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Abstract

We investigate the problem of equilibrium price formation in an incomplete securities
market. Each financial firm (agent) tries to minimize its cost via continuous-time trading
with a securities exchange while facing the systemic and idiosyncratic noises as well as
the stochastic order-flows from its over-the-counter clients. We have shown, in the accom-
panying paper (Fujii & Takahashi) [19], that the solution to a certain forward backward
stochastic differential equation of conditional McKean-Vlasov type gives a good approxi-
mate of the equilibrium price which clears the market in the large population limit. In this
work, we prove the existence of a unique market clearing equilibrium among the heteroge-
neous agents of finite population size. We show the strong convergence to the corresponding
mean-field limit given in [19] under suitable conditions. In particular, we provide the sta-
bility relation between the market clearing price for the heterogeneous agents and that for
the homogeneous mean-field limit.

Keywords : equilibrium in incomplete markets, common noise, market clearing, price
formation, mean field games

1 Introduction

The problem of equilibrium asset price formation has been one of the central issues in financial
economics. For complete markets, significant advances have been made and there exists large
amount of literature. See, for example, Chapter 4 of Karatzas & Shreve [27] and references
therein. We also mention Kramkov [29] as a recent development.

On the other hand, the problem of equilibrium price formation in incomplete markets
with continuous-time stochastic setting is still under active research. It is mainly because the
traditional approach of constructing a representative agent turns out to be much more difficult
than in the complete case. See Part 2 and 3 of Jarrow [26] for a nice review of the issues. Let us
refer to the works [7, 6, 8, 25, 35, 42, 43, 45] which tackle the equilibrium problem in incomplete
markets. In the majority of works, each agent is supposed to maximize the exponential utility
function with respect to the terminal wealth. When a simple form of asset price process is
assumed, it is well known that the individual optimization problem for the exponential utility
function gives rise to a quadratic-growth backward stochastic differential equation (qg-BSDE).

∗All the contents expressed in this research are solely those of the author and do not represent any views or
opinions of any institutions. The author is not responsible or liable in any manner for any losses and/or damages
caused by the use of any contents in this research.
†Quantitative Finance Course, Graduate School of Economics, The University of Tokyo.
‡Quantitative Finance Course, Graduate School of Economics, The University of Tokyo.
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Under the diffusion setup, the existence of a unique solution for a qg-BSDE was solved by
Kobylanski [30]. In the presence of jumps, a quadratic-exponential growth BSDE with random
Poisson measures needs to be solved [40]. See also [18, 28] for recent developments. Thanks to
these results, there is no problem in solving the optimization problem for an individual agent.
However, when we impose the market clearing condition in the presence of multiple agents, it
ends up with a coupled system of multi-dimensional qg-BSDEs. A coupled system of qg-BSDEs
has long been unsolved since the traditional approach of [30] crucially relies on the comparison
theorem which is, in general, unavailable for a multi-dimensional setup. In this regard, we refer
to Xing & Žitković [42] as an important progress toward the solution for this problem. Some
interesting applications of the result to the problem of market equilibrium can be found in the
references given above.

Recent developments of Mean Field Game (MFG) theory have opened a new interesting
approach to multi-agent problems. Since the publication of the pioneering works by Lasry &
Lions [36, 37, 38] and Huang, Malhame & Caines [24], mean field game theory has been one of
the most active research topics in various fields. The strength of the mean field approach resides
in the fact that, in the large population limit, it decomposes notoriously difficult problem of a
stochastic differential game into a tractable individual optimization problem and an additional
fixed-point problem. It has been proved that the solution to the mean-field game equilibrium
gives an ε-Nash equilibrium for the corresponding game of finite homogeneous agents. For
interested readers, there are excellent monographs such as [2, 20, 21, 31] for analytic approach
and [4, 5] for probabilistic approach. See also [3, 10, 11, 32, 33, 34] for another approach
using the concept of relaxed controls, which does not produce any equation characterizing the
equilibrium solution but can significantly weaken the regularity assumptions we need. Since
the mean-field game theory has been constructed for the analysis of the Nash equilibrium,
examples of its direct applications to the market clearing equilibrium are very hard to find. In
the majority of works, certain phenomenological approaches are taken. One popular approach is
to assume that the asset price process is decomposed into two parts, one is an exogenous process
which is independent of the agents’ action, and the other representing the market friction (i.e.
price impact) which is often proportional to the average trading speed of the agents. Although
this assumption makes the setup nicely fit to the Nash game, the market clearing equilibrium
cannot be investigated anymore. Another approach is to impose the market clearing condition
but the demand of the asset is assumed to be given by an exogenous function of price without
considering the optimization problem among the agents. See [1, 9, 14, 15, 16, 23, 39, 12, 13] as
interesting applications to, optimal trading, optimal liquidation, optimal oil production, and
price formation in electricity markets etc., using the phenomenological approaches explained
above. A notable exception directly dealing with the market clearing equilibrium is [22], where
the market price process becomes deterministic due to the absence of the common noise.

In this paper, we investigate the problem of equilibrium price formation in an incomplete
securities market. Each financial firm (agent) tries to minimize its cost via continuous-time
trading with a securities exchange while facing the systemic and idiosyncratic noises as well as
the stochastic order-flows from its over-the-counter clients. The biggest difference from the ex-
isting works is the generality of the assumption on the market price process. The price process
of the n securities ($t)t∈[0,T ] is only required to be a square integrable and progressively mea-
surable process with respect to the full filtration. This is in clear contrast to the vast majority
of works, where the asset price process is supposed to have a simplistic diffusion form. There,
the volatility is often assumed to be constant and then the analysis is essentially restricted to
the risk-premium term. The cost function we adopt is a natural generalization of those used
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in optimal liquidation problems. The running as well as the terminal costs depend not only on
the storage level but also on the equilibrium price $ which is to be determined endogenously.
The characterizing equation is a coupled system of fully-coupled forward backward stochastic
differential equations (FBSDEs) instead of the coupled qg-BSDEs. The existence of unique
solution is proved by exploiting the convexity as well as monotone conditions of the coeffi-
cient functions. We have shown, in the accompanying paper (Fujii & Takahashi) [19], that
the solution to a certain FBSDE of conditional McKean-Vlasov type gives a good approximate
of the equilibrium price. In fact, it is shown to clear the market asymptotically in the large
population limit. In the current paper, we build a direct bridge connecting the game among
the finite number of agents and its large population limit. We show the strong convergence
to the mean-field limit given in [19] under suitable conditions. In particular, we provide the
stability relation between the market clearing price for the heterogeneous agents and that for
the homogeneous mean-field limit. The stability result tells us how far the equilibrium price
among the heterogeneous agents deviates from the homogeneous mean-field limit. Finally, the
convergence to the mean-field limit reveals a role of the securities market as an efficient filter
which removes the idiosyncratic noises from the equilibrium price. This implies that each agent
needs only the common market information as well as its own idiosyncratic information to im-
plement the optimal strategy without any access to the idiosyncratic information of the others.
Note that we cannot observe this feature in the setups with finite number of agents since we
cannot restrict the filtration to which the price process is adapted to the one generated by the
common noise. The unnatural and awkward assumption of the perfect information among the
agents is thus resolved in the limit of large population.

The organization of the paper is as follows: In Section 2, the notations used in the paper are
explained. In Section 3, the first major result regarding the existence of the unique equilibrium
among the finite number of agents is given (Theorems 3.2 and 3.3). Section 4 is devoted to prove
the strong convergence of the finite-agent equilibrium to its mean field limit (Theorem 4.2),
which is the second major result of the paper. The stability result between the equilibrium
price for the finite heterogeneous agents and the mean field limit of homogeneous agents is also
given (Theorem 4.3). We conclude in Section 5 with some discussions on the possible directions
for the future research.

2 Notation

We use the same notations adopted in the work [19]. We introduce (N+1) complete probability
spaces:

(Ω
0
,F0

,P0
) and (Ω

i
,F i,Pi)Ni=1 ,

endowed with filtrations Fi := (F it)t≥0, i ∈ {0, · · · , N}. Here, F0
is the completion of the

filtration generated by d0-dimensional Brownian motion W 0 (hence right-continuous) and, for

each i ∈ {1, · · · , N}, Fi is the complete and right-continuous augmentation of the filtration
generated by d-dimensional Brownian motions W i as well as a W i-independent n-dimensional
square-integrable random variables (ξi). We also introduce the product probability spaces

Ωi = Ω
0 × Ω

i
, F i, Fi = (F it )t≥0, Pi , i ∈ {1, · · · , N}
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where (F i,Pi) is the completion of (F0 ⊗ F i,P0 ⊗ Pi) and Fi is the complete and right-

continuous augmentation of (F0
t ⊗ F

i
t)t≥0. In the same way, we define the complete proba-

bility space (Ω,F ,P) endowed with F = (Ft)t≥0 satisfying the usual conditions as a product of

(Ω
i
,F i,Pi;Fi)Ni=0.
Throughout the work, the symbol L and L$ denote given positive constants, the symbol

C a general positive constant which may change line by line. For a given constant T > 0, we
use the following notation for frequently encountered spaces:
• L2(G;Rd) denotes the set of Rd-valued G-measurable square integrable random variables.
• S2(G;Rd) is the set of Rd-valued G-adapted continuous processes X satisfying

||X||S2 := E
[

sup
t∈[0,T ]

|Xt|2
] 1
2 <∞ .

• H2(G;Rd) is the set of Rd-valued G-progressively measurable processes Z satisfying

||Z||H2 := E
[(∫ T

0
|Zt|2dt

)] 1
2
<∞ .

• L(X) denotes the law of a random variable X.
• P(Rd) is the set of probability measures on (Rd,B(Rd)).
• Pp(Rd) with p ≥ 1 is the subset of P(Rd) with finite p-th moment; i.e., the set of µ ∈ P(Rd)
satisfying

Mp(µ) :=
(∫

Rd

|x|pµ(dx)
) 1

p
<∞ .

We always assign Pp(Rd) with (p ≥ 1) the p-Wasserstein distance Wp, which makes Pp(Rd) a
complete separable metric space. It is defined by, for any µ, ν ∈ Pp(Rd),

Wp(µ, ν) := infπ∈Πp(µ,ν)

[(∫
Rd×Rd

|x− y|pπ(dx, dy)
) 1

p
]

(2.1)

where Πp(µ, ν) denotes the set of probability measures in Pp(Rd × Rd) with marginals µ and
ν. For more details, see Chapter 5 in [4].
• m(µ) denotes the expectation with respect to µ ∈ P(Rd), i.e.

m(µ) :=

∫
Rd

xµ(dx).

We frequently omit the arguments such as (G,Rd) in the above definitions when there is no
confusion from the context.

3 Market Clearing Equilibrium among Finite Agents

Our first goal is to prove the existence of the unique market clearing equilibrium for a stylized
model of securities market and its characterization by the system of FBSDEs. The securities
market we are interested in is basically the same as the one studied in the accompanying
paper [19]. In the market, n types of securities are continuously traded via the securities
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exchange participated by the N security firms indexed by i = 1, · · · , N . Every security firm,
we will call it as an agent, is supposed to have many individual clients who cannot directly
access to the exchange. In addition to the common systemic shocks, each agent faces the
idiosyncratic shocks and the order-flow from its individual clients. In this environment, each
agent i ∈ {1, · · · , N} tries to solve the optimization problem:

inf
αi∈Ai

J i(αi) (3.1)

with the cost functional

J i(αi) := E
[∫ T

0
fi(t,X

i
t , α

i
t, $t, c

0
t , c

i
t)dt+ gi(X

i
T , $T , c

0
T , c

i
T )
]
,

subject to the dynamic constraint describing the time evolution of its securities’ position:

dXi
t =

(
αit + li(t,$t, c

0
t , c

i
t)
)
dt+ σ0

i (t, c
0
t , c

i
t)dW

0
t + σi(t, c

0
t , c

i
t)dW

i
t , t ∈ [0, T ]

with Xi
0 = ξi. Here, ξi ∈ L2(F i0;Rn) denotes the size of the initial position, which is assumed

to have the common law for every 1 ≤ i ≤ N . ($t)t∈[0,T ] ∈ H2(F;Rn) denotes the market
price process of n securities. One of our main goals is to derive the price process ($t)t∈[0,T ]

endogenously so that it achieves a market clearing equilibrium among those agents. (c0
t )t≥0 ∈

H2(F0
;Rn) denotes the coupon payments from the securities or the market news affecting all

the agents, while (cit)t≥0 ∈ H2(Fi;Rn) denotes some idiosyncratic shocks affecting only the ith
agent. Moreover, (cit)t≥0 are also assumed to have the common law for all 1 ≤ i ≤ N . The
terms involving (li, σ

0
i , σi) denote the order-flow to the ith agent from its individual clients

through the over-the-counter (OTC) market. Each agent controls (αit)t∈[0,T ], which is an Rn-
valued process denoting the trading speed of the n securities via the exchange. Note that, in
addition to the random initial states (ξi)Ni=1, we have d0-dimensional common noise W 0 and N
d-dimensional idiosyncratic noises (W i)Ni=1. Since we impose no restriction on the size among
(n, d0, d,N), we have an incomplete securities market in general.

If the number of agents N is sufficiently large, it is natural to assume that each agent
consider itself as a price taker. This means that each agent tries to solve the optimization
problem by treating ($t)t≥0 as an exogenous process. We firstly solve this individual optimiza-
tion problem. We then use the result to search the market price process of the n securities
which achieves the market clearing equilibrium among all the agents 1 ≤ i ≤ N who consider
themselves as price takers. 1 We set the space of admissible strategies as Ai = H2(F;Rn). This
means that each agent has the perfect information.

Remark 3.1. Ideally, we would like to restrict the information set available to each agent i
to the filtration (σ{$s : s ≤ t} ∨ F it )t≥0. We postpone tackling this difficult problem for future
research. Interestingly however, through the investigation of the mean-field limit of the market
equilibrium in later sections, we shall observe that the information set of each agent i can be
essentially restricted to Fi for large N .

1In fact, most of the macroeconomic research is done under the price takers’ equilibrium.
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3.1 Individual optimization problem

For each agent i, let us introduce the cost functions: fi : [0, T ] × (Rn)5 → R, gi : (Rn)4 → R,
f i : [0, T ]× (Rn)4 → R and finally gi : (Rn)3 → R, which are measurable functions such that

fi(t, x, α,$, c
0, c) := 〈$,α〉+

1

2
〈α,Λα〉+ f i(t, x,$, c

0, c),

gi(x,$, c
0, c) := −δ〈$,x〉+ gi(x, c

0, c).

The following assumptions are fundamental to guarantee the unique solvability of the opti-
mization problem for each agent.

Assumption 3.1. Uniformly in 1 ≤ i ≤ N , we assume the following conditions:
(i) Λ is a positive definite n× n symmetric matrix with λ|θ|2 ≤ 〈θ,Λθ〉 ≤ λ|θ|2 for any θ ∈ Rn
where 0 < λ ≤ λ are some constants.
(ii) For any (t, x,$, c0, c) ∈ [0, T ]× (Rn)4,

|f i(t, x,$, c0, c)|+ |gi(x, c0, c)| ≤ L(1 + |x|2 + |$|2 + |c0|2 + |c|2) .

(iii) f i and gi are continuously differentiable in x and, for any (t, x, x′, $, c0, c) ∈ [0, T ]×(Rn)5,

|∂xf i(t, x′, $, c0, c)− ∂xf i(t, x,$, c0, c)|+ |∂xgi(x′, c0, c)− ∂xgi(x, c0, c)| ≤ L|x′ − x| ,

and |∂xf i(t, x,$, c0, c)|+ |∂xgi(x, c0, c)| ≤ L(1 + |x|+ |$|+ |c0|+ |c|).
(iv)The functions f i and gi are convex in x in the sense that

f i(t, x
′, $, c0, c)− f i(t, x,$, c0, c)− 〈x′ − x, ∂xf i(t, x,$, c0, c)〉 ≥ γf

2
|x′ − x|2 ,

gi(x
′, c0, c)− gi(x, c0, c)− 〈x′ − x, ∂xgi(x, c0, c)〉 ≥ γg

2
|x′ − x|2 ,

for any (t, x, x′, $, c0, c) ∈ [0, T ]× (Rn)5 with some constants γf , γg ≥ 0.
(v) li : [0, T ] × (Rn)3 → Rn, σ0

i : [0, T ] × (Rn)2 → Rn×d0, and σi : [0, T ] × (Rn)2 → Rn×d are
the measurable functions satisfying, for any (t,$, c0, c) ∈ [0, T ]× (Rn)3,

|li(t,$, c0, c)|+ |σ0
i (t, c

0, c)|+ |σi(t, c0, c)| ≤ L(1 + |$|+ |c0|+ |c|).

(vi) δ ∈ [0, 1) is a given constant.

Remark 3.2. Note that the condition (iv) in the above assumptions implies〈
x′ − x, ∂xf i(t, x′, $, c0, c)− ∂xf i(t, x,$, c0, c)

〉
≥ γf |x′ − x|2,〈

x′ − x, ∂xgi(x′, c0, c)− ∂xgi(x, c0, c)
〉
≥ γg|x′ − x|2,

which is frequently used in the following analyses.

Economic interpretation of each term is as follows; the first term 〈$,α〉 of fi denotes the
direct cost incurred by the sales and purchase of the securities via the exchange and the second
term 1

2〈α,Λα〉 is some fee to be paid to the exchange based on the agent’s trading speed.
−δ〈$,x〉 denotes the mark-to-market value at the terminal time T with some discount factor
δ < 1. The other terms f i, gi denote the running as well as the terminal costs depending on
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the storage level of the securities and their price. (Λ, δ) is assumed to be common for all the
agents to make the problem simpler.

The associated (reduced) Hamiltonian 2 Hi : [0, T ]× (Rn)6 → R

Hi(t, x, y, α,$, c
0, c) := 〈y, α+ li(t,$, c

0, c)〉+ fi(t, x, α,$, c
0, c)

has a unique minimizer

α̂(y,$) := −Λ(y +$) (3.2)

where Λ := Λ−1. The adjoint equation for the ith agent arising from the stochastic maximum
principle is then given by

dXi
t =

(
α̂(Y i

t , $t) + li(t,$t, c
0
t , c

i
t)
)
dt+ σ0

i (t, c
0
t , c

i
t)dW

0
t + σi(t, c

0
t , c

i
t)dW

i
t ,

dY i
t = −∂xf i(t,Xi

t , $t, c
0
t , c

i
t)dt+ Zi,0t dW 0

t +

N∑
j=1

Zi,jt dW j
t , (3.3)

with Xi
0 = ξi and Y i

T := ∂xgi(X
i
T , $T , c

0
T , c

i
T ).

Theorem 3.1. Let Assumption 3.1 be in force. Then, for a given ($t)t∈[0,T ] ∈ H2(F;Rn), the
problem (3.1) for each agent 1 ≤ i ≤ N is uniquely characterized by the FBSDE (3.3) which
is strongly solvable with a unique solution (Xi, Y i, Zi,0, (Zi,j)Nj=1) ∈ S2(F;Rn) × S2(F;Rn) ×
H2(F;Rn×d0)× (H2(F;Rn×d))N .

Proof. This is essentially the same as Theorem 3.1 in [19]. Since the cost functions are jointly
convex with (x, α) and strictly convex in α, the problem is the special situation investigated in
Section 1.4.4 in [5]. It can be proved in a similar way as Theorem 1.60 in the same reference.
One can also prove via Peng-Wu’s method [41]. In fact, the method will be applied to a much
more complex situation below.

3.2 Market clearing equilibrium among N agents

From Theorem 3.1, the optimal trading strategy of the agent i for a given ($t)t∈[0,T ] is

α̂it := −Λ(Y i
t +$t), t ∈ [0, T ].

Since the market clearing requires
∑N

i=1 α̂
i
t = 0, the market price needs to satisfy

$t = − 1

N

N∑
i=1

Y i
t , t ∈ [0, T ]. (3.4)

2Since σ0
i , σi are independent of the control αi and also the state xi, it suffices to use the reduced Hamiltonian

for the adjoint equation.
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This means that the market clearing equilibrium is realized if the following 1 ≤ i ≤ N coupled
system of FBSDEs have a solution;

dXi
t :=

{
α̂
(
Y i
t ,−

1

N

N∑
j=1

Y j
t

)
+ li

(
t,− 1

N

N∑
j=1

Y j
t , c

0
t , c

i
t

)}
dt

+σ0
i (t, c

0
t , c

i
t)dW

0
t + σi(t, c

0
t , c

i
t)dW

i
t ,

dY i
t = −∂xf i

(
t,Xi

t ,−
1

N

N∑
j=1

Y j
t , c

0
t , c

i
t

)
dt+ Zi,0t dW 0

t +
N∑
j=1

Zi,jt dW j
t , (3.5)

for t ∈ [0, T ] with

Xi
0 = ξi,

Y i
T =

δ

1− δ
1

N

N∑
j=1

∂xgj(X
j
T , c

0
T , c

j
T ) + ∂xgi(X

i
T , c

0
T , c

i
T ). (3.6)

Let us mention about the terminal condition. Since we have (3.4), Y i
T must satisfy

Y i
T = δ

1

N

N∑
j=1

Y j
T + ∂xgi(X

i
T , c

0
T , c

i
T ).

Summing over 1 ≤ i ≤ N , we obtain the expression 1
N

∑N
j=1 Y

j
T . Substituting the result into

the above terminal condition, we get the desired result.

Theorem 3.2. If there exists a solution to the N -coupled system of FBSDEs (3.5) with (3.6),
then the price process defined by (3.4) achieves market clearing equilibrium among the N agents
who consider themselves as price takers.

Proof. Suppose that the N -coupled system of FBSDEs (3.5) with (3.6) has in fact a solution.
Let us set a market price process as (3.4) by using the solution of the system of FBSDEs,
(Y i)Ni=1. Due to the uniqueness result in Theorem 3.1, the solution to the associated adjoint
equation (3.3) for the individual optimization problem is in fact given by the same Y i, 1 ≤ i ≤
N . This means that (3.4) actually provides a market clearing price of the n securities among
the N agents.

We now introduce a new set of assumptions to prove the existence of the solution to (3.5).

Assumption 3.2. (i) For any (t, x,$,$′, c0, c) ∈ [0, T ]× (Rn)5,

|∂xf i(t, x,$, c0, c)− ∂xf i(t, x,$′, c0, c)|+ |li(t,$, c0, c)− li(t,$′, c0, c)| ≤ L$|$ −$′|,

for every 1 ≤ i ≤ N .
(ii) For any (t, c0) ∈ [0, T ]×Rn and (xi, xi′, ci) ∈ (Rn)3, 1 ≤ i ≤ N , the functions (li)

N
i=1 satisfy

with some γl > 0

N∑
i=1

〈
li

(
t,

1

N

N∑
j=1

xj , c0, ci
)
− li

(
t,

1

N

N∑
j=1

xj′, c0, ci
)
, xi − xi′

〉
≥ Nγl

∣∣∣ 1

N

N∑
i=1

(xi − xi′)
∣∣∣2.
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(iii) There exists a strictly positive constant γ satisfying

0 < γ ≤
(
γf − L2

$

4γl

)
∧ γg .

Moreover, the functions (gi)
N
i=1 satisfy for any c0 ∈ Rn and (xi, xi′, ci) ∈ (Rn)3, 1 ≤ i ≤ N ,

δ

1− δ

N∑
i=1

〈 1

N

N∑
j=1

∂xgj(x
j , c0, cj)− 1

N

N∑
j=1

∂xgj(x
j′, c0, cj), xi − xi′

〉
≥ (γ − γg)

N∑
i=1

|xi − xi′|2.

Remark 3.3. In economic terms, the monotone condition (ii) can be interpreted in a very
natural way. It basically tells that the demand for the securities from the OTC clients of
the agents decreases when the market price rises. Let us provide the simplest example of the
functions (li)i that satisfy (ii); assume that li has a separable form li(t, x, c

0, ci) = h(t, x) +
hi(t, c

0, ci) and also that the common function h is strictly monotone in x. Then, one can
easily check that (ii) is satisfied. The third condition can be clearly satisfied when (∂xgi)i have
a similar structure.

For notational convenience for later analysis, let us introduce the following functions: Bi :
[0, T ]× Rn × P(Rn)× (Rn)2 → Rn, Fi : [0, T ]× Rn × P(Rn)× (Rn)2 → Rn and Gi : P(Rn)×
(Rn)3 → Rn, 1 ≤ i ≤ N by

Bi(t, x, µ, c
0, c) := α̂(x,−m(µ)) + li(t,−m(µ), c0, c),

Fi(t, x, µ, c
0, c) := −∂xf i(t, x,−m(µ), c0, c),

Gi(µ, x, c
0, c) :=

δ

1− δ
m(µ) + ∂xgi(x, c

0, c), (3.7)

for any (t, x, µ, c0, c) ∈ [0, T ]× Rn × P(Rn)× (Rn)2.

Theorem 3.3. Let Assumptions 3.1 and 3.2 be in force. Then the N -coupled system of
FBSDEs (3.5) with (3.6) has a unique strong solution (Xi, Y i, Zi,0, (Zi,j)Nj=1) ∈ S2(F;Rn) ×
S2(F;Rn)×H2(F;Rn×d0)× (H2(F;Rn×d))N , 1 ≤ i ≤ N .

Proof. We can prove the claim by a simple modification of Theorem 6.2 in [19]. First, we make
the following hypothesis: there exists some constant % ∈ [0, 1) such that for any Ib,i, If,i ∈
H2(F;Rn) and for any ηi ∈ L2(FT ;Rn), there exists a unique strong solution (x%,i, y%,i, z%,i,0, (z%,i,j)Nj=1) ∈
S2 × S2 ×H2 × (H2)N , 1 ≤ i ≤ N to the N -coupled system of FBSDEs:

dx%,it =
(
%Bi(t, y

%,i
t , µ%,Nt , c0

t , c
i
t) + Ib,it

)
dt+ σ0

i (t, c
0
t , c

i
t)dW

0
t + σi(t, c

0
t , c

i
t)dW

i
t ,

dy%,it = −
(
(1− %)γx%,it − %Fi(t, x

%,i
t , µ

%,N
t , c0

t , c
i
t) + If,it

)
dt+ z%,i,0t dW 0

t +
N∑
j=1

z%,i,jt dW j
t ,

for t ∈ [0, T ] with x%,i0 = ξi and y%,iT = %Gi(µ
%,N
g , x%,iT , c

0
T , c

i
T ) + (1− %)x%,iT + ηi. Here,

µ%,Nt :=
1

N

N∑
i=1

δ
y%,it

, µ%,Ng :=
1

N

N∑
i=1

δ
∂xgi(x

%,i
T ,ciT ,c

i
T )

9



denote the empirical measures. Notice that the system reduces to the N decoupled FBSDEs
when % = 0. Hence, the hypothesis trivially holds for % = 0.

Now, for some constant ζ ∈ (0, 1), we define a map(
S2 × S2 ×H2 × (H2)N

)N 3 (xi, yi, zi,0, (zi,j)Nj=1

)N
i=1

7→
(
Xi, Y i, Zi,0, (Zi,j)Nj=1

)N
i=1
∈
(
S2 × S2 ×H2 × (H2)N

)N
(3.8)

by

dXi
t =

[
%Bi(t, Y

i
t , µ

N
t , c

0
t , c

i
t) + ζBi(t, y

i
t, ν

N
t , c

0
t , c

i
t) + Ib,it

]
dt

+σ0
i (t, c

0
t , c

i
t)dW

0
t + σi(t, c

0
t , c

i
t)dW

i
t ,

dY i
t = −

[
(1− %)γXi

t − %Fi(t,Xi
t , µ

N
t , c

0
t , c

i
t) + ζ

(
−γxit − Fi(t, xit, νNt , c0

t , c
i
t)
)

+ If,it

]
dt

+Zi,0t dW 0
t +

N∑
j=1

Zi,jt dW j
t ,

with Xi
0 = ξ and Y i

T = %Gi(µ
N
g , X

i
T , c

0
T , c

i
T )+(1−%)Xi

T +ζ
(
Gi(ν

N
g , x

i
T , c

0
T , c

i
T )−xiT

)
+ηi. Here,

the measure arguments are defined by

µNt :=
1

N

N∑
i=1

δY i
t
, νNt :=

1

N

N∑
i=1

δyit ,

µNg :=
1

N

N∑
i=1

δ∂xgi(Xi
T ,c

0
T ,c

i
T ), νNg :=

1

N

N∑
i=1

δ∂xgi(xiT ,c
0
T ,c

i
T ).

Thanks for the hypothesis, there exists a unique solution
(
Xi, Y i, Zi,0, (Zi,j)Nj=1

)N
i=1

and hence
the map (3.8) is well-defined.

Consider the two set of inputs
(
xi, yi, zi,0, (zi,j)Nj=1

)N
i=1

and
(
xi′, yi′, zi,0′, (zi,j′)Nj=1

)N
i=1

, and

then denote the corresponding solution to the previous FBSDEs by
(
Xi, Y i, Zi,0, (Zi,j)Nj=1

)N
i=1

and
(
Xi′, Y i′, Zi,0′, (Zi,j′)Nj=1

)N
i=1

, respectively. Put ∆Xi := Xi − Xi′,∆Y i := Y i − Y i′, etc.

Since ∆Xi
0 = 0, a simple application of Itô-formula yields

N∑
i=1

E
[
〈∆Xi

T ,∆Y
i
T 〉
]

= −(1− %)γE
∫ T

0

N∑
i=1

|∆Xi
t |2dt

+%E
∫ T

0

N∑
i=1

〈
Bi(t, Y

i
t , µ

N
t , c

0
t , c

i
t)−Bi(t, Y i′

t , µ
′N
t , c0

t , c
i
t),∆Y

i
t

〉
dt

+%E
∫ T

0

N∑
i=1

〈
Fi(t,X

i
t , µ

N
t , c

0
t , c

i
t)− Fi(t,Xi′

t , µ
′N
t , c0

t , c
i
t),∆X

i
t

〉
dt

+ζE
∫ T

0

N∑
i=1

〈
Bi(t, y

i
t, ν

N
t c

0
t , c

i
t)−Bi(t, yi′t , ν ′Nt , c0

t , c
i
t),∆Y

i
t

〉
dt

+ζE
∫ T

0

N∑
i=1

〈
γ∆xit + Fi(t, x

i
t, νt, c

0
t , c

i
t)− Fi(t, xi′t , ν ′Nt , c0

t , c
i
t),∆X

i
t

〉
dt .
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Using the convexity as well as the monotone conditions in Assumptions 3.1 and 3.2, and also
the inequality

−
N∑
i=1

〈
Λ
(

∆Y i
t −

1

N

N∑
j=1

∆Y j
t

)
,∆Y i

t

〉
≤ 0,

we obtain, with some constant C independent of (%,N), that

N∑
i=1

E
[
〈∆Xi

T ,∆Y
i
T 〉
]
≤ −γE

∫ T

0

N∑
i=1

|∆Xi
t |2dt

+ζCE
∫ T

0

N∑
i=1

[(
|∆yit|+ |∆yt|

)
|∆Y i

t |+
(
|∆xit|+ |∆yt|

)
|∆Xi

t |
]
dt,

where ∆yt := 1
N

∑N
i=1 ∆yit. On the other hand, we get from the terminal condition,

N∑
i=1

E
[
〈∆Xi

T ,∆Y
i
T 〉
]

= %E
N∑
i=1

〈
Gi(µ

N
g , X

i
T , c

0
T , c

i
T )−Gi(µ′Ng , Xi′

T , c
0
T , c

i
T ),∆Xi

T

〉
+(1− %)E

N∑
i=1

〈
∆Xi

T ,∆X
i
T

〉
+ ζE

N∑
i=1

〈
Gi(ν

N
g , x

i
T , c

0
T , c

i
T )−Gi(ν ′Ng , xi′T , c

0
T , c

i
T ),∆Xi

T

〉
≥ (%γ + (1− %))E

[ N∑
i=1

|∆Xi
T |2
]
− ζCE

[ N∑
i=1

(
|∆xiT |+ |∆xT |

)
|∆Xi

T |
]
,

where |∆xT | := 1
N

∑N
i=1 |∆xiT |. With γc := min(1, γ), we have 0 < γc ≤ %γ+(1−%), and hence

the above two estimates give

γc

N∑
i=1

E
[
|∆Xi

T |2 +

∫ T

0
|∆Xi

t |2dt
]
≤ ζC

N∑
i=1

E
[
(|∆xT |+ |∆xiT |)|∆Xi

T |
]

+ζCE
∫ T

0

N∑
i=1

[
(|∆yit|+ |∆yt|)|∆Y i

t |+
(
|∆xit|+ |∆yt|

)
|∆Xi

t |
]
dt.

Using Young’s inequality, we obtain

N∑
i=1

E
[
|∆Xi

T |2 +

∫ T

0
|∆Xi

t |2dt
]
≤ ζC

N∑
i=1

E
[
|∆xiT |2 +

∫ T

0

([
|∆xit|2 + |∆yit|2

]
+ |∆Y i

t |2
)
dt
]
.(3.9)

Let us now treat (Xi, Xi′)Ni=1 as the exogenous inputs. Then the standard stability result
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for the Lipschitz BSDEs (see, for example, Theorem 4.2.3 in [44]) implies

N∑
i=1

E
[

sup
t∈[0,T ]

|∆Y i
t |2 +

∫ T

0
|∆Zi,0t |2dt+

N∑
j=1

∫ T

0
|∆Zi,jt |2dt

]

≤ C
N∑
i=1

E
[
|∆Xi

T |2 +

∫ T

0
|∆Xi

t |2dt
]

+ ζC
N∑
i=1

E
[
|∆xiT |2 +

∫ T

0

(
|∆xit|2 + |∆yit|2

)
dt
]
.

Using (3.9) and small ζ, we obtain

N∑
i=1

E
[

sup
t∈[0,T ]

|∆Y i
t |2 +

∫ T

0
|∆Zi,0t |2dt+

N∑
j=1

∫ T

0
|∆Zi,jt |2dt

]

≤ ζC
N∑
i=1

E
[
|∆xiT |2 +

∫ t

0

(
|∆xit|2 + |∆yit|2

)
dt
]
. (3.10)

Similarly, by treating (Y i, Y i′)Ni=1 as the exogenous inputs, the standard stability result for the
Lipschitz SDEs gives

N∑
i=1

E
[

sup
t∈[0,T ]

|∆Xi
T |
]
≤ ζC

N∑
i=1

E
∫ T

0
|∆yit|2dt+ C

N∑
i=1

E
∫ T

0
|∆Y i

t |2dt. (3.11)

Therefore, from (3.10) and (3.11), we obtain

N∑
i=1

E
[

sup
t∈[0,T ]

|∆Xi
t |2 + sup

t∈[0,T ]
|∆Y i

t |2 +

∫ T

0
|∆Zi,0t |2dt+

N∑
j=1

∫ T

0
|∆Zi,jt |2dt

]

≤ ζC
N∑
i=1

E
[

sup
t∈[0,T ]

|∆xit|2 + sup
t∈[0,T ]

|∆yit|2
]
.

Thus for small ζ > 0, which can be taken independently from %, the map (3.8) becomes a strict
contraction. Hence the Banach fixed point theorem implies that the initial hypothesis holds
for (%+ ζ). Repeating the procedures, we see the hypothesis holds with % = 1. This establishes
the existence of a solution. The uniqueness is a direct result of the next stability estimate.

Proposition 3.1. Given two set of inputs (ξi, c0, ci)Ni=1, (ξi′, c0′, ci′)Ni=1, and the coefficients
functions (li, σ

0
i , σi, fi, gi)

N
i=1, (l′i, σ

0′
i , σ

′
i, f
′
i , g
′
i) satisfying Assumptions 3.1 and 3.2, let us denote

the corresponding solutions to (3.5) with (3.6) by (Xi, Y i, Zi,0, (Zi,j)Nj=1)Ni=1 and (Xi′, Y i′, Zi,0′, (Zi,j′)Nj=1)Ni=1,

respectively. Then, for ∆Xi := Xi −Xi′,∆Y i := Y i − Y i′,∆Zi,j := Zi,j − Zi,j′, 1 ≤ i, j ≤ N ,
we have

N∑
i=1

E
[

sup
t∈[0,T ]

|∆Xi
t |2 + sup

t∈[0,T ]
|∆Y i

t |2 +

∫ T

0

(
|∆Zi,0t |2 +

N∑
j=1

|∆Zi,jt |2
)
dt
]

≤ C
N∑
i=1

E
[
|∆ξi|2 + |Gi|2 +

∫ T

0

(
|F i(t)|2 + |Bi(t)|2 + |σ0

i (t)|2 + |σi(t)|2
)
dt
]
,
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with some constant C depending only on the Lipschitz constants, δ, λ and γ. Here,

Bi(t) := Bi(t, Y
i′
t , µ

′N
t , c0

t , c
i
t)−B′i(t, Y i′

t , µ
′N
t , c0′

t , c
i′
t ),

F i(t) := Fi(t,X
i′
t , µ

′N
t , c0

t , c
i
t)− F ′i (t,Xi′

t , µ
′N
t , c0′

t , c
i′
t ),

Gi := Gi(µ
′N
g , Xi′

T , c
0
T , c

i
T )−G′i(µ′Ng′ , Xi′

T , c
0′
T , c

i′
T ),

(σ0
i , σi)(t) :=

(
(σ0
i , σi)(t, c

0
t , c

i
t)− (σ0′

i , σ
′
i)(t, c

0′
t , c

i′
t )
)
,

for t ∈ [0, T ] and 1 ≤ i ≤ N . Here B′i, F
′
i and G′i are defined as (3.7) with primed variables.

The measure arguments are defined by µ′Nt := 1
N

∑N
i=1 δY i′

t
, µ′Ng := 1

N

∑N
i=1 δ∂xgi(X

i′
T , c

0
T , c

i
T )

and µ′Ng′ := 1
N

∑N
i=1 δ∂xg′i(X

i′
T , c

0′
T , c

i′
T ).

Proof. One can prove the claim exactly the same way as in Proposition 4.1 in [19].

Corollary 3.1. Let Assumptions 3.1 and 3.2 be in force. Then the solution (Xi, Y i, Zi,0, (Zi,j)Nj=1)Ni=1

to the system of FBSDEs (3.5) with (3.6) satisfies

N∑
i=1

E
[

sup
t∈[0,T ]

|Xi
t |2 + sup

t∈[0,T ]
|Y i
t |2 +

∫ T

0

(
|Zi,0t |2 +

N∑
j=1

|Zi,jt |2
)
dt
]

≤ C
N∑
i=1

E
[
|ξi|2 + |∂xgi(0, c0

T , c
i
T )|2

+

∫ T

0

(
|∂xf i(t, 0, 0, cit, ct)|2 + |li(t, 0, c0

t , c
i
t)|2 + |(σ0

i , σi)(t, c
0
t , c

i
t)|2
)
dt
]
,

where C is some constant depending only on the Lipschitz constants, δ, λ and γ.

Proof. This is the immediate consequence of Proposition 3.1. See Corollary 4.1 in [19].

4 Strong Convergence to the Mean-Field Limit

Convergence among the homogeneous agents

Let us introduce a new set of coefficients (δ,Λ, l, σ0, σ, f , g) satisfying the following conditions.

Assumption 4.1. (i) (δ,Λ, l, σ0, σ, f , g) satisfies Assumptions 3.1 and 3.2. Here, the condi-
tions (ii) and (iii) in Assumption 3.2 are replaced by the N copies of l and ∂xg.
(ii) For any t ∈ [0, T ], any random variables x, x′, c0, c ∈ L2(F ;Rn) and any sub-σ field G ⊂ F ,
the function l satisfies

E
[〈
l(t,E[x|G], c0, c)− l(t,E[x′|G], c0, c), x− x′

〉]
≥ γE

[
E
[
x− x′|G

]2]
.

(iii) For any random variables x, x′, c0, c ∈ L2(F ;Rn) and any sub-σ field G ⊂ F , the function
g satisfies

δ

1− δ
E
[〈
E
[
∂xg(x, c0, c)− ∂xg(x′, c0, c)|G

]
, x− x′

〉]
≥ γE

[
|x− x′|2

]
.

Remark 4.1. Note that the conditions (ii) and (iii) are natural generalization of those of
Assumption 3.2 where they are given in terms of the empirical mean.
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Using these coefficient functions, consider the following conditional McKean-Vlasov FBS-
DEs:

dX
i
t =

(
α̂
(
Y
i
t,−E[Y

i
t|F

0
t ]
)

+ l
(
t,−E[Y

i
t|F

0
t ], c

0
t , c

i
t

))
dt+ σ0(t, c0

t , c
i
t)dW

0
t + σ(t, c0

t , c
i
t)dW

i
t ,

dY
i
t = −∂xf

(
t,X

i
t,−E[Y

i
t|F

0
t ], c

0
t , c

i
t

)
dt+ Z

i,0
t dW

0
t + Z

i,i
t dW

i
t , (4.1)

for t ∈ [0, T ] with

X
i
0 = ξi,

Y
i
T =

δ

1− δ
E
[
∂xg(X

i
T , c

0
T , c

i
T )|F0

T

]
+ ∂xg(X

i
T , c

0
T , c

i
T ) . (4.2)

We know the following result.

Theorem 4.1. (Theorem 4.2 [19]) Let Assumption 4.1 be in force. Then, for each 1 ≤
i ≤ N , there exists a unique strong solution (X

i
, Y

i
, Z

i,0
, Z

i,i
) ∈ S2(Fi;Rn) × S2(Fi;Rn) ×

H2(Fi;Rn×d0) × H2(Fi;Rn×d) to the FBSDE of conditional McKean-Vlasov type (4.1) with
(4.2).

Note that FBSDE (4.1) is decoupled for each 1 ≤ i ≤ N and that its solution has the

same distribution. In particular, for given F0
, the solutions (X

i
, Y

i
, Z

i,0
, Z

i,i
), 1 ≤ i ≤ N

are independently and identically distributed. Because of this property, the quantities such as

E[Y
i
t|F

0
t ] and E[∂xg(X

i
T , c

0
T , c

i
T )|F0

T ] are independent of the index i.
The FBSDE (4.1) has been the major object of the analysis in the accompanying work [19],

in which we have found that the F0
-progressively measurable process

$MFG
t := −E

[
Y
i
t|F

0
t ] = −E

[
Y
i
t|F

0
], t ∈ [0, T ]

provides a good approximate of the equilibrium market price if the agents have the common
coefficients as in Assumption 4.1. In particular, we have proved in Theorem 5.1 [19] that the
process $MFG achieves the market clearing in the large N limit. The goal of this section is to
prove the strong convergence of the N -agent equilibrium given by Theorem 3.2 and 3.3 to the
above mean-field limit when the agents are homogeneous. Once this is done, we can study the
stability relation of the market price for the heterogeneous agents relative to the mean-field
limit $MFG with the help of Proposition 3.1.

The market equilibrium among homogeneous agents is specified by N -coupled FBSDEs
(3.5) with common coefficient functions:

dXi
t :=

{
α̂
(
Y i
t ,−

1

N

N∑
j=1

Y j
t

)
+ l
(
t,− 1

N

N∑
j=1

Y j
t , c

0
t , c

i
t

)}
dt

+σ0(t, c0t , c
i
t)dW

0
t + σ(t, c0

t , c
i
t)dW

i
t ,

dY i
t = −∂xf

(
t,Xi

t ,−
1

N

N∑
j=1

Y j
t , c

0
t , c

i
t

)
dt+ Zi,0t dW 0

t +
N∑
j=1

Zi,jt dW j
t , (4.3)
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with

Xi
0 = ξi,

Y i
T =

δ

1− δ
1

N

N∑
j=1

∂xg(Xj
T , c

0
T , c

j
T ) + ∂xg(Xi

T , c
0
T , c

i
T ). (4.4)

The existence of a unique solution (4.3) and (4.4) is guaranteed by Theorem 3.3.
With the help of next Lemma, we establish the strong convergence of the finite-agent

equilibrium among the homogeneous agents to the MFG limit given in [19]. Let us introduce
the following measure arguments based on the solution to (4.1) with (4.2);

µNt :=
1

N

N∑
i=1

δ
Y

i
t
, L0

t (Y t) := L(Y
i
t|F

0
t ), t ∈ [0, T ],

µNg :=
1

N

N∑
i=1

δ
∂xg(X

i
T ,c

0
T ,c

i
T )
, L0

g := L
(
∂xg(X

i
T , c

0
T , c

i
T )|F0

T

)
. (4.5)

Lemma 4.1. Let Assumption 4.1 be in force. Then we have

lim
N→∞

sup
t∈[0,T ]

E
[
W2(µNt ,L0

t (Y t))
2
]

= 0,

lim
N→∞

E
[
W2(µNg ,L0

g)
2
]

= 0.

Moreover, if there exist some positive constants Γ and Γg such that supt∈[0,T ] E[|Y i
t|q]

1
q ≤ Γ and

E
[
|∂xg(X

i
T , c

0
T , c

i
T )|q

] 1
q ≤ Γg for some q > 4, then there exists some constant C independent of

N such that

sup
t∈[0,T ]

E
[
W2(µNt ,L0

t (Y t))
2
]
≤ CΓ2εN ,

E
[
W2(µNg ,L0

g)
2
]
≤ CΓ2

gεN ,

where εN := N−2/max(n,4)
(
1 + log(N)1N=4

)
.

Proof. The claim forW2(µNt ,L0
t (Y t)) was proved in Theorem 5.1 in [19]. Since

(
∂xg(X

i
T , c

0
T , c

i
T )
)N
i=1

are F0
T -conditionally i.i.d. square integrable random variables, the claim for the W2(µNg ,L0

g)
is established in the same way. Since the time T is fixed, the continuity property used for
W2(µNt ,L0

t (Y t)) is unnecessary. The non-asymptotic estimate on the convergence order in N
is the direct consequence of Remark 5.9 in reference [4].

The next theorem is the main result of the paper.

Theorem 4.2. Under Assumption 4.1, let (Xi, Y i, Zi,0, (Zi,j)Nj=1)Ni=1 and (X
i
, Y

i
, Z

i,0
, Z

i,i
)Ni=1

denote the unique strong solution to the N -coupled system of FBSDEs (4.3) with (4.4) and N -
decoupled FBSDEs of conditional McKean-Vlasov type (4.1) with (4.2), respectively. Then,
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there exists some N -independent constant C such that

E
[

sup
t∈[0,T ]

|∆Xi
t |2 + sup

t∈[0,T ]
|∆Y i

t |2 +

∫ T

0

(
|∆Zi,0t |2 +

N∑
j=1

|∆Zi,jt |2
)
dt
]

≤ CE
[
W2(µNg ,L0

g)
2 +

∫ T

0
W2(µNt ,L0

t (Y t))
2dt
]
, (4.6)

where ∆Xi := Xi −Xi
, ∆Y i := Y i − Y i

, ∆Zi,0 := Zi,0 − Zi,0 and ∆Zi,j := Zi,j − δi,jZ
i,i

.

Proof. Using the notation (3.7), we have for each 1 ≤ i ≤ N ,

d∆Xi
t =

(
B(t, Y i

t , µ
N
t )−B(t, Y

i
t,L0

t (Y t))
)
dt,

d∆Y i
t =

(
F (t,Xi

t , µ
N
t )− F (t,X

i
t,L0

t (Y t))
)
dt+ ∆Zi,0t dW 0

t +

N∑
j=1

∆Zi,jt dW j
t , (4.7)

for t ∈ [0, T ] where µNt := 1
N

∑N
i=1 δY i

t
is the empirical measure. To lighten the expression, we

omit the arguments (c0
t , c

i
t), which does not play an important role for the stability analysis

below.
First Step: It is important to notice the inequality

∣∣∣ 1

N

N∑
i=1

Y
i
t − E[Y

i
t|F

0
t ]
∣∣∣ ≤W2

(
µNt ,L0

t (Y t)
)
.

This is understood as follows; for an arbitrary pair µ, ν ∈ P2(Rn), we have∣∣∣∫
Rn

xµ(dx)−
∫
Rn

yν(dy)
∣∣∣ =

∣∣∣∫
Rn×Rn

(x− y)π(dx, dy)
∣∣∣ ≤ ∫

Rn×Rn

|x− y|π(dx, dy),(4.8)

for any coupling π ∈ Π2(µ, ν) with marginals µ and ν. Taking the infimum over π ∈ Π2(µ, ν),
we get

|m(µ)−m(ν)| ≤W1(µ, ν) ≤W2(µ, ν),

by the definition of the Wasserstein distance (2.1). From Assumption 3.2 (i) and the above
observation, one can see that B and F are both Lipschitz continuous in their measure argument
with respect to the W2-distance.

We have

N∑
i=1

〈B(t, Y i
t , µ

N
t )−B(t, Y

i
t,L0

t (Y t)),∆Y
i
t 〉

=
N∑
i=1

〈B(t, Y i
t , µ

N
t )−B(t, Y

i
t, µ

N
t ),∆Y i

t 〉+
N∑
i=1

〈B(t, Y
i
t, µ

N
t )−B(t, Y

i
t,L0

t (Y t)),∆Y
i
t 〉

≤ −Nγl
∣∣∣ 1

N

N∑
i=1

∆Y i
t

∣∣∣2 + C
N∑
i=1

W2(µNt ,L0
t (Y t))|∆Y i

t |,
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where we have used Assumption 3.2 (ii). Similar analysis with Assumption 3.1 (iv) and As-
sumption 3.2 (i) yields

N∑
i=1

〈F (t,Xi
t , µ

N
t )− F (t,X

i
t,L0

t (Y t)),∆X
i
t〉

≤ −
(
γf − L2

$

4γl

) N∑
i=1

|∆Xi
t |2 +Nγl

∣∣∣ 1

N

N∑
i=1

∆Y i
t

∣∣∣2 + C

N∑
i=1

W2(µNt ,L0
t (Y t))|∆Xi

t |.

Since ∆Xi
0 = 0 for every i, by simple application of Itô-formula and the above estimates, we

obtain

N∑
i=1

E
[〈

∆Xi
T ,∆Y

i
T

〉]
≤ −

(
γf − L2

$

4γl

) N∑
i=1

E
∫ T

0
|∆Xi

t |2dt

+C
N∑
i=1

E
∫ T

0
W2(µNt ,L0

t (Y t))
(
|∆Xi

t |+ |∆Y i
t |
)
dt . (4.9)

On the other hand, with µNg := 1
N

∑N
i=1 ∂xg(Xi

T , c
0
T , c

i
T ), we have from the terminal condition

N∑
i=1

〈G(µNg , X
i
T )−G(L0

g, X
i
T ),∆Xi

T 〉

=
N∑
i=1

〈G(µNg , X
i
T )−G(µNg , X

i
T ),∆Xi

T 〉+
N∑
i=1

〈G(µNg , X
i
T )−G(L0

g, X
i
T ),∆Xi

T 〉,

where we have omitted (c0
t , c

i
T ) to lighten the notation. Using Assumption 3.1 (iv) and As-

sumption 3.2 (iii), we have

N∑
i=1

E
[〈

∆Y i
T ,∆X

i
T

〉]
≥ γ

N∑
i=1

E
[
|∆Xi

T |2
]
− δ

1− δ

N∑
i=1

E
[
W2(µNg ,L0

g)|∆Xi
T |
]
. (4.10)

Combining the two estimates (4.9) and (4.10) gives

N∑
i=1

E
[
|∆Xi

T |2 +

∫ T

0
|∆Xi

t |2dt
]
≤ C

N∑
i=1

E
∫ T

0
W2(µNt ,L0

t (Y t))
[
|∆Xi

t |+ |∆Y i
t |
]
dt

+ CE
[
W2(µNg ,L0

g)|∆Xi
T |
]
.

Using Young’s inequality and the fact that the random variables such as ∆Xi,∆Y i have the
same distribution for every 1 ≤ i ≤ N due to the common coefficient functions, the assumptions
on ξi and ci and the structure of probability space, we obtain

E
[
|∆Xi

T |2 +

∫ T

0
|∆Xi

t |2dt
]
≤ CE

∫ T

0

[
W2(µNt ,L0

t (Y t))
2 +W2(µNt ,L0

t (Y t))|∆Y i
t |
]
dt

+ CE
[
W2(µNg ,L0

g)
2
]
, (4.11)
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for every 1 ≤ i ≤ N .
Second Step: A simple application of Itô-formula to |∆Y i

t |2 gives, for any t ∈ [0, T ],

E
[
|∆Y i

t |2 +

∫ T

t

(
|∆Zi,0s |2 +

N∑
j=1

|∆Zi,js |2
)
ds
]

= E
[
|∆Y i

T |2 − 2

∫ T

t
〈F (s,Xi

s, µ
N
s )− F (s,X

i
s,L0

s(Y s)),∆Y
i
s 〉ds

]
. (4.12)

Note that, from Assumption 3.1 (iii) and the estimate (4.8),

|∆Y i
T | ≤ |G(µNg , X

i
T )−G(µNg , X

i
T )|+ |G(µNg , X

i
T )−G(L0

g, X
i
T )|

≤ C
( 1

N

N∑
j=1

|∆Xj
T |+ |∆X

i
T |+W2(µNg ,L0

g)
)
.

Using this estimate and the exchangeability of variables, we obtain from (4.12) that

E
[
|∆Y i

t |2 +

∫ T

t

(
|∆Zi,0s |2 +

N∑
j=1

|∆Zi,js |2
)
ds
]

≤ CE
[
|∆Xi

T |2 +W2(µNg ,L0
g)

2
]

+ CE
∫ T

t

[
|∆Xi

s|+W2(µNs ,L0
s(Y s))

]
|∆Y i

s |ds

≤ CE
[
|∆Xi

T |2 +W2(µNg ,L0
g)

2
]

+ CE
∫ T

0

(
|∆Xi

s|2 +W2(µNs ,L0
s(Y s))

2
)
ds+ CE

∫ T

t
|∆Y i

s |2ds.

Here, we have used the triangle inequality and the fact that

E
[
W2(µNs , µ

N
s )2
]
≤ E

[ 1

N

N∑
j=1

|Y j
s − Y

j
s|2
]

= E|∆Y i
s |2. (4.13)

By applying the backward Gronwall’s inequality and the estimate (4.11), we get

sup
t∈[0,T ]

E
[
|∆Y i

t |2
]

+ E
∫ T

0

(
|∆Zi,0t |2 +

N∑
j=1

|∆Zi,jt |2
)
dt

≤ CE
[
W2(µNg ,L0

g)
2 +

∫ T

0

(
W2(µNt ,L0

t (Y t))
2 +W2(µNt ,L0

t (Y t))|∆Y i
t |
)
dt
]
.

Using Young’s inequality, we obtain

sup
t∈[0,T ]

E
[
|∆Y i

t |2
]

+ E
∫ T

0

(
|∆Zi,0t |2 +

N∑
j=1

|∆Zi,jt |2
)
dt

≤ CE
[
W2(µNg ,L0

g)
2 +

∫ T

0
W2(µNt ,L0

t (Y t))
2dt
]
, (4.14)
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from which and (4.11), we also have

E
[
|∆Xi

T |2 +

∫ T

0
|∆Xi

t |2dt
]
≤ CE

[
W2(µNg ,L0

g)
2 +

∫ T

0
W2(µNt ,L0

t (Y t))
2dt
]
. (4.15)

The inequality (4.6) now easily follows from (4.14), (4.15) and the standard application of the
Burkholder-Davis-Gundy inequality.

Under the conditions used in Theorem 4.2, the market clearing price for the homogeneous
agents is given by

$Ho
t := − 1

N

N∑
i=1

Y i
t , t ∈ [0, T ],

where (Y i)Ni=1 is the solution to the N -coupled system of FBSDEs (4.3) with (4.4). On the
other hand, the price process in the mean-field limit is given by

$MFG
t := −E

[
Y
i
t|F

0
t

]
, t ∈ [0, T ], (4.16)

which is proven to clear the market asymptotically in the large population limit [19].

Corollary 4.1. Let Assumption 4.1 be in force. With the above notations, we have

sup
t∈[0,T ]

E
[
|$Ho

t −$MFG
t |2

]
+ E

[
sup
t∈[0,T ]

∣∣E[$Ho
t |F

0
t ]−$MFG

t

∣∣2]
≤ C

(
sup
t∈[0,T ]

E
[
W2(µNt ,L0

t (Y t))
2
]

+ E
[
W2(µNg ,L0

g)
2
])

,

where C is some N -independent constant.

Proof. Using (4.8), we have∣∣$Ho
t −$MFG

t

∣∣2 =
∣∣m(µNt )−m(L0

t (Y t))
∣∣2

≤ W2(µNt ,L0
t (Y t))

2 ≤ 2W2(µNt , µ
N
t )2 + 2W2(µNt ,L0

t (Y t))
2.

The desired estimate for the first term now follows from (4.13). For the second term,

E
[

sup
t∈[0,T ]

∣∣E[$Ho
t |F

0
t ]−$MFG

t

∣∣2] = E
[

sup
t∈[0,T ]

∣∣∣ 1

N

N∑
i=1

E
[
Y i
t − Y

i
t|F

0
t

]∣∣∣2] ≤ 1

N

N∑
i=1

E
[

sup
t∈[0,T ]

|Y i
t − Y

i
t|2
]
,

and hence the desired estimate immediately follows.

Stability of the market price for the heterogeneous agents

Suppose that the N agents have the common discount parameter δ and the common rate of
the trading fee Λ to be paid to the securities exchange. Instead of the homogeneous agents, we
now consider the case where the agents have different cost functions and different order-flow
from their clients; (li, σ

0
i , σi, f i, gi), 1 ≤ i ≤ N . It is interesting to study the condition under
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which the heterogeneous market converges to the MFG limit. From a practical perspective, it
is also important to know how accurately we can approximate the market price by $MFG.

Proposition 4.1. Assume that the coefficients (δ,Λ) and (li, σ
0
i , σi, f i, gi)

N
i=1 satisfy the con-

ditions in Assumptions 3.1 and 3.2, and that (l, σ0, σ, f , g) satisfy the conditions in Assump-
tion 4.1. In addition to the notations used in this section, let us denote the solution to (3.5)
with (3.6) by (X̌i, Y̌ i, Ži,0, (Ži,j)Nj=1)Ni=1. Then there exists some N independent constant C
such that

N∑
i=1

E
[

sup
t∈[0,T ]

|∆X̌i
t |2 + sup

t∈[0,T ]
|∆Y̌ i

t |2 +

∫ T

0

(
|∆Ži,0t |2 +

N∑
j=1

|∆Ži,jt |2
)
dt
]

≤ CNE
[
W2(µNg ,L0

g)
2 +

∫ T

0
W2(µNt ,L0

t (Y t))
2dt
]

+C
N∑
i=1

E
[
|Gi|2 +

∫ T

0

(
|F i(t)|2 + |Bi(t)|2 + |σ0

i (t)|2 + |σi(t)|2
)
dt
]
,

where ∆X̌i := X̌i −Xi
, ∆Y̌ i := Y̌ i − Y i

, ∆Ži,0 := Ži,0 − Zi,0, ∆Ži,j = Ži,j − δi,jZ
i,i

and

Bi(t) :=
(
li − l)

(
t, Y i

t , $
Ho
t , c0

t , c
i
t

)
, F i(t) := −

(
∂xf i − ∂xf

)(
t,Xi

t , $
Ho
t , c0

t , c
i
t

)
,

Gi :=
δ

1− δ

N∑
j=1

(
∂xgj − ∂xg

)
(Xj

T , c
0
T , c

j
T ) + (∂xgi − ∂xg)(Xi

T , c
0
T , c

i
T ).

Proof. This is the direct consequence of Proposition 3.1 and Theorem 4.2.

From Theorem 3.2 and Theorem 3.3, we know that the market clearing price among the N
heterogeneous agents is given by

$He
t := − 1

N

N∑
i=1

Y̌ i
t , t ∈ [0, T ].

The next corollary gives the stability result of the market price around the mean-field limit.

Theorem 4.3. Under the assumptions used in Proposition 4.1, there exists some N indepen-
dent constant C such that

sup
t∈[0,T ]

E
[
|$He

t −$MFG
t |2

]
+ E

[
sup
t∈[0,T ]

∣∣E[$He
t |F

0
t ]−$MFG

t

∣∣2]
≤ C

(
sup
t∈[0,T ]

E
[
W2(µNt ,L0

t (Y t))
2
]

+ E
[
W2(µNg ,L0

g)
2
])

+C
1

N

N∑
i=1

E
[
|Gi|2 +

∫ T

0

(
|F i(t)|2 + |Bi(t)|2 + |σ0

i (t)|2 + |σi(t)|2
)
dt
]
.
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Proof. The desired estimate follows from Proposition 4.1. It is easy to check

|$He
t −$MFG

t |2 ≤ 2
∣∣∣ 1

N

N∑
i=1

(Y̌ i
t − Y

i
t)
∣∣∣2 + 2|m(µNt )−$MFG

t |2

≤ 2
1

N

N∑
i=1

|∆Y̌ i
t |2 + 2W2(µNt ,L0

t (Y ))2,

which gives the estimate for the first term. The estimate for the second term is the immediate
consequence of the inequality

E
[

sup
t∈[0,T ]

∣∣E[$He
t |F

0
t ]−$MFG

t

∣∣2] ≤ 1

N

N∑
i=1

E
[

sup
t∈[0,T ]

|Y̌ i
t − Y

i
t|2
]
.

Remark 4.2. Theorem 4.3 implies that the market clearing price converges to the mean-field
limit $MFG if the difference of coefficients functions (Gi, F i, Bi, σ

0
i , σi)i≥1 converges to zero in

L2(FT ;R) and H2(F;R) in the large population limit N → ∞. It is clear that any deviation
from the limit coefficient functions (g, f , l, σ0, σ) among the finite number of agents does not
affect this convergence.

5 Conclusions and Discussions

In this work, we prove the existence of a unique market clearing equilibrium among the hetero-
geneous agents of finite population size under the assumption that they are the price takers.
We show the strong convergence to the corresponding mean-field limit given in [19] under
appropriate conditions. In particular, we provide the stability relation between the market
clearing price for the heterogeneous agents and that for the homogeneous mean-field limit. An
extension to multiple populations [17] as studied in Section 6 of [19] looks straightforward. One
of the important topics of the future research is to allow the presence of a major player in the
securities market. If we adopt the concept of the Stackelberg equilibrium with a leader (major
agent) and followers (minor agents), careful investigation of the coupled system of FBSDEs
with appropriate convexity and monotone assumptions may prove the existence of the market
clearing equilibrium. It may be also possible to analyze the mean field limit of the minor agents
in the presence of one major agent.

References

[1] Alasseur, C., Ben Taher, I., Matoussi, A., 2020, An extended mean field games for storage in smart
grids, Journal of Optimization Theory and Applications, 184: 644-670.

[2] Bensoussan, A., Frehse, J. and Yam, P., 2013, Mean field games and mean field type control theory,
SpringerBriefs in Mathematics, NY.

[3] Carmona, R., Delarue, F. and Lacker, D., 2016, Mean field games with common noise, The Annals
of Probability, Vol. 44, No. 6, 3740-3803.

21



[4] Carmona, R. and Delarue, F., 2018, Probabilistic Theory of Mean Field Games with Applications
I, Springer International Publishing, Switzerland.

[5] Carmona, R. and Delarue, F., 2018, Probabilistic Theory of Mean Field Games with Applications
II, Springer International Publishing, Switzerland.

[6] Choi, J.H. and Larsen, K., 2015, Taylor approximation of incomplete Radner equilibrium models,
Finance and Stochastics, Vol. 19, 653-679.

[7] Christensen, P. and Larsen, K., 2014, Incomplete Continuous-Time Securities Markets with
Stochastic Income Volatility, Review of Asset Pricing, Vol. 4, No.2, 247-285.

[8] Cuoco, D. and He, H., 2001, Dynamic Aggregation and Computation of Equilibria in Finite-
Dimensional Economies with Incomplete Financial Markets, Annals of economics and finance,
Vol. 2, 265-296.

[9] Djehiche, B., Barreiro-Gomez, J. and Tembine, H., 2018, Electricity price dynamics in the smart
grid: a mean-field-type game perspective, 23rd International Symposium on Mathematical Theory
of Networks and Systems Hong Kong University of Science and Technology, Hong Kong, July
16-20, 2018.

[10] Djete, M.F., 2020, Mean field games of controls: on the convergence of Nash equilibria, preprint,
arXiv:2006.12993.
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