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Abstract 

This study investigates the unique information elicitation problem. A central planner 
attempts to elicit correct information from multiple informed agents through mutual 
monitoring. There is a severe restriction on incentive devices: we assume neither public 
monitoring technology nor allocation rule is available; thus, the central planner only uses 
monetary payment rules. It is well-known that if all agents are selfish, it is impossible to 
elicit information as a unique equilibrium. We consider an epistemological possibility that 
some agents could be motivated by an intrinsic preference for honesty, while we allow 
that honest agents are mostly motivated by monetary interest. We prove that, once we 
introduce an epistemic type space that allows agents to be (weakly) honest, then the 
impossibility theorem reduces to a knife-edge case: The central planner can elicit correct 
information from agents as a unique Bayes Nash equilibrium behavior if and only if it is 
never common knowledge that all agents are selfish. 
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1. Introduction 

 

 This study investigates a mechanism design problem in which a central planner 

attempts to elicit correct information from agents. The central planner needs to know 

which state of the world actually occurs, but she (or he) is not informed of it. However, 

there exists an agent who is fully informed of it. Hence, the central planner attempts to 

design a mechanism to incentivize this agent to announce the state truthfully. This study 

clarifies the possibility that the central planner successfully elicits correct information 

even when there are severe restrictions on incentive devices available. 

 Several previous works such as the principal-agent problem with hidden 

information 4  have assumed public monitoring technology in which, through the 

observation of an ex-post public signal, the central planner confirms at least in part 

whether an agent announces truthfully. On the contrary, this study assumes that there 

exists no such public monitoring technology available. 

 Other previous works in the literature such as auction and implementation theory5 

assumed that there exist multiple tools for incentives such as resource allocations with 

which the central planner extracts correct information by letting agents self-select from 

multiple menus of allocations. On the contrary, the central planner in this study cannot 

use any such allocation device besides monetary transfers: she is only permitted to use a 

message-contingent payment rule. 

 To overcome the difficulty due to these restrictions, the central planner will listen to 

the messages from multiple agents who have the same information as each other and 

having them mutually monitor with each other. However, for such mutual monitoring to 

function, the central planner still needs to overcome another challenge in incentives, i.e., 

the multiplicity of equilibria due to the coordination failure. Hence, this study clarifies 

the possibility of unique information elicitation, implying that the central planner elicits 

correct information through agents’ unique equilibrium behavior. 

 The mechanism design literature has traditionally assumed that it is common 

knowledge that all agents are selfish and only concerned about their respective monetary 

 
4 See Salanié (1997) for surveys on principal-agent problem with hidden information. 
5 See Krishna (2009) for a survey on auction theory and Maskin and Sjöström (2002) for surveys 
on implementation theory. 
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and material interests. With this assumption, it is inevitable to have severe multiplicity of 

equilibria in our problem, because agents’ monetary interest is independent of the state: 

the set of all equilibria is the same across states in such a standard model-setting. However, 

this common knowledge of all agents’ selfishness is clearly an unrealistic assumption: 

real people are often likely to have non-selfish motives such as ethical concerns, 

depending on the context of the actual situation that the abstract model describes. Hence, 

the statement derived from this assumption is useful only if it is robust against 

contamination of non-selfish motives. We prove that this is not the case at all as for the 

unique information elicitation problem: Once we incorporate a psychological motive and 

an epistemological type space, we obtain a drastically different result from a standard 

setting where non-selfish agents are excluded completely. 

 We consider the possibility that an agent is not selfish and instead motivated by 

intrinsic preference for honesty as well as monetary interest. We however permit that a 

majority of agents are selfish: we just eliminate the common knowledge assumption on 

all agents’ selfishness. This study then demonstrates a surprising result: the central 

planner can overcome this multiplicity and elicit correct information from agents through 

unique Bayes Nash equilibrium (BNE) behavior, if and only if it never happens to be 

common knowledge that all agents are selfish. This is a very powerful and profound 

statement: it provides a theoretical basis that a person who commits wrongdoing in the 

world can be caught only by testimony, ex post facto (limited incentive tools), or without 

any means of proof (no provability). 

In reality, many empirical and experimental studies have indicated that human 

beings are not purely motivated with monetary payoffs but real-world people have 

intrinsic preferences for honesty. Abeler et al. (2019) provided a detailed meta-analysis: 

they combined data from 90 studies involving more than 44,000 subjects across 47 

countries and showed that subjects forwent a large fraction of potential gain from lying. 

In addition, various papers in behavioral economics and decision theory have modeled 

preferences for honesty, such as a cost of lying (e.g., Ellingsen and Johannesson, 2004; 

Kartik, 2009), a reputational cost (e.g., Mazar, Amir, and Ariely, 2008), and guilt aversion 

(e.g., Charness and Dufwenberg, 2006). Accordingly, it is rather unrealistic to assume that 

all participants of mechanisms are purely interested in their monetary payoffs. 
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This study however allows the case that there exists an honest agent only 

exceptionally. The influences of preferences for honesty on decision making can be 

arbitrarily small even if she is honest: We allow that honest agents are mostly motivated 

by monetary interest. We only rule out the case in which it happens to be common 

knowledge that there exists no honest agent. Just by eliminating the common knowledge 

of all agents’ selfishness, we establish the possibility result. 

Epistemologically, this study does not assume that agents expect a possibility that 

there exists an honest agent. This study even allows agents to have mutual knowledge 

that all agents are selfish. Despite these weaknesses in honesty, the central planner can 

incentivize all agents whether selfish or honest to announce truthfully as unique BNE 

behavior. 

 The design of the payment rule in this study has the following characteristics. First 

of all, each agent is required to announce not a state but a distribution of the state, even 

if she (or he) is fully informed of the state: she can fine-tune her announcement and payoff 

continuously. Second, each agent always prefers announcing the same distribution as 

what the other agents announce in expectation, whenever she is selfish. On the other hand, 

an honest agent is driven to be more honest than a selfish agent due to an intrinsic 

preference for honesty. Based on these characteristics, all agents come to expect a 

possibility that an agent is driven to be more honest, which drives all agents into a tail-

chasing competition toward honest reporting. 

 We design the payment rule as a version of the quadratic scoring rule (Brier, 1950), 

which describes the distance between agents’ messages. The quadratic scoring rule is one 

of the standard methods of mechanism design in partial implementation with asymmetric 

information.6 This study suggests that this method is a powerful solution not only for 

partial implementation but also for unique implementation. 

The equilibrium analysis of the game under the presence of behavioral agents and 

incomplete information itself has a long history. For example, Kreps et al (1982) studied 

how the existence of behavioral agents changes the equilibria of finitely repeated games. 

Postlewaite and Vives (1987), Carlsson and van Damme (1993), and Morris and Shin 

 
6 See Cooke (1991) for a survey of scoring rules. For its applications to mechanism design, see 
Johnson et al (1990), Matsushima (1990; 1991; 1993; 2007), Aoyagi (1998), and Miller et al 
(2007), for example. 
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(1998) studied how incomplete information shrinks the set of equilibria. These previous 

studies focus on the analysis of given games. In contrast, our focus is on the design of 

mechanisms, which fully take advantage of the possibility of behavioral agents and 

incomplete information. 

More recently, several studies have also investigated mechanism design under the 

presence of honest agents (Matsushima, 2008a; 2008b; Dutta and Sen, 2012; Kartik et al., 

2014). The result of this study is novel in the following two senses. First, this paper studies 

an information elicitation problem in which the central planner makes no resource 

allocation. Consequently, the central planner cannot take advantage of the relationship 

between the realized state and agents’ preferences, and therefore, the implementation 

must be purely based on preferences for honesty. Second, we do not assume the existence 

of honest agents—the only assumption we need is the event “all agents are selfish” is not 

common knowledge. We show that, even in such an environment, unique information 

elicitation is possible. 

A number of studies have extended the scoring rule of Brier (1950) to a setting in 

which a central planner collects information from a group of agents (e.g., Dasgupta and 

Ghosh, 2013; Prelec, 2004; Miller et al., 2005; Kong and Schoenebeck, 2019). Previous 

studies have assumed that all agents are selfish, and therefore, have suffered from the 

multiplicity of equilibria. In contrast, we prove that the impossibility of unique 

information elicitation is a knife-edge result: whenever selfishness is not common 

knowledge, unique information elicitation is possible. 

 The organization of this study is as follows. Section 2 shows the model. Section 3 

shows the main theorem. Section 4 demonstrates an example that outlines the logic behind 

this theorem. Section 5 shows the complete proof of the theorem. Section 6 shows 

applications and extensions. Section 7 concludes. 

 

2. The Model 

 

This study investigates a situation in which a central planner attempts to elicit 

information from multiple agents correctly. Let {1,2, ..., }N n  denote the finite set of 

all agents, where 2n  . Let   denote the non-empty and finite set of possible states. 
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We assume complete information about the state across agents. Each agent is informed 

of the true state  , while the central planner does not know it. Hence, the central 

planner attempts to design a mechanism that incentivizes these agents to announce about 

the state truthfully. 

We do not assume that agents are always selfish, i.e., they are always concerned 

about their monetary interests. Agents could be honest, i.e., motivated not only by 

monetary interest but also by intrinsic preference for honesty. 

We assume incomplete information concerning honesty in that each agent knows if 

she is selfish or honest, while the other agents are not informed of it. To formulate this 

incomplete information, we define the type space as follows, which is based on 

Bergemann and Morris (2005, 2012): 

( , , )i i i i NT     , 

where i it T  is agent 'i s  type, : {0,1}i iT   , and : ( )i i iT T   .7 Each 

agent i  knows her type it  as well as the state  , but she does not know the other 

agents’ types it . Agent i  expects that the other agents’ types are distributed according 

to a probability measure ( , ) ( )i i it T   . Each agent is either selfish or honest: agent 

i  is selfish (honest) if ( , ) 0i it    ( ( , ) 1i it   , respectively). More details will be 

explained later. 

The central planner designs a mechanism ( , )M x  , where ii N
M M


   , 

( )i i Nx x    denotes a payment rule, and :ix M R   denotes the payment rule for 

agent i . Each agent i  simultaneously announces a message i im M  and obtains a 

monetary payment ( )ix m R   from the central planner, where we denote 

( )j j Nm m M  . 

 We consider a class of indirect mechanisms where each agent announces a 

probability distribution over states as her message, that is, 

 
7 We denote by ( )Z  the space of probability measures on the Borel field of a measurable 

space Z . We denote ii N
Z Z


  , i jj i

Z Z 
  , ( )i i Nz z Z  , and ( )i j j i iz z Z    . 
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    ( )iM     for all i N . 

We write im   if ( ) 1im   . A strategy for agent i  is defined as 

    :i i is T M  , 

according to which, agent i  with type it  announces the probability distribution over 

states ( , ) ( )i i im s t    when the state   occurs. 

If agent i   is selfish, she maximizes the expected value of her utility given by 

monetary payment ( )ix m : 

[ ( , ) 0i it   ] [agent i  selects 

( , ) argmax [ ( ) | , , ]
i i

i i i i i i
m M

m s t E x m t s  


  ], 

where we assumed that the other agents announce according to ( )i j j is s  . 

On the other hand, if agent i   is honest, she is motivated not only by monetary 

interest but also by an intrinsic preference for honesty, and maximizes the expected 

payment minus her psychological cost: 

    [ ( , ) 1i it   ] [agent i  selects 

( , ) arg max [ ( , ( , ))
i i

i i i i i i i
m M

m s t E x m s t  


   

( , ( , ), , , ) | , ]i i i i i ic m s t t G t    ], 

where ( , , , )i ic m t G R    denotes her psychological cost. We assume intrinsic 

preference for honesty in the manner that for every i N  ,   , m M  , and 

i im M , 

(1)    [ ( , ) 1i it   , ( ) ( )i im m  , and ( , ) ( )i i i ix m m x m  ] 

 [ ( , , , ) ( , , , , )i i i i i ic m t G c m m t G   ]. 

The assumption (1) implies that any honest agent feels more or less guilty about telling 

lies that generate more self-interest: hence, any honest agent strictly prefers announcing 

more honestly than a selfish type. In this study we allow each agent’s psychological cost 

to be arbitrarily small even if this agent is honest: We do not set any condition on how 

much an agent cares about honesty. 

An example of psychological cost is given by 
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{1 ( )}i im  , 

where 0i   . This example describes intrinsic preference for honesty with which an 

agent can save psychological cost by announcing more honestly. Another example is 

given by 

( , , , ) max[0, ( ) ( , )] {1 ( )}i i i i i i i ic m t G x m x m m m     , 

where im   and 0i  . In this example, the psychological cost depends crucially on 

the shape of the payment rule: the magnitude of the impact of her lie on her monetary 

payoff influences the size of her psychological cost. In both examples, by setting i  

close to zero, we can consider the case in which the direct impact of the preference for 

honesty on an agent’s decision-making can be arbitrarily small, and therefore, even honest 

agents are mostly motivated by their monetary interests. As implied by the latter example, 

we can also consider the case in which the direct impact of preference for honesty on an 

agent’s decision-making is arbitrarily small compared with the impact of her lie on her 

monetary payoff. 

This study investigates Bayes Nash Equilibria (BNE) in the game associated with a 

payment rule x . 

 

3. The Theorem 

 

We specify the payment rule *x x  as the following quadratic scoring rule: for 

every i N  and m M , 

    * 2( ) [ { ( ) ( )} ]i i j
j i

x m m m


 
 

    . 

From a simple calculations, if s  is a BNE in the game associated with *x , then for 

every i N  and ( , )i it T  , 

(2)    [ ( , ) 0i it   ] [

( , )

( , ) [ | , ]
1

j j
j i

i i i

s t

s t E t
n


 




], 

while 

(3)     [ ( , ) 1i it   ] [either ( , )( ) 1i is t    or 
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( , )( )

( , )( ) [ | , ]
1

j j
j i

i i i

s t

s t E t
n

 
  




]. 

That is, any selfish agent mimics the average of the other agents’ announcements in 

expectation, while any honest agent announces more honestly than a selfish agent. 

We define the truthful strategy profile *s  by 

    * ( , )i is t   for all i N  and ( , )i it T  , 

according to which, each agent i  announces about the state truthfully, irrespective of 

the state and her type. We show a necessary and sufficient condition under which the 

truthful strategy profile *s  is the unique BNE in the game associated with *x , i.e., the 

central planner succeeds to elicit correct information about the state from the agents as 

unique equilibrium behavior. 

 We call a subset of type profiles ii N
T T


    an event. For convenience, for each 

event E T , we write 

( | , ) ( ( ) | , )i i i i i iE t E t t    , 

where we denoted ( ) { | ( , ) }i i i i i iE t t T t t E      . Consider an arbitrary state   

and an arbitrary event E T . Let 

    1 ( , ) { | ( | , ) 1}i i i i iV E t T E t     , 

and 

    1( , ) { | ( ( , ) | , ) 1}k k
i i i i j ij N

V E t T V E t   


     for each 2k  . 

Here, 1( , )iV E   implies the set of agent 'i s  types with which agent i  knows that the 

event E   and the state    occur, and ( , )k
iV E    implies the set of agent 'i s   types 

with which agent i  knows that the event 1( , )k
jj N

V E 


  and the state   occur. We 

then define 

    
1

( , ) ( , )k
i i

k
V E V E 





  . 

An event E T  is said to be common knowledge at ( , )t T   if 

    ( , )ii N
t V E 


  . 

Note that if E  is common knowledge at ( , )t , then 
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    ( ( , ) | , ) 1i j ij N
V E t  


   for all i N . 

 We denote by *( )E T   the event that the state   occurs and all agents are 

selfish, that is, 

    * ( ) { | : ( , ) 0}i iE t T i N t       . 

 

The Theorem: The truthful strategy profile *s  is the unique BNE in the game associated 

with *x  if and only if 

    ( , )ii N
V E  


   for all  .8 

 

By definition of common knowledge, the necessary and sufficient condition of the 

Theorem clearly implies that *( ( ), )iV E       for all i N   and   . The 

Theorem states that all agents whether selfish or honest are willing to announce the state 

truthfully as unique BNE behavior, if and only if it never happens to be common 

knowledge that all agents are selfish. Hence, with elimination of common knowledge of 

all agents’ selfishness, the central planner can always succeed to elicit correct information 

about the state from agents. We should regard this elimination as the minimal requirement 

of an epistemological potential that an agent cares about honesty. In fact, the success of 

correct elicitation holds true even if it is mutual knowledge that all agents are selfish. 

 

4. Example 

 

For understanding the Theorem, we should capture the following characteristics of 

the quadratic scoring rule *x . For simplicity of arguments, let us consider the two-agent 

case. 

 

 
8 By definition of common knowledge, this necessary and sufficient condition clearly implies 
that *( ( ), )iV E      for all i N  and  . 



11 

 

(a) Each agent’s message space is not the set of states but the set of probability 

distributions over states. Hence, each agent can fine-tune her message and payment 

continuously. 

 

(b) Any selfish agent is incentivized to report the same distribution as the other agent’s 

report in expectation. 

 

(c) Suppose that agent 1 is selfish and expects a possibility that agent 2 announces more 

honestly than what agent 2 expects about the announcement by agent 1 with selfish type. 

Then, agent 1 with selfish type has incentive to make her announcement (slightly) more 

honestly than what agent 2 expects about the announcement by agent 1 with selfish type. 

The same thing holds true even if agent 1 and agent 2 are replaced. This will be the driving 

force for a tail-chasing competition through which each agent announces more honestly 

than the other agent, reaching both agents’ honest reporting. 

 

Trivially, whenever an agent i  expects a possibility that the other agent j i is 

honest, then the supposition in (c) holds and agent i   is driven to be more honest. 

However, the other agent j  does not have to be honest: it is necessary and sufficient 

that agent i  expects a possibility that the other agent j  whether selfish or honest is 

driven to be more honest. 

To understand the logic and implication behind the Theorem, let us propose the 

following example with finite type space, where 2n   , {0,1}   , {0,1, ..., }iT H  

for each {1,2}i . We assume that agent i  is honest if and only if 0it  , i.e., 

   [ ( , ) 0] [ 0]i i it t     . 

Since {0,1}   , the message space of agent i   is given by [0,1]iM   , where 

[0,1]im   indicates the probability that the state 1 ( 1  ) occurs. The quadratic scoring 

rule is given by 

    * * 2
1 2 1 2( ) ( ) ( )x m x m m m    . 

We assume that there exists a common prior over type profiles    and it is 

symmetric, i.e., ( , ) ( , )h h h h    for all 2( , ) {0,1, ..., }h h H  . Since the mechanism 
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and agents are symmetric, we often refer to an agent with type h  as a “type-h  agent” 

without specifying her identity {1,2}i . For simplicity of arguments, we assume that 

the set of selfish types  1, ,H  is (weakly) connected in the sense that 

( , 1) 0h h    for all {1, ..., 1}h H  . 

Without loss of generality, we assume that the true state is 1   (the analysis for 

the case of 0   is similar), and we drop it from the notation. The psychological cost 

for each agent i  with honest type is given by (1 )im  , where 0  . Let ( ; )j i jm t s  

be agent 'j s  expected message conditional on agent i s  type it : 

    
0

( ; ) ( ) | ( | ) ( )
H

j i j j j i i i j
h

m t s E s t t h t s h


     . 

Then, agent i s  best response against js  is given by 

        
( ; )  if  {1, , }

( , )
min ( ; ) ,1  if  02

j i j i

i i i

j i j i

m t s t H
BR s t

m t s t

  
 

. 

Hence, any honest agent is driven to be more honest than a selfish agent. 

 

Case 1: First consider the case in which the set of selfish types is disconnected with the 

honest type, i.e., 

    (0, ) 0h   for all {1, ..., }h H . 

A selfish agent expects that the other agent is selfish with certainty, and an honest agent 

expects that the other agent is honest with certainty. 

When (0,0)t   is realized, the best response of each agent {1,2}i  is given by

(0) min{ (0) ,1}2jis s   , i.e., the preference for honesty drives each agent i  attempt 

to choose a message that is slightly more honest than the other agent. Clearly, in a BNE 

s , 1 2(0) (0) 1s s   must be satisfied. 

In contrast, an equilibrium strategy could take any value when {1, ..., }h H . As 

long as there exists a constant [0,1]p  such that 

    ( )is h p  for all i N  and {1, , }h H  , 
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it is a BNE. Hence, there are infinitely many BNEs in which any selfish agents may tell 

a lie. Clearly, we fail to elicit the correct state as a unique BNE in Case 1. 

 

Case 2: Next consider the case in which, unlike Case 1, the set of selfish types is 

connected with the honest type in such a minimal sense that there exists {1,2, ..., }h H  

such that (0, ) 0h  . For simplicity, we assume 1h  , i.e., 

    (0,1) 0  . 

It will be easy to see that the same argument holds true even if we replace 1 with any 

{2, ..., }h H . 

Due to selfish agents’ higher-order reasoning, this minimal connection drastically 

changes the set of BNEs as follows. Clearly, a type- 0  (honest) agent is driven to be more 

honest because of her intrinsic preference for honesty. The minimal connection implies 

that a type-1 agent expects that the other agent may be type-0 with a positive probability 

and she would like to match her message with the other agent’s announcement in 

expectation. Hence, the type-1 agent is also driven to be more honest. Similarly, a type-

2   agent expects that the other agent may be type-1  with a positive probability, and 

therefore, is driven to be more honest. We can iterate this argument and verify that any 

agent whether selfish or honest is driven to be more honest; i.e., attempts to send a more 

honest message than the other agent. This structure of best responses immediately leads 

us to the uniqueness of BNE, where all agents whether selfish or honest report 

1im    truthfully. 

Note that this uniqueness holds even if both agents’ selfishness is mutual knowledge. 

As long as 1 2t   and 2 2t  , each agent does not expect that the other agent may be 

honest. However, the above mentioned higher-order reasoning will guide any selfish 

agent to send a more truthful message, which drastically shrinks the set of BNEs. As long 

as there is no common knowledge of both agents’ selfishness, this logic always functions 

and the uniqueness of BNE is guaranteed. 

 

 Case 1 corresponds to situations in which all selfish types completely eliminate 

association with honest types, meeting a failure of unique information elicitation. 

However, this failure is exceptional. If there is at least one selfish type who expects an 
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(possibly indirect) influence of an honest type even a little, then unique information 

elicitation is achievable. The driving force behind this is not that more people become 

honest, but simply that selfish people do not rule out the existence of honest agents from 

their considerations. 

 

5. Proof of The Theorem 

 

It is clear from (2) and (3) that *s  is a BNE. Suppose that s  is a BNE. Fix an 

arbitrary  . Let 

    
( , )
min ( , )( )

i
i ii t
s t   , 

and 

    { | ( , )( ) }i i i i iT t T s t      for each i N . 

Suppose that 

    ( , )ii N
V E  


   for all  . 

From the definition of common knowledge, this supposition implies that 
*( ( ), )iV E      for all i N  and  . 

Towards a contradiction, suppose that 

1  , 

which implies that there exists a type who is selfish and announces dishonestly. Note from 

(2) and (3) that any honest agent prefers announcing more honestly than selfish agents, 

implying that no honest type belongs to iT : 

[ i it T  ] [ ( , ) 0i it   ]. 

Consider an arbitrary i N  and i it T  . From (2) and (3),   is equal to the average 

of the other agents’ announcements on    in expectation but not greater than any 

announcement. Hence, type it   expects that any other agent j i   announces 

( )jm   , that is, 

    ( | , ) 1i j ij N
T t 


  . 
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This along with (2) and (3) implies that agent i  with type it  expects that the other 

agents are never honest, that is, 

    *( ( ) | , ) 1i iE t    . 

Hence, we have 

1 *( ( ), )i iT V E   . 

Moreover, since 

    1 *( ( ( ), ) | , ) ( | , ) 1i i i i i ij N j N
V E t T t     

 
    , 

we have 1 *( ( ( ), ) | , ) 1i i ij N
V E t   


  , that is, 

    2 *( ( ), )i iT V E   . 

Similarly, we have 

*( ( ), )k
i iT V E    for all 2k  . 

Hence, we have 

*( ( ), )i iT V E   , 

which however contradicts the supposition that *( ( ), )iV E     . Hence, we conclude 

1  , that is, *s s , and therefore, we have proved the “if” part of the Theorem. 

 Fix an arbitrary    . We specify a strategy profile s  as follows: for every 

i N  and i it T , 

    ( , )i is t      if *( ( ), )i it V E   , 

    ( , )i is t     if *( ( ), )i it V E   , 

and 

    *( , ) ( , )i i i is t s t     for all   . 

It is clear from (2) and the above argument that s  is a BNE, and *s s   whenever 

*( ( ), )iV E      for some i N . Hence, we have proved the “only-if” part of the 

Theorem. 

 

Remark 1: This study has considered only pure strategy BNE. However, we can directly 

use the same logic to the uniqueness of mixed strategy BNE. Because of quadratic scoring 

rule, irrespective of whether the other agents’ strategies are mixed or pure, any selfish 
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agent prefers announcing the same distribution as the other agents’ announcements in 

expectation, while any honest agent prefers announcing more honestly than a selfish 

agent: the resultant tail-chasing competition eliminates any unwanted BNE, whether it is 

pure or mixed. 

 

Remark 2: The specified payment rule *x  does not satisfy budget-balancing. In fact, in 

the two-agent case, it is hard to find an alternative rule that induces unique information 

elicitation like *x  and also satisfies budget-balancing. On the other hand, in the three-

or-more-agent case, it is easy to check that the following payment rule induces unique 

information elicitation and satisfies budget-balancing: for every i N  and m M , 

    *( ) ( ) ( )i i i ix m x m r m
  , 

where 

    2

, ,

1
( ) [ { ( ) ( )} ]

2i i i j
i i j i i j

r m m m
n 

 
    

 
   . 

 

Remark 3: The Theorem holds true irrespective of the number of agents participating in 

the information elicitation problem. However, the restrictiveness of the necessary and 

sufficient condition depends crucially on the number of participants. Namely, the more 

agents participate in the central planner’s problem, the less likely it is to be common 

knowledge that all agents are selfish. 

Moreover, even if the number of participants is limited, the central planner should 

recruit informed people from a wider range. Let us go back to the example in Section 4. 

Suppose that the central planner picks up agent 1 from a narrower range than what Case 

2 assumes, eliminating the possibility of type 0 to be chosen. Then, the set of selfish types 

becomes disconnected with the honest type: unique information elicitation fails. 

 

6. Discussion 

 

6. 1. Unique Implementation of Social Choice Function 
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 This study did not explicitly consider what is the purpose of the central planner to 

elicit correct information about the state from agents. If the central planner aims to 

determine a desirable resource allocation in a contingent manner on the state, each agent’s 

self-interest motive may be influenced not only by the monetary payment but also by this 

allocation determination. Hence, the central planner must design a mechanism as a 

combination of a payment rule and an allocation rule to incentivize agents to announce 

about the state sincerely as unique equilibrium behavior and uniquely implement a social 

choice function that describes the central planner’s desirable state-contingent allocation. 

That is, the central planner must solve the unique implementation problem of a social 

choice function. 

 If preferences are quasi-linear and large transfers are permitted, we can solve the 

unique implementation problem by almost directly applying this study’s theorem: large 

transfers negate the effects of allocation determination. 

 More importantly, a companion work by Matsushima (2020b) extended the Theorem 

to this unique implementation problem without assuming quasi-linearity and with using 

only small monetary transfers. Matsushima decomposed mechanism design into two 

parts: the first part corresponds to unique information elicitation implied by this study, 

and the second part corresponds to unique implementation with provability implied by 

Matsushima (2020a). By using the Theorem for the first part, Matsushima (2020b) could 

show a very permissive result that any social choice function is uniquely implementable 

in BNE whenever it never happens to be common knowledge that all agents are selfish. 

 

6. 2. Smart Contracts 

 

Implementation theory generally assumes that there exists a central planner who has 

a power to force allocations and payments according to the predetermined mechanism or 

contracts. This study has followed the assumption that such a central planner exists for 

convenience of arguments. However, when considering the social implementation of this 

study’s result, the Theorem essentially does not require the presence of such a central 

planner. 
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Another companion work by Matsushima and Noda (2020) pointed out that the 

mechanism constructed in this study can be socially implemented within the scope of 

current digital technology, by making payments in digital currencies, programming the 

mechanism as a smart contract, and managing it on a blockchain network such as 

Ethereum. Matsushima and Noda (2020) showed that the information elicitation 

mechanism proposed in this paper acts as a digital court: the information elicitation 

mechanism will punish any deviation from the pre-agreed contract in absence of a central 

planner and trusted third parties. 

 

6. 3. Asymmetric Information 

 

 This study has assumed symmetric information about the state: multiple agents share 

the same information. It is an important extension of this study to investigate the 

asymmetric information environment where agents can access their respective private 

information channels and the central planner wants to elicit correct private information 

from every agent. For a more discussion, see Appendix A, which demonstrates an 

example that expresses some of the difficulty in this extension. 

 

6. 4. Uncertainty in Information Access 

 

 This study has assumed that all agents can certainly observe the true state. We can 

eliminate this assumption with no substantial change of this study’s argument: we can 

directly apply the basic logic behind the Theorem to uncertain environments in which an 

agent fails to access information channel. Appendix B gives a more precise argument on 

this issue. Note that there is another benefit of having a large number of people participate 

in the central planner’s problem, because it increases the chances that someone will have 

access to the information: the more people participate, the more certainly the central 

planner successfully elicits information from participants. 

 

7. Conclusion 
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 This study investigated the unique information elicitation problem under complete 

information about the state. We permitted the central planner to use only payment rule 

design without public monitoring technology. We assumed that it never happens to be 

common knowledge that all agents are selfish, and showed a very permissive result that 

the central planner can elicit correct information about the state from agents as their 

unique BNE behavior. This result indicates that a potential of social implementation of 

information elicitation devices are much greater than what a standard model with all 

agents’ selfishness has expected. 

 It is the most important future research to investigate the environments with 

asymmetric information concerning the state. Can quadratic scoring rules still function? 

If not, what is the design of payment rule that solves unique information elicitation? How 

do we define intrinsic preference for honesty in this environment? These questions are 

just the tip of the iceberg in future research, but all of them could include new theoretical 

substances beyond this study’s scope. 
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Appendix A: Asymmetric Information 

 

 Let us consider an example with finite type space: 2n  , 2
1 2 {0,1}     , 

and {0,1}iT   , where each agent {0,1}i   privately observes {0,1}i    with equal 

probability, and 0it    ( 1it   ) implies that agent i   is selfish (honest, respectively). 

Each agent i   announces a message [0,1]im   , implying the probability of 0i   . 

Consider the following payment rule: 

    * * 2
1 2 1 2( ) ( ) ( )x m x m m m    . 

For simplicity, we assume that any honest type of each agent i  announces i im  , 

while any selfish type maximizes the expected payment. Each agent 'i s  expectation 

about the other agent 'j s  private information and type is described by ( , | , )i j j i it t   , 

which implies the probability that the other agent j  observes private information j  

and has type jt  provided that payer i  observes private information i  and has type 

it . 

 Assume that there exist 0 0q   and 1 0q   such that 

    0
1 1 2 2(0,1 | 0,0) (0,1 | 1,0) (0,1 | 0,0) (0,1 | 1,0)q        , 

and 

    1
1 1 2 2(1,1 | 0,0) (1,1 | 1,0) (1,1 | 0,0) (1,1 | 1,0)q        . 

This assumption implies that whenever each payer’s private information is perfectly 

correlated, i.e., in the complete information environment about the state. This assumption 

eliminates the common knowledge of all agents’ selfishness. 

Let 

    
1

0 1

q
p

q q



. 

We can show that any selfish agent 'i s   announcing im p   regardless of the 

realization of i  is a BNE. Hence, the central planner fails to elicit correct information 

from selfish agents, even if the common knowledge of all agents’ selfishness is eliminated. 
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Appendix B: Uncertainty in Information Access 

 

Appendix B considers the case in which the central planner does not know if each 

agent can access the information channel. We modify the type space as follows: 

( , , , )i i i i i NT      , where : {0,1}i iT  . 

Agent i   is informed (uninformed) if ( ) 0i it    ( ( ) 1i it   , respectively). Agent i  

with ( ) 0i it    ( ( ) 1i it   ) can (cannot, respectively) access the information channel 

and observe the state. We assume that any agent always expects that there exist other 

agents who are informed with a positive probability: 

 

Assumption 1: For every i N  and ( , )i it T  , 

    ({ | ( , ) 0i i i j jt T t      for some } | , ) 0ij i t  . 

 

We also assume that any uninformed agent is honest: hence, we categorize agents 

into three cases, i.e., “selfish and informed,” “honest and informed,” and “honest and 

uninformed.”9 

 

Assumption 2: For every i N  and ( , )i it T  , 

    [ ( ) 1i it  ] [ ( , ) 0i it   ]. 

 

We consider a class of mechanisms ( , )M x  where each agent announces either a 

probability distribution on   or “  ”: 

( ) { }iM      for all i N . 

The announcement of “  ” implies that she is uninformed. 

 If agent i  is selfish and informed, she maximizes the expected payment: 

    [ ( , ) 0i it    and ( ) 0i it  ] 

 
9  Consideration of cases without this assumption may be carefully discussed in future work, 
though the benefits of lying to be an uninformed agent are generally negative. 
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  [agent i  selects 

( , ) argmax [ ( , ( , )) | , ]
i i

i i i i i i i i
m M

m s t E x m s t t   


  ]. 

If agent i   is honest and informed, she maximizes the expected payment minus her 

psychological cost: 

    [ ( , ) 1i it    and ( ) 0i it  ] 

  [agent i  selects ( , )i i im s t  

argmax [ ( , ( , )) ( , , ) | , ]
i i

i i i i i i i i
m M

E x m s t c m t t   


  ]. 

We assume that 

    [ ( , ) 1i it   , ( ) 0i it  , and ( ) ( )i im m  ] 

  [ ( , , ) ( , , )i i i i i ic m t c m t  ], 

and 

[ ( , ) 1i it    and ( ) 0i it  ] 

  [ ( , , ) ( , , )i i i i ic t c m t    for all im  ]. 

With the latter inequalities, pretending to be uninformed is more dishonest than 

announcing about the state incorrectly. For simplicity of arguments, we assume that if 

agent i  is honest and uninformed, she announces  : 

    [ ( , ) 1i it    and ( ) 0i it  ] 

  [agent i  selects ( , )i i im s t   ]. 

We specify the payment rule **x  as a modification of *x : for every i N  and 

m M , 

    ** 2( ) [ { ( ) ( )} ]

j

i i j
j i

m

x m m m




 
 


     

if ( )im   , 

and 

    ** 2

( )

( )

( ) max [ { ( ) ( )} ]
i

j

i i j
m

j i
m

x m m m


  
 

 
 

    
  

if im  , 
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where 0  . Note that 

** **

( )
min ( ) ( , )
i

i i im
x m x m  

   for all i im M  . 

From these specifications and assumptions, if s  is a BNE in the game associated 

with **x , then, for every i N  and ( , )i it T  , 

(B-1)   [ ( , ) 0i it    and ( ) 0i it  ] 

      [
,

( , )

( , ) [ | , ]
{ | 0}

j

j j
j i m

i i i

j

s t

s t E t
j i m




  


 


], 

(B-2)   [ ( , ) 1i it    and ( ) 0i it  ] 

      [either ( , )( ) 1i is t    or 

    
,

( , )( )

( , )( ) [ | , ]
{ | 0}

j

j j
j i m

i i i

j

s t

s t E t
j i m



 
   


 


], 

and 

    [ ( , ) 1i it    and ( ) 1i it  ] 

  [ ( , )i is t  ]. 

Any selfish and informed agent mimics the average of the other informed agents’ 

announcements in expectation. Any honest and informed agent announces more honestly 

than a selfish agent. Any honest and uninformed agent truthfully reports the fact that she 

is uninformed. 

We define the truthful strategy profile **s   as follows: for every i N   and 

( , )i it T  , 

    ** ( , )( ) 1i is t      if ( ) 0i it  , 

and 

    ** ( , )i is t      if ( ) 1i it  . 

We denote by **( )E T   the event that the state   occurs and there exists no agent 

who is honest and informed, that is, 

    ** ( ) { | : ( ( , ), ( )) (1,0)}i i i iE t T i N t t        . 
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Theorem B: The truthful strategy profile **s  is the unique BNE in the game associated 

with **x  if and only if 

**( ( ), )
N ii
V E   


  for all  . 

 

Proof: It is clear that **s  is a BNE. Suppose that s  is a BNE. Fix an arbitrary  . 

Let 

    
( , ), ( ) 0

min ( , )( )
i i i

i ii t t
s t


  


 , 

and 

    { | ( , )( ) }i i i i iT t T s t      for each i N . 

Suppose that **( ( ), )iV E      for all i N , and 

1  , 

which implies that there exists a type who is informed and announces dishonestly. Note 

    [ i it T  ] [ ( , ) 0i it   ]. 

Consider an arbitrary i N   and i it T   . From (B-1) and (B-2),    is equal to the 

average of the other agents’ announcements on   in expectation but not greater than 

any announcement. Hence, agent i   expects that any other informed agent j i  

announces ( )jm   , that is, 

    ˆ( ( ) | , ) 1i j j ij N
T T t 


   , 

where ˆ
jT  denotes the set of agent 'j s  types which are uninformed, that is, 

    ˆ { | ( ) 1}j j j j jT t T t   . 

Since **ˆ( ) ( )j jj N
T T E 


    , agent i   expects the other agents are either selfish or 

uninformed, that is, 

    **( ( ) | , ) 1i iE t    . 

Hence, we have 

1 **ˆ( ) ( ( ), )j j ij N
T T V E  


   . 

Moreover, since 
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    1 ** ˆ( ( ( ), ) | , ) ( ( ) | , ) 1i i i i j j ij N j N
V E t T T t     

 
     , 

we have 1 **( ( ( ), ) | , ) 1i i ij N
V E t   


  , that is, 

    2 **ˆ( ) ( ( ), )j j ij N
T T V E  


   . 

Similarly, we have 

**ˆ( ) ( ( ), )k
j j ij N

T T V E  

    for all 2k  . 

Hence, we have 

**ˆ( ) ( ( ), )j j ij N
T T V E  


   , 

which however contradicts the supposition that **( ( ), )iV E     . Hence, we conclude 

1  , that is, **s s , and therefore, we have proved the “if” part. 

Q.E.D. 
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