-1}, p_{t} ; I_{t-1}\right)=\max _{x_{t}, i_{t}}\left(r_{t}\left(i_{t-1}-i_{t}+x_{t}\right)-p_{t} x_{t}-C\left(i_{t}\right)\right)+\beta \mathrm{E}_{t}\left[V\left(i_{t}, p_{t+1} ; I_{t}\right)\right] .
$$

The free entry condition yields

$$
\begin{equation*}
V\left(i_{t-1}=0, p_{t}=P_{L} ; I_{t-1}\right)=0, \tag{11}
\end{equation*}
$$

while $V\left(i_{t-1}=0, p_{t}=P_{H} ; I_{t-1}\right)<0$. Using this condition, we can show that $r_{H}$ is a function of $I_{t-1}$, that is, $r_{H}\left(I_{t-1}\right)$.

If household producers do not hold much inventory, they sell off all their inventory immediately when $p_{t}$ turns from $P_{L}$ and $P_{H}$. That is, $i_{H}$ becomes zero in the next period. The firm value can be divided into four cases:

$$
\begin{aligned}
V\left(i_{L}, P_{L} ; I_{L}\right) & =-C\left(i_{L}\right)+\beta\left\{(1-\underline{q}) V\left(i_{L}, P_{H} ; I_{L}\right)+\underline{q} V\left(i_{L}, P_{L} ; I_{L}\right)\right\} \\
V\left(i_{L}, P_{H} ; I_{L}\right) & =r_{H}\left(I_{L}\right) i_{L}-C(0)+\beta\left\{(1-\bar{q}) V\left(0, P_{H} ; 0\right)+\bar{q} V\left(0, P_{L} ; 0\right)\right\} \\
V\left(0, P_{L} ; 0\right) & =-P_{L} i_{L}-C\left(i_{L}\right)+\beta\left\{(1-\underline{q}) V\left(i_{L}, P_{H} ; I_{L}\right)+\underline{q} V\left(i_{L}, P_{L} ; I_{L}\right)\right\}=0, \\
V\left(0, P_{H} ; 0\right) & =-C(0)+\beta\left\{(1-\bar{q}) V\left(0, P_{H} ; 0\right)+\bar{q} V\left(0, P_{L} ; 0\right)\right\} .
\end{aligned}
$$

These equations can be summarized as

$$
C\left(i_{L}\right)+(1-\beta \underline{q}) P_{L} i_{L}+\frac{\beta(1-\underline{q})}{1-\beta(1-\bar{q})} C(0)=\beta(1-\underline{q}) r_{H}\left(I_{L}\right) i_{L} .
$$

Because equation (4) can be rewritten as

$$
\begin{equation*}
C^{\prime}\left(i_{L}\right)+(1-\beta \underline{q}) P_{L}=\beta(1-\underline{q}) r_{H}\left(I_{L}\right), \tag{12}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
C^{\prime}\left(i_{L}\right) i_{L}-C\left(i_{L}\right)=\frac{\beta(1-\underline{q})}{1-\beta(1-\bar{q})} C(0) . \tag{13}
\end{equation*}
$$

Equations (12) and (13) enable us to solve for $i_{L}$ and $r_{H}\left(I_{L}\right)$.
Finally, it is important to check that the above solution satisfies the goods market clearing condition. When $p_{t}=P_{L}$, manufacturers supply goods to consumers with no additional cost until the goods market is cleared, because consumption price $r_{t}$ is equal to $P_{L}$. In the case of $p_{t}=p_{t-1}=P_{H}$, we have $r_{t}=P_{H}$. Consumers again purchase goods directly from manufacturers until the goods market is cleared. In the case of $p_{t}=P_{H}$ and $p_{t-1}=P_{L}$, consumption price $r_{t}$ equals $r_{H}$ and the quantity of goods supplied (which equals the quantity consumed) is predetermined because inventories are predetermined and there are no additional purchases (i.e., $x_{t}=0$ ). Thus, if demand in the goods market is greater (smaller) than supply, $r_{H}$ increases (decreases) until the market is cleared, which makes household producers' firm value deviate from its expected value. In other words, the expected consumption price at $t+1, r_{t+1}$, conditional on $p_{t}=P_{H}$ and $p_{t-1}=P_{L}$, equals $r_{H}$, but the realized consumption price may differ from the expected value. Also, it should be pointed out that $r_{H}$ is independent of factors on the household side, that is, $b_{t}^{k}$. Such factors influence the demand for storable product $k$ but do not influence the consumption price $r_{H}$, since household producers freely enter the market and change the aggregate supply of goods.

## D Detailed Explanation of Our Approach

## D. 1 Proof of $m_{\text {cont }}$

Assume time is continuous. If $r_{t}$ increases linearly in $t$, we can write $r_{H}\left(I_{t}\right)$ as $r_{H}(x)=$ $\left\{\frac{x}{m_{\text {cont }}} \frac{P_{H}-P_{L}}{P_{L}}+1\right\} P_{L}$, where $x$ represents the time elapsed after a sale, because $r_{H}(0)=$ $P_{L}$ and $r_{H}\left(m_{\text {cont }}\right)=P_{H}$. The corresponding consumption equals $\left(r_{H} / P_{L}\right)^{-\sigma} c_{L}^{*}$. Denote
the initial inventories outstanding just after a sale ends by $I_{L}$. At $m=m_{\text {cont }}$, all inventories are used up, which is given by

$$
\begin{aligned}
I_{L} & =\int_{0}^{m}\left\{\frac{x}{m_{\text {cont }}} \frac{P_{H}-P_{L}}{P_{L}}+1\right\}^{-\sigma} c_{L}^{*} d x \\
\therefore m_{\text {cont }} & =\frac{P_{H}-P_{L}}{P_{L}} \frac{\sigma-1}{1-\left(P_{H} / P_{L}\right)^{-\sigma+1}} \frac{I_{L}}{c_{L}^{*}} .
\end{aligned}
$$

## D. 2 Conditions under Which Our Approach Holds

When $p_{t}=P_{H}$, household producers optimize inventories to satisfy

$$
\begin{equation*}
C^{\prime}\left(i_{H} ; I_{t-1}\right)=\beta\left\{(1-\bar{q}) r_{H}\left(I_{t}\right)+\bar{q} P_{L}\right\}-r_{H}\left(I_{t-1}\right)+\mu_{t} . \tag{14}
\end{equation*}
$$

Positive inventories yield $\mu_{t}=0$. Then, $r_{H}\left(I_{t}\right)-r_{H}\left(I_{t-1}\right)$ in equation (14) becomes a positive constant if

$$
\begin{equation*}
C^{\prime}\left(i_{H} ; I_{t-1}\right)+\{1-\beta(1-\bar{q})\} r_{H}\left(I_{t-1}\right) \tag{15}
\end{equation*}
$$

is constant and larger than $\beta \bar{q} P_{L}$.
Equation (15) suggests that $C(\cdot)$ should satisfy the following conditions. Note that if $r_{H}\left(I_{t}\right)-r_{H}\left(I_{t-1}\right)$ is a positive constant, the consumption price and inventories at time $x\left(0 \leq x \leq m_{\text {cont }}\right)$ equal

$$
\begin{aligned}
r_{H}(x) & =\left\{\frac{x}{m_{\text {cont }}} \frac{P_{H}-P_{L}}{P_{L}}+1\right\} P_{L}, \\
I(x) & =I_{L}-\int_{0}^{x}\left\{\frac{x^{\prime}}{m_{\text {cont }}} \frac{P_{H}-P_{L}}{P_{L}}+1\right\}^{-\sigma} c_{L}^{*} d x^{\prime} \\
& =\left\{1-\frac{1-\left(\frac{x}{m_{\text {cont }}} \frac{P_{H}-P_{L}}{P_{L}}+1\right)^{-\sigma+1}}{1-\left(P_{H} / P_{L}\right)^{-\sigma+1}}\right\} I_{L},
\end{aligned}
$$

respectively. Thus, inserting $i_{H}=\kappa I_{t}$ into equation (15), we can show that the following term,
$C^{\prime}\left(\left\{1-\frac{1-\left(\frac{x}{m_{\text {cont }}} \frac{P_{H}-P_{L}}{P_{L}}+1\right)^{-\sigma+1}}{1-\left(P_{H} / P_{L}\right)^{-\sigma+1}}\right\} \kappa I_{L}\right)+\{1-\beta(1-\bar{q})\}\left\{\frac{x}{m_{\text {cont }}} \frac{P_{H}-P_{L}}{P_{L}}+1\right\} P_{L}$,
needs to be independent of $x$ and larger than $\beta \bar{q} P_{L}$. Defining

$$
x^{\prime} \equiv\left\{1-\frac{1-\left(\frac{x}{m_{\text {cont }}} \frac{P_{H}-P_{L}}{P_{L}}+1\right)^{-\sigma+1}}{1-\left(P_{H} / P_{L}\right)^{-\sigma+1}}\right\} \kappa I_{L}
$$

for $0 \leq x^{\prime} \leq \kappa I_{L}$, we have the following condition for the inventory cost function:

$$
\begin{equation*}
C^{\prime}\left(x^{\prime}\right)=C_{0}-\{1-\beta(1-\bar{q})\}\left\{1-\left(1-\frac{x^{\prime}}{\kappa I_{L}}\right)\left(1-\left(\frac{P_{H}}{P_{L}}\right)^{-\sigma+1}\right)\right\}^{\frac{1}{-\sigma+1}} P_{L} \tag{17}
\end{equation*}
$$

where $C_{0}>\beta \bar{q} P_{L} .{ }^{1}$ It can be easily shown that $C^{\prime \prime}(\cdot)>0$ provided $\sigma>1$.

## D. 3 Details of How We Apply Our Approach to the POS Data

Using the POS data, we calculate $r_{H}\left(I_{t-1}\right), m, X_{L}^{*}$, and $I_{L}$ for each sales event for each product at each retailer, while we calculate $\sigma$ for each 3-digit product category.

We take the following three steps. First, for each product and retailer, we identify all sales events using the sales filter. ${ }^{2}$ We define the first and the last day of a sales event as $t+1$ and $t+T$, respectively. We record the price and the quantity purchased just before a sale (i.e., at $t$ ) as $r_{H}$ and $c_{H}$, respectively. Note that, according to the model, $c_{H}$ should equal consumption unless the effect of stockpiling remains and $c_{H}$ is zero. In that case, we use the previous values of $r_{H}$ and $c_{H} .{ }^{3}$

Second, if a sale lasts more than one day $(T>1)$, we record the average price and the quantity purchased in the first half of a sale (i.e., from $t+1$ to $t+\lfloor T / 2\rfloor-1$ ) as $P_{L}^{1}$ and $X_{L}^{1}$, while the average price and the quantity purchased in the second half of the sale (i.e., from $t+\lfloor T / 2\rfloor$ to $t+T)$ are defined as $P_{L}^{2}$ and $X_{L}^{2}$, respectively. If $X_{L}^{1} \geq X_{L}^{2}$, we set $r_{L}=P_{L}^{2}$ and $c_{L}=X_{L}^{2}$. Otherwise, we set $r_{L}=P_{L}^{1}$ and $c_{L}=X_{L}^{1}$. According to the model, we should observe $X_{L}^{1} \geq X_{L}^{2}$, as Lemma 3 showed. In this case, there is no need for additional stockpiling in the second half of the sale, so $X_{L}^{2}$ should equal consumption, which we denote by $c_{L}$. However, the POS data often show the opposite,

[^1]$X_{L}^{1}<X_{L}^{2}$, which makes sense if the duration of the sale is known ex ante. In this case, there is no need for stockpiling in the first half of the sale, so that $X_{L}^{1}$ should equal $c_{L}$.

In the third step, we calculate the elasticity of substitution, $\sigma$. The variables we obtained in the first two steps, $\left(r_{H}, r_{L}\right)$ and $\left(c_{H}, c_{L}\right)$, correspond to the consumption prices and the quantities consumed. Thus, equation (6) should hold for these variables when the true $\sigma$ is used. Furthermore, the log ratio of the quantity consumed during a sale to that when the product is sold at the regular price divided by the log ratio of the sales price to the regular price, $\Gamma \equiv-\log \left(c_{L} / c_{H}\right) / \log \left(r_{L} / r_{H}\right)$, should equal $\sigma$ on average. Thus, we calculate the unweighted average of $\Gamma$ across sales events, products, and retailers for each 3-digit product category, which we define as $\sigma$.

Fourth, we calculate consumption, the consumption price, the degree of stockpiling, and inventories for each sales event, each product, and each retailer. If a sale lasts more than one day $(T>1)$, we set $c_{L}^{*}=\left(r_{L} / r_{H}\right)^{-\sigma} c_{H}$. If a sale is only one day long, we set $r_{L}=p_{t}$ and $c_{L}^{*}=\min \left[0.01,\left(r_{L} / r_{H}\right)^{-\sigma} c_{H}\right]$. Inventories at the end of a sale, $I_{L}$, equal the cumulative quantity of purchases during the sale minus the cumulative quantity of consumption during the sale, that is, $\max \left[0, \Sigma_{j=1}^{T} X_{t+j}-T c_{L}^{*}\right]$, where we replace $I_{L}$ with zero if the calculated amount of inventories is negative. Once we have obtained $c_{L}^{*}$ and $I_{L}$, we can calculate $m$. Note that since the unit of time in our analysis is discrete (i.e., we use daily observations), we search for the maximum natural number $m$ starting from the above continuous-time version of $m_{\text {cont }}$, so that inventories at $t+T+m$ are positive, while those at $t+T+m+1$ are negative. Once we have obtained $m$, we can calculate the path of consumption prices $r_{s}=r_{H}\left(I_{s-1}\right)$ and consumption $c_{s}$ as $r_{L}+\left(\left(t^{\prime}-t-T\right) / m\right)\left(r_{H}-r_{L}\right)$ and $\left(r_{s} / r_{L}\right)^{-\sigma} c_{L}^{*}$, respectively, for $t+T+1 \leq t^{\prime} \leq t+T+m .{ }^{4}$

[^2]
## E Simulation Results and Comparison with the POS Data

## E. 1 Simulation

Table 2 shows that the size of the chain drift increases as the degree of stockpiling, $m$, increases, the size of the sale discount increases $\left(P_{L} / P_{H}\right.$ decreases), and the probability that a product will go on sale on the following day given that it is not currently on sale, $\bar{q}$, increases. On the other hand, interestingly, an increase in the probability that a product will continue to be on sale on the following day given that it is currently on sale, $\underline{q}$, decreases the size of the chain drift in the purchase-weighted Laspeyres and Paasche indices, but not in the purchase-weighted Törnqvist index. The like reason is that the expectation of longer sales reduces the incentive to stockpile.

## E. 2 Comparison with the POS Data

To validate our approach, we examine whether the size of the simulated chain drift is comparable to that of the actual chain drift. To do so, we calculate the daily average of the inflation rate from January 1989 to December 2011 based on the purchase-weighted Törnqvist index for each 3-digit product category $j$ (denoted by $\pi_{j}$ ). The first and last 12-month periods of the data are omitted from the calculation because identifying sales events is difficult when data are censored.

We regress the average inflation rate $\pi_{j}$ based on the POS data on $\log \left(m_{j}\right), \overline{q_{j}}$, $\underline{q_{j}}$, and $\log \left(P_{L} / P_{H}\right)_{j}$, which are also obtained from the POS data. Table 3 shows the estimation results. The coefficients on $\log \left(m_{j}\right)$ and $\overline{q_{j}}$ are negative and significant, that on $\log \left(P_{L} / P_{H}\right)_{j}$ is positive and significant, and that on $\underline{q_{j}}$ is insignificant. These results are all consistent with the simulation results shown in Table 2; that is, we find that a high $m$, a high $\bar{q}$, and a low $P_{L} / P_{H}$ all lead to greater deflation, while the effect of $\underline{q}$ is negligible.

## F Other Approaches

We examine how much the size of the chain drift changes when we use different assumptions with regard to the consumption price. Instead of assuming a linear consumption-
price increase, we use two types of alternative approaches, allowing for some convexity or concavity in the consumption-price increase.

## F. 1 Linear Consumption Decrease

The first alternative approach is to assume a linear consumption decrease after a sale ends until inventories decrease to zero. Assume time is continuous. Denote consumption before and during a sale by $c_{H}$ and $c_{L}^{*}$, respectively (note that $c_{H}<c_{L}^{*}$ ). If consumption $c_{t}$ decreases linearly in $t$ after a sale, we can write $c_{t}$ as $c(x)=\left\{\frac{x}{m_{c o n t}} \frac{c_{H}-c_{L}^{*}}{c_{L}^{*}}+1\right\} c_{L}^{*}$, where $x$ represents the time elapsed after a sale $\left(0 \leq x \leq m_{\text {cont }}\right)$, because $c(0)=c_{L}^{*}$ and $c\left(m_{\text {cont }}\right)=c_{H}^{*}$. At $m=m_{\text {cont }}$, all inventories are used up, which is given by

$$
\begin{align*}
I_{L} & =\int_{0}^{m}\left\{\frac{x}{m_{\text {cont }}} \frac{c_{H}-c_{L}^{*}}{c_{L}^{*}}+1\right\} c_{L}^{*} d x \\
\therefore m_{\text {cont }} & =\frac{2}{c_{L}^{*}+c_{H}} I_{L} . \tag{18}
\end{align*}
$$

The corresponding consumption price $r(x)$ can be written as

$$
\begin{equation*}
r(x)=\left\{\frac{x}{m_{\text {cont }}} \frac{c_{H}-c_{L}^{*}}{c_{L}^{*}}+1\right\}^{-1 / \sigma} P_{L} . \tag{19}
\end{equation*}
$$

It can be easily shown that $r^{\prime}(x)>0$ and $r^{\prime \prime}(x)<0$. Thus, the consumption price increases in $x$, and the speed of the consumption-price increase decreases in $x$ (i.e., the consumption-price increase is concave).

## F. 2 Convex or Concave Consumption-price Increase

As the second alternative approach, we add or subtract a particular integer $\varepsilon$ from $m$ that is derived from our baseline approach. Denoting the new $m$ by $m^{\prime}=m+\varepsilon$, we calculate parameters $\gamma_{0}$ and $\gamma_{1}$ such that it satisfies $r(x)=\left(P_{L}^{1 / \gamma_{0}}+\gamma_{1} x\right)^{\gamma_{0}}, r\left(m^{\prime}\right)=P_{H}$, and $I_{L}=\int_{0}^{m^{\prime}}\left(r(x) / P_{L}\right)^{-\sigma} c_{L}^{*} d x$. In other words, $\gamma_{0}$ and $\gamma_{1}$ satisfy

$$
\begin{align*}
P_{H} & =\left(P_{L}^{1 / \gamma_{0}}+\gamma_{1} m^{\prime}\right)^{\gamma_{0}} \\
I_{L} & =\left[\left(\frac{P_{L}^{1 / \gamma_{0}}+\gamma_{1} m^{\prime}}{P_{L}}\right)^{-\gamma_{0} \sigma+1}-\left(\frac{P_{L}^{1 / \gamma_{0}}}{P_{L}}\right)^{-\gamma_{0} \sigma+1}\right] c_{L}^{*} \frac{P_{L}}{\left(-\gamma_{0} \sigma+1\right) \gamma_{1}} . \tag{20}
\end{align*}
$$

Note that when $\varepsilon=0, \gamma_{0}$ equals 1 . If $\gamma_{0}>1$ and $\gamma_{1}>0$, the speed of the consumptionprice increase increases in $x$ (i.e., the consumption-price increase is convex). If $0<$ $\gamma_{0}<1$ and $\gamma_{1}>0$, the speed of the consumption-price increase decreases in $x$ (i.e., the consumption-price increase is concave).

## F. 3 Simulation

We calculate the price indices based on the COLI, the chained order $r$ superlative, the chained consumption-weighted Törnqvist, the chained purchase-weighted Törnqvist, the chained purchase-weighted Laspeyres, and the chained purchase-weighted Paasche, using the method explained in Section 4.2 in the main text. The benchmark value for the degree of stockpiling is $m=5$.

Before simulating the price indices using the alternative approaches, we calculate the mean values of $c_{H}, c_{L}^{*}$, and $I_{L}$ from the simulation results of $T=365$ days times $N=100$ in the benchmark case to use. In particular, using the value of $I_{L}$ is important, because we are interested in examining how much the size of the chain drift changes when we assume different paths of consumption and of the consumption price after a sale ends, given a certain amount of inventories during a sale.

When we use the first alternative approach, we calculate $m_{\text {cont }}$ from $2 I_{L} /\left(c_{L}^{*}+c_{H}\right)$ and the maximum integer of $m$ to satisfy $m \leq m_{\text {cont }}$. We then calculate the path of the consumption price from equation (19) (while $0 \leq x \leq m$ ), followed by the path of consumption so that it is consistent with the demand function. ${ }^{5}$

When we use the second alternative approach, we assume $m^{\prime}=m+\varepsilon$, where $\varepsilon$ takes $-2,-1,1$, or 2 . Solving equation (20), we respectively obtain values of 0.09 , $0.46,1.44$, and 1.80 for $\gamma_{0}$. This suggests that when inventories are cleared in a shorter time than $m=5$, we have $0<\gamma_{0}<1$; i.e., the consumption-price increase is concave. When inventories are cleared in a longer time than $m=5$, we have $\gamma_{0}>1$; i.e., the consumption-price increase is convex.

[^3]Table 1: Basic Statistics of the Shoku-map Household Scanner Data

| Variable | Mean | S.D. | Min | Max |
| :---: | :---: | :---: | :---: | :---: |
| \# of households |  |  |  |  |
| per month | 358 | 78 | 105 | 450 |
| \# of products purchased |  |  |  |  |
| per month | 44,260 | 11,586 | 9,126 | 64,660 |
| \# of products purchased | 123 | 12 | 85 | 152 |
| per month and per household |  |  |  |  |
| \# of months for which | 24 | 13 | 1 | 47 |
| a household answered |  |  |  |  |
| Age of the wife | 44 | 11 | 21 | 72 |
| in the household |  |  |  |  |

Note: \# of households per month is defined as the number of households that made purchases in each month. \# of products purchased per month is defined as the number of records in each month. \# of months for which a household answered is the number of months for which a household made purchases.

## Table 2: Simulation of the Chain Drift

|  | COLI | Order r superlative | Törnqvist <br> (C) | Törnqvist (X) | Laspeyres (X) | Paasche <br> (X) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Benchmark | 1.000 | 1.000 | 0.991 | 0.163 | $2.71 \mathrm{e}+01$ | $1.01 \mathrm{e}-03$ |
|  | (4.60e-03) | (4.60e-03) | (4.58e-03) | (1.09e-02) | $(3.80 \mathrm{e}+00)$ | (2.10e-04) |
| Low m | 1.000 | 1.000 | 1.000 | 0.448 | $2.73 \mathrm{e}+00$ | 7.36e-02 |
| ( $m=1$ ) | (3.88e-03) | (3.88e-03) | (3.91e-03) | (1.15e-02) | (1.02e-01) | (5.82e-03) |
| High $m$ | 0.999 | 0.999 | 0.992 | 0.054 | $3.42 \mathrm{e}+02$ | $9.13 \mathrm{e}-06$ |
| ( $m=10$ ) | (5.08e-03) | (5.08e-03) | (5.06e-03) | (6.20e-03) | $(8.82 \mathrm{e}+01)$ | (3.15e-06) |
| Low $\sigma$ | 1.000 | 1.000 | 0.999 | 0.177 | $1.71 \mathrm{e}+01$ | $1.87 \mathrm{e}-03$ |
| $(\sigma=2)$ | (4.29e-03) | (4.29e-03) | (4.29e-03) | (1.14e-02) | $(2.16 \mathrm{e}+00)$ | (3.63e-04) |
| Low $P_{L} / P_{H}$ | 0.999 | 0.999 | 0.808 | 0.005 | $2.50 \mathrm{e}+05$ | $1.44 \mathrm{e}-10$ |
| $\left(P_{L} / P_{H}=0.75\right)$ | (1.48e-02) | (1.48e-02) | (1.33e-02) | (1.01e-03) | $(1.25 \mathrm{e}+05)$ | (9.40e-11) |
| High $\bar{q}$ | 1.001 | 1.001 | 0.980 | 0.005 | $1.87 \mathrm{e}+05$ | $1.46 \mathrm{e}-10$ |
| $(\bar{q}=1 / 7)$ | (6.06e-03) | (6.06e-03) | (5.94e-03) | (3.50e-04) | $(4.24 \mathrm{e}+04)$ | (2.59e-11) |
| High $\underline{q}$ | 1.000 | 1.000 | 0.991 | 0.163 | $2.71 \mathrm{e}+01$ | $1.01 \mathrm{e}-03$ |
| $(\underline{q}=0.5)$ | (4.60e-03) | (4.60e-03) | (4.58e-03) | (1.09e-02) | $(3.80 \mathrm{e}+00)$ | (2.10e-04) |

Note: The table shows the means of the price levels after 365 days, where the initial price level is set to one (so that a value of one indicates no change). Standard deviations in parentheses.

Table 3: Regression of the Chain Drift

|  | Coef. | SE |
| :---: | :---: | :---: |
| $\log (\mathrm{m})$ | $-0.0013^{* * *}$ | $(0.0005)$ |
| $\bar{q}$ | $-0.0114^{* * *}$ | $(0.0043)$ |
| $\underline{q}$ | 0.0015 | $(0.0013)$ |
| $\log \left(P_{L} / P_{H}\right)$ | $0.007^{* * *}$ | $(0.0022)$ |
| Constant | -0.0003 | $(0.0005)$ |
| Adjusted $R^{2}$ | 0.348 |  |
| Observations | 145 |  |

Note: The dependent variable is the daily average of the inflation rate from January 1989 to December 2011 based on the purchase-weighted Törnqvist index for each 3-digit product category. ${ }^{* * *}$, ${ }^{* *}$, and ${ }^{*}$ denote significance at the $1 \%, 5 \%$, and $10 \%$ levels, respectively.


[^0]:    *Waseda University (E-mail: kozo.ueda@waseda.jp).
    ${ }^{\dagger}$ Canon Institute for Global Studies and University of Tokyo (E-mail: watanabe.kota@canon-igs.org).
    ${ }^{\ddagger}$ University of Tokyo (E-mail: watanabe@e.u-tokyo.ac.jp). All remaining errors are our own.

[^1]:    ${ }^{1}$ The inventories outstanding just after a sale ends, $I_{L}$, are endogenous and determined from the optimization equation when $p_{t}=P_{L}$ :

    $$
    C^{\prime}\left(\kappa I_{L}\right)=\beta\left\{(1-\underline{q}) r_{H}(x=1)+\underline{q} P_{L}\right\}-P_{L}
    $$

    ${ }^{2}$ Before identifying sales events, we remove outliers by resetting the price and quantity purchased to zero for product $i$ on day $t$ if the absolute $\log$ difference between $p_{i t}$ and the median of $p_{i t}$ over the observation period is larger than $\log (70 / 10)$. Additionally, if the number of days with $p_{i t}>0$ is smaller than seven, we remove this product from our study.
    ${ }^{3}$ In order to avoid a situation such that the first observed $c_{H}$ is zero, we search for the earliest sales event that satisfies $c_{H}>0$ and then go back in time as far as the regular price $r_{H}$ continues to be observed. We define the first day when the regular price is listed as the starting point of the time series for estimating consumption paths.

[^2]:    ${ }^{4}$ It is possible that the next sale begins at $t^{\prime}$ before $t+T+m$. In this case, we use $r_{s}$ and $c_{s}$ until $t^{\prime}-1$ and recalculate them for $t^{\prime} \geq t^{\prime}$ assuming that inventories are zero $\left(I_{t^{\prime}-1}=0\right)$ when the new sale starts. We use the same $c_{H}$ because information on the quantity purchased just before the sale is not updated.

[^3]:    ${ }^{5}$ We do this, rather than calculating the path of consumption followed by the consumption price, since consumption $c_{t}^{k}$ of product $k$ should depend on the consumption prices of other products.

