

C A R F W o r k i n g P a p e r

CARF is presently supported by Nomura Holdings, Inc., Sumitomo Mitsui Banking Corporation,
The Dai-ichi Life Insurance Company, Limited, The Norinchukin Bank, MUFG Bank, Ltd. and Ernst
& Young ShinNihon LLC. This financial support enables us to issue CARF Working Papers.

CARF Working Papers can be downloaded without charge from:
https://www.carf.e.u-tokyo.ac.jp/research/

Working Papers are a series of manuscripts in their draft form. They are not intended for circulation
or distribution except as indicated by the author. For that reason Working Papers may not be
reproduced or distributed without the written consent of the author.

CARF-F-504

 A new efficient approximation scheme for solving

high-dimensional semilinear PDEs: control variate

method for Deep BSDE solver

Akihiko Takahashi
The University of Tokyo, Tokyo, Japan

Yoshifumi Tsuchida

Hitotsubashi University, Tokyo, Japan

Toshihiro Yamada
Hitotsubashi University, Tokyo, Japan

Japan Science and Technology Agency (JST), Tokyo, Japan

November 30, 2021

A new efficient approximation scheme for solving high-dimensional

semilinear PDEs: control variate method for Deep BSDE solver

Akihiko Takahashi∗, Yoshifumi Tsuchida† and Toshihiro Yamada‡§

November 30, 2021

Abstract

This paper introduces a new approximation scheme for solving high-dimensional semilinear
partial differential equations (PDEs) and backward stochastic differential equations (BSDEs).
First, we decompose a target semilinear PDE (BSDE) into two parts, linear PDE part and non-
linear PDE part. Then, we employ a Deep BSDE solver with a new control variate method to solve
those PDEs, where approximations based on an asymptotic expansion technique are effectively
applied to the linear part and also used as control variates for the nonlinear part. Moreover, our
theoretical result indicates that errors of the proposed method become much smaller than those
of the original Deep BSDE solver. Finally, we show numerical experiments to demonstrate the
validity of our method, which is consistent with the theoretical result in this paper.

Keyword. Deep learning, Semilinear partial differential equations, Backward stochastic differ-
ential equations, Deep BSDE solver, Asymptotic expansion, Control variate method

1 Introduction

High-dimensional semilinear partial differential equations (PDEs) are often used to describe
various complex, large-scale phenomena appearing in physics, applied mathematics, economics
and finance. Such PDEs typically have the form:

∂

∂t
u(t, x) + Lu(t, x) + f(t, x, u(t, x), ∂xu(t, x)σ(t, x)) = 0, t < T, x ∈ Rd, (1.1)

u(T, x) = g(x), x ∈ Rd,

where f is a nonlinear function, L is a second order differential operator of the type:

Lφ(t, x) =
∑
i

µi(t, x)∂xi
φ(t, x) +

1

2

∑
i,j

[σσ⊤]i,j(t, x)∂xi
∂xj

φ(t, x), (1.2)

and the dimension d is assumed to be high. To solve the nonlinear PDE, we have to rely on some
numerical schemes since they have no closed-form solutions especially in high-dimensional cases.
Classical methods such as finite differences and finite elements fail in high-dimensional cases due
to their exponential growth of complexity. In the last two decades, probabilistic approaches have
been studied with Monte Carlo methods for backward stochastic differential equations (BSDEs)
since solutions of semilinear PDEs can be represented by the ones of corresponding BSDEs through
the nonlinear Feynman-Kac formula (see Zhang (2017) [50] for instance).

∗The University of Tokyo, Tokyo, Japan
†Hitotsubashi University, Tokyo, Japan
‡Hitotsubashi University, Tokyo, Japan
§Japan Science and Technology Agency (JST), Tokyo, Japan

1

In E et al. (2017) [5] and Han et al. (2018) [17], a novel computational scheme called the
Deep BSDE method is proposed. In the Deep BSDE method, a stochastic target problem is
considered with a forward-discretization scheme of the related BSDE. Then, the control problem
is solved with a deep learning algorithm. The Deep BSDE method has opened the door to
tractability of higher dimensional problems, which enables us to solve high-dimensional semilinear
PDEs within realistic computation time. Recently, notable related works, mostly with neural
networks have developed new methods for solving various types of high dimensional PDEs. See
[2][3][7][6][8][13][14][15][16][18][19][20][21][22][29][37][49] for example.

While high-dimensional semilinear PDEs can be feasibly solved by the Deep BSDE method,
the deviation of its estimated value from the true one is not small with reasonable computational
time. Then, constructing an acceleration scheme for the Deep BSDE method is desirable.

Fujii et al. (2019) [12] proposed an improved scheme for the Deep BSDE method. They used
a prior knowledge with an asymptotic expansion method for a target BSDE and obtained its fast
approximation. Then, they found that numerical errors become small in accordance with the fast
decrease in values of the corresponding loss function. The scheme enables us to reduce processing
load of the original Deep BSDE solver. For details of the asymptotic expansion method, a key
technique applied in their article, see Takahashi (1999,2015) [38][39], Kunitomo and Takahashi
(2001,2003) [27][28] and references therein. Moreover, Naito and Yamada (2020) [33] presented
an extended scheme of Fujii et al. (2019) [11] by applying the backward Euler scheme for a BSDE
with a good initial detection of the solution to a target PDE so that the Deep BSDE method
works more efficiently.

In the current work, we develop a new deep learning-based approximation for solving high-
dimensional semilinear PDEs by extending the schemes in E et al. (2017) [5], Han et al. (2018)
[17], Fujii et al. (2019) [12] and Naito and Yamada (2020) [33]. In particular, we propose an
efficient control variate method for the Deep BSDE solver in order to obtain more accurate and
stable approximations. Let us briefly explain the strategy considered in this paper. We first
decompose the semilinear PDE (1.1) into two parts,
u(t, x) = U1(t, x) + U2(t, x) as follows:

∂

∂t
U1(t, x) + LU1(t, x) = 0, t < T, x ∈ Rd, (1.3)

U1(T, x) = g(x), x ∈ Rd,

and

∂

∂t
U2(t, x) + LU2(t, x) (1.4)

+ f(t, x,U1(t, x) + U2(t, x), ∂xU1(t, x)σ(t, x) + ∂xU2(t, x)σ(t, x)) = 0, t < T, x ∈ Rd,

U2(T, x) = 0, x ∈ Rd.

Here, we remark that the solution u of the semilinear PDE (1.1) is given by the sum of the
solutions U1 and U2 of PDEs (1.3) and (1.4), respectively. Also, we note that U1 is the solution to
the linear PDE and U2 is the solution to the residual nonlinear PDE with null terminal condition
whose magnitude is governed by the driver (t, x, y, z) 7→ f(t, x,U1(t, x) + y, ∂xU1(t, x)σ(t, x) + z),
which is generally expected to have small nonlinear effects on the solution of u. Consequently, the
decomposition of the target u(0, ·) is represented as follows:

u(0, x) = U1(0, x)
linear PDE part

+ U2(0, x)
nonlinear PDE part

, x ∈ Rd. (1.5)

We next approximate

1. U1 by an asymptotic expansion method denoted by U1,Asymp;

2. U2 by the Deep BSDE method, denoted by U2,Deep.

We expect that U1,Asymp in the approximation

u(0, x) ≈ U1,Asymp(0, x) + U2,Deep(0, x), x ∈ Rd, (1.6)

2

becomes a control variate. Furthermore, U1,Asymp and ∂xU1,Asympσ in the approximate driver
(t, x, y, z) 7→ f(t, x,U1,Asymp(t, x) + y, ∂xU1,Asymp(t, x)σ(t, x) + z) of U2,Deep will be doubly the
control variates. The current work shows how the proposed method works well as a new deep
learning-based approximation in both theoretical and numerical aspects.

The organization of this paper is as follows: The next section briefly introduces the deep BSDE
solver and acceleration schemes with asymptotic expansions. Section 3 explains our proposed
method with the main theoretical result and Section 4 presents our numerical scheme with its
experiment. Section 5 concludes. Appendix provides the proofs of propositions.

2 Deep BSDE solver and acceleration scheme with asymp-
totic expansion

Let T > 0 and (Ω,F , {Ft}0≤t≤T , P) be a filtered probability space equipped with a d-
dimensional Brownian motion W = {(W 1

t , · · · ,W d
t)}0≤t≤T and a square-integrable Rd-valued

random variable ξ which is independent of W . The filtration {Ft}0≤t≤T is generated by {Wt +
ξ}0≤t≤T . Under this setting we consider the following FBSDE:

dXε
t =µε(t,Xε

t)dt+ σε(t,Xε
t)dWt, Xε

0 = ξ, (2.1)

−dY ε,α
t =αf(t,Xε

t , Y
ε,α
t , Zε,α

t)dt− Zε,α
t dWt, Y ε,α

T = g(Xε
T), (2.2)

where µε is a Rd-valued function on [0, T] × Rd, σε = (σε
1, · · · , σε

d) is a Rd⊗d-valued function on
[0, T]× Rd, f : [0, T]× Rd × R× Rd → R and g : Rd → R are some functions so that the FBSDE
has the unique solution, and ε, α ∈ (0, 1] are some parameters. Here, we assume that µε and
σε are bounded and smooth in x and have bounded derivatives with any orders, and σε satisfies
uniformly elliptic condition. The functions µε and σε are specified in Section 3.2 when we apply
an asymptotic expansion approach. Also, f and g are uniformly Lipschitz continuous functions
with the Lipschitz constants CLip[f] and CLip[g] and also at most linear growth in the variables
x, y, z, and in x, respectively. In particular, the function g is assumed to be C2

b . The function f
is uniformly Hölder-1/2 continuous with respect to t.

We sometimes omit the subscripts ·ε or ·ε,α if no confusion arises.
The corresponding semilinear PDE is given by

∂tu(t, x) + Lεu(t, x) + fα(t, x, u(t, x), ∂xu(t, x)σ
ε(t, x)) = 0, t < T, (2.3)

u(T, x) = g(x),

where fα = αf , ∂x = (∂x1
, · · · , ∂xd

) = (∂/∂x1, · · · , ∂/∂xd) and Lε is the generator:

Lε =

d∑
i=1

µε,i(t, x)
∂

∂xi
+

1

2

d∑
i1,i2=1

σε,i1(t, x)σε,i2(t, x)
∂2

∂xi1∂xi2

. (2.4)

We use the notation Xε,x
t , Y ε,α,x

t and Zε,α,x
t if the value of Xε at time t = 0 is x ∈ Rd with the

following relationship:

Y ε,α,x
t = u(t,Xε,x

t), Zε,α,x
t = ∂xu(t,X

ε,x
t)σε(t,Xε,x

t). (2.5)

The purpose of this paper is to estimate

u(0, ·) = Y ε,α,·
0 (2.6)

against high dimensional FBSDEs/semilinear PDEs. In particular, we introduce an approximation
with a deep BSDE solver to propose an efficient control variate method for solving semilinear
PDEs. To explain how our method works well as a new scheme, we briefly review the deep BSDE
method proposed in E et al. (2017) [5], Han et al. (2018) [17] and an approximation method
developed by Fujii et al. (2019) [12].

3

2.1 Deep BSDE method by E et al. (2017) and Han et al. (2018)

In E et al. (2017) [5] and Han et al. (2018) [17], the authors considered the minimization
problem of the loss function:

inf
Y

ε,α,(n)
0 ,Zε,α,(n)

∥∥∥g(X̄ε,(n)
T)− Y

ε,α,(n)
T

∥∥∥2
2

(2.7)

where ∥ · ∥2 = E[| · |2]1/2, subject to

Y
ε,α,(n)
t = Y

ε,α,(n)
0 −

∫ t

0

fα(s, X̄ε,(n)
s , Y ε,α,(n)

s , Zε,α,(n)
s)ds+

∫ t

0

Zε,α,(n)
s dWs, (2.8)

where X̄ε,(n) is the continuous Euler-Maruyama scheme with number of discretization time steps
n:

X̄
ε,(n)
t =

∫ t

0

µε(φ(s), X̄
ε,(n)
φ(s))ds+

∫ t

0

σε(φ(s), X̄
ε,(n)
φ(s))dWs, t ≥ 0, (2.9)

with φ(s) = max{kT/n; s ≥ kT/n}. They solved the problem by using a deep learning algo-
rithm and checked the effectiveness of the method for nonlinear BSDEs/PDEs even for the high
dimension d. The method is known as Deep BSDE solver.

Then, we have

Y ε,α
0 ≈ Y

ε,α,(n),∗
0 , (2.10)

where Y
ε,α,(n),∗
0 is obtained by solving (2.7), which is justified by the following estimate shown in

Han and Long (2020) [18].

Theorem 1 (Han and Long (2020)). There exists C > 0 such that

E[|Y ε,α
0 − Y

ε,α,(n)
0 |2] ≤ C

1

n
+ C

∥∥∥g(X̄ε,(n)
T)− Y

ε,α,(n)
T

∥∥∥2
2
, (2.11)

for n ≥ 1.

2.2 An approximation method by Fujii et al. (2019)

In Fujii et al. (2019) [12], the authors considered the problem

inf
Ỹ

ε,α,(n)
0 ,Z̃Res,ε,α,(n)

∥∥∥g(X̄ε,(n)
T)− Ỹ

ε,α,(n)
T

∥∥∥2
2

(2.12)

subject to

Ỹ
ε,α,(n)
t = Ỹ

ε,α,(n)
0 −

∫ t

0

fα(s, X̄ε,(n)
s , Ỹ ε,α,(n)

s , Ẑε,α,(n)
s + Z̃Res,ε,α,(n)

s)ds (2.13)

+

∫ t

0

{Ẑε,α,(n)
s + Z̃Res,ε,α,(n)

s }dWs, (2.14)

where Ẑε,α,(n) is a prior knowledge of Z which is easily computed by an asymptotic expansion

method, and they solve the minimization problem with respect to Ỹ
ε,α,(n)
0 and Z̃Res,ε,α,(n) by

Deep BSDE solver. The authors showed that the scheme gives better accuracy than the original
Deep BSDE solver. Furthermore, Naito and Yamada (2020) [33] proposed an acceleration scheme
by extending the method of Fujii et al. (2019) [12] with a good initial detection of Y0 and the
backward Euler scheme of Z. They confirmed that the numerical error of the method becomes
smaller even if the number of iteration steps is few, in other words, the scheme gives faster
computation for nonlinear BSDEs/PDEs than the original deep BSDE method ([5]) and Fujii et
al. (2019) [12].

4

3 New method

We propose a new method as an extension of Fujii et al. (2019) [12] and Naito and Yamada
(2020) [33]. The new scheme is regarded as a control variate method for solving high-dimensional
nonlinear BSDEs/PDEs which is motivated by the perturbation scheme in Takahashi and Yamada
(2015) [42]. In the following, let us explain the proposed method. We first decompose (Y ε,α, Zε,α)
as Y ε,α = Y1,ε + αY2,ε,α and Zε,α = Z1,ε + αZ2,ε,α by introducing

−dY1,ε
t = −Z1,ε

t dWt, Y1,ε
T = g(Xε

T), (3.1)

−dY2,ε,α
t = f(t,Xε

t ,Y
1,ε
t + αY2,ε,α

t ,Z1,ε
t + αZ2,ε,α

t)dt−Z2,ε,α
t dWt, Y2,ε,α

T = 0. (3.2)

Here, we note that (Y1,ε,Z1,ε) is the solution of a linear BSDE and that (αY2,ε,α, αZ2,ε,α) can be
interpreted as the solution of a “residual (nonlinear) BSDE”. We may use abbreviated notations
Y2,ε
t and Z2,ε

t for Y2,ε,α
t and Z2,ε,α

t , respectively.
Let U1 be the solution of the linear PDE corresponding to (Y1,ε,Z1,ε):

∂tU1(t, x) + LεU1(t, x) = 0, t < T, (3.3)

U1(T, x) = g(x).

3.1 Deep BSDE solver for explicitly solvable (Y1,ε,Z1,ε)

We start with a case that (Y1,ε,Z1,ε) is explicitly solvable as a closed-form in order to explain
our motivation of the paper. Even in this case, (αY2,ε, αZ2,ε) can not be obtained in closed-form
due to the nonlinearity of the driver f . Hence, we apply the deep BSDE method to the residual
nonlinear BSDE (αY2,ε, αZ2,ε). Then, the following will be an approximation for the target Y ε,α

0 :

Y ε,α
0 ≈ Y1,ε

0 + αỸ2,ε,(n)∗
0 , (3.4)

where Ỹ2,ε,(n)∗ is obtained as a solution of the following problem based on the deep BSDE method
with closed-form functions for Y1,ε and Z1,ε:

inf
Ỹ2,ε,(n)

0 ,Z̃2,ε,(n)

∥∥∥Ỹ2,ε,(n)
T

∥∥∥2
2

(3.5)

subject to

Ỹ2,ε,(n)
t = Ỹ2,ε,(n)

0 −
∫ t

0

f(s, X̄ε,(n)
s ,Y1,ε,(n)

s + αỸ2,ε,(n)
s ,Z1,ε,(n)

s + αZ̃2,ε,(n)
s)ds

+

∫ t

0

Z̃2,ε,(n)
s dWs, (3.6)

where

Y1,ε,(n)

t = U1(t, X̄
ε,(n)
t), Z1,ε,(n)

t = (∂xU1σε)(t, X̄
ε,(n)
t), t ∈ [0, T], (3.7)

with the continuous Euler-Maruyama scheme X̄ε,(n) = {X̄ε,(n)
t }t≥0(= X̄(n)) and closed-form

functions U1 and (∂xU1σε).
In this case, we have the following error estimate with a small α-effect in the residual nonlinear

BSDE. The proof will be shown as a part of the one for Theorem 3 in the next subsection.
Particularly, see the sentences after (3.57) and (3.66).

Theorem 2. There exists C > 0 such that

E[|Y ε,α
0 − {Y1,ε

0 + αỸ2,ε,(n)
0 }|2] ≤ α2C

{ 1

n
+
∥∥∥Ỹ2,ε,(n)

T

∥∥∥2
2

}
, (3.8)

for all ε, α ∈ (0, 1] and n ≥ 1.

5

3.2 General case: Deep BSDE solver for unsolvable (Y1,ε,Z1,ε)

In most cases, (Y1,ε,Z1,ε) is unsolvable as a closed-form, particularly it is the case when the
dimension d is high. In such cases, we need to approximate (Y1,ε,Z1,ε). However, constructing
tractable approximations of Y1,ε

t = U1(t,Xε
t), t ≥ 0, and especially Z1,ε

t = (∂xU1σε)(t,Xε
t),

t ≥ 0, is not an easy task because it includes the gradient of U1. A possible solution is to use an
asymptotic expansion approach with stochastic calculus. We prepare some notations of Malliavin
calculus. Let D∞ be the space of smooth Wiener functionals in the sense of Malliavin. For a
nondegenerate F ∈ (D∞)d and G ∈ D∞, for a multi-index γ, we have the integration by parts:
there exists Hγ(F,G) ∈ D∞ such that E[∂γφ(F)G] = E[φ(F)Hγ(F,G)] for all φ ∈ C∞

b (Rd). See
Chapter V.8-10 in Ikeda and Watanabe (1989) [24] and Chapter 1-2 in Nualart (2006) [34] for the
details.

First, we give approximations of Y1,ε and Z1,ε. For m ∈ N, we approximate U1 and ∂xU1σε

by asymptotic expansions up to the m-th order and Malliavin calculus, by applying or extending
the methods in [31][39][40][42][48]. Let t ≥ 0, x ∈ Rd, and consider Xt,x,ε = {Xt,x,ε

s }s≥t be the
solution of

Xt,x,ε
s = x+

∫ s

t

µε(r,Xt,x,ε
r)dr +

∫ s

t

σε(r,Xt,x,ε
r)dWr (3.9)

= x+

∫ s

t

µε(r,Xt,x,ε
r)dr +

d∑
k=1

∫ s

t

σε
k(r,X

t,x,ε
r)dW k

r , x ∈ Rd, s ≥ t. (3.10)

Assumption 1. The functions (ε, r, x) 7→ µε(r, x) and (ε, r, x) 7→ σε(r, x) = (σε
1(r, x), · · · , σε

d(r, x))
have the one of the following forms:

1. (Expansion 1) µε(r, x) = µ(r, x), σε(r, x) = εσ(r, x) = (εσ1(r, x), · · · , εσd(r, x)) where µ
and σk, k = 1, · · · , d are Rd-valued sufficiently smooth functions on [0, T]× Rd;

2. (Expansion 2) µε(r, x) = εµ(r, x), σε(r, x) = εσ(r, x) = (εσ1(r, x), · · · , εσd(r, x)) where µ
and σk, k = 1, · · · , d are Rd-valued sufficiently smooth functions on [0, T]× Rd;

3. (Expansion 3) µε(r, x) = ε2µ(t + ε2(r − t), x), σε(r, x) = εσ(t + ε2(r − t), x) = (εσ1(t +
ε2(r− t), x), · · · , εσd(t+ ε2(r− t), x)) for t < r, where µ and σk, k = 1, · · · , d are Rd-valued
sufficiently smooth functions on [0, T] × Rd. The target model with ε = 1 becomes the non
perturbed forward SDE:

Xt,x
s = x+

∫ s

t

µ(r,Xt,x
r)dr +

∫ s

t

σ(r,Xt,x
r)dWr (3.11)

= x+

∫ s

t

µ(r,Xt,x
r)dr +

d∑
k=1

∫ s

t

σk(r,X
t,x
r)dW k

r , x ∈ Rd, s ≥ t. (3.12)

Remark 1. The perturbations 1,2,3 above are discussed in Takahashi (2015) [39] and Takahashi
and Yamada (2016) [43]. Note that Expansion 1 is useful to provide an expansion around a
solvable ODE model. When ODE is not explicitly solvable, Expansion 2 or Expansion 3 will
be a powerful method. In such cases, we do not need to solve any ODE.

See Remark 2, 3, Proposition 2, 3, 4, Remark 4, 7 and Section 4 for more details.

For the function σ(·, ·) appearing in 1,2, 3 in Assumption 1, we put the following condition in
order to get the asymptotic expansion.

Assumption 2. There is ε0 > 0 such that σ(t, x)σ(t, x)⊤ ≥ ε0I for all t ≥ 0 and x ∈ RN .

The d-dimensional forward process Xt,x,ε = (Xt,x,ε,1, · · · , Xt,x,ε,d) can be expanded as follows:
for i = 1, · · · , d,

Xt,x,ε,i
s ∼ Xt,x,0,i

s + εXt,x,i
1,s + ε2Xt,x,i

2,s + · · · in D∞, (3.13)

6

where Xt,x,i
k,s ∈ D∞, k ∈ N, which are independent of ε (see Watanabe (1987) [46] for example)

and specified as Xt,x,i
k,s = 1

k!∂
k/∂εkXt,x,ε,i

s |ε=0, k ∈ N. Note that Xt,x,i
k,s = 1

k!∂
k/∂εkXt,x,ε,i

s |ε=0,
k ∈ N satisfy linear SDEs (e.g. (3.8) and (A.3) of Takahashi and Yamada (2016) [43]) and have
explicit representations through (6.6) on p. 354 of Karatzas and Shreve (1991) [26]. Let us define

X
t,x,ε

s = Xt,x,0
s + εXt,x

1,s , s ≤ T. (3.14)

Remark 2. For the three cases in Assumption 1, we have the following formulas for the expansion
coefficients Xt,x,0

s and Xt,x
i,s , i = 1, 2:

1. (Expansion 1)

Xt,x,0
s = x+

∫ s

t

µ(r,Xt,x,0
r)dr, (3.15)

Xt,x
1,s =

d∑
k=1

∫ s

t

J0,x
t→s(J

0,x
t→r)

−1σk(r,X
t,x,0
r)dW k

r , (3.16)

Xt,x
2,s =

d∑
k=1

∫ s

t

J0,x
t→s(J

0,x
t→r)

−1∂σk(r,X
t,x,0
r)Xt,x

1,rdW
k
r (3.17)

+
1

2

∫ s

t

J0,x
t→s(J

0,x
t→r)

−1∂2µ(r,Xt,x,0
r) ·Xt,x

1,r ⊗Xt,x
1,rdr, (3.18)

where J0,x
t→s = (∂/∂x)Xt,x,0

s ,

2. (Expansion 2)

Xt,x,0
s = x, (3.19)

Xt,x
1,s =

∫ s

t

µ(r, x)dr +

d∑
k=1

∫ s

t

σk(r, x)dW
k
r , (3.20)

Xt,x
2,s =

∫ s

t

∂µ(r, x)Xt,x
1,rdr +

d∑
k=1

∫ s

t

∂σk(r, x)X
t,x
1,rdW

k
r , (3.21)

3. (Expansion 3)

Xt,x,0
s = x, (3.22)

Xt,x
1,s =

d∑
k=1

σk(t, x)(W
k
s −W k

t), (3.23)

Xt,x
2,s = µ(t, x)(s− t) +

d∑
k=1

∂σk(t, x)

∫ s

t

Xt,x
1,rdW

k
r , (3.24)

where the following notations are used: for a smooth function V : [0, T]× Rd → Rd,

∂V (t, ·) = [∂V (t, ·)/∂xj (·)]1≤j≤d = [∂jV (t, ·)]1≤j≤d , ∂2V (t, ·) =

[[
∂2V (t, ·)
∂xj∂xk

]k
j

]
1≤k,j≤d

,

(3.25)

∂2V (t, ·) · η ⊗ η =
∑
j,k

∂2V (t, ·)
∂xj∂xk

ηjηk, η ∈ Rd. (3.26)

where [·]ij is an entry in i-th row and j-th column of a matrix. Note that in Expansion

3, X
t,x,ε

s = Xt,x,0
s + εXt,x

1,s can be always easily obtained by simulating only the increment of

7

Brownian motion and without using any numerical computation. Also, in Expansion 2, X
t,x,ε

s

can be simulated without using any ODE solver in most situations. For instance, it is the case when
the integrations of µε(t, x), σε(t, x) with respect to t (not x) are explicitly obtained. Moreover,

when µε(t, x) ≡ µε(x), σε(t, x) ≡ σε(x), X
t,x,ε

s can be obtained by simulating only the increment
of Brownian motion. Expansion 1 is quite useful if the ODE Xt,x

0,· is explicitly solvable since we

can include the effect of the ODE in X
t,x,ε

s . By assuming the one in Assumption 1, we can deal
with various models in applied mathematics.

Remark 3. The gradient (∂/∂x)Xt,x,ε
s also has the expansion (∂/∂x)Xt,x,ε

s ∼ J0,x
t→s+εJ1,x

t→s+ · · · ,
in particular,

1. (Expansion 1)

J0,x
t→s = (∂/∂x)Xt,x,0

s , (3.27)

J1,x
t→s = J0,x

t→s{
∫ s

t

∂2µ(r,Xt,x,0
r)Xt,x

1,rdr +

d∑
k=1

∫ s

t

∂σk(r,X
t,x,0
r)dW k

r }, (3.28)

2. (Expansion 2)

J0,x
t→s = Id×d, (3.29)

J1,x
t→s =

∫ s

t

∂µ(r, x)dr +

d∑
k=1

∫ s

t

∂σk(r, x)dW
k
r , (3.30)

3. (Expansion 3)

J0,x
t→s = Id×d, (3.31)

J1,x
t→s =

d∑
k=1

∂σk(t, x)(W
k
s −W k

t), (3.32)

which are obtained in a similar way as Xt,x
k,s, k ∈ N.

The functions U1 and ∂xU1σε are approximated by the asymptotic expansion.

Proposition 1. Let m ∈ N. There is [0, T)×Rd × (0, 1) ∋ (t, x, ε) 7→ Wt,x,ε,(m)
T ∈ D∞ satisfying

that there exist C(T,m) > 0 and p(m) ≥ m+ 1 such that

|U1(t, x)− U1,(m)(t, x)| ≤ C(T,m)εm+1(T − t)p(m)/2, (3.33)

for all ε ∈ (0, 1], t < T and x ∈ Rd, where the U1,(m) is given by

U1,(m)(t, x) = E[g(X
t,x,ε

T)Wt,x,ε,(m)
T], t < T, x ∈ Rd, (3.34)

which satisfy U1,(m)(t, ·) ∈ C2
b (Rd), t < T . Also, there is [0, T) × Rd × (0, 1) ∋ (t, x, ε) 7→

Zt,x,ε,(m)
T ∈ D∞ satisfying that there exist C ′(T,m) > 0 and and q(m) ≥ m such that

|∂xU1(t, x)σε(t, x)− V1,(m)(t, x)| ≤ C ′(T,m)εm+1(T − t)q(m)/2, (3.35)

for all ε ∈ (0, 1], t < T and x ∈ Rd, where the V1,(m) is given by

V1,(m)(t, x) = E[g(X
t,x,ε

T)Zt,x,ε,(m)
T], t < T, x ∈ Rd, (3.36)

which satisfy V1,(m)(t, ·) ∈ C1
b (Rd), t < T .

8

Proof. See Appendix A.1.

For example, the stochastic weight Wt,x,ε,(m)
T has the representation in general:

Wt,x,ε,(m)
T

=1 +

m∑
j=1

εj
j∑

k=1

∑
β1+···+βk=j,βi≥1

∑
γ(k)=(γ1,··· ,γk)∈{1,··· ,d}k

1

k!
Hγ(k)(X

t,x
1,T ,

k∏
ℓ=1

Xt,x,γℓ

βℓ+1,T). (3.37)

See Section 2.2 in Takahashi and Yamada (2012) [40] and Section 6.1 in Takahashi (2015) [39]
for more details. The functions U1,(m) and V1,(m) have more explicit representation. Actually
when m = 1, U1,(1) and V1,(1) have the following forms which are easily computed by taking

advantage of the fact that X
t,x,ε

T (and Xt,x
1,T) is a Gaussian random variable. We list the formulas

for U1,(1) and V1,(1) for the three cases: (Expansion 1), (Expansion 2) and (Expansion 3).
In particular, the representation V1,(1), the multidimensional expansion of ∂xU1σε is an extension
of [31][48].

Proposition 2 (Expansion 1). For t < T , x ∈ Rd,

U1,(1)(t, x) = E[g(X
t,x,ε

T)] (3.38)

+ ε
∑d

i1,i2,i3,j1=1

∑d
k1,k2=1E[g(X

t,x,ε

T)H(i1,i2,i3)(X
t,x
1,T , 1)] C

(1),k1,k2

i1,i2,i3,j1
(t, T, x)

+ ε
∑d

i1,i2,i3,j1,j2=1

∑d
k1,k2=1E[g(X

t,x,ε

T)H(i1,i2,i3)(X
t,x
1,T , 1)] C

(2),k1,k2

i1,i2,i3,j1,j2
(t, T, x)

+ ε 1
2

∑d
i1,j1,j2=1

∑d
k1,k2=1E[g(X

t,x,ε

T)H(i1)(X
t,x
1,T , 1)]1k1=k2

C
(3),k1,k2

i1,j1,j2
(t, T, x),

where

C
(1),k1,k2
i1,i2,i3,j1

(t, T, x) =
∫ T

t

∫ t1
t

ai3
k2
(t, t2, t1, x)a

i2
k1
(t, t1, T, x)b

i1,j1
k1

(t, t1, T, x)a
j1
k2
(t, t2, t1, x)dt2dt1,

C
(2),k1,k2
i1,i2,i3,j1,j2

(t, T, x) =
∫ T

t

∫ t1
t

∫ t2
t

ai3
k1
(t, t3, t2, x)a

i2
k2
(t, t2, t1, x)

ci1,j1,j2(t, t1, T, x)a
j1
k2
(t, t2, t1, x)a

j2
k1
(t, t3, t1, x)dt3dt2dt1,

C
(3),k1,k2
i1,j1,j2

(t, T, x) =
∫ T

t

∫ t1
t

ci1,j1,j2(t, t1, T, x)a
j2
k2
(t, t2, t1, x)a

j1
k1
(t, t2, t1, x)dt2dt1,

ai
k(t, s, u, x) :=

∑d
j1,j2=1[J

0,x
t→u]

i
j1 [(J

0,x
t→s)

−1]j1j2σ
j2
k (s,Xt,x,0

s),

bi,j3k (t, s, u, x) :=
∑d

j1,j2=1[J
0,x
t→u]

i
j1 [(J

0,x
t→s)

−1]j1j2∂j3σ
j2
k (s,Xt,x,0

s),

ci,j3,j4(t, s, u, x) :=
∑d

j1,j2=1[J
0,x
t→u]

i
j1 [(J

0,x
t→s)

−1]j1j2 [∂
2µj2(0, s,Xt,x,0

s)]j3j4 ,

and

V1,(1)(t, x) =
∑d

i1=1E[g(X
t,x,ε
T)H(i1)(X

t,x
1,T , 1)][J

0,x
t→T]

i1σ(t, x) (3.39)

+ ε
∑d

i1,i2,i3,i4,j1=1

∑d
k1,k2=1E[g(X

t,x,ε
T)H(i1,i2,i3,i4)(X

t,x
1,T , 1)] [J

0,x
t→T]

i1C
(1),k1,k2
i2,i3,i4,j1

(t, T, x)σ(t, x)

+ ε
∑d

i1,i2,i3,i4,j1,j2=1

∑d
k1,k2=1E[g(X

t,x,ε
T)H(i1,i2,i3,i4)(X

t,x
1,T , 1)] [J

0,x
t→T]

i1C
(2),k1,k2
i2,i3,i4,j1,j2

(t, T, x)σ(t, x)

+ ε 1
2

∑d
i1,j1,j2=1

∑d
k1,k2=1E[g(X

t,x,ε
T)H(i1,i2)(X

t,x
1,T , 1)][J

0,x
t→T]

i11k1=k2C
(3),k1,k2
i2,j1,j2

(t, T, x)σ(t, x)

+ ε
∑d

i1,i2,j1,j2=1

∑d
k1=1E[g(X

t,x,ε
T)H(i1,i2)(X

t,x
1,T , 1)][J

0,x
t→T]

i1
j1
C

(4),k1
i2,j1,j2

(t, T, x)σ(t, x)

+ ε
∑d

i1,i2,j1=1

∑d
k1=1E[g(X

t,x,ε
T)H(i1,i2)(X

t,x
1,T , 1)][J

0,x
t→T]

i1
j1
C

(5),k1
i2,j1

(t, T, x)σ(t, x),

where

C
(4),k1
i1,j1,j2

(t, T, x) =
∫ T

t

∫ t1
t

ai1
k1
(t, t2, T, x)[∂

2µ(t1, X
t,x,0
t1

)]j1j2a
j2
k1
(t, t2, t1, x)dt2dt1,

C
(5),k1
i1,j1

(t, T, x) =
∫ T

t
ai1
k1
(t, t1, T, x)∂j1σk1(t1, X

t,x,0
t1

)dt1.

9

Proposition 3 (Expansion 2). For t < T , x ∈ Rd,

U1,(1)(t, x) = E[g(X
t,x,ε

T)] (3.40)

+ ε
∑d

i1,i2,i3,j1=1

∑d
k1,k2=1E[g(X

t,x,ε

T)H(i1,i2,i3)(X
t,x
1,T , 1)]C

(1),k1,k2

i1,i2,i3,j1
(t, T, x)

+ ε
∑d

i1,i2,j1=1

∑d
k1,k2=1E[g(X

t,x,ε

T)H(i1,i2)(X
t,x
1,T , 1)]C

(1),k1

i1,i2,j1
(t, T, x)

+ ε
∑d

i1,j1=1E[g(X
t,x,ε

T)H(i1)(X
t,x
1,T , 1)]C

(3)
i1,j1

(t, T, x).

where

C
(1),k1,k2
i1,i2,i3,j1

(t, T, x) =
∫ T

t

∫ s

t
σj
k1
(r, x)∂j1σ

i1
k2
(s, x)σi2

k1
(r, x)σi3

k2
(s, x)drds,

C
(2),k1
i1,i2,j1

(t, T, x) =
∫ T

t

∫ s

t
σj1
k1
(r, x)∂j1µ

i1(s, x)σi2
k1
(r, x)drds+

∫ T

t

∫ s

t
µj1(r, x)∂j1σ

i1
k1
(s, x)σi2

k1
(s, x)drds,

C
(3)
i1,j1

(t, T, x) =
∫ T

t

∫ s

t
µj1(r, x)∂j1µ

i1(s, x)drds,

and

V1,(1)(t, x) =
∑d

i1=1E[g(X
t,x,ε

T)H(i1)(X
t,x
1,T , 1)]σ

i1(t, x) (3.41)

+ ε
∑d

i1,i2,i3,i4,j1=1

∑d
k1,k2=1E[g(X

t,x,ε

T)H(i1,i2,i3,i4)(X
t,x
1,T , 1)]C

(1),k1,k2

i1,i2,i3,j1
(t, T, x)σi4(t, x)

+ ε
∑d

i1,i2,i3,j1=1

∑d
k1,k2=1E[g(X

t,x,ε

T)H(i1,i2,i3)(X
t,x
1,T , 1)]C

(1),k1

i1,i2,j1
(t, T, x)σi3(t, x)

+ ε
∑d

i1,i2,j1=1E[g(X
t,x,ε

T)H(i1,i2)(X
t,x
1,T , 1)]C

(3)
i1,j1

(t, T, x)σi2(t, x)

+ ε
∑d

i1,i2,j1=1E[g(X
t,x,ε

T)H(i1,i2)(X
t,x
1,T , 1)]C

(4)
i1,i2,j1

(t, T, x)σi2(t, x)

+ ε
∑d

i1,j1=1E[g(X
t,x,ε

T)H(i1)(X
t,x
1,T , 1)]C

(5)
i1,j1

(t, T, x)σi1(t, x)

where

C
(4),k1
i1,i2,j1

(t, T, x) =
∫ T

t
∂j1σ

i2
k1
(r, x)σi1

k1
(r, x)dr,

C
(5)
i1,j1

(t, T, x) =
∫ T

t
∂j1µ

i1(r, x)dr.

Proposition 4 (Expansion 3). For t < T , x ∈ Rd,

U1,(1)(t, x) = E[g(X
t,x,ε

T)] + ε
∑
i1

E[g(X
t,x,ε

T)H(i1)(X
t,x
1,T , 1)](T − t)µi1(t, x) (3.42)

+ ε
∑

i1,i2,i3

E[g(X
t,x,ε

T)H(i1,i2,i3)(X
t,x
1,T , 1)]

1

2
(T − t)2σj

k1
(t, x)∂jσ

i1
k2
(t, x)σi2

k1
(t, x)σi3

k2
(t, x),

and

V1,(1)(t, x) =
∑d

i1=1E[g(X
t,x,ε

T)H(i1)(X
t,x
1,T , 1)]σ

i1(t, x) (3.43)

+ ε
∑

i1,i2
E[g(X

t,x,ε

T)H(i1,i2)(X
t,x
1,T , 1)](T − t)µi1(t, x)σi2(t, x)

+ ε
∑

i1,i2,i3,i4

∑
k1,k2

E[g(X
t,x,ε

T)H(i1,i2,i3,i4)(X
t,x
1,T , 1)]

1
2 (T − t)2σj

k1
(t, x)∂jσ

i1
k2
(t, x)σi2

k1
(t, x)σi3

k2
(t, x)σi4(t, x)

+ ε
∑

i1,i2,i3

∑
k1
E[g(X

t,x,ε

T)H(i1,i2)(X
t,x
1,T , 1)](T − t)∂j1σ

i1
k1
(t, x)σi2

k1
(t, x)σi3(t, x).

Proof of Proposition 2, 3 and 4. See Appendix A.2.

Remark 4. The weights in Proposition 2, 3 and 4 are explicitly obtained using integration by
parts of Malliavin calculus ((2.30) (p.102) of Nualart [34] and Proposition 1.3.3 of Nualart [34]).
In general we have the following: for G ∈ D∞ and i = 1, · · · , d,

10

1. (Expansion 1)

H(i)(X
t,x
1,T , G) =G

∑d
j,k=1[Σ(t, T)

−1]i,j
∫ T

t
(Jx,0

t→T (J
x,0
t→s)

−1σk(s,X
t,x,0
s))jdW k

s

−
∑d

j,k=1[Σ(t, T)
−1]i,j

∫ T

t
(Ds,kG)(Jx,0

t→T (J
x,0
t→s)

−1σk(s,X
t,x,0
s))jds (3.44)

with

[Σ(t, T)]j1,j2 =
∑d

k=1

∫ T

t
(Jx,0

t→T (J
x,0
t→s)

−1σk(s,X
t,x,0
s))j1(Jx,0

t→T (J
x,0
t→s)

−1σk(s,X
t,x,0
s))j2ds

2. (Expansion 2)

H(i)(X
t,x
1,T , G) = G

∑d
j,k=1[Σ(t, T)

−1]i,j
∫ T

t
σj
k(s, x)dW

k
s

−
∑d

j,k=1[Σ(t, T)
−1]i,j

∫ T

t
(Ds,kG)σj

k(s, x)ds, (3.45)

with [Σ(t, T)]j1,j2 =
∑d

k=1

∫ T

t
σj1
k (s, x)σj2

k (s, x)ds

3. (Expansion 3)

H(i)(X
t,x
1,T , G) = G

∑d
j,k=1[Σ(t, T)

−1]i,jσ
j
k(t, x)(W

k
T −W k

t)

−
∑d

j,k=1[Σ(t, T)
−1]i,jσ

j
k(t, x)

∫ T

t
Ds,kGds, (3.46)

with [Σ(t, T)]j1,j2 = (T − t)
∑d

k=1σ
j1
k (t, x)σj2

k (t, x)

where D·,kG is the Malliavin derivative of G with respect to the k-th element of the Brownian
motion, i.e. W k. In particular, we need to compute

H(i1,··· ,iℓ)(X
t,x
1,T , 1) =H(iℓ)(X

t,x
1,T ,H(i1,··· ,iℓ−1)(X

t,x
1,T , 1)), 1 ≤ i1, · · · , iℓ ≤ d. (3.47)

with

1. (Expansion 1)

H(i)(X
t,x
1,T , 1) =

∑d
j,k=1[Σ(t, T)

−1]i,j
∫ T

t
(Jx,0

t→T (J
x,0
t→s)

−1σk(s,X
t,x,0
s))jdW k

s (3.48)

2. (Expansion 2)

H(i)(X
t,x
1,T , 1) =

∑d
j,k=1[Σ(t, T)

−1]i,j
∫ T

t
σj
k(s, x)dW

k
s (3.49)

3. (Expansion 3)

H(i)(X
t,x
1,T , 1) =

∑d
j,k=1[Σ(t, T)

−1]i,jσ
j
k(t, x)(W

k
T −W k

t). (3.50)

The numerical implementation of the expectations with the weights is discussed in Remark 6.

Using U1,(m) and V1,(m), we define

Y1,ε,(m)

t = U1,(m)(t,Xε
t), Z1,ε,(m)

t = V1,(m)(t,Xε
t), t ≥ 0. (3.51)

Furthermore, we compute Y2,ε and Z2,ε numerically by the deep BSDE method by solving

inf
Y2,ε,(m,n)

0 ,Z2,ε,(m,n)

∥∥∥Y2,ε,(m,n)
T

∥∥∥2
2

(3.52)

11

subject to

Y2,ε,(m,n)
t = Y2,ε,(m,n)

0 −
∫ t

0

f(s, X̄ε,(n)
s ,Y1,ε,(m,n)

s + αY2,ε,(m,n)
s ,Z1,ε,(m,n)

s + αZ2,ε,(m,n)
s)ds

+

∫ t

0

Z2,ε,(m,n)
s dWs, (3.53)

where

Y1,ε,(m,n)

t = U1,(m)(t, X̄
ε,(n)
t), Z1,ε,(m,n)

t = V1,(m)(t, X̄
ε,(n)
t), t ∈ [0, T], (3.54)

with the continuous Euler-Maruyama scheme X̄ε,(n) = {X̄ε,(n)
t }t≥0(= X̄(n)).

We have the main theoretical result in this paper as follows.

Theorem 3. There exists C > 0 such that

E[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(m,n)
0 }|2] ≤ Cε2(m+1) + α2C

{
ε2(m+1) +

1

n
+
∥∥∥Y2,ε,(m,n)

T

∥∥∥2
2

}
, (3.55)

for all ε, α ∈ (0, 1] and n ≥ 1.

Proof of Theorem 3. In the proof, we use a generic constant C > 0 which varies from line to line.
Let (Y2,ε,(m),x,Z2,ε,(m),x) be the solution of the following BSDE:

Y2,ε,(m),x
t =

∫ T

t

f(s,Xε,x
s ,Y1,ε,(m),x

s + αY2,ε,(m),x
s ,Z1,ε,(m),x

s + αZ2,ε,(m),x
s)ds

−
∫ T

t

Z2,ε,(m),x
s dWs, (3.56)

and (Y2,ε,(m),Z2,ε,(m)) = (Y2,ε,(m),X0 ,Z2,ε,(m),X0). Then we have

E[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(m,n)
0 }|2]

= E[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(m)
0 }+ αY2,ε,(m)

0 − αY2,ε,(m,n)
0 |2]

≤ CE[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(m)
0 }|2] + α2CE[|Y2,ε,(m)

0 − Y2,ε,(m,n)
0 |2]. (3.57)

First, we estimate the term E[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(m)
0 }|2]. We note that this term becomes

null in (3.8), i.e. the error estimate of Theorem 2 for the case that (Y1,ε,Z1,ε) is explicitly solvable
as a closed-form.

Since we have

Y ε,α
0 = E[g(Xε,x

T)]|x=X0
+ αE[

∫ T

0

f(s,Xε,x
s , Y ε,α,x

s , Zε,α,x
s)ds]|x=X0

(3.58)

and

Y1,ε,(m)

0 = E[g(X
0,x,ε

T)W0,x,ε,(m)
T]|x=X0 , (3.59)

Y2,ε,(m)
0 = E[

∫ T

0

f(s,Xε,x
s ,Y1,ε,(m),x

s + αY2,ε,(m),x
s ,Z1,ε,(m),x

s + αZ2,ε,(m),x
s)ds]|x=X0

(3.60)

12

with Y1,ε,(m),x

s = U1,(m)(s,Xε,x
s), Z1,ε,(m),x

s = V1,(m)(s,Xε,x
s), it holds that

E[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(m)
0 }|2]

≤ CE[|E[g(Xε,x
T)]|x=X0

− E[g(X
0,x,ε

T)W0,x,ε,(m)
T]|x=X0

|2]

+ CE
[∣∣∣E[

∫ T

0

αf(s,Xε,x
s , Y ε,α,x

s , Zε,α,x
s)ds]|x=X0

− E[

∫ T

0

αf(s,Xε,x
s ,Y1,ε,(m),x

s + αY2,ε,(m),x
s ,Z1,ε,(m),x

s + αZ2,ε,(m),x
s)ds]|x=X0

∣∣∣2]
≤ Cε2(m+1)

+ Cα2CLip[f]
2

∫ T

0

E[|Y1,ε
s − Y1,ε,(m)

s |2]ds+ Cα2CLip[f]
2

∫ T

0

E[|Z1,ε
s −Z1,ε,(m)

s |2]ds

+ Cα2CLip[f]
2

∫ T

0

E[|αY2,ε
s − αY2,ε,(m)

s |2]ds+ Cα2CLip[f]
2

∫ T

0

E[|αZ2,ε
s − αZ2,ε,(m)

s |2]ds.

(3.61)

Also, the estimates ∫ T

0

E[|Y1,ε
s − Y1,ε,(m)

s |2]ds ≤ Cε2(m+1), (3.62)∫ T

0

E[|Z1,ε
s −Z1,ε,(m)

s |2]ds ≤ Cε2(m+1), (3.63)

are obtained by (3.33) and (3.35) in Proposition 1. Also, by Theorem 4.2.3 in Zhang (2017) [50],
we have ∫ T

0

E[|αY2,ε
s − αY2,ε,(m)

s |2]ds+
∫ T

0

E[|αZ2,ε
s − αZ2,ε,(m)

s |2]ds

≤ CE[

∫ T

0

|αf(s,Xε
s ,Y1,ε

s + αY2,ε
s ,Z1,ε

s + αZ2,ε
s)

− αf(s,Xε
s ,Y

1,ε,(m)

s + αY2,ε
s ,Z1,ε,(m)

s + αZ2,ε
s)|2ds]

≤ Cα2CLip[f]
2{
∫ T

0

E[|Y1,ε
s − Y1,ε,(m)

s |2]ds+
∫ T

0

E[|Z1,ε
s −Z1,ε,(m)

s |2]ds}

≤ Cα2ε2(m+1), (3.64)

where the estimates (3.62) and (3.63) are applied in the last inequality. Therefore, we get

E[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(m)
0 }|2] ≤ Cε2(m+1) + Cα2ε2(m+1). (3.65)

Next, we estimate

E[|Y2,ε,(m)
0 − Y2,ε,(m,n)

0 |2] (3.66)

in (3.57). We note that only this term appears in (3.8), i.e. the error estimate of Theorem 2 for
the case that (Y1,ε,Z1,ε) is explicitly solvable as a closed-form.

Since we have

Y2,ε,(m)
0 − Y2,ε,(m,n)

0

=

∫ T

0

f(s,Xε
s ,Y

1,ε,(m)

s + αY2,ε,(m)
s ,Z1,ε,(m)

s + αZ2,ε,(m)
s)ds−

∫ T

0

Z2,ε,(m)
s dWs

− Y2,ε,(m,n)
T −

∫ T

0

f(s, X̄ε,(n)
s ,Y1,ε,(m,n)

s + αY2,ε,(m,n)
s ,Z1,ε,(m,n)

s + αZ2,ε,(m,n)
s)ds

+

∫ T

0

Z2,ε,(m,n)
s dWs, (3.67)

13

the upper bound of E[|Y2,ε,(m)
0 − Y2,ε,(m,n)

0 |2] can be decomposed as

E[|Y2,ε,(m)
0 − Y2,ε,(m,n)

0 |2]

≤ C∥Y2,ε,(m,n)
T ∥22 + C

∫ T

0

E[|Z2,ε,(m)
s −Z2,ε,(m,n)

s |2]ds

+ CCLip[f]
2 ×

{
E[

∫ T

0

|Xε
s − X̄ε,(n)

s |2ds

+

∫ T

0

|Y1,ε,(m)

s − Y1,ε,(m,n)

s |2ds+
∫ T

0

|αY2,ε,(m)
s − αY2,ε,(m,n)

s |2ds

+

∫ T

0

|Z1,ε,(m)

s −Z1,ε,(m,n)

s |2ds+
∫ T

0

|αZ2,ε,(m)
s − αZ2,ε,(m,n)

s |2ds]
}
. (3.68)

Then, the following holds:∫ T

0

E[|Y1,ε,(m)

s − Y1,ε,(m,n)

s |2]ds ≤ CE[

∫ T

0

|Xε
s − X̄ε,(n)

s |2ds], (3.69)∫ T

0

E[|Z1,ε,(m)

s −Z1,ε,(m,n)

s |2]ds ≤ CE[

∫ T

0

|Xε
s − X̄ε,(n)

s |2ds], (3.70)

since for all t < T , U1,(m)(t, ·) and V1,(m)(t, ·) are in C2
b and C1

b , respectively. Thus, we have

E[|Y2,ε,(m)
0 − Y2,ε,(m,n)

0 |2] ≤ C∥Y2,ε,(m,n)
T ∥22 + C ×

{
sup

t∈[0,T]

(E[|Xt − X̄
ε,(n)
t |2]

+ E[|Y2,ε,(m)
t − Y2,ε,(m,n)

t |2]) +
∫ T

0

E[|Z2,ε,(m)
s −Z2,ε,(m,n)

s |2]ds
}
. (3.71)

By Theorem 1 of Han and Long (2020) [18], it holds that

sup
t∈[0,T]

(E[|Xε
t − X̄

ε,(n)
t |2] + E[|Y2,ε,(m)

t − Y2,ε,(m,n)
t |2]) +

∫ T

0

E[|Z2,ε,(m)
s −Z2,ε,(m,n)

s |2]ds

≤ C
{T
n

+
∥∥∥Y2,ε,(m,n)

T

∥∥∥2
2

}
. (3.72)

Therefore, we get

E[|Y2,ε,(m)
0 − Y2,ε,(m,n)

0 |2] ≤ C

n
+ C

∥∥∥Y2,ε,(m,n)
T

∥∥∥2
2
, (3.73)

and the assertion is obtained as:

E[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(m,n)
0 }|2] (3.74)

≤ CE[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(m)
0 }|2] + α2CE[|Y2,ε,(m)

0 − Y2,ε,(m,n)
0 |2]

≤ Cε2(m+1) + Cα2ε2(m+1) + α2C
{ 1

n
+
∥∥∥Y2,ε,(m,n)

T

∥∥∥2
2

}
. □

By the theorem above, it holds that

Y ε,α
0 ≈ Y1,ε,(m)

0 + αY2,ε,(m,n)∗
0 , (3.75)

where Y2,ε,(m,n)∗
0 is obtained by solving (3.52) with Deep BSDE method. The process Y1,ε,(m,n)

and Z1,ε,(m,n)
work as control variates for the nonlinear BSDE.

14

Here, let us briefly make comments on comparison of the theoretical error estimates of our
proposed method, namely (3.8) in Theorem 2 for the explicitly solvable (Y1,ε,Z1,ε) case and (3.55)
in Theorem 3 for the unsolvable (Y1,ε,Z1,ε) case with the one provided by Han and Long (2020)
[18] for the method of E et al (2017) [5], i.e. (2.11) in Theorem 1. Given the number of discretized
time steps n for Euler-Maruyama scheme, those are relisted below:

• Proposed method (for the solvable (Y1,ε,Z1,ε) case):

E[|Y ε,α
0 − {Y1,ε

0 + αỸ2,ε,(n)
0 }|2] ≤ Cα2 1

n
+ Cα2

∥∥∥Ỹ2,ε,(n)
T

∥∥∥2
2

(3.8)

• Proposed method (for the unsolvable (Y1,ε,Z1,ε) case):

E[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(m,n)
0 }|2]

≤ (Cε2(m+1) + Cα2ε2(m+1)) + Cα2 1

n
+ Cα2

∥∥∥Y2,ε,(m,n)
T

∥∥∥2
2

(3.55)

• Method of E et al. (2017) (error estimate by Han and Long (2020)):

E[|Y ε,α
0 − Y

ε,α,(n)
0 |2] ≤ C

1

n
+ C

∥∥∥g(X̄ε,(n)
T)− Y

ε,α,(n)
T

∥∥∥2
2
. (2.11)

Thanks to the following advantages of our proposed method, we can see that it works better as a
new Deep BSDE solver, more precisely, its errors are expected to be smaller:

• (i) Decomposition into the linear PDE with original terminal g and the nonlinear PDE with
zero terminal, i.e.

u(0, x) = U1(0, x)
linear PDE part

+ U2(0, x)
nonlinear PDE part

, x ∈ Rd.

and an application of Deep BSDE solver only to the nonlinear PDE.

(ii) Closed form solutions/approximations for the linear PDE, which also work as control
variates for the driver of the nonlinear PDE.

Thanks to (i) and (ii), we can obtain the term Cα2
∥∥∥Ỹ2,ε,(n)

T

∥∥∥2
2
in the error bound, rather

than C
∥∥∥g(X̄ε,(n)

T)− Y
ε,α,(n)
T

∥∥∥2
2
.

Moreover, we note that our method enjoys the effects of a small parameter in the nonlinear
driver α ∈ (0, 1] for this term, as well as for the discretization error term caused by Euler-

Maruyama scheme, which is given as Cα2 1

n
rather than C

1

n
.

• Regarding the unsolvable (Y1,ε,Z1,ε) case, our asymptotic expansions with respect to a
small parameter ε ∈ (0, 1] in the diffusion coefficient enable us to obtain closed form approx-

imations Y1,ε,(m)

t = U1,(m)(t,Xε
t) and Z1,ε,(m)

t = V1,(m)(t,Xε
t): Particularly, in (3.55) the

coefficients Cε2(m+1) and Cα2ε2(m+1) are associated with errors of the approximations for
terminal g and driver αf , respectively.

We will check the effectiveness of the new method by numerical experiments in the next section.

Remark 5. We give an important remark on the new method. While the proposed scheme provides

a fine result, we can further improve it by replacing our approximation for the linear part Y1,ε,(m)

0

in the decomposition (3.75) with the methods of [44][43][47][32][35][24].
For example, based on Takahashi and Yamada (2016) [43] with the representations as in Propo-

sition 1 and Proposition 2, the following result will be an improvement of the proposed scheme. Let

ti = T (1− (1− i/n0)
γ), i = 0, 1, · · · , n, with a parameter γ > 0, and X̄

0,x,ε,(n)
ti = X

ti−1,X̄
0,x,ε,(n)
ti−1

,ε

ti ,
i = 1, · · · , n. Define

Ŷ1,ε,(m,n0)
0 = E[g(X̄

0,x,ε,(n0)
T)

n0∏
i=1

W
ti−1,X̄

0,x,ε,(n0)
ti−1

,ε

ti]|x=X0
, (3.76)

15

and consider the quantity

Ŷ1,ε,(m,n0)
0 + αY2,ε,(m,n)∗

0 , (3.77)

where Y2,ε,(m,n)∗
0 is the same as in (3.75). Then, (3.77) will be the improved approximation, as

Y ε,α
0 ≈ Ŷ1,ε,(m,n0)

0 + αY2,ε,(m,n)∗
0 , (3.78)

in the following sense.

Corollary 1. There exist C > 0 and r(m) > 0 such that

E[|Y ε,α
0 −{Ŷ1,ε,(m,n0)

0 +αY2,ε,(m,n)
0 }|2] ≤ C

ε2(m+1)

n
2r(m)
0

+α2C
{
ε2(m+1)+

1

n
+
∥∥∥Y2,ε,(m,n)

T

∥∥∥2
2

}
, (3.79)

for all ε, α ∈ (0, 1] and n0, n ≥ 1.

Remark 6. We note that the functions U1,(m) and V1,(m) appearing in (3.51) and (3.54) are

obtained in closed form if E[g(X
t,x,ε

T)] is given by closed form. Indeed in such case, the functions
U1,(m) and V1,(m) are computed in closed form using the following formula: for a given L =
L(m) ∈ N and for ℓ ≤ L,

E[g(X
t,x,ε

T)H(i1,··· ,iℓ)(X
t,x
1,T , 1)] = εℓ

∂ℓ

∂λi1 · · · ∂λiℓ

E[g(λ+X
t,x,ε

T)]|λ1,··· ,λd=0. (3.80)

The computational efforts of the functions U1,(m) and V1,(m) are of at most polynomial growth
in the dimension d for a given m, in other words, those functions and thus Y2,(m,n) are obtained
without the curse of dimensionality. In Section 4, we refer to the closed form representations
used in numerical examples: In particular, we apply the formula (3.80) to derive the formulas of
U1,(1) and V1,(1) for various models, see (4.17), (4.18) with (4.19), (4.22), (4.23) with (4.24) and
(4.27), (4.28) with (4.29) for concrete expressions.

While the functions U1,(m) and V1,(m) can be obtained in closed form, we are further able
to reduce the computational cost of the proposed scheme. The control variates in the driver of

nonlinear part can be replaced with simple approximations U1,(0)(t, X̄
(n)
t) and V1,(0)(t, X̄

(n)
t) in

order to reduce the computational cost. In the case, the result is modified as follows: there exists
C > 0 such that

E[|Y ε,α
0 − {Y1,ε,(m)

0 + αY2,ε,(0,n)
0 }|2] ≤ Cε2(m+1) + α2C

{
ε2 +

1

n
+
∥∥∥Y2,ε,(0,n)

T

∥∥∥2
2

}
, (3.81)

for all ε, α ∈ (0, 1] and n ≥ 1, whose generalization and the details are discussed in Section 4.5.3
(reduction of computational effort). The important observation in the method of (3.81) is that

the modified approximation Y1,ε,(m)

0 +αY2,ε,(0,n)
0 still keeps the accuracy, which is also reported in

Section 4.5.3.

Even if the case that E[g(X
t,x,ε

T)] can not be obtained, we may use a similar technique by

replacing U1,(m)(t, x) and V1,(m)(t, x) in the driver f with Ũ1,(0)(t, x) = g(Xt,x,0
T) and Ṽ1,(0)(t, x) =

(∇g)(Xt,x,0
T)Jx,0

t→Tσ(t, x) respectively, which are obtained in closed form.

Remark 7. We consider the situation that the parameters ε and α are relatively large such as
ε ≥ 1 and α ≥ 1. It is enough to discuss the case ε = 1 and α = 1. For the situation ε = 1, we can
use the arguments of error analysis for asymptotic expansion as in Section 3 and 4 in Takahashi
and Yamada (2015) [41] or/and Remark C.5 in Shiraya and Takahashi (2019) [36] to give the
approximation bounds, for example, for m = 1, there exist C1

g,µ,σ and C2
g,µ,σ > 0 such that

|U1(t, x)− U1,(1)(t, x)| (3.82)

≤ C1
g,µ,σ max

i=1,··· ,d
∥σi∥∞ ×

(
{ max
i=1,··· ,d

∥σi∥∞ max
i=1,··· ,d

∥∇2σi∥∞} ∨ { max
i=1,··· ,d

∥∇σi∥∞}2
)
× (T − t)3/2

16

and

|V1(t, x)− V1,(1)(t, x)| (3.83)

≤ C2
g,µ,σ

(
{ max
i=1,··· ,d

∥σi∥∞}2 ×
{
{ max
i=1,··· ,d

∥∇σi∥∞ max
i=1,··· ,d

∥∇2σi∥∞}

∨ { max
i=1,··· ,d

∥σi∥∞ max
i=1,··· ,d

∥∇3σi∥∞}
})

∨
(

max
i=1,··· ,d

∥σi∥∞{ max
i=1,··· ,d

∥∇σi∥∞}3
)
× (T − t)

for all x ∈ Rd and t < T , in our setting. The precise bounds in the above are complicated
in general, but we can still check whether the approximations are valid at least in numerical
experiments. Furthermore, for the case of α = 1, we may expect the superiority of the proposed
method in the following way. Let us consider the Picard iteration of BSDE:

Y 0 = 0, Z0 = 0, (3.84)

Y 1 = E[g(X ·,x
T)]|x=X· , Z1 = ∂xE[g(X ·,x

T)]σ(·, x)|x=X· , (3.85)

... (3.86)

We note that Y 1 = Y1 and Z1 = Z1. By the basic argument of BSDEs, we have

∥(Y − Y 1, Z − Z1)∥ ≤ η∥(Y − Y 0, Z − Z0)∥ = η∥(Y, Z)∥ (3.87)

for some 0 < η < 1, where ∥(y, z)∥ = E[
∫ T

0
(y2t + z2t)dt]. Since (Y, Z) can be decomposed as

Y = Y1 + Y2 = Y 1 + Y2 and Z = Z1 + Z2 = Z1 + Z2, it holds that

∥(Y2,Z2)∥ ≤ η∥(Y, Z)∥, 0 < η < 1. (3.88)

While the standard Deep BSDE solves the full BSDE (Y, Z), the proposed scheme of the paper only
requires to estimate (Y2,Z2) by Deep BSDE method. Let (Y DL, ZDL) be the minimized BSDE
of the standard minimization problem obtained by (2.7), and let (Y2,DL,Z2,DL) be the minimized
BSDE of our scheme obtained by (3.5) or (3.52). Then, we may have

∥(Y2,DL,Z2,DL)∥ ≈ η∥(Y DL, ZDL)∥, 0 < η < 1 (3.89)

if the minimization well works, which means that the deviation of the proposed Deep BSDE method
is smaller than that of the standard Deep BSDE. In the proposed scheme, we approximate the

dominant part by the closed-form asymptotic expansion as Y1
0 ≈ Y1,(m)

0 which can be estimated
without variance. Therefore, we guess that control variate still works even if α = 1.

We will see these effects in numerical experiments for relatively large cases ε, α ≥ 1 in Section
4.3 (high-dimensional Allen-Cahn equation) and Section 4.5.2 (parameter sensitivity analysis for
high-dimensional Fokker-Plank equation).

4 Numerical results

In the numerical experiments, we demonstrate that the deep BSDE method with the first order
asymptotic expansion obtained in Proposition 2 provides enough accuracy in solving semilinear
PDEs. The dimension d in (2.2) is assumed to be d = 1 or d = 100.

4.1 Numerical schemes used in experiments

In this subsection, we explain the details of schemes used in numerical experiments. To con-
struct the deep neural networks for each method, we follow E et al. (2017) [5] and employ the
adaptive moment estimation (Adam) with mini-batches. The parameters for the networks are set
as follows: there are d + 10 of hidden layers except batch normalization layers. For all learning

17

steps, 256 sample paths are generated and the learning rate is taken as 0.01. Numerical experi-
ments presented in the following subsections are implemented in Python using TensorFlow on a
Macbook Pro with a 2.3 GHz Quad-Core Intel Core i7 micro processor and 32 GB of 3733 MHz
memory.

(Numerical scheme) Now, let us briefly explain the schemes used in the numerical experiment
in the following subsections.

1. (Deep BSDE method based on E et al. (2017), Han et al. (2018)) In forward
discretization of Y ε,α, the Euler-Maruyama scheme X̄ε,(n) is applied with time step n. The

initial guess of Y ε,α
0 is generated by a uniform random number around Y1,ε,(1)

0 , which is a
prior knowledge for the Deep BSDE method.

In the study of E et al. (2017) [5] and Han et al. (2018) [17], it is known that the estimated
value by the Deep BSDE method converges to the true value of Y ε,α

0 if we take a sufficient
number of iteration steps.

In subsections below, the estimate values based on this scheme are shown by the green lines
labeled with “Deep BSDE” in the figures.

2. (New scheme) Following the main result introduced in Section 3, particularly Theorem
2, we employ our approximation (3.75) for the decomposition Y ε,α

0 = Y1,ε
0 + αY2,ε

0 with
m ∈ N ∪ {0} and n ∈ N, namely,

Y ε,α
0 ≈ Y1,ε,(m)

0 + αY2,ε,(m,n)∗
0 ,

where we compute the nonlinear part Y2,ε,(m,n)∗
0 with (3.52)–(3.54) by the Deep BSDE

solver, while Y1,ε,(m)

0 by U1,(m)(0, x) with the function U1,(m) defined by (3.38).

Specifically, in computation of Y2,ε,(m,n)∗
0 by the Deep BSDE solver for the target equation:

−dY2,ε
t = f(t,Xε

t ,Y
1,ε
t + αY2,ε

t ,Z1,ε
t + αZ2,ε

t)dt−Z2,ε
t dWt, Y2,ε

T = 0,

we use Y1,ε,(m)

t = U1,(m)(t,Xε
t) and Z1,ε,(m)

t = V1,(m)(t,Xε
t) as approximations for Y1,ε

t and
Z1,ε

t in the driver f , respectively. We typically take m = 0, 1 in the experiments.

In subsections below, the estimated values based on this new scheme are shown by the blue

lines labeled with “New method [Y1,ε
+ Y2,ε,DL, Z1,ε

+ Z2,ε,DL]” in the figures.

3. (Deep BSDE method with an enhanced version of Fujii et al. (2019))
This scheme will be used for financial applications in Section 4.4.

In forward discretization of Y ε,α in the Deep BSDE solver, as an approximation of Z1,ε we

apply Z1,ε,(m,n)

t = V1,(m)(t, X̄
ε,(n)
t), t ≥ 0, with the function V1,(m) with m = 1 defined by

(3.39) and the Euler-Maruyama scheme X̄ε,(n) with time step n to obtain an estimate of Z2,ε

by optimization in the Deep BSDE solver. As the initial value of Y ε,α
0 , we use U1,(m)(0, x)

with the function U1,(m) defined by (3.38), an approximation of Y1,ε, which appears in the
linear part of our decomposition of the BSDE (Y ε,α, Zε,α) with Y ε,α = Y1,ε + αY2,ε and
Zε,α = Z1,ε + αZ2,ε. Thus, the scheme is an improved version of Fujii et al. (2019) [12],

since it applies the higher order term Z1,ε,(m)
than the leading order term Z1,ε,(0)

that Fujii
et al. (2019) [12] uses.

Through the study of Fujii et al. (2019) [12], it is also known that the estimated value by
the enhanced Deep BSDE method converges to the true value of Y ε,α

0 with a much smaller
number of iteration steps than by the original Deep BSDE method in E et al. (2017).

In Section 4.4 below, the estimate values based on this scheme are shown by the red lines

labeled with “Deep BSDE[(Y, Z)]+AE[Y1,ε

0 and Z
1,ε

]” in the figures.

The initial value of Zε,α
0 or Z2,ε

0 is generated by uniform random number with the range
[−0.01, 0.01] for each method.

18

We define the normal distribution function N , i.e.

N (x) =

∫ x

−∞

1√
2π

e−
y2

2 dy, x ∈ R.

4.2 High-dimensional Fokker-Plank equation

In this subsection, we consider the following d-dimensional Fokker-Plank equation:

∂

∂t
p(x, t) = −

d∑
i=1

∂

∂xi
α(θ − xi)p(x, t) +

ε2

2

d∑
i=1

∂2

∂x2
i

p(x, t),

lim
t→0

p(x, t) = δx0(x), (4.1)

where θ ∈ R and δx0(·) = δ(· − x0) is the delta function mass at x0 ∈ Rd. We shall write
px0

(x, t) = p(x, t) to clarify the dependency of x0. For a numerical test, we compute∫
Rd

∑d
i=1xip(x, T)dx. (4.2)

The corresponding FBSDE is

dXε
t =µε(t,Xε

t)dt+ σε(t,Xε
t)dWt, (4.3)

−dY ε,α
t =fα(t,Xε

t , Y
ε,α
t , Zε,α

t)dt− Zε,α
t dWt, Y ε,α

T = g(Xε
T), (4.4)

with µε,i(t, x) = α(θ − xi), σ
ε,i
j (t, x) = εδij (i, j = 1, · · · , d), fα(t, x, y, z) = −αy and g(x) =∑d

i=1xi. Then, Y0 is the target, i.e. Y0 =
∫
Rd

∑d
i=1yipx(y, T)dy. We approximate Y0 by the new

method with Expansion 1:

U1,(0)(t, x) =

∫
Rd

d∑
i=1

yi
1

(2πε2)d/2
√

detVt,T

e−
(y−X

t,x,0
T

)V
−1
t,T

(y−X
t,x,0
T

)⊤

2ε2 dy

=

d∑
i=1

(
θ + (xi − θ)e−α(T−t)

)
, (4.5)

V1,(0)
j (t, x) =

∂

∂xj

∫
Rd

d∑
i=1

yi
1

(2πε2)d/2
√
detVt,T

e−
(y−X

t,x,0
T

)V
−1
t,T

(y−X
t,x,0
T

)⊤

2ε2 dyε,

=εe−α(T−t), j = 1, · · · , d, (4.6)

where Xt,x,0
T is the solution of ODE: Xt,x,0,i

T = x +
∫ T

t
µ0,i(s,Xt,x,0

s)ds = θ + (xi − θ)e−α(T−t),

i = 1, · · · , d, and Vt,T is the covariance matrix of Xt,x,0
1,T = (∂/∂ε)Xt,ε

T |ε=0. The i-th element of

Xt,x,0
1,T , namely Xt,x,0

1,i,T is given by

Xt,x,0
1,i,T = −α

∫ T

t

Xt,x,0
1,i,s ds+W i

T−t =

∫ T

t

e−α(T−s)dW i
s , (4.7)

and and the (i, j)-th element of Vt,T is provided as viδ
i
j with vi =

∫ T

t
e−2α(T−s)ds = 1−e−2α(T−t)

2α .

In the numerical experiment, the parameters are set to be d = 100, Xi
0 = 1.0 (i = 1, · · · , d),

T = 0.25, n = 25, ε = 0.1, α = 0.02, θ = 0.75. The numerical values of the loss function and the
approximate value of Y0 are shown in Figure 1 and 2. We can see that the new scheme provides
the better approximation and convergence speed than the original Deep BSDE method.

19

Figure 1: Values of the loss function and number of iteration steps

Figure 2: Approximate values of Y0 and number of iteration steps

4.3 High-dimensional Allen-Cahn equation

This subsection considers the following d-dimensional Allen-Cahn equation:

∂

∂t
u(t, x) +

d∑
i=1

∂2

∂x2
i

u(t, x)+f(u(t, x)) = 0,

20

u(T, x) =g(x), (4.8)

where f(y) = y − y3 and g(x) = (1/d)∥x∥2Rd = (1/d)
∑d

i=1 x
2
i . The correspond FBSDE is

dXε
t =µε(t,Xε

t)dt+ σε(t,Xε
t)dWt, (4.9)

−dY ε,α
t =fα(t,Xε

t , Y
ε,α
t , Zε,α

t)dt− Zε,α
t dWt, Y ε,α

T = g(Xε
T), (4.10)

with ε =
√
2, α = 1, µε,i(t, x) = 0, σε,i

j (t, x) = εδij (i, j = 1, · · · , d), fα(t, x, y, z) = α(y − y3) and

g(x) = (1/d)∥x∥2Rd . Our objective is to compute u(0, x), i.e. Y0 is the target. We approximate Y0

by the new method with Expansion 1:

U1,(0)(t, x) =

∫
Rd

g(y)
1

(2π(T − t)ε2)d/2
e
−

∥y−x∥2
Rd

2ε2(T−t) dy = (1/d)∥x∥2Rd + ε2(T − t). (4.11)

V1,(0)
j (t, x) =

∂

∂xi

∫
Rd

g(y)
1

(2π(T − t)ε2)d/2
e
−

∥y−x∥2
Rd

2ε2(T−t) dyε = (1/d)2xiε, j = 1, · · · , d. (4.12)

In the numerical experiment, the parameters are set to be d = 100, Xi
0 = 0.0 (i = 1, · · · , d),

T = 0.3, n = 30, ε =
√
2, α = 1.0.

The numerical values of the loss function and approximate value of Y0 are shown in Figure 3
and 4. Again, we can see that the new scheme provides the better approximation and convergence
speed than the original Deep BSDE method.

Figure 3: Values of the loss function and number of iteration steps

21

Figure 4: Approximate values of Y0 and number of iteration steps

4.4 Applications to finance

We investigate the accuracy of our new method by comparing to the standard Deep BSDE
method in E et al. (2017) [5], Han et al. (2018) [17], and the Deep BSDE method with an
enhanced version of Fujii et al. (2019) [12] for the model (2.2), where the target BSDEs with
FSDEs are specified later.

We show some numerical examples in models in financial mathematics, where parameters are
set to be the standard level in practice in finance. The results demonstrate that our proposed
method substantially outperforms other methods in terms of terminal errors (numerical values of
loss functions), variations and convergence speed.

4.4.1 The case d = 1: a nonlinear BSDE driver (CVA computation)

This subsection presents the numerical results for the case of d = 1.

We first check the performance of our method in the model, where the explicit value of the
solution is obtained by the Picard iteration. We consider an option pricing model in finance that
takes CVA (credit value adjustment) into account as follows:

dXε
t =µε(t,Xε

t)dt+ σε(t,Xε
t)dWt, (4.13)

−dY ε,α
t =fα(t,Xε

t , Y
ε,α
t , Zε,α

t)dt− Zε,α
t dWt, Y ε,α

T = g(Xε
T), (4.14)

with fα(t, x, y, z) = −α(y)+ and g(x) = (x−K)+. We note that α =(loss rate in default)×(default
intensity) in a finance model of CVA.

In computation we set µε(t, x) = 0, σε(t, x) = εx, ε = σ = 0.2, X0 = 100, α = 0.05, T = 0.5,
n = 20 with K = 100 (ATM case) and K = 115 (OTM case).

In this case an explicit value of Y0 is computed as Y0 = Y1
0 (1 +

∑∞
i=1(−1)iαiT i 1

i!). More
precisely, by the k-Picard iteration of the backward equation:

− dY
ε,α,[k]
t = −α(Y

ε,α,[k−1]
t)+dt− Z

ε,α,[k]
t dWt, Y

ε,α,[k]
T = (Xε

T −K)+, (4.15)

with (Y
ε,α,[0]
t)+ = E[(Xε

T −K)+|Ft] = Y1
t , for all t ≥ 0,

22

it is easy to see that Y
ε,α,[k]
t = Y1

t − α
∫ T

t
E[Y

ε,α,[k−1]
s |Ft]ds, and thus one has

Y
ε,α,[k]
0 = Y1

0 (1 +
∑k

i=1(−1)iαiT i 1
i!). (4.16)

Then, the true values are given as Y0 = 5.50 in the ATM case and Y0 = 1.26 in the OTM case
by the 5-Picard iteration, which provides enough convergence and hence accuracy.

We approximate Y0 by the new method with Expansion 1:

U1,(1)(t, x) =(x−K)N
(x−K

εx
√
T − t

)
+ εx

√
T − tN ′

(x−K

εx
√
T − t

)
+ C(ε, t, x)N ′′

(x−K

εx
√
T − t

)(1

εx
√
T − t

)2
(4.17)

and

V1,(1)(t, x) =N
(x−K

εx
√
T − t

)
εx+ C(ε, t, x)N ′′′

(x−K

εx
√
T − t

)(1

εx
√
T − t

)3
εx

+ εN ′
(x−K

εx
√
T − t

)√
T − tεx, (4.18)

with

C(ε, t, x) =
1

2
ε4x3(T − t)2, (4.19)

where Proposition 2 with (3.80) is applied in the derivation.
Figure 5 and 6 show the numerical values of loss functions and the approximate values of Y0,

respectively against the number of iteration steps for the ATM case, and Figure 7 and 8 for the
OTM case.

By Figure 6 and 8, the numerical values of “New method [Y1,ε
+ Y2,ε,DL,Z1,ε

+ Z2,ε,DL]”
converge to the true values substantially faster with smaller variations comparing to other schemes.
Also, we can see that the errors of “New method” are much smaller according to the behavior of
their loss functions against the number of iteration steps in Figure 5 and 7.

Figure 5: Values of the loss function and number of iteration steps (1-dim option pricing model with
CVA, ATM case)

23

Figure 6: Approximate values of Y0 (true value: 5.50) and number of iteration steps (1-dim option
pricing model with CVA, ATM case)

Figure 7: Values of the loss function and number of iteration steps (1-dim option pricing model with
CVA, OTM case)

24

Figure 8: Approximate values of Y0 (true value: 1.26) and number of iteration steps (1-dim option
pricing model with CVA, OTM case)

4.4.2 The case d = 1: a nonlinear BSDE driver (different interest rates for
borrowing and lending)

Next, we present numerical examples for the model, where explicit values of Y0 can not be
obtained without numerical schemes such as Monte Carlo simulations. Let us consider

dXε
t =µε(t,Xε

t)dt+ σε(t,Xε
t)dWt, (4.20)

−dY ε,α
t =fα(t,Xε

t , Y
ε,α
t , Zε,α

t)dt− Zε,α
t dWt, Y ε,α

T = g(Xε
T) (4.21)

with µε(t, x) = 0, σε(t, x) = εx, ε = σ = 0.2, T = 0.25, n = 20, X0 = 100, and

fα(t, x, y, z) = α
(
y − zσ−11

)−
,

α = R− r,

with R = 0.06, r = 0.0, and

g(x) = (x−K1)
+ − 2(x−K2)

+ with K1 = 95, K2 = 105.

We approximate Y0 by the new method with the small diffusion expansion:

U1,(1)(t, x) =(x−K1)N
(x−K1

εx
√
T − t

)
+ εx

√
T − tN ′

(x−K1

εx
√
T − t

)
+ C(ε, t, x)N ′′

(x−K1

εx
√
T − t

)(1

εx
√
T − t

)2
− 2(x−K)N

(x−K2

εx
√
T − t

)
− 2εx

√
T − tN ′

(x−K2

εx
√
T − t

)
− 2C(ε, t, x)N ′′

(x−K2

εx
√
T − t

)(1

εx
√
T − t

)2
(4.22)

25

and

V1,(1)(t, x) =N
(x−K1

εx
√
T − t

)
εx+ C(ε, t, x)N ′′′

(x−K1

εx
√
T − t

)(1

εx
√
T − t

)3
εx

+ εN ′
(x−K1

εx
√
T − t

)√
T − tεx

− 2N
(x−K2

εx
√
T − t

)
εx− 2C(ε, t, x)N ′′′

(x−K2

εx
√
T − t

)(1

εx
√
T − t

)3
εx

− 2εN ′
(x−K2

εx
√
T − t

)√
T − tεx, (4.23)

where

C(ε, t, x) =
1

2
ε4x3(T − t)2, (4.24)

where Proposition 2 with (3.80) is applied in the derivation.
As we mentioned in Section 4.1, the estimated value by the methods “Deep BSDE” and “Deep

BSDE[(Y, Z)]+AE[Y1,ε

0 and Z
1,ε

]” converges to the true value of Y0. Then, in the experiments,

we check whether the estimated value by “New method [Y1,ε
+Y2,ε,DL,Z1,ε

+Z2,ε,DL]” converges

faster than the ones computed by the methods “Deep BSDE” and “Deep BSDE[(Y, Z)]+AE[Y1,ε

0

and Z
1,ε

]”.
Figure 9 shows the numerical values of loss functions against the number of iteration steps.

While “Deep BSDE[(Y, Z)]+AE[Y1,ε

0 and Z
1,ε

]” is superior to the original “Deep BSDE”, we

see that “New method [Y1,ε
+ Y2,ε,DL,Z1,ε

+ Z2,ε,DL]” gives much more stable and accurate
convergence than other schemes.

Figure 10 shows the approximate values of Y0 against the number of iteration steps. It is

observed that “New method [Y1,ε
+ Y2,ε,DL,Z1,ε

+ Z2,ε,DL]” provides the fastest convergence

with the smallest standard deviation, while “Deep BSDE[(Y, Z)]+AE[Y1,ε

0 and Z
1,ε

]” gives better
approximation than “Deep BSDE”.

Figure 9: Values of the loss function and number of iteration steps

26

Figure 10: Approximate values of Y0 and number of iteration steps

4.4.3 The case d = 100: a nonlinear BSDE driver (different interest rates for
borrowing and lending)

We show the main numerical result for d = 100. The same experiment as in the case of d = 1
is performed. Let us consider

dXε,i
t =µε,i(t,Xε

t)dt+

d∑
j=1

σε,i
j (t,Xε

t)dW
j
t , (4.25)

−dY ε,α
t =fα(t,Xε

t , Y
ε,α
t , Zε,α

t)dt− Zε,α
t dWt, Y ε,α

T = g(Xε
T), (4.26)

with µε,i(t, x) = 0, σε,i
j (t, x) = εxiδ

i
j , X

i
0 = 100 (i, j = 1, · · · , d), T = 0.25, n = 20, ε = 0.4, and

fα(t, x, y, z) = α

y −
d∑

k=1

d∑
j=1

zk[σ
−1]kj

−

,

α = R− r,

with R = 0.01, r = 0.0, and

g(x) =

(
1

d

d∑
i=1

xi −K1

)+

− 2

(
1

d

d∑
i=1

xi −K2

)+

with K1 = 95, K2 = 105.

We approximate Y0 by the new method with Expansion 1:

U1,(1)(t, x) =
(
(1/d)

d∑
i=1

xi −K1

)
N

(
(1/d)

∑d
i=1 xi −K1

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)

+ ε(1/d)

√√√√ d∑
i=1

x2
i

√
T − tN ′

(
(1/d)

∑d
i=1 xi −K1

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)

27

+ C(ε, t, x)(1/d)N ′′

(
(1/d)

∑d
i=1 xi −K1

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)(
1

ε
√∑d

i=1 x
2
i

√
T − t

)2

− 2
(
(1/d)

d∑
i=1

xi −K2

)
N

(
(1/d)

∑d
i=1 xi −K2

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)

− 2ε(1/d)

√√√√ d∑
i=1

x2
i

√
T − tN ′

(
(1/d)

∑d
i=1 xi −K2

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)

− 2C(ε, t, x)(1/d)N ′′

(
(1/d)

∑d
i=1 xi −K2

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)(
1

ε
√∑d

i=1 x
2
i

√
T − t

)2

(4.27)

and

V1,(1)
i (t, x) = N

(
(1/d)

∑d
i=1 xi −K1

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)
εxi

+ C(ε, t, x)(1/d)N ′′′

(
(1/d)

∑d
i=1 xi −K1

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)(
1

ε
√∑d

i=1 x
2
i

√
T − t

)3

εxi

+ ε(1/d)N ′

(
(1/d)

∑d
i=1 xi −K1

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)(
xi

√
T − t√∑d
i=1 x

2
i

)
εxi

− 2N

(
(1/d)

∑d
i=1 xi −K2

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)
εxi

− 2C(ε, t, x)(1/d)N ′′′

(
(1/d)

∑d
i=1 xi −K2

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)(
1

ε
√∑d

i=1 x
2
i

√
T − t

)3

εxi

− 2ε(1/d)N ′

(
(1/d)

∑d
i=1 xi −K2

ε(1/d)
√∑d

i=1 x
2
i

√
T − t

)(
xi

√
T − t√∑d
i=1 x

2
i

)
εxi, i = 1, · · · , d, (4.28)

where

C(ε, t, x) =
1

2
ε4

d∑
i=1

x3
i (T − t)2, (4.29)

where Proposition 2 with (3.80) is applied in the derivation.
The result is given in Figure 11, 12 and 13. It seems that the convergence speed of the

original deep BSDE method is too slow to obtain the precise result. On the contrary, “Deep

BSDE[(Y, Z)]+AE[Y1,ε

0 and Z̄1,ε]” and “New method [Y1,ε
+ Y2,ε,DL,Z1,ε

+ Z2,ε,DL]” work well

even in this high dimensional case. Particularly, “New method [Y1,ε
+ Y2,ε,DL,Z1,ε

+ Z2,ε,DL]”
provides a remarkable performance in terms of convergence speed, accuracy (numerical values of
loss functions) and variations. Moreover, comparing the results of our new method and “Deep

BSDE[(Y, Z)]+AE[Y1,ε

0 and Z̄1,ε]” closely, Figure 13 shows that the variation of Y0 by our method
is much smaller, which is consistent with much smaller values of loss functions for the new method
appearing in Figure 11.

28

Figure 11: Values of the loss function and number of iteration steps

Figure 12: Approximate values of Y0 and number of iteration steps

29

Figure 13: Approximate values of Y0 and number of iteration steps (enlarged view for “Deep

BSDE[(Y, Z)]+AE[Y1,ε
0 and Z

1,ε
]” and “New method [Y1,ε

+ Y2,ε,DL, Z1,ε
+ Z2,ε,DL]”)

Finally, we provide information on the computation time for the original deep BSDE method
and our new method. In order to measure computation time for the convergence, we com-

pute each smallest number k1, k2 ∈ N such that Y
DeepBSDE,(r1)
0 , Y

New method,(r2)
0 ∈ [Y bench

0 −
0.001 × Y bench

0 , Y bench
0 + 0.001 × Y bench

0] for all r1 ≥ k1 and r2 ≥ k2, where Y
DeepBSDE,(k)
0 and

Y
New method,(k)
0 are the means of the estimated Y0 for 100-samples (from (k − 99)-step to k-step)

of the original deep BSDE method and our new method, respectively, and Y bench
0 (= 5.225) is

the benchmark value given by the mean of the estimated Y0 for 5000-samples from 35001-step

to 40000-step of the original deep BSDE method. The computation times of Y
DeepBSDE,(k∗

1)
0 and

Y
New method,(k∗

2)
0 with the minimum numbers k∗1 and k∗2 are given in Table 1, which shows that

the new method is efficient in terms of computation time.

Table 1: Computation time for the convergence (to Y bench
0 = 5.225 (the mean value of Deep BSDE

method (35001–40000 steps))
Method (with number of iterations for convergence) Y0 Runtime (s)

Deep BSDE method (39501–39600 steps) Y
DeepBSDE,(39600)
0 : 5.227 4685

New method (101–200 steps) Y
New method,(200)
0 : 5.226 61

We note that after the number of iteration step 100, all values (means) of the new method are

very close to Y bench
0 , i.e. Y

New method,(k)
0 ∈ [Y bench

0 − 0.00015×Y bench
0 , Y bench

0 +0.00015×Y bench
0]

for all k = 200, · · · , 39900, 40000 with mean 5.2251 and standard deviation 0.00018.

30

4.4.4 The case d = 100: a nonlinear BSDE driver (CVA computation with a
forward SDE with nonlinear drift/volatility)

We show numerical examples of nonlinear pricing in a high-dimensional nonlinear forward-
backward SDE. In particular, as a forward SDE we adopt a highly nonlinear drift/volatility
model used in [1][4][25]. In the example, we apply Expansion 3 with ε = 1 that does not need
to solve any ODEs, while Expansion 1 can not be obtained in closed-from due to the nonlinear
ODE term. Let us consider

dXε,i
t =µε,i(t,Xε

t)dt+
∑d

j=1σ
ε,i
j (t,Xε

t)dW
j
t , (4.30)

−dY ε,α
t =fα(t,Xε

t , Y
ε,α
t , Zε,α

t)dt− Zε,α
t dWt, Y ε,α

T = g(Xε
T), (4.31)

with d = 100, µε,i(t, x) = ε2(α−1/xi − α0 + α1xi − α2x
ρ
i), σ

ε,i
j (t, x) = εσxγ

i δ
i
j , ε = 1.0, Xi

0 = 100

(i, j = 1, · · · , d), T = 0.25, n = 25, α−1 = 1.0 × 10−4, α0 = 5.0 × 10−3, α1 = 9.9 × 10−2,
α2 = 1.0× 10−1, ρ = 1.01, σ = 0.4, γ = 1.025 and

fα(t, x, y, z) = −α(y)+

with α = 0.05 and

g(x) =
(

1
d

∑d
i=1 xi −K

)+
with K = 90.

We approximate Y0 by the new method with Expansion 3:

U1,(1)(t, x) =
(
(1/d)

d∑
i=1

xi −K
)
N

(
(1/d)

∑d
i=1 xi −K

ε(1/d)σ
√∑d

i=1 x
2γ
i

√
T − t

)

+ ε(1/d)σ

√√√√ d∑
i=1

x2γ
i

√
T − tN ′

(
(1/d)

∑d
i=1 xi −K

ε(1/d)σ
√∑d

i=1 x
2γ
i

√
T − t

)

+ C0(ε, t, x)(1/d)N

(
(1/d)

∑d
i=1 xi −K

ε(1/d)σ
√∑d

i=1 x
2γ
i

√
T − t

)

+ C1(ε, t, x)(1/d)N ′′

(
(1/d)

∑d
i=1 xi −K

ε(1/d)σ
√∑d

i=1 x
2γ
i

√
T − t

)(
1

εσ
√∑d

i=1 x
2γ
i

√
T − t

)2

(4.32)

and

V1,(1)
i (t, x) = N

(
(1/d)

∑d
i=1 xi −K

ε(1/d)σ
√∑d

i=1 x
2γ
i

√
T − t

)
εσxγ

i

+ (1/d)N ′

(
(1/d)

∑d
i=1 xi −K

ε(1/d)σ
√∑d

i=1 x
2γ
i

√
T − t

)(
(α−1/xi − α0 + α1xi − α2x

2
i)
√
T − t

εσ
√∑d

i=1 x
2γ
i

)
εσxγ

i

+ C1(ε, t, x)(1/d)N ′′′

(
(1/d)

∑d
i=1 xi −K

ε(1/d)σ
√∑d

i=1 x
2γ
i

√
T − t

)(
1

εσ
√∑d

i=1 x
2γ
i

√
T − t

)3

εσxγ
i

+ (1/d)N ′

(
(1/d)

∑d
i=1 xi −K

ε(1/d)σ
√∑d

i=1 x
2γ
i

√
T − t

)(
εσxγ

i

√
T − t

σ
√∑d

i=1 x
2γ
i

)
εσxγ

i (4.33)

where

C0(ε, t, x) = ε2(T − t)
∑d

i=1(α−1/xi − α0 + α1xi − α2x
ρ
i), (4.34)

C1(ε, t, x) = ε4σ4 1

2
(T − t)2

∑d
i=1x

3γ
i . (4.35)

31

The result is given in Figure 14 and 15.

Figure 14: Values of the loss function and number of iteration steps

Figure 15: Approximate values of Y0 and number of iteration steps

In Figure 15, we can check that the convergence speed of “New method [Y1,ε
+Y2,ε,DL,Z1,ε

+
Z2,ε,DL]” is faster than that of the original Deep BSDE solver, according to the values of the loss
function shown in Figure 14.

We confirm that our method also works in the high-dimensional forward and backward SDE
with nonlinear coefficients and nonlinear driver.

32

Remark 8. Note that not only Expansion 3 but also Expansion 2 does not need to solve
any ODEs and will work in the the high-dimensional forward and backward SDE with nonlinear
coefficients and nonlinear driver. While both expansions are applicable, we use Expansion 3
in this example, since it gives enough accuracy and the number of terms required for numerical
computation of Expansion 3 is fewer than that of Expansion 2.

4.5 Discussions on parameter sensitivities and reduction of computa-
tional effort

This subsection investigates parameter sensitivities and a method on further reduction of
computational burden.

4.5.1 Parameter sensitivity (Fokker-Plank equation)

First, we provide numerical results when ε or/and α are increased with several values in the
high-dimensional Fokker-Plank equation. The model parameters ε and α are set to be

• ε = 0.5, α = 0.25

• ε = 0.5, α = 0.5

• ε = 1.0, α = 1.0

and other parameters are the same as in Section 4.2.
The numerical values of the loss function and approximate value of Y0 are shown in Figure 16,

17, 18 and Figure 19, 20, 21, respectively. We see that the performance of the proposed method
is better than that of the original Deep BSDE method. In particular, we can observe that the
convergence of our proposed method in Figure 19, 20 and 21 achieves much smaller deviation
after 2000, 4000, 6000 iteration steps, respectively, thanks to much smaller loss values shown in
Figure 16, 17, 18, respectively. We note that the case with ε = 1.0 and α = 1.0 still provides
faster convergence, which may be the consequence of the phenomenon explained in Remark 7.

Figure 16: Values of the loss function and number of iteration steps (ε = 0.5, α = 0.25)

33

Figure 17: Values of the loss function and number of iteration steps (ε = 0.5, α = 0.5)

Figure 18: Values of the loss function and number of iteration steps (ε = 1.0, α = 1.0)

34

Figure 19: Approximate values of Y0 and number of iteration steps (ε = 0.5, α = 0.25)

Figure 20: Approximate values of Y0 and number of iteration steps (ε = 0.5, α = 0.5)

35

Figure 21: Approximate values of Y0 and number of iteration steps (ε = 1.0, α = 1.0)

4.5.2 Parameter sensitivity (Allen-Cahn type equation)

Next, we provide numerical results when ε and α are increased with several values in a high-
dimensional nonlinear PDE:

∂

∂t
u(t, x) +

ε2

2

d∑
i=1

∂2

∂x2
i

u(t, x)+αf(u(t, x)) = 0,

u(T, x) =g(x), (4.36)

where f(y) = y − y3 and g(x) = (1/d)∥x∥2Rd = (1/d)
∑d

i=1 x
2
i , and the corresponding FBSDE:

dXε
t =µε(t,Xε

t)dt+ σε(t,Xε
t)dWt, (4.37)

−dY ε,α
t =fα(t,Xε

t , Y
ε,α
t , Zε,α

t)dt− Zε,α
t dWt, Y ε,α

T = g(Xε
T), (4.38)

with µε,i(t, x) = 0, σε,i
j (t, x) = εδij (i, j = 1, · · · , d), fα(t, x, y, z) = α(y − y3) and g(x) =

(1/d)∥x∥2Rd . The model parameters ε and α are set to be

• ε = 1.0, α = 1.0

• ε = 1.5, α = 1.0

• ε = 1.5, α = 1.5

and other parameters are the same as in Section 4.3.
The numerical values of the loss function and approximate value of Y0 are shown in Figure

22, 23, 24 and Figure 25, 26, 27, respectively. We confirm that the new scheme provides the
better approximation and convergence speed than the original Deep BSDE method for all cases
((i) ε = 1.0, α = 1.0, (ii) ε = 1.5, α = 1.0, (iii) ε = 1.5, α = 1.5) for the nonlinear PDE model.

36

Figure 22: Values of the loss function and number of iteration steps (ε = 1.0, α = 1.0)

Figure 23: Values of the loss function and number of iteration steps (ε = 1.5, α = 1.0)

37

Figure 24: Values of the loss function and number of iteration steps (ε = 1.5, α = 1.5)

Figure 25: Approximate values of Y0 and number of iteration steps (ε = 1.0, α = 1.0)

38

Figure 26: Approximate values of Y0 and number of iteration steps (ε = 1.5, α = 1.0)

Figure 27: Approximate values of Y0 and number of iteration steps (ε = 1.5, α = 1.5)

4.5.3 Reduction of computational effort

In the proposed approximation:

Y ε,α
0 ≈ Y1,ε,(m)

0 + αY2,ε,(m,n)∗
0 , (4.39)

39

the first term in (4.39) is relatively easy to compute while the second term in (4.39) is costly. To
reduce the computational effort, we propose a simple method with keeping the similar level of
accuracy. Let m1,m2 ≥ 0 with m1 ≥ m2. We approximate Y1,ε

0 , the m1-th order expansion as
follows:

Y1,ε
0 ≈ Y1,(m1)

0 . (4.40)

For the computation of Y2,ε
0 , we use the m2-th order expansion by solving the following optimiza-

tion:

inf
Y2,ε,(m2,n)

0 ,Z2,ε,(m2,n)

∥∥∥Y2,ε,(m2,n)
T

∥∥∥2
2

(4.41)

subject to

Y2,ε,(m2,n)
t = Y2,ε,(m2,n)

0

−
∫ t

0

f(s, X̄ε,(n)
s ,Y1,ε,(m2,n)

s + αY2,ε,(m2,n)
s ,Z1,ε,(m2,n)

s + αZ2,ε,(m2,n)
s)ds+

∫ t

0

Z2,ε,(m2,n)
s dWs.

(4.42)

Then, we have the following approximation:

Y ε,α
0 ≈ Y1,(m1)

0 + αY2,ε,(m2,n)∗
0 . (4.43)

In the following we provide numerical examples for the three cases:

1. m1 = 0, m2 = 0

2. m1 = 1, m2 = 0

3. m1 = 1, m2 = 1

for the FBSDE model in (4.13) and (4.14) with T = 0.25, n = 25, d = 1, X0 = 100, σ = 0.2,
α = 0.05,K = 115. The results are given in Figure 28 (loss function) and Figure 29 (approximation
for Y0). For comparison, the result for the Deep BSDE is also plotted. In Figure 30, the four
lines (Deep BSDE, [m1 = 0, m2 = 0], [m1 = 1, m2 = 0], [m1 = 1, m2 = 1]) are zoomed to
see the details. We can observe that the expansion order m1 mostly determines the level of the
approximation, while the effect of the expansion order m2 is relatively marginal. This result
suggests that the expansion order m2 can be chosen such that m2 ≤ m1, in other words, the
computational effort for the nonlinear part is substantially reduced with keeping the similar level
of accuracy.

Figure 28: Values of the loss function and number of iteration steps

40

Figure 29: Approximate values of Y0 and number of iteration steps

Figure 30: Approximate values of Y0 and number of iteration steps

5 Conclusion and future works

This paper has introduced a new control variate method for Deep BSDE solver to improve the
methods such as in E et al. (2017) [5] and Fujii et al. (2019) [12]. First, we decompose a target
semilinear PDE (BSDE) to two parts, namely linear and non-linear PDEs (BSDEs). When the
linear part is obtained as a closed form or approximation based on an asymptotic expansion, the
nonlinear PDE part is efficiently computed by Deep BSDE solver, where the asymptotic expansion
crucially works as a control variate. The main theorem provides the validity of our proposed
method. Moreover, numerical examples for one and 100 dimensional BSDEs corresponding to
target nonlinear PDEs show the effectiveness of our scheme, which is consistent with our initial
conjecture and theoretical result.

41

As mentioned in Remark 5, even if the accuracy of the standard asymptotic expansion scheme
becomes worse, the linear PDE part can be more efficiently approximated by the existing methods
such as [44][43][47][32][35][24]. We should check those performances in such cases against various
nonlinear models. Also, it will be a challenging task to examine whether the high order automatic
differentiation schemes proposed in [48][45] work as efficient approximations of Z in nonlinear
BSDEs or ∂xu in nonlinear PDEs. These are left for future studies.

Appendix

A Proof of Propositions

A.1 Proof of Proposition 1

See Proposition 4.2 in Takahashi and Yamada (2015) [42] for (3.33)–(3.36), for instance.

Also, we remark that for p ≥ 1 and a multi-index α, sup x∈Rd∥∂α
xX

t,x,ε

T ∥p ≤ C(T) and

sup x∈Rd∥∂α
xW

t,x,ε,(m)
T ∥p ≤ C(T) hold for t < T . Then, sup x∈Rd |∂2

xU1,(m)(t, x)| ≤ ∥∇2g∥∞C(T)

for t < T , i.e. U1,(m)(t, ·) ∈ C2
b (Rd), t < T .

For V1,(m), we have the representation

V1,(m)(t, x) = E[g(X
t,x,ε

T)Zt,x,ε,(m)
T] = E[(∇g)(X

t,x,ε

T)Qt,x,ε,(m)
T],

for a matrix-valued Wiener functional Qt,x,ε,(m)
T = [[Qt,x,ε,(m)

T]ij]1≤i,j≤d such that [Qt,x,ε,(m)
T]ij ∈

D∞, 1 ≤ i, j ≤ d, satisfying for p ≥ 1 and a multi-index α, sup x∈Rd∥∂α
xQ

t,x,ε,(m)
T ∥p ≤ C(T) for

t < T . Then, sup x∈Rd |∂xV1,(m)(t, x)| ≤ ∥∇2g∥∞C(T) for t < T , i.e. V1,(m)(t, ·) ∈ C1
b (Rd), t < T .

□

A.2 Proof of Proposition 2, 3 and 4

For the derivations, we use Malliavin calculus. Let T ∈ S ′(Rd) be a tempered distribution
and F ∈ (D∞)d be a nondegenerate Wiener functional in the sense of Malliavin. Then, T (F) is
well-defined as an element of the space of Watanabe distributions D−∞, that is the dual space
of D∞. Also, for G ∈ D∞, a (generalized) expectation E[T (F)G] is understood as a coupling of
T (F) ∈ D−∞ and G ∈ D∞, namely D−∞⟨T (F), G⟩D∞ .

Note that Gt,x,ε
T := (Xt,x,ε

T −Xt,x,0
T)/ε and (∂/∂x)Xt,x,ε

T in

U1(t, x) = E[g(Xt,x,ε
T)] =

∫
Rd

g(Xt,x,0
T + εy)E[δy(G

t,x,ε
T)]dy (A.1)

and

(∂/∂x)U1σε(t, x) = E[(∇g)(Xt,x,ε
T)(∂/∂x)Xt,x,ε

T]εσ(t, x)

=

∫
Rd

d∑
i=1

(∂ig)(X
t,x,0
T + εy)E[δy(G

t,x,ε
T)(∂/∂x)Xt,x,ε,i

T]dyεσ(t, x) (A.2)

can be approximated using expansions in D∞: Gt,x,ε
T ∼ Xt,x

1,T + εXt,x
2,T + · · · and (∂/∂x)Xt,x,ε

T ∼
J0,x
t→T + εJ1,x

t→T + · · · .
We expand E[δy(X

t,x,ε
T)] in (A.1) and E[δy(X

t,x,ε
T)(∂/∂x)Xt,x,ε

T] in (A.2) to obtain explicit

expressions of U1,(1)(t, x) and V1,(1)(t, x). Next, let us recall the following formulas.

Lemma 1. Let T ∈ S ′(Rd) be a tempered distribution.

42

1. For an adapted process h ∈ L2([0, T]× Ω),

d∑
j=1

E[∂jT (Xt,x
1,T)

∫ T

t

(Di,sX
t,x,j
1,T)h(s)ds] = E[T (Xt,x

1,T)

∫ T

t

h(s)dW i
s], (A.3)

where Di,·F represents the i-th element of the Malliavin derivative
D·F = (D1,·F, · · · , Dd,·F) for F ∈ D∞.

2. For 1 ≤ i1, · · · , iℓ ≤ d,

E[(∂i1 · · · ∂iℓT)(Xt,x
1,T)] = E[T (Xt,x

1,T)H(i1,··· ,iℓ)(X
t,x
1,T , 1)]. (A.4)

Proof of Lemma 1. Use the duality formula (see Definition 1.13 (1.29) and Theorem 1.26 of
Malliavin and Thalmaier [30] or Definition 1.3.1 (1.42) and Proposition 1.3.11 of Nualart [34]),

with DT (Ξ) =
∑d

i=1(∂iT)(Ξ)DΞi for Ξ = (Ξ1, · · · ,Ξd) ∈ (D∞)d (see Proof of Proposition 2.1.9 of
Nualart [34] or Proof of Theorem 2.6 of Takahashi and Yamada [40]) to obtain the first assertion.
Also, the second assertion is immediately obtained by the integration by parts (e.g. (2.29)–(2.31)
(pp.101–102) of Nualart [34]). □

In the expansions of (A.1) and (A.2), iterated integrals such as∫ T

t

hj1(t1)

∫ t1

t

hj2(t2)dW
j2
t2
dW j1

t1
(hjℓ ∈ L2([0, T]), ℓ = 1, 2, j1, j2 = 1, · · · , d) (A.5)

appear, for which the following calculation holds with use of (A.3) with T = δy:∑
i1

E[∂i1δy(X
t,x
1,T)

∫ T

t

hj1(t1)

∫ t1

t

hj2(t2)dW
j2
t2
dW j1

t1
] (A.6)

=
∑
i1,i2

E[∂i2∂i1δy(X
t,x
1,T)

∫ T

t

(Dj1,t1X
t,x,i2
1,T)hj1(t1)

∫ t1

t

hj2(t2)dW
j2
t2
dt1]

=
∑
i1,i2

∫ T

t

(Dj1,t1X
t,x,i2
1,T)hj1(t1)E[∂i2∂i1δy(X

t,x
1,T)

∫ t1

t

hj2(t2)dW
j2
t2
]dt1

=
∑

i1,i2,i3

∫ T

t

(Dj1,t1X
t,x,i2
1,T)hj1(t1)E[∂i3∂i2∂i1δy(X

t,x
1,T)

∫ t1

t

(Dj2,t2X
t,x,i3
1,T)hi2(t2)dt2]dt1

=
∑

i1,i2,i3

E[∂i3∂i2∂i1δy(X
t,x
1,T)]

∫ T

t

(Dj1,t1X
t,x,i2
1,T)hj1(t1)

∫ t1

t

(Dj2,t2X
t,x,i3
1,T)hj2(t2)dt2dt1.

Note that s 7→ Dj,sX
t,x,i
1,T is deterministic, and one has

Dj,sX
t,x,i
1,T = [J0,x

t→TJ
0,x
t→s

−1
σj(s,X

t,x,0
s)]i. (A.7)

Thus, we get∑
i1

E[∂i1δy(X
t,x
1,T)

∫ T

t

hi1(t1)

∫ t1

t

hi2(t2)dW
i2
t2
dW i1

t1
]

=
∑

i1,i2,i3

E[∂i3∂i2∂i1δy(X
t,x
1,T)]∫ T

t

[J0,x
t→T (J

0,x
t→t1

)−1σj1(t1, X
t,x,0
t1

)]i2hj1(t1)

∫ t1

t

[J0,x
t→T (J

0,x
t→t2

)−1σj2(t2, X
t,x,0
t2

)]i3hj2(t2)dt2dt1. (A.8)

43

Using the above calculation with (A.4), we have∑
i1

E[∂i1δy(X
t,x
1,T)εX

t,x,i1
2,T]

=ε
∑

i1,i2,i3,j1,k1,k2

E[∂i3∂i2∂i1δy(X
t,x
1,T)]C

(1),k1,k2

i1,i2,i3,j1
(t, T, x)

+ ε
∑

i1,i2,i3,j1,j2,k1,k2

E[∂i3∂i2∂i1δy(X
t,x
1,T)]C

(2),k1,k2

i1,i2,i3,j1,j2
(t, T, x)

+ ε
∑

i1,j1,j2,k1,k2

E[∂i1δy(X
t,x
1,T)]

1

2
1k1=k2

C
(3),k1,k2

i1,j1,j2
(t, T, x)

=ε
∑

i1,i2,i3,j1,k1,k2

E[δy(X
t,x
1,T)H(i1,i2,i3)(X

t,x
1,T , 1)]C

(1),k1,k2

i1,i2,i3,j1
(t, T, x)

+ ε
∑

i1,i2,i3,j1,j2,k1,k2

E[δy(X
t,x
1,T)H(i1,i2,i3)(X

t,x
1,T , 1)]C

(2),k1,k2

i1,i2,i3,j1,j2
(t, T, x)

+ ε
∑

i1,,j1,j2,k1,k2

E[δy(X
t,x
1,T)H(i1)(X

t,x
1,T , 1)]

1

2
1k1=k2C

(3),k1,k2

i1,j1,j2
(t, T, x). (A.9)

Therefore, we get (3.38) in Proposition 2 as:

U1,(1)(t, x) =E[g(X
t,x,ε

T)]

+ ε
∑

i1,i2,i3,j1,k1,k2

E[g(X
t,x,ε

T)H(i1,i2,i3)(X
t,x
1,T , 1)]C

(1),k1,k2

i1,i2,i3,j1
(t, T, x)

+ ε
∑

i1,i2,i3,j1,j2,k1,k2

E[g(X
t,x,ε

T)H(i1,i2,i3)(X
t,x
1,T , 1)]C

(2),k1,k2

i1,i2,i3,j1,j2
(t, T, x)

+ ε
∑

i1,,j1,j2,k1,k2

E[g(X
t,x,ε

T)H(i1)(X
t,x
1,T , 1)]

1

2
1k1=k2C

(3),k1,k2

i1,j1,j2
(t, T, x). (A.10)

Similarly, we have (3.40) in Proposition 3 and (3.42) in Proposition 4.
Next, we give the representation for V1,(1). The function (∂/∂x)U1σε given by

(∂/∂x)U1σε(t, x) = E[(∇g)(Xt,x,ε
T)(∂/∂x)Xt,x,ε

T]εσ(t, x)

=

∫
Rd

d∑
i=1

(∂ig)(X
t,x,0
T + εy)E[δy(G

t,x,ε
T)(∂/∂x)Xt,x,ε,i

T]dyεσ(t, x) (A.11)

is expanded as

V1,(1)(t, x)

=
1

ε
E[
∑
i1

g(X
t,x,ε

T)H(i1)(X
t,x
1,T , 1)][J

0,x
t→T]

i1 εσ(t, x)

+ E[g(X
t,x,ε

T)H(i1)(X
t,x
1,T , [J

1,x
t→T]

i1)] εσ(t, x)

+
∑
i1,i2

E[g(X
t,x,ε

T)H(i2)(X
t,x
1,T ,H(i1)(X

t,x
1,T , X

t,x,i1
2,T))][J0,x

t→T]
i2 εσ(t, x), (A.12)

where the followings are taken into account (e.g. by p.101,(2.29) and p.102, (2.30) of Nualart [30]
for (A.13) and (A.14), respectively): for G ∈ D∞ and i = 1, · · · , d

E[∂ig(X
t,x,ε

T)G] = E[g(X
t,x,ε

T)H(i)(X
t,x,ε

T , G)], (A.13)

H(i)(X
t,x,ε

T , G) = H(i)(X
t,x
1,T , G)/ε. (A.14)

Then, the similar calculation in (A.6) with (A.4) gives the representations (3.39) in Proposition
2, (3.41) in Proposition 3 and (3.43) in Proposition 4. □

44

Acknowledgements

The authors thank the referee for comments and suggestions to the previous version of the
paper.

This work is supported by JSPS KAKENHI (Grant Number 19K13736) and JST PRESTO
(Grant Number JPMJPR2029), Japan.

References

[1] Y. Ait-Sahalia, Testing continuous-time models of the spot interest rate, Rev. Finan. Stud.,
9, 385-426 (1996)

[2] C. Beck, F. Hornung, M. Hutzenthaler and A. Jentzen and T. Kruse, Overcoming the curse
of dimensionality in the numerical approximation of Allen-Cahn partial differential equations
via truncated full-history recursive multilevel Picard approximations, Journal of Numerical
Mathematics (2020)

[3] J. Berner, P. Grohs and A. Jentzen, Analysis of the generalization error: Empirical risk
minimization over deep artificial neural networks overcomes the curse of dimensionality in
the numerical approximation of Black–Scholes partial differential equations, SIAM Journal
on Mathematics of Data Science, 2(3), 631-657 (2020)

[4] S. R. Cheng, Highly nonlinear model in finance and convergence of Monte Carlo simulations,
Journal of Mathematical Analysis and Applications, 353, 531-543 (2009)

[5] W. E, J. Han and A. Jentzen, Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations, Com-
munications in Mathematics and Statistics, 5(4) 349-380 (2017)

[6] W. E, M. Hutzenthaler, A. Jentzen and T. Kruse, On multilevel Picard numerical approx-
imations for high-dimensional nonlinear parabolic partial differential equations and high-
dimensional nonlinear backward stochastic differential equations, J. Sci. Comput. 79(3),
1534-1571 (2019)

[7] W. E, J. Han and A. Jentzen, Algorithms for Solving High Dimensional PDEs: From Non-
linear Monte Carlo to Machine Learning, arXiv (2020)

[8] D. Elbrächter, P. Grohs, A. Jentzen and C. Schwab, DNN expression rate analysis of high-
dimensional PDEs: Application to option pricing, Constructive Approximation (2021)

[9] N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance,
Mathematical Finance, 7(1), 1-71 (1997)

[10] M. Fujii and A. Takahashi, Analytical approximation for non-linear FBSDEs with perturba-
tion scheme, International Journal of Theoretical and Applied Finance, (2011)

[11] M. Fujii and A. Takahashi, Solving backward stochastic differential equations with quadratic-
growth drivers by connecting the short-term expansions, Stochastic Processes and their Ap-
plications, 129(5) (2019)

[12] M. Fujii, A. Takahashi and M. Takahashi, Asymptotic expansion as prior knowledge in deep
learning method for high dimensional BSDEs, Asia-Pacific Financial Markets, (2019)

[13] A. Gnoatto, C. Reisinger and A. Picarelli, Deep xVA solver-A neural network based coun-
terparty credit risk management framework, SSRN (2020)

[14] P. Grohs, A. Jentzen and D. Salimova, Deep neural network approximations for Monte Carlo
algorithms, arXiv (2019)

[15] P. Grohs, F. Hornung, A. Jentzen and P. Zimmermann, Space-time error estimates for deep
neural network approximations for differential equations, arXiv (2019)

[16] M.B. Giles, A. Jentzen and T. Welti, Generalised multilevel Picard approximations, arXiv
(2020)

45

[17] J. Han, A. Jentzen and W. E, Solving high-dimensional partial differential equations using
deep learning. Proc. Natl. Acad. Sci., 115(34), 8505-8510 (2018)

[18] J. Han and J. Long, Convergence of the Deep BSDE method for coupled FBSDEs, Probability,
Uncertainty and Quantitative Risk, 5(5) (2020)

[19] J. Han, J. Lu and M.Zhou, Solving high-dimensional eigenvalue problems using deep neural
networks: A diffusion Monte Carlo like approach, Journal of Computational Physics, Volume
423, 15, December 2020, 109792 (2020)

[20] J. Han, L. Zhang and W. E, Solving many-electron Schrödinger equation using deep neural
networks, Journal of Computational Physics, Volume 399, 15, December 2019, 108929 (2019)

[21] F. Hornung, A. Jentzen and D. Salimova, Space-time deep neural network approximations
for high-dimensional partial differential equations, arXiv (2020)

[22] M. Hutzenthaler, A. Jentzen, T. Kruse, T.A. Nguyen and P.V. Wurstemberger, Overcoming
the curse of dimensionality in the numerical approximation of semilinear parabolic partial
differential equations, Proceedings of the Royal Society A, 476(2244) (2020)

[23] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd
ed., North-Holland, Amsterdam, Kodansha, Tokyo (1989)

[24] Y. Iguchi and T. Yamada, Operator splitting around Euler-Maruyama scheme and high order
discretization of heat kernels, ESAIM: Mathematical Modelling and Numerical Analysis, to
appear (2020)

[25] F. Jiang, H. Yang and T. Tian, Property and numerical simulation of the Ait-Sahalia-Rho
model with nonlinear growth conditions, Discrete and Continuous Dynamical Systems Series
B, 22(1), 101-113 (2017)

[26] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer (1991)

[27] N. Kunitomo and A. Takahashi, The asymptotic expansion approach to the valuation of
interest rate contingent claims, Mathematical Finance, 11, 117-151 (2001)

[28] N. Kunitomo and A. Takahashi, On validity of the asymptotic expansion approach in con-
tingent claim analysis, Annals of Applied Probability, 13(3), 914-952 (2003)

[29] Y. Li, J. Lu and A. Mao, Variational training of neural network approximations of solution
maps for physical models, Journal of Computational Physics, Volume 409, 15 May 2020,
109338 (2020)

[30] P. Malliavin and A. Thalmaier, Stochastic Calculus of Variations in Mathematical Finance,
Springer (2006)

[31] R. Matsuoka, A. Takahashi and Y. Uchida, A new computational scheme for computing
Greeks by the asymptotic expansion approach, Asia Pacific Financial Markets, 11, 393-430
(2006)

[32] R. Naito and T. Yamada, A third-order weak approximation of multidimensional Itô stochas-
tic differential equations, Monte Carlo Methods and Applications, vol 25 (2), 97-120 (2019)

[33] R. Naito and T. Yamada, An acceleration scheme for deep learning-based BSDE solver using
weak expansions, International Journal of Financial Engineering, (2020)

[34] D. Nualart, The Malliavin Calculus and Related Topics, Springer (2006)

[35] Y. Okano and T. Yamada, A control variate method for weak approximation of SDEs via
discretization of numerical error of asymptotic expansion, Monte Carlo Methods and Appli-
cations, 25(3) (2019)

[36] K. Shiraya and A. Takahashi, Pricing average and spread options under local-stochastic
volatility jump-diffusion models, Mathematics of Operations Research, 44(1), 303-333, (2019)

[37] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differ-
ential equations, Journal of Computational Physics, Vol 375, 1339-1364 (2018)

46

[38] A. Takahashi, An asymptotic expansion approach to pricing financial contingent claims,
Asia-Pacific Financial Markets, 6(2), 115-151 (1999)

[39] A. Takahashi, Asymptotic expansion approach in finance, Large Deviations and Asymptotic
Methods in Finance (P. Friz, J. Gatheral, A. Gulisashvili, A. Jacquier and J. Teichmann ed.),
Springer Proceedings in Mathematics & Statistics (2015)

[40] A. Takahashi and T. Yamada, An asymptotic expansion with push-down of Malliavin weights,
SIAM Journal on Financial Mathematics, 3, 95-136 (2012)

[41] A. Takahashi and T. Yamada, On error estimates for asymptotic expansions with Malliavin
weights: Application to stochastic volatility model, Mathematics of Operations Research,
40(3), 513-541 (2015)

[42] A. Takahashi and T. Yamada, An asymptotic expansion of forward-backward SDEs with a
perturbed driver, International Journal of Financial Engineering, 2(2) (2015)

[43] A. Takahashi and T. Yamada, A weak approximation with asymptotic expansion and multi-
dimensional Malliavin weights, Annals of Applied Probability, 26(2), 818-856 (2016)

[44] A. Takahashi and N. Yoshida, Monte Carlo simulation with asymptotic method, Journal of
the Japan Statistical Society 35(2), 171-203 (2005)

[45] K. Tokutome and T. Yamada, Acceleration of automatic differentiation of solutions to
parabolic partial differential equations: a higher order discretization, Numerical Algorithms,
Vol.86, 593-635 (2021)

[46] S. Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to heat
kernels, Annals of Probability, 15, 1-39 (1987)

[47] T. Yamada, An arbitrary high order weak approximation of SDE and Malliavin Monte Carlo:
application to probability distribution functions, SIAM Journal on Numerical Analysis, 57(2),
563-591 (2019)

[48] T. Yamada and K. Yamamoto, Second order discretization of Bismut-Elworthy-Li formula:
application to sensitivity analysis, SIAM/ASA Journal on Uncertainty Quantification, 7(1),
143-173 (2019)

[49] Y. Zang, G. Bao, X. Ye and H. Zhou, Weak adversarial networks for high-dimensional partial
differential equations, Journal of Computational Physics, 411 (2020)

[50] J. Zhang, Backward Stochastic Differential Equations, Springer (2017)

47

	F504-hyoshi3.pdf
	JCOMP_r2_submitted.pdf

