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Abstract

We present a menu-cost pricing model with a large but finite number n of firms. A
firm’s nominal price increase lowers other firms’ relative prices, thereby inducing further
nominal price increases. The distribution of these repricing avalanches converges as n !
1 to a mixture of Generalized Poisson Distributions (GPD) with an index of dispersion
= 1

(1�✓)2 , where ✓ is determined by the equilibrium of the continuous limit. We calibrate
the model to the U.S. experience during 1988–2005 and obtain a ✓ surprisingly close to
unity. Simulations show that a GPD fits well the distribution of avalanches but that, once
we account for the dynamics, the multiplier e↵ect derived from a firm adjusting prices
by paying menu costs is even larger. We also show that the model can account for the
positive relationship between inflation level and volatility that was observed in 1988–2005
in the U.S.
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1 Introduction

Monthly aggregate price changes exhibit chronic fluctuations but the aggregate shocks that
drive these fluctuations are elusive. Macroeconomic models often add stochastic macro shocks
such as technology shocks or monetary policy shocks to produce aggregate fluctuations but
empirical counterparts to these macro-level shocks have been identified largely as residuals.
Direct evidences for exogenous shocks are usually found at more disaggregated levels.

In this paper, we show that a state-dependent pricing model, with a large but finite
number of firms, is capable of generating large fluctuations in the number of firms that
adjust prices in response to an idiosyncratic (Calvo) shock to the cost of price adjustment of
a single firm. These fluctuations, in turn, cause fluctuations in aggregate price changes even
in the absence of aggregate shocks.

In the model, firms choose prices considering competitors’ prices and costs incurred when
adjusting prices. A firm’s upward repricing reduces all competitors’ relative prices, inducing
some of these competitors to also reprice. Thus pricing behavior exhibits complementarity in
equilibrium. We first treat a stationary equilibrium of a model in a continuum of firms, as it
is commonly done in the literature, and show that the strength of this propagation depends
on a parameter ✓, the ratio of the measure of firms that increase prices as a result of an
increase in prices by a set of firms of measure m, as m ! 0. However, this complementarity
does not generate any volatility of inflation, since in a stationary equilibrium the fraction of
firms that adjust prices is constant.1

We will argue however that the continuum model is a bad approximation to examine
the distribution of price changes when a large but finite number of firms are present. To
avoid the proliferation of state variables in the model with a finite number of firms as the
number of firms becomes large, we will assume that agents use the policy functions for the
continuum model.2 With a finite number of firms, the complementarity in price-changing
creates repricing avalanches. We show that if we consider an i.i.d. sample of n firms from the
stationary distribution of the continuum model, conditional on the (normalized) relative price
charged by the firm that receives a Calvo shock, the distribution of the number of firms that
change prices converges, as n ! 1, to a Generalized Poisson Distribution3, henceforth GPD,
with an index of dispersion (Variance/Mean) that equals 1

(1�✓)2 . Under stronger parametric

assumptions that are verified in our calibrated example, this convergence holds in L1, and

1For example, Caplin and Spulber [22], Dotsey et al. [29], and Golosov and Lucas [35] present a state-
dependent pricing model with a continuum of firms similar to ours. The models in these papers share the
same feature of complementarity of price setting in equilibrium. However, complementarity was not the main
issue studied in their papers.

2This is in the same spirit as the strategy used by Krusell and Smith [42], or in set-ups similar to ours, by
Caballero and Engel [20] and Alvarez and Lippi [4].

3A discrete value random variable has a GPD with parameters ✓0 and ✓ > 0 if Px = ✓0(✓0+✓x)x�1
e
�✓0�✓x

/x!
(e.g. Consul and Famoye [26, Chapter 9]).
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as a consequence the index of dispersion of the limit GPD is a lower bound to the index of
dispersion of the distribution of price change avalanches when n is large. Hence as ✓ ! 1 the
index of dispersion of the distribution of the number of firms that reprice ! 1.

We calibrate our model so that the stationary equilibrium for the continuum model re-
produces the average inflation observed in the US in 1988–2005, the observed volatility of
inflation at this average inflation and targets from Nakamura and Steinsson [48] and Golosov
and Lucas [35]. To accommodate price decreases, we introduce a generalization of the model
that allows for productivity shocks, and possibly di↵erent menu costs to increase or decrease
prices.4 Using the theoretical formula for ✓, we show that for the calibrated values of the
parameters we obtain a ✓ surprisingly close to 1, even though inflation rates are modest. In
addition, simulations of histories, using our calibrated values, produce a distribution of total
daily avalanches that is well fitted by a GPD.5 However the ✓̂ implied by the fitted GPD is
substantially larger than the ✓ obtained when we fit the stationary distribution to the tar-
get data, or equivalently, the index of dispersion implied by the equilibrium distribution of
avalanches obtained from the calibration is substantially smaller than the index of dispersion
in the distribution of simulated histories of avalanches. We argue that, in the simulations of
the dynamics, the distribution of relative prices fluctuates around the stationary distribution
and that this fluctuation of the distribution of relative prices generates the excess dispersion.
Our simulation also shows that, using the calibrated values, we are able to reasonably fit the
observed time series relationship between average inflation and volatility of inflation in the
U.S., and in particular, the observed positive association between level and volatility of in-
flation. First observed by Okun [55], this positive correlation has been confirmed repeatedly,
e.g., by Judson and Orphanides [37] or Dincer and Eichengreen [28]. In addition, the positive
association between volatility and trend inflation is used to justify central banks’ choice of
low inflation targets (see, e.g., Fischer [30], Briault [17], and Billi and Kahn [13]).

The rest of the paper is organized as follows. Section 2 reviews the related literature.
Section 3 builds a tractable state-dependent pricing model with linear production and a
continuum of firms, and solves for the pricing policy and the stationary distribution of relative
prices. We characterize rigorously the pricing policy and the stationary distribution using
verification theorems from the theory of optimal impulse control (e.g. Øksendal and Sulem
[54]). We then show that, for each constant rate of inflation, there exists a unique real-wage
level that produces a candidate stationary equilibrium, and that this candidate is an actual
equilibrium, provided menu costs are not excessive or that firms have a su�ciently large
cost of quitting, or that the inflation rate is high enough.6 Thus we establish, in particular,

4In the online appendix we show the existence and uniqueness of a stationary equilibrium and characterize
the equilibrium stationary distribution for this generalized model.

5This helps to explain the good fit by a GPD for several distributions of daily price changes reported by
the billion prices project (Cavallo and Rigobon [24]) that is documented in Leal et al. [43].

6Of course there is no reason to expect that menu costs are independent of the rate of inflation. As the
rate of inflation becomes larger, economies often adopt strategies to minimize menu costs such as indexation
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the existence of a unique stationary equilibrium for a state-dependent pricing model with
endogenous real wage and without appealing to quadratic approximations.

We also derive several comparative statics results and, in particular, we show that for
inflation rates that are su�ciently large, the equilibrium real wage rate declines when inflation
increases. Thus our model provides a theoretical justification for the negative relation between
real wage and inflation in high inflation economies that is documented by Braumann [16].
Section 3 also contains the construction of the contagion parameter ✓. In Section 4 we consider
a model with a finite number n of firms, where agents use the policy functions for the
continuum model. We characterize the limit distribution of avalanches and establish the
convergence results. In addition, since data on price changes are typically not available
continuously, we provide a formula to decompose the dispersion of the number of avalanches
in a finite interval into a component associated to the fluctuations in the number of Calvo
shocks and another component associated to the fluctuations on the size of the avalanches
that follow a Calvo shock. This decomposition allows one to evaluate the importance of
fluctuations on the size of avalanches in determining the number of price changes at the
available data frequency. Section 5 contains the calibrated example. Section 6 concludes.

2 Related Literature

A recent literature demonstrates that the micro shocks may produce macro shocks in an
economy in which some firms or industries are very large. Gabaix [32], an early contributor,
dubbed this mechanism the “granular hypothesis.” Acemoglu et al. [1] show that input-output
relationships can produce industries that have a very large influence in the overall economy.
The granular hypothesis implies that the origin of aggregate shocks should be identifiable as
a set of micro shocks on large firms or key industries.7 Nonetheless, estimates by Gabaix [32]
or Carvalho and Grassi [23] leave the majority of aggregate shocks still unexplained.

Central banks in developed economies have commonly targeted annual inflation rates
around 2%; even researchers who advocate higher inflation targets do not suggest inflation
rates above 4% (e.g. Ball [10]), because the higher inflation rate would bring high social costs.
In addition to the redistribution e↵ects of inflation, greater dispersion of relative prices and
greater volatility or uncertainty of inflation rates are commonly cited as cost of high inflation
rates (e.g. Fischer and Modigliani [31]). The connection between the relative price dispersion
and inflation is well established and its welfare implications are extensively discussed (see,
e.g., Golosov and Lucas [35]; Burstein and Hellwig [18]; Nakamura and Steinsson [49]). In

or dollarization (see e.g. Shiller [60]).
7In a recent paper, Moran and Bouchaud [47] examine the e↵ect of replacing the Cobb-Douglas produc-

tion function in [1] by a CES with “small” degree of substitutability, while not assuming the existence of
“key industries.” They show that near critical parameter values these networks generate power-tailed size
distributions of firms and that small idiosyncratic shocks cause aggregate output losses that obey a power law
distribution.
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contrast, the positive association between inflation level and volatility has been less explored
in state-dependent pricing models.8

The impact of trend inflation and its implication for volatility have been investigated
mostly in time-dependent pricing models (see Ascari and Sbordone [6] for a survey). However,
the lack of microfoundation for repricing frequency in the time-dependent models has been a
serious limitation for policy analysis. The state-dependent pricing model, which provides a
microfoundation, has been beyond analytical analysis. The model loses tractability quickly,
unless one employs linear-quadratic approximation or exogenous real wage.

Our state-dependent pricing model is similar to Dotsey et al. [29], Golosov and Lucas [35],
and Gertler and Leahy [34], which rely heavily on numerical results. These models, as well
as other state-dependent pricing models (Sheshinski and Weiss [59]; Caplin and Spulber [22];
Bénabou and Konieczny [12]; Caplin and Leahy [21]; Danziger [27]; Ahlin and Shintani [2]),
and the broader literature on (S,s) economies (Caballero and Engel [19]; Khan and Thomas
[39]; Stokey [63]), use a continuum-of-firms setup and do not examine the stochastic nature
of firms’ interactions that we emphasize. Proposition 7 in Alvarez and Lippi [4] justifies the
simplifying assumption of Caballero and Engel [20] of using steady state decision rules in
the presence of stochastic deviations from the steady state, an assumption that is similar in
nature to our assumption that, in the economy with n firms, agents use the policy function
of the continuum model.

The state-dependent pricing models motivated empirical analyses on the intensive and
extensive margins of price adjustments with micro-level data including Klenow and Kryvtsov
[41] and Nakamura and Steinsson [48]. Midrigan [45] extends the menu-costs model to a
multiproduct setting in which repricing exhibits economies of scope, and shows that this
extension predicts larger real e↵ects of monetary policy shocks than Golosov and Lucas [35].9

Gagnon [33] documents that a higher level of inflation is associated with a higher frequency of
price increases—a key mechanism to generate large endogenous price fluctuations in our model
when the number of firms is finite. Alvarez et al. [3] review and extend several comparative
statics results in a state dependent model in the Golosov-Lucas style, and confront them
to Argentinian data. In particular, they report that the variance of inflation during high
inflation periods is explained more by the extensive margin than the intensive margin, which
is consistent with our model’s prediction.

8Earlier work has focused on the possibility that monetary authority chooses the combination of high-level,
high-volatility inflation (see Ball [8] and references therein). A contrasting New Keynesian view was provided
by Ball et al. [9]. In their model, a high level of inflation induces frequent repricing and more flexible aggregate
prices, and exogenous demand shocks generate large volatility of aggregate price and small volatility of output.
Hence high inflation would have a positive impact on social welfare.

9Although much of the literature on menu costs assumes, as we do, the presence of competitive or monopo-
listically competitive sectors, models with other forms of strategic interactions that generate complementarity
have also been developed and tested (e.g. Slade [62]; Nakamura and Zerom [50]; Neiman [51]; Kano [38];
Mongey [46]).
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3 Model with a continuum of firms

In this section we exposit a dynamic continuous-time general equilibrium model with a con-
tinuum of firms that will underlie our analysis of the case with a finite number of firms. We
consider a continuum of intermediate goods indexed by i 2 [0, 1] and a competitive sector of
final goods producers with constant returns to scale technology such that aggregate output
of final goods is:

Yt =

✓Z 1

0
(yit)

(⌘�1)/⌘di

◆⌘/(⌘�1)

, (1)

where yit is the amount of intermediate good i employed by the final goods production sec-
tor and ⌘ > 1 is the substitution elasticity. Given prices P for the final good and P i for
intermediate good i, i 2 [0, 1], the demand of the final goods sector for good i satisfies:10

yit = (pit)
�⌘Yt, (2)

where pi = P i/P. Competition and constant returns to scale in the final-goods industry
insures that

1 =

Z 1

0
(pit)

1�⌘di. (3)

Alternatively we may think each good i as a final good with a nominal price P i
t , Yt as the

consumption-basket and Pt as the CPI. Equation (3) then defines the CPI.
Each firm i produces output with a linear technology with labor being the single input,11

yit = lit. (4)

Firm i fixes a price P i
t at time t and must satisfy demand, that is hire a labor force:

lit = (pit)
�⌘Yt. (5)

The net income that firm i obtains from production when it sells output at price pi, wages
are W and final good output is Y is thus, measured in consumption-goods equivalent,

Z(pi, w, Y ) := piyi � wli = ((pi)1�⌘ � w(pi)�⌘)Y, (6)

where w = W/P.

10Formally this demand equation needs only to be satisfied for a set of full measure. We will not explicitly
distinguish between equalities or inequalities that hold for almost all i versus for all i.

11In Section 5 and the online appendix we consider a model in which each firm i has two possible levels of
productivity t, a

i

t 2 {aL
, a

H}, with a
L
< a

H
.
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The specification of demand in equation (2), widely used in this literature, implies, as
shown in equation (6), that a firm’s profits are fully determined by its own price and produc-
tivity, and aggregate variables. In particular, a firm is equally a↵ected by the price choice of
any other firm.

Inflation is measured by the price of the final good that is:

⇡ :=
dPt

Pt

. (7)

If P i
t is constant, the relative price of firm i would fall at the rate �⇡, or dpit = �⇡pitdt.
Price changes require payment of a menu cost which at t equals �+Yt units of the final

consumption good if the price change is positive, and ��Yt if the price change is negative.
The proportionality of menu costs to final-good output allows us to reduce the number of
state variables in the firm’s optimization problem. In a pioneering paper in this literature,
Sheshinski and Weiss [59] refer to “costs associated with the transmission of price information
to the consumers and with the decision process itself,” which suggests �+ = ��. The earlier
literature on menu costs emphasizes the costs of transmitting price information, while some
of the more recent literature on price adjustments (e.g. Mankiw and Reis [44]; Woodford [65];
Alvarez et al. [5]) concentrates on the cost of acquiring information for a price-change decision.
In all cases, buyers are presumed to be fully informed on all prices, thus ignoring search
motivations of buyers, and to have a purely cognitive reaction to price changes, represented
by a static demand function. Rotemberg [57] argues that consumers also have emotional
reactions to price changes. In fact, in Blinder et al. [15] survey 21% of US executives polled
answered that they did infrequent price changes because “price changes would antagonize
customers” and only 14% mentioned “costs associated with changes in prices.” Once one
considers menu costs in a less literal manner and includes negative reaction from buyers, it is
natural to consider also the case when �+ > ��. Thus we will assume �+ � ��. In fact, as we
will show later, when ⇡ > 0, �� has a minor role in determining the stationary equilibrium
in the model of a continuum of firms. We introduce the possibility of asymmetry in menu
costs because it will play a role in the case of a finite but large number of firms.

Firms are also subject to a Calvo shock that is determined by a Poisson process with
rate µ. When a Poisson time arrives, the firm is allowed to change prices at a zero-cost. We
assume that the Poisson shocks are independent across firms.12

The representative household has utility function,

E

Z 1

0
e�⇢t

✓
U(ct, Nt) + ◆

✓
Mt

Pt

◆◆
dt

�
, (8)

12Although this independence is generally assumed in economics, there is no mathematically sound way to
construct this continuum of independent processes. However, as Sun [64] showed, one can rigorously construct
a continuum of processes such that both the Fubini property and an exact law of large numbers that eliminates
idiosyncratic randomness hold. This is all that is needed in what follows.
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where ct is the amount consumed at t, Nt the amount of labor supplied by the household
and Mt is the nominal balance held by the household. We assume that the utility func-
tion is strongly concave on c and convex in N, that U satisfies Inada conditions and that
@2U(c,N)/@c@N  0 to ensure the existence and uniqueness of a steady state equilibrium. In
addition, ◆ is increasing and strictly concave. The representative household owns all firms and
receives a process Dt with D0 = 0 corresponding to the cumulative profits generated by the
set of intermediate-goods firms. For simplicity we assume that firms’ shares are non-tradable
but it will become clear that one could calculate prices for shares that would yield no trading
in equilibrium. Thus writing mt = Mt/Pt, the household’s budget constraint is:

dmt = wtNtdt+ dDt + (Rt � ⇡t)mtdt+ dTt � ctdt (9)

where Rt is the nominal interest rate paid on money holdings and Tt are cumulative real
lump-sum transfers given by the monetary authorities to households.

3.1 Stationary equilibrium: definition

In a stationary equilibrium, prices grow at a constant rate ⇡ � 0,13 which equals the rate of
growth of the money supply Mt. The monetary authorities also choose a constant nominal
rate of interest on cash balances R and make the real lump-sum transfers necessary to balance
its budget constraint, that is:

dTt = (⇡ �R)mdt. (10)

This equation also guarantees that dTt/dt is well defined. In addition, in a stationary equi-
librium, the distribution of relative prices is stationary and all real quantities—output Ȳ ,
consumption c̄, real wages w̄, employment N̄ , and the fraction of firms lowering (raising)
prices and paying menu costs between t and t+ dt, ��dt (�+dt) are constant. Hence aggre-
gate dividends are also a constant. Thus consumer’s optimization problem yields the HJB
equation:

⇢V(m) = sup
{c,N}


U(c,N) + ◆(m) +

✓
wN +D + (R� ⇡)m+

dTt
dt

� c

◆
V 0(m)

�
. (11)

Thus if U satisfies Inada conditions,14

V 0(m) = Uc(c,N) = �UN (c,N)

w

and in a stationary equilibrium,

⇢V 0(m̄) = ◆0(m̄) + (R� ⇡)V 0(m̄)

13The case where ⇡ < 0 can be examined symmetrically.
14If U is separable and linear in N as in Golosov and Lucas [35], Inada conditions with respect to c su�ce.
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which requires ⇢ > R� ⇡. In particular, in a stationary equilibrium

◆0(m̄) = (⇢�R+ ⇡)Uc(c̄, N̄) = (R� ⇢� ⇡)
UN (c̄, N̄)

w̄
.

In a stationary equilibrium where the rate of inflation is ⇡ and c̄ > 0, if F denotes the
stationary probability distribution of prices, we must have:

⇡ =
dPt

Pt

(stationary inflation) (12)

1 = EF [p1�⌘] (zero-profit final good) (13)

N̄ = EF [p�⌘Ȳ ] (labor market clearing condition) (14)

c̄ = Ȳ (1� �+�+ � ����)(consumption equals output minus menu costs) (15)

w̄ = �u2(c̄, N̄)

u1(c̄, N̄)
. (intra-temporal optimal choice) (16)

In addition, if firms optimize the present value of profits, taking w̄, Ȳ and the discount rate
⇢ as fixed, and the initial joint distribution of firms’ prices is F, this distribution is preserved
and �+ (��) firms increase (decrease) prices and pay menu costs per unit of time.

3.2 Stationary equilibrium: firm’s optimization problem

Stationarity of equilibrium and the Poisson character of the Calvo shocks guarantee that the
problem a firm faces is stationary. We will examine a symmetric equilibrium where every firm
makes the same choices conditional on their current price. The firm must decide a stopping
time T 0 for paying the menu costs of a price change, conditional on not having a Calvo shock
before T 0, and the new relative price level. It must also decide on the price it will charge if it
receives a Calvo shock. Given the stationarity of the problem and the fixed cost of repricing,
the optimal price to which a firm will move, p0, should be independent of the reason for
repricing or the price just before the repricing. In a stationary equilibrium any firm that
charges prices p has net real income from production, normalized by final goods output Ȳ :

z(p) :=
Z(p, w̄, Ȳ )

Ȳ
= p1�⌘ � w̄p�⌘.

The function z(·) has a unique maximum at p̂ := w̄(⌘/(⌘ � 1)) and it is increasing for p < p̂
and decreasing for p > p̂. Furthermore z(p̂) > 0.

Write v(p) = V (p)/Ȳ , where V (p) is the expected maximum discounted profits for a firm
that charges p at time zero.

Suppose that in a stationary equilibrium at some random time ⌧ a Calvo shock arrives.
Then the firm should choose p⌧ = argmax v(p). Suppose now that at a random time T 0 the
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firm decides to pay menu costs. If the firm chooses to increase price then it faces no restriction
and would always choose pT 0 = argmax v(p), independent of the current price. On the other
hand if it chooses to lower prices it would choose pT 0 = argmax{pp

T 0-} v(p). Since �
� > 0

the optimal choice of pT 0 , if it exists, is interior in this stationary equilibrium. Thus

v(p) = sup
p0,T 0,p00p

T 0-

E0

(Z
T

0^⌧

0
e�⇢tz(pt)dt+ 1⌧<T 0e�⇢⌧v(p0)

+ 1T 0<⌧e
�⇢T

0
max{v(p0)� �+, v(p00)� ��}

)
. (17)

This is an impulse control problem as in e.g. Øksendal and Sulem [54]. By slightly abusing
notation we will refer to v as the value function. We will rigorously prove the existence
of a stationary equilibrium by first showing that conditional on the real wage rate w we
can construct the value function v(p), the associated optimal policy, a unique stationary
distribution F (p) and the associated constant rate of firms that pay menu costs in order to
raise prices, �+(w). We will also show that no firms with prices in the support of F pay menu
costs to lower prices, that is ��(w) = 0. Proposition 2 provides su�cient conditions on the
pair (⇡, �+) so that there exists a unique wage rate w such that v(p) � 0 in the support of
F, and (w,F,�, c,N, Y ) solves (13)–(16), that is, a stationary equilibrium obtains.

A standard argument (e.g. Shiryaev [61, Theorem 21, p.91]) shows that we can restrict
ourselves to feedback controls, that is stopping times T 0 such that T 0 = 0 if and only if
p0 2 S := S1 [ S2, where S1 := {p 2 (0,1) : v(p) = supp0 v(p

0) � �+} and S2 = {p 2
(0,1) : v(p) = supp0p v(p

0)� ��}. Taking limits in the dynamic programming equation (17)
we obtain:

z(p)� ⇢v(p)� ⇡pv0(p) + µ[sup
p0

v(p0)� v(p)]  0. (18)

The left-hand side includes the profit at time zero and the expected drift of e�⇢tv(pt, a) taking
into consideration the fact that, if a Calvo shock occurs, the value would jump to supp0 v(p

0),
and the rate µ associated to the Poisson process of Calvo shocks. In addition, since stopping
immediately is always a choice v(p) � max{v(p0)� �+, v(p00)� ��}. Notice that if p 62 S then
necessarily

z(p)� ⇢v(p)� ⇡pv0(p) + µ[sup
p0

v(p0)� v(p)] = 0, (19)

so the function v satisfies the quasi-variational inequality :

max

(
z(p)� ⇢v(p)� ⇡pv0(p) + µ[supp0 v(p

0)� v(p)];
max{supp0 v(p)� �+, supp00p v(p

00)� ��}� v(p)

)
= 0. (20)

To characterize the value function, we start by showing that there exists a unique solution
satisfying appropriate boundary conditions to equation (19), and construct a candidate value
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function using this solution. We then apply the procedure in Øksendal and Sulem [54, Chapter
9],15 to show that the candidate is actually the value function.

Lemma 1. Suppose that R(·) solves

z(p)� ⇢R(p)� ⇡pR0(p) + µ

 
sup
p0�p̂

R(p0)�R(p)

!
= 0. (21)

Then:

(a) For each �+ > 0 there exists at most one pair (p, p⇤), with p  p̂  p⇤ with p⇤ > p that
solves,

R0(p) = R0(p⇤) = 0 (22)

R(p) = R(p⇤)� �+. (23)

(b) If p (p⇤) exists it is a global minimum of R(p) in (0, p̂) (maximum in (p̂,1) resp.).

(c) Consequently, if p⇤ exists,

R(p⇤) =
z(p⇤)

⇢
, (24)

and if p and p⇤ exist,

�+ = R(p⇤)�R(p) =
z(p⇤)� z(p)

µ+ ⇢
. (25)

Proof. First note that if R solves (21) then:

z0(p)� (⇡ + µ+ ⇢)R0(p)� ⇡pR00(p) = 0. (26)

Thus whenever R0(p) = 0 and p < p̂, R00(p) > 0. Hence there is at most one critical point
in (0, p̂) and it is a global minimum in (0, p̂). Similarly for p 2 (p̂,1) there is at most one
critical point and it is a global maximum in (p̂,1). (c) is obvious. 2

The proof of the next proposition, which characterizes the value and policy functions, is
in the appendix A.1.

Proposition 1. Fix w > 0 and �+ > 0. Then

(a) There exist a unique function R(p) and points p and p⇤ (which depend on (w, �+)) that
satisfy equations (21)–(23).

15A major di↵erence between our set up and the one in [54] is the absence of a di↵usion term, which allows
for less smoothness of the candidate value function.
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(b) The following equation holds:

w =
⌘ � 1

⌘

'(p⇤/p, (µ+ ⇢)/⇡ + 1� ⌘)

'(p⇤/p, (µ+ ⇢)/⇡ � ⌘)
p (27)

with
'(q, x) := (qx � 1)/x.

(c) v(p) given by:

v(p) =

8
<

:

R(p⇤)� �+ for p < p
R(p) for p 2 [p, p⇤]
max{R(p), R(p⇤)� ��} for p > p⇤

is the value function.

(d) The optimal policy is: If pt- 2 S1 = {p : v(p) = R(p⇤) � �+}, then pay the menu cost
(�+) and set pt = p⇤, and if pt- 2 S2 = {p : v(p) = R(p⇤) � ��}, then pay the menu
cost (��) and set pt = p⇤. Otherwise, unless you receive a Calvo shock, do nothing. If
a Calvo shock arrives, move to p⇤.

The characterization of the optimal policy in Proposition 1 implies that [p, p⇤] is an
absorbing set. In fact if:

p† := inf{p : p 2 S2},

and pi0  p or pi0 � p† then the firm immediately pays the applicable menu cost and moves

to p = p⇤. If pi0 2 (p⇤, p†) then the firm waits for the price to drift to p⇤. Furthermore, if
pit 2 (p, p⇤] then:

dpit = �⇡pitdt+ µ(p⇤ � pit)dt+Mt,

where Mt is a martingale.
In addition, if h(p, t) denotes the time t density of prices for firms, then h satisfies the

forward equation:
@

@t
h(p, t) =

@

@p
[⇡ph(p, t)]� µh(p, t). (28)

Corollary 1. (a) In a stationary equilibrium, the distribution of firm’s prices has support
[p, p⇤].

(b) The stationary distribution of prices has density:

f(p) =
pµ/⇡�1

pµ/⇡'(p⇤/p, µ/⇡)
. (29)
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(c) In the stationary equilibrium firms choose to pay menu costs only when increasing prices
(� = �+). The rate of firms paying menu costs, �, satisfies:

� =
µ

(p⇤/p)µ/⇡ � 1
. (30)

Proof. Equation (29) follows from (28) and Item (a). Moreover, we obtain (30) from � =
f(p)⇡p = ⇡/'(p⇤/p, µ/⇡) = µ/((p⇤/p)µ/⇡ � 1). 2

Notice that the stationary distribution does not depend on �� and neither does the value
function for p’s in the support of the stationary distribution. The parameter �� only a↵ects
the value function v(p) for p > p⇤. This is because in a stationary equilibrium, the rate of
change of the price of the final good is always a constant ⇡ � 0.

Remark 1. We have assumed that firms do not choose to exit the market at any p. This
assumption can be justified if we assume that firms must pay an exit cost ce > �+. Note that
for a given inflation rate ⇡ and any ✏ > 0, a firm can choose to move to a price p✏ high
enough so that expected discounted profits starting at p✏ exceed �✏. Choosing ✏ < ce� �+ this
strategy yields higher profits than exiting.

3.3 The equilibrium wage rate

In the previous section we showed that given w we can find a vector (p
w
, p⇤w, fw(·),�w) that

characterizes the behavior of the intermediate goods firms. However, a necessary condition
for equilibrium is that the average price of intermediate goods must be one, that is, equation
(13) must hold. In this section, we show that given the parameters of the model (⌘, ⇢, µ, �+)
and a rate of inflation ⇡ there is exactly one w such that (13) holds. In addition, we show that
given this candidate equilibrium value of w we can choose uniquely a vector (m, c,N, Y ) such
that (w, p

w
, p⇤w, fw,�w,m, c,N, Y ) solve equations (13)–(16) that characterize a stationary

equilibrium. In what follows, it is useful to introduce the notation:

q :=
p⇤

p
> 1.

Thus q denotes the proportional increase in relative price when a firm pays the menu cost.
With this notation, we may rewrite the zero-profit condition for the competitive firms, equa-
tion (13), as:

1 =

Z
p1�⌘f(p)dp =

'(q, µ/⇡ + 1� ⌘)

'(q, µ/⇡)
p1�⌘ (31)

and rewrite the value-matching condition (25) as:

(⇢+ µ)�+ =

✓
(q1�⌘ � 1)� w

p
(q�⌘ � 1)

◆
p1�⌘. (32)
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The inverse of the “minimum markup” p/w satisfies (27), that is,

w

p
=
⌘ � 1

⌘

'(q, (µ+ ⇢)/⇡ + 1� ⌘)

'(q, (µ+ ⇢)/⇡ � ⌘)
. (33)

Thus, equations (31)–(33) determine three unknowns (w, p, q). By substituting (33) into (32),
and substituting out p1�⌘ from (31), we obtain:

⌘ � 1

(µ+ ⇢)�+
=

'(q, µ/⇡ + 1� ⌘)

'(q, µ/⇡)'(q, 1� ⌘)

✓
'(q, (⇢+ µ)/⇡ + 1� ⌘)

'(q, (⇢+ µ)/⇡ � ⌘)

'(q,�⌘)
'(q, 1� ⌘)

� 1

◆�1

. (34)

Lemma 2. There exists a unique positive vector (q, p, w) 2 R3 with q > 1 that solves (31)–
(34). If � given by (30) satisfies ��+ < 1, then there exists a unique positive vector (c̄, N̄ , Ȳ )
satisfying equations (14)–(16).

Proof: See Appendix A.3.
The next lemma, an application of Fubini’s Theorem, will be useful to produce su�cient

conditions for ��+ < 1 to hold.

Lemma 3. If (q, p, w), with q > 1 solves (31)–(34) and

EF v(p) > 0,

then ��+ < 1.

Proof: See Appendix A.4.
The following proposition states su�cient conditions for ��+ < 1 to hold, and hence for

existence of a (stationary) equilibrium.

Proposition 2. (a) For any ⇡̄ > 0 there exists a �̄ such that for any ⇡  ⇡̄ and �+  �̄,
v(p) � 0. As a consequence, ��+ < 1 and thus there exists a stationary equilibrium
(p, p⇤, w,�, c,N, Y ).

(b) For any �+, if ⇡ is large enough then ��+ < 1, and thus there exists a stationary
equilibrium (p, p⇤, w,�, c,N, Y ).

Proof: See Appendix A.6.
Proposition 2 establishes that an equilibrium exists provided the rate of inflation and the

cost of price-changing are not too large. It also establishes that given any fixed cost of price
adjustment, if inflation is high enough an equilibrium exists. Unfortunately the Proposition
does not establish existence of an equilibrium for an arbitrary pair (�+,⇡).

In this model, the real wage is a↵ected by the inflation rate through optimal markup
behavior, even though the marginal product of labor is constant due to the linear production
technology. We can show that the stationary equilibrium satisfies the following properties:
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Proposition 3. (a) log q grows asymptotically linearly in ⇡. In particular, the optimal
stopping time satisfies T ⇤ = (log q)/⇡ ! (log(1 + �+⌘µ))/µ as ⇡ ! 1. Moreover,
� = µ/(eµT

⇤ � 1) ! 1/(�+⌘) as ⇡ ! 1.

(b) p⇤ increases unboundedly as ⇡ increases.

(c) w decreases as ⇡ increases for su�ciently large ⇡.

Proof: See Appendix A.7.
The repricing size increases in ⇡ as in Sheshinski and Weiss [59], and the intuition is clear:

a higher inflation would cause more frequent repricing, inducing a firm to adjust its price by
a greater intensive margin in order to gain more time until the next repricing. Item (a)
establishes the sharper result that the size of repricing is asymptotically linear on inflation.
Item (b) implies that the target price is increasing in the inflation ⇡. Combined with the
next claim, (c), this implies that, in the range of high inflation rates, a higher inflation
induces firms to choose a higher markup when they move to p⇤. Item (c) states that, when
the inflation rate is su�ciently high, the real wage decreases as inflation increases. When
the inflation is higher, the relative price dispersion and the resulting ine�ciency loss in the
production sector are larger. Thus, in an equilibrium of the good and labor markets, as the
inflation rate increases, the real wage decreases. To our knowledge, this is a novel result in
a literature where most analytical results are obtained with an exogenous real wage or using
quadratic approximations.

Next, we consider the case when menu costs fall as inflation increases. For constants
�(0) > 0 and �� > 0, let �+(⇡) = �0e���⇡. Proposition 4 states the existence of an equilibrium
for any ⇡ � 0 when �(0) is small and �+(⇡) decreases fast enough.

Proposition 4. There exists a �̄+ such that for every �(0) < �̄+ there exists a �0 such that,
for �� � �0, there exists a stationary equilibrium for the parameters (�+(⇡),⇡) for ⇡ � 0.

Proof: See Appendix A.8.

3.4 A measure of complementarity

In this section we introduce measures of the complementarity of price-adjustments across
firms. As we discuss below, these measures of complementarity play an important role in
determining moments of aggregate fluctuations in an economy with a finite number of firms.

It is convenient to define a relative log price chosen by firms in the support of the stationary
distribution,

s(p) :=
log p� log p

log p⇤ � log p
2 [0, 1].

Conversely, we may define
p(s) := qsp.
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Using (29) one obtains the stationary density of s,

g(s) =
log p⇤ � log p

'(p⇤/p, µ/⇡)

✓
p⇤

p

◆µs

⇡

=
log q

'(q, µ/⇡)
q(µ/⇡)s. (35)

For 0 < s < 1 and for each ⌫  1�s

log q , let

ms(⌫) :=

Z
s+⌫/ log q

s

g(⌧)d⌧,

that is, ms(⌫) is the measure, under the stationary distribution, of firms that charge prices
between p(s) and e⌫p(s).

Suppose we perform the following thought experiment. All firms i with s  si  s +
⌫/ log q reprice (set p = p⇤). This increases the price level P to a new level P 0 that can be
computed using the zero-profit condition (13) as:

P 0

P
=

 Z
p(s)

0
p1�⌘f(p)dp+ (p⇤)1�⌘ms(⌫) +

Z
p
⇤

p(s)e⌫
p1�⌘f(p)dp

!1/(1�⌘)

> 1.

Let
⌫ 0s(⌫) = log(P 0/P ).

If firms expect that the equilibrium stationary dynamics prevails, and ⌫ is small enough,
all firms with original prices p such that log p  log p+ ⌫ 0s(⌫) would then raise their price to
p⇤. Thus if ⌫ is small enough the measure of firms that respond to the first round of repricing
is:

m0
s(⌫) :=

Z
⌫
0
s(⌫)/ log q

0
g(⌧)d⌧.

Let

✓0(s) := lim
⌫!0

m0
s(⌫)

ms(⌫)
.

For each s we can think of ✓0(s), as the density per unit of time of the number of firms that
adjust their prices if the firm at s changes its price, presumably because this firm received a
Calvo shock. In Appendix A.9 we show that

✓0(s) =
q1�⌘ � q(1�⌘)s

(1� ⌘)'(q, 1� ⌘ + µ/⇡)
, (36)

which decreases with s. In Appendix A.9 we show that the average ✓0(s), ✓0, satisfies:

✓0 :=

Z 1

0
✓0(s)g(s)ds =

'(p⇤, 1� ⌘)

'(q, µ/⇡)
. (37)
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Of particular interest is

✓ := lim
s!0

✓0(s) =
'(q, 1� ⌘)

'(q, 1� ⌘ + µ/⇡)
. (38)

Whereas a price change for a firm with s > 0 must be the result of a Calvo shock, in
the stationary equilibrium there is a constant positive density of firms repricing, because
they reach s = 0 and choose to pay menu costs. The parameter ✓ is similar to the rate of
reproduction in epidemiological models and is a measure of complementarity of menu-cost
payments that we observe in equilibrium. It follows from equation (31) that ✓ < 1, since, by
Lemma 4(b) in Appendix A.2, '(q, x) is increasing on x if q > 1. Thus the payment of menu
costs has a (finite) multiplier e↵ect

1

1� ✓
.

In Appendix A.9 we show that

⇡ =
µ

1� ✓
'(p⇤, 1� ⌘), (39)

which relates the rate of inflation to the multiplier e↵ect. Equation (39) shows that ✓ ! 1
as ⇡ ! 1, since '(p⇤, 1� ⌘) < 1/(⌘� 1). It also implies 1/(1� ✓) > (⌘� 1)⇡/µ, that is, the
multiplier e↵ect is bounded below by a linearly increasing function of ⇡. In Appendix A.10
we also show that lim⇡!0 ✓(⇡) = 0 and that there exists a ⇡0 such that ✓(⇡) is non-decreasing
for ⇡ � ⇡0.

Finally, combining (30), (37), and (39) yields

� =
µ✓0
1� ✓

. (40)

This equation shows that the measure of firms that pay menu costs at each instant is the
product of three terms: the rate of Calvo shocks µ, the direct e↵ect of the Calvo-hit firms on
the firms at the extensive margin ✓0, and the multiplier e↵ect 1/(1 � ✓). In particular, the
complementarity measure ✓ produces a multiplier e↵ect on the constant rate of menu-cost
payment �. In the next section, we argue that complementarity generates not only the mean
multiplier e↵ect but also volatility in aggregate price when n is large but finite.

4 The model with a finite number of firms

4.1 Convergence to the continuum model

We now consider a model with a finite number of firms n, that approximates the continuum
model as n ! 1. To accomplish this, we will choose each firm i = 1, 2, . . . , n to have measure
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1/n and consider ỹi the intensity of output of firm i, that is ỹi = nyi, where yi is the output
of firm i. Similarly, the intensity of labor input is denoted by l̃i. We assume that output of
the final good is given by:

Y (n) =

 
nX

i=1

(ỹi)(⌘�1)/⌘/n

!
⌘/(⌘�1)

. (41)

If ỹ(k) is a function of bounded variation and we set ỹi = ỹ(j) for some j 2 [ i�1
n
, i

n
),

i = 1, 2, . . . , n then as n ! 1,

Y (n) !
✓Z 1

0
ỹ(k)(⌘�1)/⌘dk

◆⌘/(⌘�1)

,

the postulated production of final goods in the model with a continuum of firms, when final
goods producers use a total amount ỹ(k) of the input produced by firm k.

From now on, we drop the superscript (n) except if needed for clarity. Equation (41) can
be rewritten as:

Y =

 
nX

i=1

(yi)(⌘�1)/⌘n�1/⌘

!
⌘/(⌘�1)

. (42)

This aggregator function with the normalization factor n�1/⌘ is used by, for example, Blan-
chard and Kiyotaki [14].

A final good producer’s nominal profit is

max
Y,{yi}

PY �
nX

i=1

P iyi. (43)

The first-order condition with respect to yi yields a factor demand function

yi =

✓
P i

P

◆�⌘

Y/n = (pi)�⌘Y/n (44)

where pi := P i/P denotes the relative price of good i. Aggregating across i, we obtain the
competitive price of final goods

P =

 
nX

i=1

(P i)1�⌘/n

!1/(1�⌘)

. (45)
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Again, the intermediate goods are produced using a linear technology yi = li. Households
choose aggregate labor supply N . Then, the market clearing condition for labor is:

N =
nX

i=1

li =
nX

i=1

yi = Y
nX

i=1

(pi)�⌘

n
. (46)

In the model with a finite number of firms and continuous time, the presence of menu costs
would have no e↵ect on aggregate consumption, except at a set of times of measure 0, which
would not a↵ect consumer’s welfare given criteria (8). To remedy this, we first consider a
variant of the continuum model in which firms pay flow menu costs during an interval of time
of length ⇠ and show that decision problem of firms and equilibrium outcomes are exactly
the same as in the model where menu costs are paid immediately, provided we scale menu
costs appropriately. In the finite n approximation to this variant of the model, consumers’
welfare is a↵ected by the payment of menu costs. Suppose that if a firm increases (decreases)
prices at a time t, without experiencing a Calvo shock, it must pay a flow of menu costs
�+
f
Yt (�

�
f
Yt) during the interval [t, t + ⇠]. Notice that if �+Y =

R
⇠

0 e�⇢t�+
f
Y dt and similarly

��Y =
R
⇠

0 e�⇢t��
f
Y dt hold, and Yt ⌘ Y, then the firm’s decision problem is identical to the

case where the firm pays menu costs �+Yt or ��Yt at time t, provided �·
f
= ⇢�

·

1�e�⇢⇠
. Firm i’s

dividend Z(p) is reduced by the menu cost �+
f
Y for a period of length ⇠ after a price increase

in the absence of a Calvo shock. At the stationary equilibrium, firms hit p at rate � = �+.
Thus, the measure of firms paying menu costs for price increases is at any time is equal to
�⇠. In the stationary equilibrium, aggregate consumption satisfies the natural modification
of (15),

c = Y � �⇠�+
f
Y.

For the model with a finite number of firms, when a firm adjusts price at a time t, in
the absence of a Calvo shock, it would pay for a period ⇠ an amount that equals �+

f
Yt/n of

the final good if it increased price and ��
f
Yt/n if it decreased price. If ⇤+

t
(⇤�

t
) denotes the

fraction of firms paying menu costs at time t as a result of price increases (decreases) then,
in the model with a finite number of firms,

ct = Yt �
⇣
⇤+
t
�+
f
+ ⇤�

t
��
f

⌘
Yt. (47)

With this convention, the system of equations (44)–(47) naturally provide a discrete
approximation to the equations for the corresponding system of equations in the continuum
model.

4.2 Equilibrium with a finite number of firms

When n is finite a firm’s optimal decision would depend on the cross section of current
prices. Households’ demand for money would depend on their expected inflation, which also
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would be a function of the n-dimensional vector of current prices. We adopt here simplifying
behavioral assumptions that greatly economize on the number of state variables.

Assumption 1. (a) Consumption-good sector: price Pt of the final good guarantees zero-
profits at t.

(b) Intermediate goods producers: all firms expect future inflation to equal ⇡, the real wage
w to stay at the stationary equilibrium value in the continuum model, and use the
discount rate ⇢. Each firm observes current Pt and sets P i

t using the policy function for
the continuum model, in particular, reprices to P i

t = qP i
t- if P

i
t-/Pt  p and reprices to

P i
t = (p⇤/p†)P i

t- if P
i
t-/Pt � p†.

(c) Households: expect future inflation to equal ⇡ and the real wage w to stay at the sta-
tionary equilibrium value in the continuum model.

(d) Monetary authority: accommodates price level changes,

dTt =
✓
1� Pt-

Pt

�Rdt

◆
m,

where m is the real-money balance held by households.

Since there are only a finite number of firms, Assumption 1 implies that households and
firms do not display fully rational expectations. In Section 5 we will show that, in an example
with calibrated parameter values using Nakamura and Steinsson [48] and Golosov and Lucas
[35], the impact of these expectational errors are minor. This numerical result agrees with
theoretical results in Alvarez and Lippi [4, Proposition 7(ii)] for the Golosov-Lucas model.

4.3 Complementarity of repricing at the extensive margin

When n is finite, the impact of the price change by a firm that receives a Calvo shock at time
t may cause other firms to pay menu costs and change prices. In turn, these price-changes
may induce other firms to change prices. This repricing avalanche will continue until the
change in prices by a group of firms induces no other firm to change prices. The size of this
avalanche will determine the number of firms that reprice at t.16 In this section we show that
the function ✓0(s), especially the reproduction number ✓, plays a crucial role in determining
the distribution of the size of repricing avalanches in the model with a large finite number of
firms. In particular, we show that the dispersion index of the distribution of avalanche sizes
is bounded below by 1

(1�✓)2 .

16Notice that one could examine self-fulfilling equilibria where the number of firms that reprice at t could
be larger than the size of the avalanche as we define it. In this sense, we are studying the minimal number of
firms that change prices at t, as a result of a Calvo shock.
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Suppose the aggregate good price is Pt- and that a single firm i changes its (relative) price
to p⇤ at t. Then � logP i

t := log p⇤ � log pit-. The price change by firm i increases the final
good price Pt, which in turn decreases all relative prices. To compute the impact of firm i’s
price-change on Pt, recall that

�
�
(P i

t )
1�⌘
�
=

(P i
t )

1�⌘ � (P i
t-)

1�⌘

n
=

(P i
t-)

1�⌘

n
(e(1�⌘)� logP i

t � 1)

and Pt =
⇣P

n

i=1 e
(1�⌘) logP i

t /n
⌘1/(1�⌘)

. Thus,

� logPt =
�(P 1�⌘

t- )

(1� ⌘)P 1�⌘

t-

� ✏P (s
i

t-) =
1

n

✓
P i
t-

Pt-

◆1�⌘
e(1�⌘)� logP i

t � 1

1� ⌘
� ✏P (s

i

t-),

where ✏P (sit-) = (�Pt)2/P̃ for some P̃ 2 [Pt-, Pt- +�Pt] and �Pt = O(1/n).17 Hence,

� logPt =
(pit-)

1�⌘

n

e(1�⌘)� logP i

t � 1

1� ⌘
� ✏P (s

i

t-), where (48)

✏P (s
i

t-) = O(n�2). (49)

To analyze the avalanche initiated by a Calvo shock, it is again helpful to work with
the normalized price sit- = (log pit- � log p)/ log q that has stationary distribution given in
(35). We fix a time t that, to simplify notation, we temporarily omit, and choose s1 using
the distribution g(s) and assume that firm 1 receives a Calvo shock. In addition, we draw
independently n � 1 other firms and thus (s`)n

`=2 is distributed as gn�1(s). Equation (48)
implies that sj for j > 1 decreases by

✏n0 =
1

log p⇤ � log p


1

n

(p⇤)1�⌘ � (p1t-)
1�⌘

1� ⌘
� ✏P (s

1)

�
. (50)

Set mn

0 = #Mn

0 , where Mn

0 := {j > 1 : sj  ✏n0} is the set of firms that choose to reprice
because firm 1 repriced. Write G for the cumulative distribution with density g. Then,
mn

0 conditional on s1 follows a binomial distribution with population n � 1 and probability
n0 := G(✏n0 ).

Notice that s` for ` 62 Mn

0 , ` > 1, decreases by ✏n0 +
P

j2Mn

0
✏̃j1, with

✏̃j1 := ✏n1 � ✏0P (s
j)

17Throughout this paper, we write y(n) = O(x(n)) if and only if there exists a positive real number M and
a real number no such that |y(n)|  Mx(n) for all n � no. Also, x(n) ⇠ y(n) means limn!1 x(n)/y(n) = 1.
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where

✏n1 :=
1

n

p1�⌘

log p⇤ � log p

(p⇤/p)1�⌘ � 1

1� ⌘
=
✏11
n

� ✏n0 (51)

✏0P (s
j) :=

1

log p⇤ � log p

"
p1�⌘

n

(p⇤/p)(1�⌘)sj � 1

1� ⌘
+ ✏P (s

j)

#
> 0,

where ✏0
P
(sj) = O(n�2) and positive since 0 < sj < ✏n0 = O(n�1). Furthermore, applying

(31) and (35) to (51) we obtain,
✏11g(0) = ✓.

The set,

Mn

1 := {` > 1 : s`  ✏n0 +
X

j2Mn

0

✏̃j1} \M
n

0 ,

where \ denotes the set di↵erence, is the set of firms that reprice because the Calvo shock
led firm 1 and firms in Mn

0 to reprice. The random variable mn

1 = #Mn

1 is distributed as a
binomial with population n� 1�mn

0 and probability:

n1 := G

0

@✏n0 +
X

j2Mn

0

✏̃j1

1

A�G (✏n0 ) .

In turn, the price-changes of these mn

1 firms cause an additional set of firms to change prices
and we write,

Mn

2 := {` > 1 : s`  ✏n0 +
X

j2Mn

0 [Mn

1

✏̃j1} \ (M
n

0 [Mn

1 ),

for the set of firms reacting to the price changes by the firms in Mn

1 , m
n

2 = #Mn

2 etc...
Conditional on (mn

k
)u
k=0, m

n

u+1 follows a binomial with population n� 1�
P

u

k=0m
n

k
and

probability nu where,

nu := G

0

@✏n0 +
X

j2
S

u

k=0 M
n

k

✏̃j1

1

A�G

0

B@✏n0 +
X

j2
S

u�1
k=0 M

n

k

✏̃j1

1

CA . (52)

The total size of the avalanche initiated by a Calvo shock at s is given by,

Ln =
1X

u=0

mn

u.

Notice that if mn

U
= 0 then (52) implies that mn

u = 0 for each u > U, that is the avalanche
stops whenevermn

U
= 0. These Ln firms’ repricing size is close to log p⇤�log p. Suppose all the
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n�1 firms reprice after a firm reprices due to a Calvo shock. These repricings increase logPt

by at most log q, which decreases si by at most 1. This maximum increase has probability 0,
since it requires that the Calvo-hit firm has s1 = 0. Hence, Ln < n holds with probability 1.

It is well known that the distribution of properly normalized binomials converge to the
distribution of a Poisson as the number of observations n ! 1. Using (51) we obtain,

✏n0 +
X

j2
S

u

k=0 M
n

k

✏̃j1 = ✏n0 +
✏11
n

uX

k=0

mn

k
�

X

j2
S

u

k=0 M
n

k

✏0P (s
j). (53)

Fixing the history of mn

k
for k  u as mn

k
= mk, since ✏n0 and ✏n1 are O(n�1), (52) implies

that limn!1 nnu = mu✏11g(0) = ✓mu. Hence,

lim
n!1

E[mn

u+1 | (mn

k
)u
k=0 = (mk)

u

k=0] = lim
n!1

(n� 1�
uX

k=0

mk)
n

u = ✓mu.

Using (36), (50), and E[m0 | s1] = (n� 1)n0 = (n� 1)G(✏n0 ) we obtain:

lim
n!1

E[mn

0 | s1] = g(0)

log q

(p⇤)1�⌘ � (p1)1�⌘

1� ⌘
= ✓0(s

1).

This suggests that conditional on s1, the random variable Ln approaches (in distribution) as
n ! 1 a random variable L where

L :=
1X

u=0

mu,

and mu follows a branching process where the number of children per parent follows a Poisson
distribution with mean ✓ and m0 follows a Poisson with mean ✓0(s1), what we establish
formally in the next Proposition.

From now on we fix s1 = s and let Qn (Q) denote the probability distribution of Ln

(L) conditional on s. Recall that for distributions Q1 and Q2 with support in Z+ the total
variation distance satisfies:

d⌧ (Q1,Q2) := 2 sup
A⇢Z+

|Q1(A)�Q2(A)| = 2
X

r

|Q1({r})�Q2({r})|.

In Appendix A.11, we establish:

Proposition 5.
lim
n!1

d⌧ (Qn,Q) = 0.

Since Ln(s) ! L(s) in total variation, we can construct random variables Xn and X in
[0,1] with the natural filtration, such that Xn has the distribution of Ln(s) and X has the
distribution of L(s), with Xn ! X a.s.18 Thus Fatou’s Lemma, applied to Xn guarantees:

18E.g. set Xn(y) = Pr{Ln(s)  y} and X(y) = Pr{L(s)  y}.
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Corollary 2.
lim inf

n!1
E[(Ln)p|s] � E[(L)p|s].

Stronger assumptions can establish that E[Ln|s] ! E[L|s]. The assumption used below
is especially interesting, because it is verified for parameter values calibrated in Section 5.

Proposition 6. Write ⇥ := (qµ/⇡ � 1)✓. If either ⇥  1 or ✓e⇥�1/⇥ < 1 then the set
{Ln : n 2 Z+} is uniformly integrable and as a consequence:

(a) E[Ln|s] ! E[L|s].

(b) lim infn!1
V ar[Ln|s]
E[Ln|s] � V ar[L|s]

E[L|s] .

Proof. Uniform integrability and hence Item (a) is shown by Lemma 9 in Appendix A.12.
Item (b) is a consequence of Corollary 2. 2

We next describe the distribution of L and thus the asymptotic distribution of Ln.

Proposition 7. (a) L conditional on m0 follows the Borel-Tanner distribution:

Pr(L = ` | m0) =
m0

`

e�✓`(✓`)`�m0

(`�m0)!
(54)

for ` = m0,m0+1,m0+2, . . ., where m0 follows a mixture of Poisson distributions with
mean ✓0(s) and s is distributed as g(s).

(b) L conditional on the Calvo-hit firm being at s follows the Generalized Poisson Distri-
bution (GPD):

Pr(L = ` | s) = ✓0(s)

`!
e�(✓`+✓0(s))(✓`+ ✓0(s))

`�1 (55)

for ` = 0, 1, . . ., where s is distributed as g(s). The conditional mean and variance of L
are ✓0(s)/(1� ✓) and ✓0(s)/(1� ✓)3, respectively.

(c) The tail of both (54) and (55) is proportional to e�(✓�1�log ✓)``�1.5 as `! 1.

(d) The unconditional distribution of L follows a general Lagrangian probability distribution.
The unconditional mean µL and variance �2

L
of L are, respectively,

µL =
✓0

1� ✓

�2L =
✓0

(1� ✓)3
+

�2
✓0

(1� ✓)2
,
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where �2
✓0

denotes the variance of ✓0(s) under the stationary distribution g(s),

�2
✓0

=
1

(1� ⌘)2'2(q, µ/⇡)

✓
'(q, 2(1� ⌘) + µ/⇡)'(q, µ/⇡)

'2(q, 1� ⌘ + µ/⇡)
� 1

◆
.

In particular, the index of dispersion of L is bounded below by

1

(1� ✓)2

and thus arbitrarily large as ✓ ! 1.

Proof. (a) The sum L conditional on m0 of a Poisson branching process is known to follow
the Borel-Tanner distribution (54) (see Kingman [40]; Nirei [52, 53]). (b) Equation (55)
is obtained by combining (54) with the fact that m0 conditional on s follows a Poisson
distribution with mean ✓0(s) (see Consul and Shoukri [25]). The mean and variance follow
from the formulae for the moments of a GPD (see e.g. Consul and Famoye [26, Equation
(9.9), p.166]). (c) from Stirling’s formula applied to (`�m0)! in (54) and `! in (55). (d) See
Consul and Famoye [26, p.111] for the Lagrangian distribution property and Appendix A.13
for the derivation of µL and �2

L
. 2

Item (c) can be sharpened when L is conditional on m0 = 1.

Corollary 3. The distribution of L satisfies:

Pr(L = ` | m0 = 1) =
1p

2⇡e1�✓
e�(1�✓�log ✓)``�1.5 +O(e�(1�✓�log ✓)``�2.5), for `! 1,

(56)
which has a power-law tail when ✓ = 1.

Proof. A direct application of Harris [36, Theorem 13.1, p.32]. Note that ⇡ in expression (56)
denotes the ratio of circumference to diameter of a circle instead of the inflation rate. 2

The implications of Proposition 7 are three-fold. First, it shows that the limit of the
unconditional mean of Ln as n ! 1 is bounded below by ✓0/(1 � ✓) = �/µ, obtained from
(30), (39), and Corollary 2, with equality under the assumptions of Proposition 6. This is
expected—since each firm draws a Calvo event at rate µ, on average, the number of firms
that draw a Calvo event in a short time horizon dt is nµdt. Hence, the average fraction of
firms that adjust within dt is (�/µ)(nµdt)/n = �dt. Thus in the n ! 1 limit, the average
fraction of firms that pay menu costs in a small interval dt coincides with the rate of firms
that pay menu costs in the continuum economy. Furthermore, �/µ = ✓0/(1� ✓) decomposes
the avalanche into the direct e↵ect of a Calvo-hit firm and the additional e↵ects due to menu-
cost paying firms, since ✓0 is the multiplier of a Calvo-hit firm on the fraction of firms that
adjust, and ✓ is the multiplier associated to repricing by a menu-cost paying firm.
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As shown in Section 3.4, in the continuum case, when a firm pays menu costs and reprices,
it induces ✓ firms to reprice, leading to a total number of repricing firms that equals (1�✓)�1.
A second implication of Proposition 7 is that even in the limit as n ! 1 the multiplier e↵ect
is stochastic with a dispersion index that is bounded below by (1 � ✓)�2, which diverges
as ✓ ! 1. We show in Appendix A.10 that ✓ converges to 1 as ⇡ ! 1 and there exists
a ⇡0 such that ✓ is non-decreasing for ⇡ � ⇡0. Furthermore, we show in Section 3.4 that
(1 � ✓)�2 dominates an increasing function of ⇡2. More importantly, we show in Section 5,
for parameters calibrated from U.S. data, ✓ ⇠ 1 even for very modest levels of ⇡.

Thirdly, Corollary 3 (equation 56) states that the number of repricing firms, conditional
on a single firm reacting to the Calvo-hit firm, approaches a power-law distribution with
exponential truncation. The multiplier e↵ect caused by the complementarity of repricing has
a distribution that exhibits a fat right tail, up to the exponential truncation point determined
by ✓. When ✓ reaches 1, the truncation point is infinite, implying that the entire tail is
characterized by a power-law distribution. Using this limit law, we obtain

lim
n!1

n0.5E

"✓
Ln

n

◆2
#
= lim

n!1
n0.5

nX

`=0

✓
`

n

◆2

Pr(Ln = `) ⇡ lim
n!1

n0.5bo

Z
n

1

`0.5

n2
d` =

bo
1.5

,

that is, E[(Ln/n)2] ⇠ n�0.5 when ✓ = 1. Similarly, we obtain that (E[Ln/n])2 ⇠ n�1, which
implies V (Ln/n) ⇠ n�0.5 for the case of ✓ = 1.

For finite n, the aggregate price logPt follows a compound Poisson process; a Calvo shock
arrives at intensity rate nµ and the price jump size logPt � logPt- is a stationary random
variable. The price jump consists of a repricing by firm i that receives a Calvo shock and
the subsequent repricing by Ln

t firms who pay menu costs. By aggregating (48) across those
repricing firms and using (31), we obtain

logPt � logPt- =
(p⇤)1�⌘ � (pit-)

1�⌘

(1� ⌘)n| {z }
Calvo-hit firm i

+
'(q, µ/⇡)'(q, 1� ⌘)

'(q, 1� ⌘ + µ/⇡)

Ln
t

n| {z }
Menu-cost paying firms

�O(n�2). (57)

Note that the intensive margin e↵ect of menu-cost firms, h(⇡) := '(q,µ/⇡)'(q,1�⌘)
'(q,1�⌘+µ/⇡) , is positive

for each ⇡. Moreover, the extensive margin e↵ect of menu-cost firms, Ln
t , has a positive

covariance with the e↵ect of the Calvo-hit firm, because the latter is decreasing in si and
E[Ln

t |si] = ✓0(si)/(1 � ✓), with ✓0(si) decreasing. Hence, a lower bound on the behavior of
V (logPt � logPt-) as a function of h can be obtained from equation (57). In addition, as
shown in Appendix A.14 that for large ⇡, the variance of h(⇡)Ln

t and the variance of the
e↵ect of the Calvo-hit firm are increasing in ⇡.
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4.4 Finite interval of time

In actual data there are at least two complications. First it is unlikely that s, the relative
price of the firm that undergoes a Calvo shock, is observed. Second one can only observe the
sum of avalanches over a sequence of finite non-overlapping intervals.

For definiteness, assume that in the model a unit interval of time is one year and suppose
one observes data in a sequence of non-overlapping intervals of length T. The independence
of Calvo shocks insures that if µ̂ = µn/T , the count of total number of Calvo shocks K in an
interval of length T satisfies:

Pr(K = k) =
(µ̂)k

k!
e�µ̄.

In an interval of length T the total count of price changes Zn would correspond to a sum
of avalanches and the Calvo shocks. Thus if an interval has k Calvo shocks:

Zn = k +
kX

i=1

Ln

i ,

where Ln

i
denotes the avalanche caused by the i-th Calvo shock. Let S = s1, s2 . . . be an

infinite sequence of Calvo shocks drawn independently using the distribution g.
We can decompose the uncertainty of Zn as follows. One source is k, the number of Calvo

shocks, and another the location of each si and the distribution of avalanches conditional on
a Calvo shock at si. Since the distributions of si and Ln

i
are endogenous, this decomposes

the variability of Zn into an endogenous and an exogenous portion.
Write E[Ln] =

R 1
0 E[Ln(s)]g(s)ds, the expected value of the unconditional distribution of

Ln. Similarly, let V [Ln] denote the variance of the unconditional distribution of Ln. Since
the number of Calvo shocks is independent of the realization of s,

E[Zn] = E[E[Zn|k]] = E

2

4
j+kX

i=j+1

(E[Ln(si)] + 1)

3

5 = µ̂(E[Ln] + 1).

Furthermore,

V [Zn] = E[V [Zn|k]] + V [E[Zn|k]] = E[V [Zn|k]] + V

2

4
j+kX

i=j+1

(E[Ln(si)] + 1)

3

5

= E[V [Zn|k]] + V [k(E[Ln] + 1)] = E[V [Zn|k]] + µ̂(E[Ln] + 1)2.

Hence,
V [Zn]

E[Zn]
=

E[V [Zn|k]]
E[Zn]

+
E[Zn]

µ̂
. (58)
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Equation (58) decomposes the dispersion of Z into a term that reflects the stochastic
nature of the avalanches and a portion caused by variations on the number of realized Calvo
shocks. Notice that, since the LHS and last term on the RHS can be estimated/calibrated
from data at the observable frequency, we can calculate the portion that the stationary
distribution of stochastic avalanches contributes to the dispersion of Zn.19

Assuming that the density g is flat at s = 0, we can write, if an interval contains avalanches
j + 1, . . . , j + k:

Zn = k +
j+kX

i=j+1

Ln(si),

where Ln(si) are independent random variables with a GPD with parameters ✓0(si) and
✓. Thus, conditional on k, Zn is the sum of k and a random variable that is a GPD with
parameters ✓̃0 =

P
j+k

i=j+1 ✓0(s
i) and ✓ (Consul and Famoye [26, Theorem 9.1]). When k is

relatively small, the distribution of Zn, except in the range of small total avalanches, is not
much a↵ected by k. Since in a GPD the parameter ✓ dictates the tail behavior, it is expected
that the dispersion index is not much a↵ected by the uncertainty on the number and location
of Calvo shocks. Furthermore the independence of avalanches implies that:

E[V [Zn|k]] = E

"
kX

i=1

V [Ln(si)]

#
= µ̂V [Ln].

Hence, equation (58) reduces to:

V [Zn]

E[Zn]
=

V [Ln]

E(Ln) + 1
+

E[Zn]

µ̂
.

5 Numerical simulation

5.1 Productivity shocks, calibration, and inflation volatility

In this section, we investigate the model quantitatively within a realistic range of long-run
inflation rates. We will introduce a generalization of the model that accommodates the
possibility of price decreases. We will assume that firm i produces output with a linear
technology with labor being the single input,

yit = aitl
i

t,

and productivity at time t, ait 2 {aL, aH}, with aL  aH . By choosing the units in which

we measure labor, we may assume a
L+a

H

2 = 1. At the time of a Calvo shock, firms may

19See Section 5 for a calibration of µ, and thus µ̂, using the equilibrium equations of the model. Using the
calibration we estimate the exogenous uncertainty to account for only 3.15% of the total dispersion of daily
price changes.
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also experience a productivity shock. We assume that, conditional on a Calvo shock, the
probability of a productivity change is a constant 0 < ⇣ < 1. In the online appendix we show
the existence and uniqueness of a stationary equilibrium and characterize the equilibrium
stationary distribution, including the values of the p

a
and p⇤a, the minimum and maximum

relative prices charged by firms with productivity a in equilibrium, and thus the ratios qa =
p⇤a/pa, a 2 {aL, aH}.20 Although the existence and uniqueness results fully generalize, we do
not establish in the online appendix the full set of comparative statics and full characterization
of the distribution of avalanches. Nonetheless, as we show in subsection 5.2, the distribution
of avalanches is well fitted by a GPD.

Remark 2. Although firms are assumed to use the policy functions of the continuum, when
n is finite, in contrast to the continuum case, firms may pay menu costs to adjust prices
downward. Suppose p⇤

aL
> p⇤

aH
and that a firm with productivity aL and price close to p⇤

aL

su↵ers a Calvo shock and experiences a change in productivity at t. That firm would now
optimally charge p⇤

aH
and the price of the final good would fall by Assumption 1(a). Firms

with productivity aL (aH) and prices pt- close to p⇤
aL

(p⇤
aH

), may now choose to cut prices if
�� is small enough.21

We calibrate the model parameters (µ, �+, ��) so that the implied stationary distribution
matches some key empirical patterns reported by Nakamura and Steinsson [48] for U.S. CPI
micro data during the period 1988–2005—a median size of repricing of 7.3% (the median
increase of non-sale price), a median frequency of non-sale price change of 9–12% per month,
and that a third of non-sale price changes are price decreases. This implies that the net
frequency of price increases is 3–4% per month, one-third of the total frequency of repricing.

U.S. CPI increased at 3% on average during their sample period. Thus we set ⇡ = 0.03.
The elasticity of substitution ⌘ is set at 3, so that labor’s share is two-thirds of value added.
The time discount rate ⇢ is set to the long-term real interest rate 0.02.

We set the parameter values related to productivity shocks to match Golosov and Lucas
[35], who choose for log productivity an Ornstein-Uhlenbeck process with stationary vari-
ance 0.01 and auto-covariance 0.01e�0.55/(2 ⇤ 0.55). Matching these two moments, we set
(aL, aH) = (0.9, 1.1) and µ⇣ = (1� e�0.55)/2.

The average positive repricing size and frequency correspond to
P

a
log qa/2 and µ(1 �

⇣/2) + �+, respectively, evaluated at ⇡ = 0.03. Thus, we choose µ, �+ and ⇣ so that the
computed

P
a
log qa/2 and µ(1 � ⇣/2) + �+ match the target repricing size and frequency

with the restriction that µ⇣ = (1 � e�0.55)/2. We obtain calibrated parameter values by
minimizing the sum of log-deviation from the two target moments. This results in µ = 0.2672,
�+ = 0.0021 and ⇣ = 0.7916.

20In the online appendix we also allow the probability of the productivity shock to depend on the productivity
of the firm just prior to the Calvo shock.

21However for a fixed �
�
, the probability that this occurs goes to 0 as n ! 1.
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We set the menu cost for price cuts as �� = n�2.2, so that the fraction of firms that lower
prices is roughly a half of the number of firms that raise prices, as Nakamura and Steinsson’s
estimate. In a positive inflation environment with the calibrated size of positive productivity
shock aH/aL, the average number of price cuts in equilibrium is small unless �� is very
small. As a consequence of small ��, our model does not match the median size of price cut
(10.5%) that Nakamura and Steinsson reported. With this gap, inflation in our model would
be overestimated if the pricing frequency of 9–12% was used directly. Therefore, we focus on
the frequency of net price increases. Taking a mid-point of the estimated range, we set 3.5%
as a target for monthly (positive) repricing frequency.

Finally, we set n = 30000 to match inflation volatility observed in the sample period of
Nakamura and Steinsson [48], when the average monthly standard deviation of inflation rates
(year-on-year price increase) was 0.55% while the average inflation rate was 3%.

For these parameter values, we compute stationary equilibrium prices and policy functions
for di↵erent levels of ⇡, and use these to compute ✓, which determines the volatility of
extensive margins of price adjustments. As can be seen in Figure 1, ✓ approaches 1 quickly
for a low range of ⇡ under the parameter values calibrated to the U.S. economy. At ⇡ = 0.03,
our model produces ✓ = 0.7270 and ✓0 = 0.3023. Also, the slope of the stationary distribution
g(s) at the repricing threshold s = 0 is g0(0) =

P
a
(1/2)(µ/⇡)(log qa)2/'(qa, µ/⇡) = 0.4592.

Figure 1: Complementarity measure ✓ for various levels of ⇡. We numerically compute the
stationary equilibrium and obtain ✓ using Equation (38).

We conduct Monte Carlo simulations, drawing Calvo and productivity shocks for up to
nµ ⇥ 8000 rounds for each inflation level ⇡ and generate aggregate-price time-series Pt. We
plot the standard deviation of the annual aggregate price increase logPt+1� logPt against ⇡.
The result is shown in Figure 2. Notice that inflation volatility increases with inflation level,
and the slope of the relationship in the calibration matches the experience in the U.S.
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Figure 2: Average annual inflation rates and standard deviations of inflation rates in the
model simulations and the U.S. data. The line shows the simulation result. For the U.S.
time series, we use IMF-IFS dataset for monthly CPI for 1955M1-2018M12. We compute
the year-on-year inflation rates at monthly frequency, and compute the average and standard
deviation of the inflation rates in two-year windows. The starting year of the two-year window
is {1955, 1957, . . . , 2017}. The scatter plot of the average and the standard deviation is shown
in the figure.
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5.2 Distribution of simulated avalanches Lt

We focus on avalanches of price increases, neglecting avalanches of price decreases. We write
L for the number of firms that reprice, excluding the Calvo-hit firm. The distribution of
simulated L is in fact well approximated by a fitted GPD (see Figure 3). Here we employ
moment-estimators for ✓0 and ✓, exploiting the properties of the GPD:

p
E(L)3/V (L) = ✓0

and V (L)/E(L) = 1/(1 � ✓)2. The point estimates for the parameters are ✓̂0 = 0.1758 and
✓̂ = 0.9061. The root mean square error (normalized by the absolute mean) of the fitting of
the logarithm of the counter-cumulative distribution function is 2.99%.22

Figure 3: Counter-cumulative distribution of simulated L and a fitting by a Generalized
Poisson distribution

While a GPD fits the simulated distribution well, the estimated key multiplier ✓̂ is sub-
stantially larger than the ✓ of the data-generating model. There are four potential sources for
the gap. First, the moment estimator is subject to an estimation error and bias. However,
assuming the parameters of the GPD are ✓0 and ✓ of the data-generating model, we can use
the formulae in Consul and Famoye [26, p.170] to compute standard error of the moment esti-
mator (.0003) and a bias (-.0000), up to n�2. These cannot account for the gap ✓̂�✓. Second,
our theory predicts that L follows a Lagrangian distribution, which is obtained by a mixture
of GPDs. Thus, 1/(1 � ✓)2 is only a lower bound for the dispersion index (see Proposition

22The NRMSE equals
pP

m

i=0(ŷ(i)� y(i))2/(m+ 1)/|
P

m

i=0 y(i)/(m + 1)|, where y(i) is the log relative
frequency of avalanches greater than or equal to i in the simulation, ŷ(i) := log Pr(L � i) for the GPD
obtained from the moment estimators, and m is the maximum avalanche in the sample.
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7(d)). Third, the simulations allow for productivity shocks. To quantify the e↵ect of these
two departures from a GPD, we generalize the formula for the dispersion index in Proposi-
tion 7 to the two-state productivity economy (Proposition B.3 in the online appendix). The
dispersion index using the calibrated parameters in the generalized formula in Proposition
B.3 is V (L)/E(L) = 13.8108, while the value of ✓ used to generate the simulations implies a
lower bound 1/(1�✓)2 = 13.4216. Thus the value of ✓ obtained from the calibration amounts
to 97% of the predicted dispersion index that accounts for these two departures from a GPD;
neither the mixture of GPDs stemming from the random draws of the firm s that receives a
Calvo shocks nor the presence of productivity shocks explain much of the excess dispersion
and hence the substantially larger estimated multiplier of the simulated L.

The fourth possible reason is the dynamics of the distribution of relative prices. When
fitting L, we are assuming that the underlying ✓ is constant over time. However, in an
economy with finite n, the relative price distribution evolves over time, which a↵ects the
number of firms near the repricing threshold s = 0 and generates shifts in the multiplier
✓.23 The higher dispersion index obtained in the simulations suggests that, once we account
for the dynamics, the multiplier e↵ect of a firm’s decision to pay menu costs is higher than
what would obtain in the stationary equilibrium. We explore this interpretation further in
subsection 5.3.

The simulated series L also allow for quantification of the exogenous shocks’ contributions
to the dispersion index in a finite-time interval, as discussed in Section 4.4. We set the relevant
interval of time to a day, and construct the daily number of positive repricing, Z. Variations
on Z are partially driven by the (exogenous) variation on the number of Calvo shocks and
by the (endogenous) variations on the size of realized avalanches. We compute equation
(58) using daily simulated data and obtain a daily dispersion index V (Z)/E(Z) = 91.14,
whereas the contributions of the exogenous shock is E(Z)/µ̂ = 2.87.24 This decomposition
shows that the exogenous shocks only account for 3.15% of the total dispersion index. The
simulated distribution of Z is also well-fitted by a GPD (even though it follows a more general
Lagrangian distribution in principle), with moment estimates ✓̂Z0 = 3.9924 and ✓̂Z = 0.8953.
Recall that the sum of independent random variables, each with GPD with the same ✓, has a
GPD with the same ✓ (Consul and Famoye [26, Theorem 9.1]). Thus our numerical estimates
indicate that the dependence of successive avalanches does not a↵ect much the value of ✓̂.

23In the simulations, conditional on an avalanche Li > 0, the expected value of the next avalanche is 4.15
while the unconditional expectation E(L) = 1.87. This failure of independence is reflected in the presence of
a positive autocorrelation (.0223) between avalanches.

24We used the two-productivity model of Section 5 and collected only positive price changes. The mean
daily Calvo/productivity shocks, µ̂, is computed as (n/T )µ(1�⇣/2), that is, the number of Calvo/productivity
shocks that led to positive price changes in a period of length 1/T .
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5.3 Dynamics of price distribution and inflation volatility

The aggregate price volatility would be quite di↵erent if price-changes were independent
across firms. Suppose that firms adjust only when they draw Calvo shocks. The number of
firms that receive Calvo shocks in time interval dt follows a Poisson distribution with mean
nµdt. The index of dispersion for the number of Calvo-hit firms is equal to one.

With Calvo shocks alone, the variance of the fraction of firms that change prices in dt
is µdt/n. That is, the variance of aggregate fluctuations decline as n�1, as predicted by the
central limit theorem. Because our avalanches are stochastic and the distribution displays a
right fat tail, the convergence of aggregate volatility to 0 is slowed down to the extent that
we observe substantial aggregate fluctuations even for n = 30000.

Compared to the case of independent price changes, (57) exhibits two departures. The
first is the selection e↵ect (Caplin and Spulber [22]; Golosov and Lucas [35]), that is, the
size of the price change of firms paying menu costs, log q, is greater than that of the typical
Calvo-hit firm. The second departure is the volatility of Ln, a result of the synchronization
of individual price changes. These two e↵ects act as complements to produce variations in
the aggregate price level; since all Ln firms adjust their price by log q (the selection e↵ect),
the synchronization e↵ect generates non-trivial variations on inflation.

The power-law tailed distribution for avalanches of simultaneously repricing firms is rem-
iniscent of the self-organized criticality model of inventories in Bak et al. [7] and Scheinkman
and Woodford [58]. In their model, the configuration of agents’ states (inventory profile)
converges to the critical point of pairwise correlation of actions, at which the power-law
distribution of simultaneous actions emerges, resulting in non-trivial aggregate fluctuations
arising from micro-level shocks. In our model, the relevant configuration is the profile of rela-
tive prices. When a large number of firms are near the repricing threshold, small shocks cause
large avalanches of repricing, leading to a decrease in the number of firms near the thresh-
old. In contrast, if a small number of firms are located near the threshold, only small-sized
avalanches occur, and the number of firms near the threshold gradually rises. In any case,
the relative price distribution converges to the stationary distribution, where the complemen-
tarity of repricing is given by ✓. Therefore, when ✓ is close to 1, the relative prices converge
to the point at which substantial fluctuations of the number of repricing firms emerge.

This mechanism of self-organized criticality may be used to understand the excess disper-
sion of simulated Lt that we noted in Section 5.2. Write Gt for the distribution of normalized
prices that prevails at time t. When Gt(s) is small for s ⇠ 0, only small avalanches occur, and
as a result, more firms accumulate near s = 0, leading to higher Gt(s). When Gt(s) is large
for s ⇠ 0, large avalanches tend to occur and Gt(s) for s ⇠ 0 goes down. These shifts in Gt

generate fluctuations in the estimated ✓. Since the dispersion index 1/(1 � ✓)2 is a strongly
convex function of ✓, fluctuations in ✓ increase the average dispersion index.

The following numerical exercise supports this interpretation. We estimate ✓̂ for subsam-
ples of the entire series of L, each with 500 consecutive avalanches. The histogram of ✓̂ shown
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in Figure 4 indicates wide variation relative to the standard error produced by the formula
in Consul and Famoye [26, p.170], 0.0404, suggesting that the e↵ective multiplier ✓ varies
during the simulated history.

Figure 4: Histogram of ✓̂. Each ✓̂ is estimated using the dispersion index for a subsample of
L with sample size 500. The standard error of the estimator ✓̂, computed using the formula
in Consul and Famoye [26, p.170], is 0.0404.

5.4 Welfare loss of households following behavioral assumptions

In the simulation, we compute the statistic

⌥ :=
1P

n

i=1(p
i
t
)�⌘/(ain)

,

which should converge to the stationary output of the final good per worker, Ȳ /N̄ , as n ! 1.
Each time a Calvo shock occurs in the simulation, we update the relative price vector (pt)
and compute the statistics, and take monthly averages. For values of ⇡ between 1% and 12%,
the standard deviation of monthly log⌥ varies between .0016 and .0017. Thus the standard
deviation of log⌥ is very small for all ⇡ in this range. This insures that the deviation of the
cross-sectional price distribution from the stationary distribution is small, and the deviation
of the output per worker from the stationary output is small, when compared to the volatility
of aggregate price changes shown in Figure 2.

Finally, we compute the volatility of consumption caused by the variation in menu-cost
payments. Since c/Y = 1� �+�+� ����, the standard deviation of log c given Y is constant
and can be directly computed. For the benchmark case ⇡ = 0.03, the monthly standard
deviation of log c is 0.002%. Thus the utility losses caused to households, because firms
follow the behavioral assumptions we postulate, are very small.
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6 Conclusion

In this paper we studied a model where menu costs determinate the distribution of price-
changes. The main departure from the previous theoretical literature is that we consider
a large finite number of firms instead of a continuum. When the number of firms is fi-
nite, a firm’s price increase necessarily leads to a decrease in other firms’ relative prices.
Thus, repricing behavior exhibits complementarity across firms, which generates repricing
avalanches. The strength of this complementarity when n is large can be summarized by a
quantity 0 < ✓ < 1 that is a property of the equilibrium of the continuum approximation.

Analytical results show that as n ! 1 the distribution of the number of firms that
reprice following a single firm’s Calvo-shock approaches a mixture of Generalized Poisson
Distributions. The index of dispersion (variance divided by mean) of this limit distribution
is bounded below by 1

(1�✓)2 . We also show that as ⇡ ! 1, ✓ ! 1. The intuition is that

when trend inflation is high, firms’ relative prices quickly drift away from the target to which
they adjust when they reprice, causing a relatively higher density of firms located near the
repricing threshold. Hence, there is a higher probability for a firm’s repricing to cause another
firm’s repricing. A su�ciently high long-run inflation rate causes high volatility in short-run
inflation rates. Furthermore we show that for ✓ ⇠ 1 the fluctuations of the avalanche size L
substantially slow down the convergence, as n ! 1, of the variance of the price level.

We calibrate the model to the U.S. experience during 1988–2005. Simulations show that
a GPD fits well the distribution of avalanches but that the dispersion index under the cali-
brated stationary distribution substantially underestimates the dispersion index of avalanches
obtained in the simulations. We argue that this occurs because in a model with a large but
finite number of firms the distribution of relative prices fluctuates around the stationary dis-
tribution. Our simulation thus suggests that once we account for the dynamics, the multiplier
e↵ect derived from a firm adjusting prices by paying menu costs is larger than the one that
obtains in the stationary equilibrium.

Our simulations also show that, even in a low inflation range, one observes a positive
association between the level and volatility of inflation as it has been the case for the U.S. in
1988–2005.
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Appendix

A Proofs

A.1 Proof of Proposition 1

If we write S(p) = R0(p) and di↵erentiate both sides of (21) we obtain,

S0(p) =
z0(p)

⇡p
�
✓
⇡ + µ+ ⇢

⇡p

◆
S(p). (59)

Set

A(r) :=

Z
r

1
�⇡ + µ+ ⇢

⇡s
ds = �⇡ + µ+ ⇢

⇡
log(r).

Then the general solution to (59) is:

S(�, p) = �eA(p) + eA(p)
Z

p

p̂

e�A(r) z
0(r)

⇡r
dr = p�

⇡+µ+⇢

⇡


� +

Z
p

p̂

r
µ+⇢

⇡

z0(r)

⇡
dr

�
.

If

�(p) :=

Z
p

p̂

r
µ+⇢

⇡

z0(r)

⇡
dr,

S(�, p) = 0 if and only if
� + �(p) = 0. (60)

Since �0(p) := p
µ+⇢

⇡ z0(p)/⇡ is strictly positive (negative) for p < p̂ (p > p̂), �(p) achieves

a maximum of zero at p̂. In addition, �00(p̂) := p̂
µ+⇢

⇡ z00(p̂)/⇡ < 0. Thus there exists ✏ > 0
such that for � < ✏, there are exactly two solutions p1(�) < p̂ < p2(�) to S(�, p) = 0 and
lim�&0 pi(�) = p̂, i = 1, 2. Moreover since

@pi
@�

= � 1

�0(pi)
(61)

and �0(pi(�)) 6= 0, unless pi = p̂, we can prolong the function p1(�) until a �max such that
p1(�max) = 0 (�max = 1 is not ruled out) and, since for any �, �1/�0(p2(�)) is uniformly
bounded above, we may also prolong p2(�) until �max. Furthermore if �0 > �, p1(�0) <
p1(�) < p̂ < p2(�) < p2(�0).

If  (�) := z(p2(�))� z(p1(�)), then  achieves a minimum of zero at � = 0. In addition,
using equation (61), we obtain

 0(�) = ⇡


p
�µ+⇢

⇡

1 � p
�µ+⇢

⇡

2

�
> 0,
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provided � > 0. Since z(0) = �1, this delivers the existence and uniqueness of �(�+) < �max

such that the value matching condition

R(�, p2(�))�R(�, p1(�)) = �+ (62)

holds at � = �(�+) for any �+ � 0.
Set p⇤ = p2(�(�+)) and p = p1(�(�+)) and set R(�(�+), ·) using (21) and (24). In addition,

(60) applied to p and p⇤, implies

Z
p
⇤

p

r
µ+⇢

⇡

z0(r)

⇡
dr = 0,

which after integration yields (27).
Following the procedure in Øksendal and Sulem [54, Chapter 9],25 one can in fact verify

that since R(�(�+), p) satisfies (21)–(23) then

v(p) =

8
<

:

R(�(�+), p) for p  p  p⇤

R(�(�+), p⇤)� �+ for p < p
max{R(�(�+), p), R(�(�+), p⇤)� ��} for p > p⇤

is the value function and the associated optimal policy is given by (d) in the statement of
the Proposition.

A.2 Properties of '(q, x)

We summarize properties of the function '(q, x) in the following lemma. Here 'q(q, x) and
'x(q, x) denote the partial derivatives of '(q, x).

Lemma 4. For q > 1, define '(q, x) := (qx � 1)/x for x 6= 0 and '(q, 0) := log q. Then,
'(q, x) satisfies the following properties.

(a) '(q, x) > 0, 'q(q, x) > 0, and '(q,�x) = '(q, x)/qx = '(q, x)/('q(q, x)q)

(b) log'(q, x) is strictly increasing and convex in x,

'x

'
(q, x) =

log q

1� q�x
� 1

x
> 0,

@

@x

✓
'x

'

◆
(q, x) =

1

x2

✓
1� qx(log qx)2

(qx � 1)2

◆
� 0,

and (@/@x)('x/')(q, x)  1/x2.

25A major di↵erence between our set up and the one in [54] is the absence of a di↵usion term, which allows
for less smoothness of the candidate value function.
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(c) If and only if x > 0, for any y

@

@q

qx'(q, y)

'(q, x+ y)
=

@

@q

'(q,�y)

'(q,�x� y)
> 0

(d) For any x and y,
@

@q

'(q, x)'(q, y)

'(q, x+ y)
> 0.

(e) Define a function �(y) := (y log y � y + 1)/(y � 1)2 for y > 0. Then,

'x

'2
(q, x) =

@

@x

✓
�1

'

◆
(q, x) = �(qx)

is strictly positive, continuous and decreasing in x.

Proof.

(a) '(q, x) = (qx � 1)/x > 0 for q > 1 and x 6= 0, and '(q, 0) = log q > 0 for q > 1. Also,
'q(q, x) = qx�1 > 0. Furthermore, '(q,�x)qx = (1� qx)/(�x) = '(q, x).

(b) 'x(q, x) = @

@x

q
x�1
x

= 1
x2 [qx log(qx)� (qx � 1)] . Since y log y � (y � 1) > 0 for y >

0 and y 6= 1, 'x(q, x) is strictly positive for x 6= 0. For x = 0, l’Hôpital’s rule yields
limx!0 'x(q, x) = (log q)2/2 > 0. Hence 'x(q, x) > 0 for any x. Moreover,

'x

'
(q, x) =

@

@x
log

qx � 1

x
=

x

qx � 1

(qx log q)x� (qx � 1)

x2
=

log q

1� q�x
� 1

x

and

@

@x

✓
'x

'

◆
(q, x) = �q�x(log q)2

(1� q�x)2
+

1

x2
=

1

x2

✓
1� qx(log qx)2

(qx � 1)2

◆
.

Let h(y) := (y � 1)2 � y(log y)2 for y > 0. Note that h0(y) = 2(y � 1)� 2 log y � (log y)2

and h(1) = h0(1) = 0. Also, h00(y) = (2/y)(y � 1� log y) is positive for y > 0. Thus, h0(y) is
increasing in y, implying that h0(y) < 0 for 0 < y < 1 and h0(y) > 0 for y > 1. Hence, h(y)
achieves a minimum 0 at y = 1 and h(y) > 0 for y 6= 1. This leads to 1 � y(log y)2/(y � 1)2

for y > 0 with equality holding at y = 1. Thus, (@2/@x2) log'(q, x) � 0.
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(c) Using '(q,�x) = '(q, x)/qx from Lemma 4(a), we have

qx'(q, y)

'(q, x+ y)
=
'(q, y)

qy
qx+y

'(q, x+ y)
=

'(q,�y)

'(q,�x� y)
.

Thus, the derivative with respect to q is

@

@q

'(q,�y)

'(q,�x� y)
=

1

'2(q,�x� y)

⇥
q�y�1'(q,�x� y)� '(q,�y)q�x�y�1

⇤

=
q�x�2y�1

'2(q,�x� y)
['(q, x+ y)� '(q, y)] .

By Lemma 4(b), '(q, x) is increasing in x. Hence, the last expression has the same sign as x.

(d) First we consider the case x 6= 0. By Lemma 4(c), we know that @

@q

q
x
'(q,y)

'(q,x+y) has the
same sign as x. Write

@

@q

'(q, x)'(q, y)

'(q, x+ y)
=

1

x


@

@q

qx'(q, y)

'(q, x+ y)
� @

@q

'(q, y)

'(q, x+ y)

�
.

The first term inside the square brackets has the same sign as x and so does the second term
(including the negative sign) by Lemma 4(c). Hence, the entire expression is strictly positive.

If x = 0, we have @

@q

'(q,0)'(q,y)
'(q,y) = 1/q > 0.

(e) Note that y log y > y � 1 for y 6= 1. By l’Hôpital’s rule,

�(1) = lim
y!1

log y

2(y � 1)
= lim

y!1

1

2y
= 1/2.

Thus, �(y) is continuous and �(y) > 0. Moreover,

�0(y) =
(y � 1)2 log y � 2(y � 1)(y log y � y + 1)

(y � 1)4
=

2(y � 1)� (y + 1) log y

(y � 1)3
. (63)

Note that a function  (y) := 2(y� 1)� (y+1) log y satisfies  (1) = 0 and  0(y) = 1� 1/y�
log y  0 with equality holding at y = 1. Hence  (y) is positive for 0 < y < 1 and negative
for y > 1. Thus �0(y) =  (y)/(y � 1)3 is negative for 0 < 1 < y or y > 1, and �(y) is a
decreasing function for y > 0. Hence, (@/@x)(�1/')(q, x) = �(qx) is a decreasing function in
x for q > 1. 2
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A.3 Proof of Lemma 2

In the next section A.3.1 we show that (34) has a unique solution q. Then equations (31)–(32)
determine a unique p and equilibrium wage rate w. Equation (30) determines � and if � <
1/�+, equations (14)–(15) deliver c > 0 and N > 0 as linear functions of Y . The assumption
that Inada conditions hold, @2U(c,N)/@c2 < 0 and @2U(c,N)/@c@N  0 guarantees that
there exists exactly one level of Y that satisfies equation (16).26

A.3.1 Unique solution of Equation (34)

We define functions A(q,⇡) and B(q,⇡) as

A(q,⇡) :=
'(q, (⇢+ µ)/⇡ + 1� ⌘)

'(q, (⇢+ µ)/⇡ � ⌘)

'(q,�⌘)
'(q, 1� ⌘)

B(q,⇡) :=
'(q, µ/⇡ + 1� ⌘)

'(q, µ/⇡)'(q, 1� ⌘)

and rewrite (34) as

1 =
�+(⇢+ µ)

⌘ � 1

B(q,⇡)

A(q,⇡)� 1
. (64)

First we investigate B(q,⇡). We have @B/@q < 0 for any ⇡ by Lemma 4(d). Also,
limq!1B(q,⇡) = 1 for any ⇡, since, by l’Hôpital’s rule, any ratio '(q, x)/'(q, y) converges
to 1 as q ! 1 and since limq!1 '(q, µ/⇡) = 0. Finally, limq!1B(q,⇡) = 0, because for any
x, y > 0, limq!1 '(q, y � x)/'(q, y) = 0 and limq!1 '(q,�x) = 1/x.

Next we investigate A(q,⇡). Using Lemma 4(a), we have

A(q,⇡) =
'(q,�⌘)
'(q, 1� ⌘)

'(q, 1� ⌘ + ⇢+µ

⇡
)

'(q,�⌘ + ⇢+µ

⇡
)

=
'(q, ⌘)

'(q, ⌘ � 1)

'(q, ⌘ � 1� ⇢+µ

⇡
)

'(q, ⌘ � ⇢+µ

⇡
)

. (65)

Also using Lemma 4(a) we have @ log'(q, x)/@q = 1/(q'(q,�x)). Hence,

@A/@q

A
=

1

q

 
1

'(q,�⌘) �
1

'(q, 1� ⌘)
+

1

'(q, 1 + ⇢+µ

⇡
� ⌘)

� 1

'(q, ⇢+µ

⇡
� ⌘)

!
(66)

=
1

q

 Z min{1�⌘,
⇢+µ

⇡
�⌘}

�⌘

@

@x

✓
�1

'

◆
(q, x)dx�

Z 1+ ⇢+µ

⇡
�⌘

max{1�⌘,
⇢+µ

⇡
�⌘}

@

@x

✓
�1

'

◆
(q, x)dx

!
.

By Lemma 4(e), the integrand (@/@x)(�1/')(q, x) in (66) is a positive-valued, decreasing
function. Thus @A/@q is strictly positive, since �⌘ < min{1� ⌘, (⇢+ µ)/⇡ � ⌘}  max{1�
⌘, (⇢+ µ)/⇡ � ⌘} < 1 + (⇢+ µ)/⇡ � ⌘. Moreover, limq!1A(q,⇡) = 1 for any ⇡.

26Again, if U is separable and linear in N , Inada conditions with respect to c su�ce.
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In sum, we have @A/@q > 0, limq!1A(q,⇡) = 1, limq!1A(q,⇡) < 1, @B/@q < 0,
limq!1B(q,⇡) = 1, and limq!1B(q,⇡) = 0. These properties guarantee that the right-
hand side of (64) decreases monotonically from +1 to 0 as q increases from 1 to +1, which
insures the existence and uniqueness of solutions to (64).

Finally, we verify that the solution to (31)–(34) generates inflation ⇡. Note that, at any
instance t, P 1�⌘

t
is increased by the price adjustments of firms hit by Calvo shocks and price

adjustments of firms that pay menu costs. We compute these two e↵ects on the growth rate
(dP 1�⌘

t
/dt)/P 1�⌘

t
. The e↵ect due to Calvo shocks is written as µ

�
(p⇤)1�⌘ �

R
p1�⌘f(p)dp

�
.

By zero-profit condition (13) we have 1 =
R
p1�⌘f(p)dp. Thus the above expression is reduced

to

µ
�
(p⇤)1�⌘ � 1

�
. (67)

The e↵ect due to firms paying menu cost is

�
�
(p⇤)1�⌘ � p1�⌘

�
. (68)

Summing (67) and (68), and using �/µ = 1/(qµ/⇡ � 1) from (30), we have

dP 1�⌘

t
/dt

P 1�⌘

t

= µ
�
(p⇤)1�⌘ � 1

�
+ �

�
(p⇤)1�⌘ � p1�⌘

�
= µ

 
(qµ/⇡+1�⌘ � 1)p1�⌘

qµ/⇡ � 1
� 1

!
.

Using p1�⌘ = '(q, µ/⇡)/'(q, µ/⇡ + 1 � ⌘) from (31), we obtain dP
1�⌘

t
/dt

P
1�⌘

t

= ⇡(1 � ⌘). Hence,

we obtain the desired result (dPt/dt)/Pt = ⇡.

A.4 Non-negative average v(p) implies ��+ < 1

Proof of Lemma 3. Let (⌦,F , Q) be the probability space that defines the Poisson processes.
Then,

v(p) = EQ

Z 1

0
e�⇢t

⇣
z(pt(!), t)� �+1{t:pt(!)=p}

⌘
dt | p0 = p

�
.

Averaging over the stationary distribution of prices F, we obtain:

EF v(p) = EFEQ

Z 1

0
e�⇢t

⇣
z(pt(!))� �+1{t:pt(!)=p}

⌘
dt | p0 = p

�
.

Since z(pt)� �+ is bounded below by min{z(p⇤)� �+; z(p)� �+}, we can apply Tonelli’s
theorem to obtain

EF v(p) = EQ

Z 1

0
EF

h
e�⇢t

⇣
z(pt(!))� �+1{t:pt(!)=p}

⌘i
dt

=
1

⇢

�
EF z(p)� ��+

�
.
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Since w is necessarily positive, (13) implies that EF z(p) < 1. Thus if EF v(p) > 0,

0 < EF⇢v(p) = EF z(p)� ��+ < 1� ��+.

A.5 Comparative statics

We establish some comparative statics with respect to ⇡ and � as well as the limit property
of q when �+ ! 0 or ⇡ ! 0.

A.5.1 dq/d⇡ > 0 and dp⇤/d⇡ > 0 for any ⇡ > 0

Lemma 4(b) implies that for any y > x,

@

@u

✓
'(q, y + u)

'(q, x+ u)

◆
> 0. (69)

Using (69) we obtain
@A(q,⇡)

@⇡
< 0 and

@B(q,⇡)

@⇡
> 0.

Also, as shown in A.3.1, we have @A/@q > 0 and @B/@q < 0. Hence, (64) implies that
dq/d⇡ > 0 for ⇡ > 0.

From (31), we have

(p⇤)⌘�1 =
q⌘�1'(q, 1� ⌘ + µ/⇡)

'(q, µ/⇡)
=
'(q, ⌘ � 1� µ/⇡)

'(q,�µ/⇡)
. (70)

Equation (70) establishes that p⇤(⇡) = p⇤(q(⇡),⇡). From Lemma 4(c) it follows that @p⇤/@q >
0, and using (69) we conclude that @p⇤/@⇡ > 0. Since dq/d⇡ > 0, we obtain the claim
dp⇤/d⇡ > 0.

A.5.2 dq/d�+ > 0, dp⇤/d�+ > 0, and d(w/p⇤)/d�+ < 0

Equation (64) is written as A(q,⇡)� 1 = B(q,⇡)�+(⇢+ µ)/(⌘ � 1). Then,

dq

d�+
=

B(q,⇡)(⇢+ µ)/(⌘ � 1)

(@A/@q)� (@B/@q)�+(⇢+ µ)/(⌘ � 1)
> 0,

where the inequality obtains from @A/@q > 0 and @B/@q < 0. Moreover, since dp⇤/dq > 0,
we obtain dp⇤/d�+ > 0.

From (27), we have

w

p⇤
=
⌘ � 1

⌘

'(q, 1� ⌘ + ⇢+µ

⇡
)

q'(q,�⌘ + ⇢+µ

⇡
)

=
⌘ � 1

⌘

'(q, ⌘ � 1� ⇢+µ

⇡
)

'(q, ⌘ � ⇢+µ

⇡
)

. (71)
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From the above equation, we may write w/p⇤ = (w/p⇤)(q,⇡) and Lemma 4(c) guarantees
that

@(w/p⇤)

@q
< 0.

Using dq/d�+ > 0, we obtain that d(w/p⇤)/d�+ < 0.

A.5.3 Continuity of q(�+,⇡) at �+ = 0

When �+ = 0, it is optimal for firms to adjust price immediately at any time regardless of
⇡. This implies q = 1 and p⇤ = p̂. With all the firms pricing at p̂, price aggregation implies
p̂1�⌘ = 1. Hence, w = (⌘ � 1)/⌘ and p⇤ = p̂ = 1 hold.

As �+ decreases to 0, the right-hand side of (64) decreases to 0 for fixed q. This implies
that the solution q of (64) decreases as �+ decreases, since B(q,⇡)/(A(q,⇡)�1) is a decreasing
function in q. Moreover, the solution q converges to 1 as �+ ! 0, since limq!1A(q,⇡) = 1.
Hence, q(�+,⇡) is continuous in �+ � 0 and q(0,⇡) = 1 for any ⇡.

A.5.4 Continuity of q(�+,⇡) at ⇡ = 0

When there is no inflation, the relative price does not move, unless a firm chooses to change
it. Once a firm adjusts its price, it would opt to change the price again only when it receives
a productivity shock. Thus, the relative price of a firm is p⇤(0) = p̂(0) = w(0)⌘/(⌘ � 1).
Hence, the zero-profit condition (13) implies 1 = EF [p1�⌘] = (p⇤)1�⌘ = (w⌘/(⌘ � 1))1�⌘ .

The firm pays menu costs and reprices if p < p(0) where p(0) is determined by the value
matching condition (32). Using the results above, (32) is modified as

(⇢+ µ)�+

⌘ � 1
= '(q(0), ⌘)� '(q(0), ⌘ � 1). (72)

Equation (72) shows that q(0) > 1, since function h(q) := ((⌘ � 1)/⌘)q⌘ � q⌘�1 + 1/⌘ � (⇢+
µ)�+(a/ã)1�⌘ is increasing in q � 1 toward infinity and h(1) < 0.

Now we show that lim⇡!0 q(⇡) = q(0). First, notice that for any fixed q > 1, using
l’Hôpital’s rule:

lim
y!1

qx'(q, y)

'(q, x+ y)
= lim

y!1

qx(qy � 1)

qx+y � 1
lim
y!1

x+ y

y
= lim

y!1

qxqy log q

qx+y log q
= 1.

In addition, Lemma 4(c) states that, for q > 1, if x > 0 then qx'(q, y)/'(q, x+ y) increases
with q, and if x < 0, qx'(q, y)/'(q, x+ y) decreases with q.

Let q̄ be an upper bound of q(⇡) in ⇡ 2 (0, ⇡̄). For ⇡ 2 (0, ⇡̄), since q̄ > q(⇡) > 1,

lim
q!1

'(q, 1� ⌘ + µ/⇡)

q1�⌘'(q, µ/⇡)
 '(q(⇡), 1� ⌘ + µ/⇡)

q(⇡)1�⌘'(q(⇡), µ/⇡)
<
'(q̄, 1� ⌘ + µ/⇡)

q̄1�⌘'(q̄, µ/⇡)
.
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By l’Hôpital’s rule, the leftmost side is equal to 1 for any ⇡. Thus, taking the limit ⇡ ! 0
for all the terms, we obtain

lim
⇡!0

'(q(⇡), 1� ⌘ + µ/⇡)

q(⇡)1�⌘'(q(⇡), µ/⇡)
= 1

and if qo := lim⇡!0 q(⇡) then

lim
⇡!0

'(q(⇡), 1� ⌘ + µ/⇡)

'(q(⇡), µ/⇡)
= q1�⌘

o .

Similarly,

lim
⇡!0

'(q(⇡), 1� ⌘ + (µ+ ⇢)/⇡)

'(q(⇡),�⌘ + (µ+ ⇢)/⇡)
= qo.

Applying these limits to (31) and (33), we obtain lim⇡!0w(⇡) = (⌘�1)/⌘ and lim⇡!0 p(⇡) =
qo. Substituting these into (32) yields

(⇢+ µ)�+

⌘ � 1
= '(qo, ⌘)� '(qo, ⌘ � 1).

This equation is identical to (72). Hence, q(⇡) is continuous at ⇡ = 0.

A.6 Existence of equilibrium when �+ is constant

Proof of Proposition 2. Since for any p, v(p) � v(p⇤(�+,⇡))� �+ = z(p⇤(�+,⇡))
⇢

� �+ if

z(p⇤(�+,⇡), w(�+,⇡)) = p⇤(�+,⇡)1�⌘

✓
1� w(�+,⇡)

p⇤(�+,⇡)

◆
� ⇢�+,

v(p) > 0. Also since p⇤(�+,⇡) � p̂(�+,⇡), we have w(�+,⇡)/p⇤(�+,⇡)  w(�+,⇡)/p̂(�+,⇡) =
(⌘ � 1)/⌘. Hence,

z(p⇤(�+,⇡), w(�+,⇡)) � 1

⌘
(p⇤(�+,⇡))1�⌘.

In addition, as we proved in A.5.1, p⇤(�+,⇡) is an increasing function of ⇡ for each �+. Further-
more, p⇤(�+,⇡)  q(�+,⇡), since q(�+,⇡)p(�+,⇡) = p⇤(�+,⇡) and from (31), p(�+,⇡)  1.
Thus for any �+ and any ⇡  ⇡̄,

z(p⇤(�+,⇡), w(�+,⇡)) � 1

⌘
(p⇤(�+,⇡))1�⌘ � 1

⌘
(p⇤(�+, ⇡̄))1�⌘ � 1

⌘
(q(�+, ⇡̄))1�⌘.

Since q is continuous and lim�+!0 q(�
+, ⇡̄) = 1 (see A.5.3), there exists �1 > 0 such that,

(q(�+, ⇡̄))1�⌘ >
1

2
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for �+ 2 [0, �1]. Hence if �̄ = min{ 1
2⌘⇢ , �1},

z(p⇤(�+,⇡), w(�+,⇡)) � 1

⌘
(q(�+, ⇡̄))1�⌘ > ⇢�̄ � ⇢�+ (73)

for each ⇡ 2 [0, ⇡̄] and �+ 2 [0, �̄]. This together with Lemma 3 establishes Item (a).
Furthermore, Proposition 3(a) showed that for each �+,

lim
⇡!1

(log q(⇡, �+))/⇡ = (log(1 + �+⌘µ))/µ,

and thus,
lim
⇡!1

q(⇡, �+)
µ

⇡ = e(log(1+�
+
⌘µ)) = 1 + �+⌘µ.

Hence,

�+ lim
⇡!1

�(⇡, �+) = �+ lim
pi!1

µ

q(⇡, �+)µ/⇡ � 1
=

1

⌘
< 1,

establishing Item (b).

A.7 Proof of Proposition 3

Proof of Item (a). First, we show that log q(⇡) ! 1 as ⇡ ! 1. Suppose to the contrary
that there exists a sequence ⇡n ! 1 such that log qn = q(⇡n) is bounded above. Then
A(qn,⇡n) converges to 1 as ⇡n ! 1. Hence, (64) implies that B(qn,⇡n) must converge to 0
as ⇡n ! 1. The numerator of B, '(q, 1�⌘+µ/⇡), is strictly positive and increasing in q for
q > 1. Therefore, the denominator must tend to infinity. However, '(q, 1 � ⌘) is bounded.
Thus, '(qn, µ/⇡n) must tend to infinity. For a fixed log q, we have lim⇡!1(eµ(log q)/⇡ �
1)/(µ/⇡) = lim⇡!1(eµ(log q)/⇡µ(log q)/(�⇡2))/(µ/(�⇡2)) = log q. Since log qn is bounded
by our hypothesis, this contradicts the divergence of '(qn, µ/⇡n). Hence, log q(⇡) ! 1 as
⇡ ! 1.

Next, we show asymptotic relations for A(q,⇡) and B(q,⇡). Function '(q, x) = (qx�1)/x
for fixed q > 1 is analytic in region x < 0, and so is log'(q, x). Thus, a Taylor series expansion
of log'(q, x) around x = �⌘ yields

log'(q,�⌘ + u)� log'(q,�⌘) = u
'x

'
(q,�⌘) + @

@x

'x

'
(q, x)

����
x=x1

u2

2

for |u| < 1 where x1 2 [�⌘,�⌘ + u]. Similar expansion around x = 1 � ⌘ yields, for some
x2 2 [1� ⌘, 1� ⌘ + u],

log'(q, 1� ⌘ + u)� log'(q, 1� ⌘) = u
'x

'
(q, 1� ⌘) +

@

@x

'x

'
(q, x)

����
x=x2

u2

2
.
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Note that, from Lemma 4(b), the coe�cients of u2 terms in the above two equations are
uniformly bounded for q 2 [1,1]. Moreover, Lemma 4(b) gives

'x

'
(q, 1� ⌘)� 'x

'
(q,�⌘) =

Z 1�⌘

�⌘

1

x2

✓
1� qx(log qx)2

(qx � 1)2

◆
dx. (74)

Using notation u := (⇢+µ)/⇡, we obtain the first-order Taylor expansion of logA around
u = 0 as

logA(q,⇡) = log'(q, 1� ⌘ + u)� log'(q, 1� ⌘)� log'(q,�⌘ + u) + log'(q,�⌘)

=

✓
'x

'
(q, 1� ⌘)� 'x

'
(q,�⌘)

◆
u+O(u2).

Combining with (74), we obtain

⇡ logA(q,⇡) = (⇢+ µ)

Z 1�⌘

�⌘

1

x2

✓
1� qx(log qx)2

(qx � 1)2

◆
dx+O(u).

We have previously shown that lim⇡!1 q(⇡) = 1. Thus, lim⇡!1 qx(⇡)(log qx(⇡))2/(qx(⇡)�
1)2 = 0 for x < 0. Also note

R 1�⌘

�⌘
1/x2dx = 1/(⌘(⌘ � 1)). Thus, lim⇡!1 ⇡ logA(q(⇡),⇡) =

(⇢ + µ)/(⌘(⌘ � 1)). This implies lim⇡!1A(q(⇡),⇡) = 1. Thus, lim⇡!1(A(q(⇡),⇡) �
1)/ logA(q(⇡),⇡) = 1 by l’Hôpital’s rule. Combining with the above result yields

⇡(A(q(⇡),⇡)� 1) ! ⇢+ µ

⌘(⌘ � 1)
as ⇡ ! 1. (75)

Moreover, a Taylor series expansion of '(q, 1�⌘+µ/⇡) around x = 1�⌘ yields, for some
x3 2 [1� ⌘, 1� ⌘ + µ/⇡],

'(q, 1� ⌘ + µ/⇡) = '(q, 1� ⌘) +
x3qx3 log(q)� (qx3 � 1)

x23

µ

⇡
.

Since x3 < 0 for su�ciently large ⇡ such that 1 � ⌘ + µ/⇡ < 0, the final term tends to 0 as
⇡ ! 1 and q(⇡) ! 1. Thus we have,

'(q(⇡), µ/⇡)B(q(⇡),⇡) =
'(q(⇡), 1� ⌘ + µ/⇡)

'(q(⇡), 1� ⌘)
! 1 as ⇡ ! 1. (76)

Substituting (75) and (76) into (64), we obtain lim⇡!1(log q(⇡))/⇡ = (log(1+ �+⌘µ))/µ.
Finally, applying the above limit to (30), �(⇡) = µ/(eµ(log q(⇡))/⇡�1), we obtain lim⇡!1 �(⇡) =
1/(�+⌘). 2
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Proof of Item (b). Recall that (70) states (p⇤)⌘�1 = '(q,1�⌘+µ/⇡)
'(q,µ/⇡) q⌘�1. First, as ⇡ ! 1 and

q(⇡) ! 1, '(q(⇡), 1�⌘+µ/⇡) converges to a positive constant. Second, we know from Item
(a) that log q grows linearly in ⇡ for large ⇡. This implies that, for large ⇡, q⌘�1 = e(⌘�1) log q

grows exponentially in ⇡, while '(q, µ/⇡) = (⇡/µ)(eµ(log q)/⇡ � 1) grows only linearly in ⇡.
Therefore, the numerator dominates the denominator for large ⇡. Thus p⇤ grows unboundedly
as ⇡ increases. 2

In order to prove Item (c), we need the following lemma.

Lemma 5.
d log q

d⇡
⇠ log q

⇡
.

Proof. We evaluate the asymptotic behavior of

d log q

d⇡
=

�1

q

@A/@⇡ � �o@B/@⇡

@A/@q � �o@B/@q
,

where �o := �(⇢+µ)/(⌘�1). First we investigate @A/@q in the denominator. Using (66) and
notation u = (⇢+ µ)/⇡, we have for su�ciently large ⇡ such that u < 1,

@A

@q
=

A

q

"Z min{1�⌘,u�⌘}

�⌘

@

@x

✓
�1

'

◆
(q, x)dx�

Z 1+u�⌘

max{1�⌘,u�⌘}

@

@x

✓
�1

'

◆
(q, x)dx

#

=
Au

q


@

@x

✓
�1

'

◆
(q, x4)�

@

@x

✓
�1

'

◆
(q, x5)

�

=
Au

q

Z
x4

x5

@2

@x2

✓
�1

'

◆
(q, x)dx =

Au

q

Z
x5

x4

@2

@x2

✓
1

'

◆
(q, x)dx

where x4 2 [�⌘, u� ⌘] and x5 2 [1� ⌘, 1 + u� ⌘] and x4 < x5 < 0 for large ⇡.
From Lemma 4(e) and equation (63), we have

@2

@x2

✓
�1

'

◆
(q, x) =

@

@x

qx log(qx)� qx + 1

(qx � 1)2
=

1

(qx � 1)2

✓
2� qx + 1

qx � 1
log(qx)

◆
qx log q.

Substituting this into the equation above, we obtain

@A

@q
=

Au

q


�qx6 log q

(qx6 � 1)2

✓
2� qx6 + 1

qx6 � 1
log(qx6)

◆�
for some x6 2 [x4, x5]

=
(log q)2

⇡q1�x6

�x6A(⇢+ µ)

(1� qx6)2

✓
2

x6 log q
+

1 + qx6

1� qx6

◆

=
(log q)2

⇡q1�x6
(�x6A(⇢+ µ))(1�O(1/ log q))
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where the last equality uses the fact that qx6 tends to 0 as a power function with exponent
x6 < 0, and hence it is dominated by 1/ log q for large ⇡.

We also obtain

�@B
@q

= �@ logB
@q

B =

✓
1

'(q,�µ/⇡)
+

1

'(q, ⌘ � 1)
� 1

'(q, ⌘ � 1� µ/⇡)

◆
B

q

=

 
1

'(q,�µ/⇡)
+

Z
⌘�1

⌘�1�µ/⇡

@

@x

✓
1

'

◆
(q, x)dx

!
B

q

=

✓
1

'(q,�µ/⇡)
� µ

⇡

'x

'2
(q, x7)

◆
B

q
where x7 2 [⌘ � 1� µ/⇡, ⌘ � 1].

By Lemma 4(e), we have ('x/'2)(q, x7) = O(q�x7 log q), which is dominated by 1/'(q,�µ/⇡)
for x7 > 0. Thus we obtain that ⇡2q(@A/@q � �o@B/@q) is equal to

⇡(log q)2

q�x6
(�x6A(⇢+ µ))

✓
1�O

✓
1

log q

◆◆
+

✓
⇡2�o

'(q,�µ/⇡)
�O

✓
⇡ log q

qx7

◆◆
B.

Since q grows asymptotically exponentially as ⇡ ! 1, both q�x6 and qx7 (with x6 < 0
and x7 > 0) grow exponentially. From (75) and (76) we have lim⇡!1A(q(⇡),⇡) = 1
and B(q(⇡),⇡) ⇠⇡!1 1/'(q(⇡), µ/⇡). From Item (a) we have lim⇡!1 '(q(⇡), µ/⇡)/⇡ =
�+⌘, which implies that (log q(⇡))/⇡ converges to a positive constant as well as that � :=
lim⇡!1 '(q(⇡),�µ/⇡)/⇡ is a positive constant. Collecting these results, we obtain

lim
⇡!1

⇡2q

✓
@A

@q
� �o

@B

@q

◆
=

�o
�+⌘�

, where � = lim
⇡!1

'(q(⇡),�µ/⇡)

⇡
.

Next, we turn to the numerator �@A/@⇡ + �o@B/@⇡. Using Lemma 4(b), we calculate
@A/@⇡ as

@A/@⇡

A
=
@ logA

@⇡
=

✓
'x

'
(q, ⌘ � 1� u)� 'x

'
(q, ⌘ � u)

◆
d(�u)

d⇡

= �⇢+ µ

⇡2

Z
⌘�u

⌘�1�u

1

x2

✓
1� qx(log qx)2

(qx � 1)2

◆
dx. (77)

Thus, lim⇡!1 ⇡2@A/@⇡ = �(⇢+ µ)
R
⌘

⌘�1 x
�2dx = �(⇢+ µ)/(⌘(⌘ � 1)).

Using Lemma 4(b), we have

@B

@⇡
=

✓
'x

'
(q, 1� ⌘ + µ/⇡)� 'x

'
(q, µ/⇡)

◆✓
�µ

⇡2

◆
B(q(⇡),⇡) (78)

=

✓
log q

1� q⌘�1�µ/⇡
+

1

⌘ � 1� µ/⇡
� log q

1� q�µ/⇡
+
⇡

µ

◆✓
�µ

⇡2

◆
B(q(⇡),⇡).
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Rearranging terms, we obtain

@B

@⇡
=

✓
�O

✓
log q

⇡q⌘�1

◆
+

1

⇡(⌘ � 1)/µ� 1
� log q

'(q,�µ/⇡)
+ 1

◆
B(q(⇡),⇡)

�⇡

=

✓
log q

'(q,�µ/⇡)
� 1�O(⇡�1)

◆
B(q(⇡),⇡)

⇡
.

Using (76) and ⇡/'(q, µ/⇡) ⇠ 1/(�+⌘) from Item (a), we have

lim
⇡!1

⇡2
@B

@⇡
=

✓
1

�
lim
⇡!1

log q

⇡
� 1

◆
1

�+⌘
.

Collecting the results above, we obtain

lim
⇡!1

⇡2(�@A/@⇡ + �o@B/@⇡)

⇡2q(@A/@q � �o@B/@q)
=

✓
⇢+ µ

⌘(⌘ � 1)
+

✓
1

�
lim
⇡!1

log q

⇡
� 1

◆
�o
�+⌘

◆
�+⌘�

�o
= lim

⇡!1

log q

⇡

where we used �o = �+(⇢ + µ)/(⌘ � 1). Hence, we obtain the desired result: d log q/d⇡ ⇠
(log q)/⇡. 2

Proof of Item (c). The real wage w is determined by (31) and (33) as

w =
⌘ � 1

⌘

'(q, 1� ⌘ + (⇢+ µ)/⇡)

'(q,�⌘ + (⇢+ µ)/⇡)

✓
'(q, 1� ⌘ + µ/⇡)

'(q, µ/⇡)

◆1/(⌘�1)

. (79)

Note that '(q(⇡), µ/⇡) tends to infinity as ⇡ ! 1 and all the other terms with ' are bounded
for q > 1. Thus, w converges to 0 as ⇡ increases.

Rewrite the right-hand side of (79) using u = (⇢+ µ)/⇡ as

⌘ � 1

⌘(⌘ � 1� µ/⇡)1/(⌘�1)

⌘ � u

⌘ � 1� u

(1� q1�⌘+u)(1� q1�⌘+µ/⇡)1/(⌘�1)

(1� q�⌘+u)'(q, µ/⇡)1/(⌘�1)
. (80)

The first two fractions are monotonically decreasing in ⇡. We focus on the third fraction.
We have

d

d⇡

⇣
1� q1�⌘+µ/⇡

⌘
= �q1�⌘+µ/⇡

✓
(1� ⌘ + µ/⇡)

d log q

d⇡
� µ log q

⇡2

◆
.

By Lemma 5(a), we have d(log q)/d⇡ ⇠ (log q)/⇡ ⇠ (log(1 + µ�⌘))/µ. Hence, for any small
✏ > 0 there exists ⇡o such that for all ⇡ > ⇡o, |d(log q)/d⇡ � (log q)/⇡| < ✏, |d(log q)/d⇡ �
(log(1 + µ�⌘))/µ| < ✏, and |(log q)/⇡ � (log(1 + µ�⌘))/µ| < ✏ hold. Hence, we have

d

d⇡

⇣
1� q1�⌘+µ/⇡

⌘
<

1

q⌘�1�µ/⇡


(⌘ � 1)

✓
log(1 + µ�⌘)

µ
+ ✏

◆
+
✏µ

⇡

�
.
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Since q asymptotically grows exponentially in ⇡, the left-hand side is bounded by a function
exponentially decreasing to 0. The same analysis holds true for functions (1�q1�⌘+µ/⇡)1/(⌘�1),
1� q1�⌘+u, and 1� q�⌘+u. Since all of these functions are bounded above by 1 and bounded
below by positive constants for su�ciently large ⇡, the logarithms of these functions also have
derivatives exponentially decreasing in ⇡ for large ⇡.

Next, we examine the derivative of log'(q, µ/⇡). For ⇡ > ⇡o we have the following
inequality:

d log'(q, µ/⇡)

d⇡
=

1

⇡
+

µ

⇡(1� e�µ(log q)/⇡)

✓
d log q

d⇡
� log q

⇡

◆

>
1

⇡

✓
1� µ✏

1� eµ✏/(1 + µ�⌘)

◆
.

Thus, the left-hand side is bounded from below by a function that declines as 1/⇡.
Combining the results, the derivative of the logarithm of the third fraction of (80),

d

d⇡

 
log

(1� q1�⌘+u)(1� q1�⌘+µ/⇡)1/(⌘�1)

(1� q�⌘+u)'(q, µ/⇡)1/(⌘�1)

!
,

consists of three terms that are bounded by exponentially declining functions and one term,
with negative sign, which is bounded below by a function declining as 1/⇡. Thus, the negative
term dominates the other terms for large ⇡. Hence, the third fraction is a decreasing function
in ⇡.

Since all fractions in (80) are decreasing in ⇡ for large ⇡, we obtain that w is asymptotically
decreasing in ⇡. 2

A.8 Existence of equilibrium when �(⇡) is a decreasing function

Proof of Proposition 4. Choose

⇡̄ > max

⇢
⇢+ µ,

⇢+ µ

⌘ � 1

�
.

Let �̄ > 0 be chosen as in Proposition 2. For �0  �̄, and �� > 0, set

q(⇡) := q(�(0),⇡).

Then (q(⇡))1�⌘  (q(�(⇡),⇡))1�⌘. Moreover, from (73),

(q(⇡))1�⌘ > ⇢�(0) � ⇢�(⇡)
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for ⇡  ⇡̄. To establish that this inequality continues to hold for ⇡ > ⇡̄, it su�ces to show
that d(q1�⌘)/d⇡ > ⇢�0(⇡) if (q(⇡))1�⌘ = ⇢�(⇡). This is equivalent to show

d log q

d⇡
<

1

1� ⌘

�0(⇡)

�(⇡)
=

��
⌘ � 1

.

If �o := �(0)(⇢+ µ)/(⌘ � 1),

d log q

d⇡
=

1

q

�@A/@⇡ + �o@B/@⇡

@A/@q � �o@B/@q
 (�@A/@⇡ + �o@B/@⇡)⇡/A

(@A/@q)q⇡/A
(81)

where the inequality holds because @B/@q < 0. To establish our result it su�ces to find a
uniform upper bound for the right-hand side of (81) which does not depend on ��.

First, we obtain �(@A/@⇡)⇡/A from (77) as

�⇡@ logA
@⇡

=
⇢+ µ

⇡

Z
⌘�u

⌘�1�u

1

x2

✓
1� qx(log qx)2

(qx � 1)2

◆
dx

where u = (⇢+ µ)/⇡. Lemma 4(b) implies that the integrand is positive and bounded above
by 1/x2. Moreover, using ⌘ � u > ⌘ � 1� u > 0 we obtain

�⇡@ logA
@⇡

 ⇢+ µ

⇡

Z
⌘�u

⌘�1�u

1

x2
dx  ⇢+ µ

⇡

1

(⌘ � 1� u)2
.

Since we have set ⇡̄ > (⇢+µ)/(⌘�1), ⌘�1�u is uniformly bounded below by a positive value
for ⇡ > ⇡̄. Hence, �(@A/@⇡)⇡/A is uniformly bounded above for ⇡ > ⇡̄, and this bound is
independent of ��.

Second, using (66) we obtain

@ logA

@q
=

1

q

✓Z
u�⌘

�⌘

@

@x

✓
�1

'

◆
(q, x)dx�

Z 1+u�⌘

1�⌘

@

@x

✓
�1

'

◆
(q, x)dx

◆

� u

q

✓
@

@x

✓
�1

'

◆
(q, u� ⌘)� @

@x

✓
�1

'

◆
(q, 1� ⌘)

◆

=
u

q

�
�(qu�⌘)� �(q1�⌘)

�

where the inequality holds from the fact that (@/@x) (�1/') (q, x) is a positive-valued, de-
creasing function of x by Lemma 4(e). Since we chose ⇡̄ > ⇢+µ, we have u < 1 for any ⇡ > ⇡̄.
With u � ⌘ < 1 � ⌘ < 0, the mean value theorem implies that there exists y⇤ 2 [qu�⌘, q1�⌘]
such that

�(qu�⌘)� �(q1�⌘) = (u� 1)�0(y⇤).
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Note that y⇤  (q(⇡))1�⌘  (q(0))1�⌘ < 1 where the last inequality was obtained in A.5.4.
Thus we have �0(y⇤) < 0 by (63) in the proof of Lemma 4(e). Also, 1�u > 1� (⇢+µ)/⇡̄ > 0.
Hence, we obtain a positive lower bound

q⇡

A

@A

@q
� (⇢+ µ)(1� (⇢+ µ)/⇡̄))(��0(y⇤)).

Finally, we have from (78)

⇡
@B

@⇡
=


'x

'
(q, µ/⇡)� 'x

'
(q, 1� ⌘ + µ/⇡)

�
µ

⇡
B(q,⇡).

Since ('x/')(q, x) = (log q)/(1� q�x)� 1/x > 0, we obtain

⇡
@B

@⇡
<
'x

'
(q, µ/⇡)

µ

⇡
B(q,⇡) =

 
log qµ/⇡

1� q�µ/⇡
� 1

!
B(q,⇡).

The function h(y) := (log y�1)/(1 � y) is a positive, decreasing function of y < 1. Thus,
h(e�µ(log q(⇡))/⇡) is uniformly bounded on ⇡ > ⇡̄ if (log q(⇡))/⇡ is uniformly bounded on
⇡ > ⇡̄. Proposition 3(a) established that lim⇡!1(log q(⇡))/⇡ = (log(1 + µ⌘�(0)))/µ < 1.
Moreover, (log q(⇡̄))/⇡̄ < 1 and (log q(⇡))/⇡ is continuous in ⇡. Hence we obtain a uniform
bound for (log q(⇡))/⇡ on ⇡ > ⇡̄.

It su�ces thus to find a uniform bound for B(q(⇡),⇡) at ⇡ such that (q(⇡))1�⌘ = ⇢�(⇡).
From (73) we have

(q(⇡̄))1�⌘ > ⌘⇢�(0) > ⇢�(⇡) = (q(⇡))1�⌘,

which implies that q(⇡̄) < q(⇡). Since @B/@q < 0 it su�ces to uniformly bound B(q(⇡̄),⇡)
from above. Moreover, since @B/@⇡ > 0, the uniform upper bound is given by lim⇡!1B(q(⇡̄),⇡)
which is finite because q(⇡̄) > 1, and again is independent of ��.

Finally, for any q and ⇡,

1

A
=
'(q, 1� ⌘)'(q,�⌘ + (⇢+ µ)/⇡)

'(q,�⌘)'(q, 1� ⌘ + (⇢+ µ)/⇡)
 1.

Therefore, if evaluated at q(⇡)1�⌘ = ⇢�(⇡), �o(@B/@⇡)⇡/A is uniformly bounded above for
⇡ > ⇡̄, and the bound is independent of ��.

Hence it su�ces to choose �� = (⌘ � 1)K where K is the bound we obtained for the
right-hand side of (81).

A.9 Derivation of ✓0(s), ✓0 and ✓ in Section 3.4

We want to evaluate

✓0(s) := lim
⌫!0

m0
s(⌫)

ms(⌫)
= lim

⌫!0

dm0
s(⌫)/d⌫

dms(⌫)/d⌫
.
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By di↵erentiation we obtain

dms(⌫)

d⌫
=

d

d⌫

Z
s+⌫/ log q

s

g(⌧)d⌧ =
g(s+ ⌫/ log q)

log q

dm0
s(⌫)

d⌫
=

d

d⌫

Z
⌫
0
s(⌫)/ log q

0
g(⌧)d⌧ =

d⌫ 0s
d⌫

g(⌫ 0s(⌫)/ log q)

log q
.

By di↵erentiation, we also obtain

d⌫ 0s(⌫)

d⌫
=

d log(P 0/P )

d⌫
=

1

1� ⌘

✓
(p⇤)1�⌘

dms(⌫)

d⌫
� (p · p1�⌘f(p))

��
p=p(s)e⌫

◆
.

Using

f(p) =
pµ/⇡�1

pµ/⇡'(q, µ/⇡)
, g(s) =

(log q)qsµ/⇡

'(q, µ/⇡)
, and p1�⌘ =

'(q, µ/⇡)

'(q, µ/⇡ + 1� ⌘)
,

we obtain

lim
⌫!0

d⌫ 0s(⌫)

d⌫
=

1

1� ⌘

 
(p⇤)1�⌘

qsµ/⇡

'(q, µ/⇡)
� p(s)µ/⇡+1�⌘

pµ/⇡'(q, µ/⇡)

!
=

qsµ/⇡p1�⌘(q1�⌘ � qs(1�⌘))

(1� ⌘)'(q, µ/⇡)

=
qsµ/⇡(q1�⌘ � qs(1�⌘))

(1� ⌘)'(q, µ/⇡ + 1� ⌘)
.

Thus we obtain (36) as

✓0(s) = lim
⌫!0

dm0
s(⌫)/d⌫

dms(⌫)/d⌫
=

g(0)

g(s)
lim
⌫!0

d⌫ 0s
d⌫

=
q1�⌘ � qs(1�⌘)

(1� ⌘)'(q, µ/⇡ + 1� ⌘)
.

From this expression we observe that ✓ := lims!0 ✓0(s) = '(q, 1� ⌘)/'(q, µ/⇡ + 1� ⌘).
Equation (37) is obtained by taking the expected value of the above expression,

✓0 = EGs [✓0(s)] =
q1�⌘ � '(q, µ/⇡ + 1� ⌘)/'(q, µ/⇡)

(1� ⌘)'(q, µ/⇡ + 1� ⌘)
=
'(p⇤, 1� ⌘)

'(q, µ/⇡)
,

where we used p⇤ = qp.
Finally, we derive (39). In A.3.1, we showed that the repricing of Calvo-hit firms (67) and

the repricing of menu-cost paying firms (68) constitute inflation:

(1� ⌘)⇡ = µ((p⇤)1�⌘ � 1) + �((p⇤)1�⌘ � p1�⌘).

This is rewritten as

⇡ = µ'(p⇤, 1� ⌘) +
'(q, 1� ⌘)

'(q, µ/⇡ + 1� ⌘)
⇡ = µ'(p⇤, 1� ⌘) + ✓⇡.

Hence, we obtain (39), ⇡ = µ'(q⇤, 1� ⌘)/(1� ✓).
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A.10 Asymptotic behavior of ✓

Proposition 8. lim⇡!0 ✓ = 0, and ✓ is increasing in ⇡ for su�ciently large ⇡.

Proof. From (38), we have ✓(⇡) = '(q(⇡),1�⌘)
'(q(⇡),1�⌘+µ/⇡) . Since q(0) > 0, we obtain

lim
⇡!0

✓(⇡) =
'(q(0), 1� ⌘)

lim⇡!0 '(q(⇡), 1� ⌘ + µ/⇡)
= 0.

Applying (70),

(p⇤(⇡))1�⌘⇡ =
'(q(⇡),�µ/⇡)

'(q(⇡), ⌘ � 1� µ/⇡)
⇡ =

q(⇡)�µ/⇡ � 1

q(⇡)⌘�1�µ/⇡ � 1

⇡(⌘ � 1)� µ

�µ
⇡

=
e�µ log(q(⇡))/⇡ � 1

q(⇡)⌘�1e�µ log(q(⇡))/⇡ � 1

⇡(⌘ � 1)� µ

�µ
⇡.

Since q(⇡) increases exponentially in ⇡ and log(q(⇡))/⇡ converges to a constant by Proposition
3, there exist constants a > 0 and A > 0 such that the last expression is bounded by Ae�a⇡.
By di↵erentiating the logarithm of (70), we obtain,

(⌘ � 1)
d log p⇤

d⇡
=

✓
'x

'
(q, ⌘ � 1� µ/⇡)� 'x

'
(q,�µ/⇡)

◆
µ

⇡2

+

✓
1

'(q,�⌘ + 1 + µ/⇡)
� 1

'(q, µ/⇡)

◆
d log q

d⇡
.

By Lemma 4(b), the first term on the RHS is positive and O(⇡�2). The second term is smaller
than (d log q/d⇡)/'(q(⇡), 1� ⌘), which is bounded for su�ciently large ⇡. Furthermore,

d

d⇡

'(p⇤, 1� ⌘)

⇡
=
'(p⇤, 1� ⌘)

⇡2

✓
(p⇤)1�⌘⇡

'(p⇤, 1� ⌘)

d log p⇤

d⇡
� 1

◆
.

We have shown that (p⇤(⇡))1�⌘⇡ is dominated by Ae�a⇡ for some pair (A, a) of positive
constants and that d log p⇤/d⇡ is bounded for large ⇡. Also, since q grows exponentially in ⇡,
by (70) p⇤ grows arbitrarily large for large ⇡. Thus, for large ⇡, '(p⇤(⇡), 1�⌘) is positive and
1/'(p⇤(⇡), 1� ⌘) is bounded. Hence, for su�ciently large ⇡ the above expression is negative.
Combined with 1 � ✓ = '(p⇤, 1 � ⌘)/(⇡/µ) from (39), this establishes that there exists a ⇡0

such that for ⇡ > ⇡0, ✓ is increasing in ⇡. 2

A.11 Proof of Proposition 5

In what follows, we write B(n, p) for a binomial with population n and probability p and
P(�) for a Poisson with mean �. Conditional on s, m0 follows P(✓0(s)) and mn

0 follows
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B(n� 1, G(✏n0 )). Consider a third random variable m̃n

0 distributed as B(n� 1, ✓0(s)/(n� 1))
and

L̃n =
1X

u=0

m̃n

u

where m̃n

u+1 conditional on (m̃n

k
)u
k=0 and s is distributed as

B

0

@n� 1�
X

ku

m̃n

k
,

✓m̃n
u

n� 1�
P

ku
m̃n

k

1

A ,

and write Q̃n for the associated distribution of L̃n.

Lemma 6. For any r 2 Z+,

lim
n!1

|Q̃n({r})�Q({r})| = 0

Proof. First notice that if L̃n = L = r then L̃n =
P

ur
m̃n

u and L =
P

ur
mu. In addition

if Jr := {j̄ = (j0, . . . , jr) :
P

ir
ji = r} then Pr(L̃n = r) is written as

X

j̄2Jr

Pr

 
m̃r = r �

r�1X

u=0

ju | (m̃u)
r�1
u=0 = (ju)

r�1
u=0

!

· Pr
�
m̃r�1 = jr�1 | (m̃u)

r�2
u=0 = (ju)

r�2
u=0

�
· · ·Pr(m̃1 = j1 | m̃0 = j0) · Pr(m̃0 = j0)

=
X

j̄2Jr

Pr

"
B
 
n� 1�

r�1X

u=0

ju,
✓jr�1

n� 1�
P

r�1
u=0 ju

!
= jr

#

· · ·Pr

B
✓
n� 1� j0,

✓j0
n� 1� j0

◆
= j1

�
· Pr


B
✓
n� 1,

✓0(s)

n� 1

◆
= j0

�
. (82)

Moreover for each j̄ 2 Jr, n > r + 1,

d⌧

0

@B

0

@n� 1�
X

iu

ji,
✓ju

n� 1�
P

iu
ji

1

A ,P(✓ju)

1

A <
✓ju

n� 1�
P

iu
ji

 ✓r

n� r
,

for u > 0 and

d⌧

✓
B
✓
n� 1,

✓0(s)

n� 1

◆
,P(✓0(s))

◆
<
✓0(s)

n� 1
 ✓

n� 1

(see e.g. Barbour and Hall [11, Equation (1.1)]). Since #Jr  2r � 1, for each ✏ > 0 we may
choose an n large enough so that |Q̃n({r})�Q({r})| < ✏. 2
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Lemma 7. For each j̄ 2 Jr

�����
n

i � ✓ji
n� 1�

P
`i

j`

�����  O(n�2), for each i = 0, · · · , r.

Moreover, ����G(✏n0 )�
✓0(s)

n� 1

����  O(n�2).

Proof. Note that

ni = G

0

B@✏n0 +
X

`2
S

i

k=1 M
n

k

✏̃`1

1

CA�G

0

B@✏n0 +
X

`2
S

i�1
k=1 M

n

k

✏̃`1

1

CA = g(xni (j̄))
X

`2Mn

i

✏̃`1, (83)

for some xn
i
(j̄) 2

h
✏n0 +

P
`2

S
i�1
k=1 M

n

k

✏̃`1, ✏
n

0 +
P

`2
S

i

k=1 M
n

k

✏̃`1

i
. Moreover, using (53) and the

fact that ✏11 = ✓/g(0), we obtain

X

`2Mn

i

✏̃`1 = ji✏
n

1 �O(n�2) =
✓ji

ng(0)
�O(n�2)  ✓r

ng(0)
�O(n�2). (84)

Hence,
�����

n

i � ✓ji
n� 1�

P
`i

j`

����� =

�����

✓
✓ji

ng(0)
�O(n�2)

◆
g(xni (j̄))�

✓ji
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�����

=
✓ji
n

�����
g(xn
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(j̄))

g(0)
� g(xn(j̄))O(n�1)� n

n� 1�
P

`i
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�����

 O(n�2) +
✓r

n

"����
g(xn

i
(j̄))

g(0)
� 1

����+

�����
n

n� 1�
P

`i
j`

� 1

�����

#
.

Note that ✏n0  ✏n1 = ✓/(ng(0)) by (51). Since xn
i
(j̄)  (1 +

P
i

`=0 j`)✓/(ng(0))  (1 +
r)✓/(ng(0)) and since g is increasing,

0  g(xn(j̄))  g

✓
(1 + r)✓

ng(0)

◆
.

In addition g(x)/g(0) = q(µ/⇡)x. Hence,
�����

n

i � ✓ji
n� 1�

P
`i

j`

�����  O(n�2).
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Finally, we evaluate |G(✏n0 )� ✓0(s)/(n� 1)|. Using (31), (36) and (50), we obtain

G(✏n0 ) =
q✏

n

0 � 1

'(q, µ/⇡)
=

1

'(q, µ/⇡)

h
e

1
n
✓0(s)'(q,µ/⇡)�✏P (s) � 1

i
.

Note that for any x > 0 there exists y 2 (0, x) such that |ex � 1� x| = y2/2 < x2/2. Hence,

����G(✏n0 )�
✓0(s)

n� 1

���� =
1

'(q, µ/⇡)

����e
1
n
✓0(s)'(q,µ/⇡)�✏P (s) � 1� ✓0(s)'(q, µ/⇡)

n� 1

����

 1

'(q, µ/⇡)

"�
1
n
✓0(s)'(q, µ/⇡)� ✏P (s)

�2

2
+
✓0(s)'(q, µ/⇡)

n(n� 1)
+ ✏P (s)

#
.

Using (49), we obtain that |G(✏n0 )� ✓0(s)/(n� 1)|  O(n�2). 2

Lemma 8. For any r 2 Z+,

lim
n!1

|Q̃n({r})�Qn({r})| = 0.

Proof. Roos [56, inequality (15)] for the case s = 0 states that for each (`, p, p0) with p, p0 2
(0, 1),

d⌧
�
B(`, p),B(`, p0)

�


p
e

2

�

(1� �)2
,

where

� = |p0 � p|

s
2 + `

2p0(1� p0)
.

If ` = n� 1�
P

i

k=0 jk, p = n
i
and p0 = ✓ji

n�1�
P

i

k=0 jk
, then ji � 1 if and only if p > 0 and

p0 > 0. Thus we may choose � = 0 when ji = 0. In addition p < 1 and p0 < 1 provided n � r,
which is necessary for Ln = L̃n = r.

By Lemma 7 |p0 � p| = O(n�2) and since the term under the square root is of order n2

we obtain that � = O(n�1) for each ji  r.
The remaining of the proof is exactly as in Lemma 6 noting that when ji = 0 both

binomials are degenerate. 2

Proof of Proposition. The result follows since Lemmas 6 and 8 establish that for each r,
limn!1 |Qn({r}) � Q({r})| = 0 and because pointwise convergence in distribution insures
convergence in Total Variation for distributions with support in Z+. 2
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A.12 Lemma for proof of Proposition 6

Lemma 9. Write ⇥ := (qµ/⇡ � 1)✓. If either ⇥  1 or ✓e⇥�1/⇥ < 1 then there exists K
such that E[(Ln)2 | s]  K.

Proof. All expectations used in this proof are conditional on s, and, to simplify notation,
we omit the dependence on s until the very end. Conditional on mn

k
= jk for k  u, the

distribution of mn

u+1 is a binomial with population n� 1�
P

ku
jk and probability nu. Let

rnu := (1 +
P

ku
jk)/n  1. The conditional mean and variance of mn

u+1 are respectively
n(1� rnu)

n
u and n(1� rnu)

n
u(1� nu). Since G is convex, using (83) and (84), we obtain

nu  ✓ju
n

g (✓rnu/g(0))

g(0)
=
✓ju
n

q(µ/⇡)(✓r
n
u/g(0)) =

✓ju
n

e(q
µ/⇡�1)✓rnu =

✓ju
n

e⇥r
n
u .

If F (r) := (1� r)e⇥r, for 0  r  1, then

E[mu+1 | (mk)
u

k=0 = (jk)
u

k=0] = n(1� rnu)
n

u  (1� rnu)✓jue
⇥r

n
u = ✓F (rnu)ju.

If ⇥  1, then F is non-increasing, since F 0(r) = e⇥r((1 � r)⇥ � 1)  0. Hence F (r) 
F (0) = 1. If ⇥ > 1, then F (r) attains a maximum at r⇤ = 1 � 1/⇥, because F 0(r⇤) = 0,
F 00(r⇤) < 0, and F 0(r) < 0 for r > r⇤. In this case, for any 0  r  1 F (r) is bounded
by F (r⇤) = e⇥�1/⇥ and thus by hypothesis ✓F (r) < 1. Hence there exists # < 1 such that
✓F (rnu)  #, and furthermore

E[mn

u+1 | (mn

k
)u
k=0 = (jk)

u

k=0]  ✓F (rnu)ju  #ju. (85)

Moreover,

E[(Ln)2] = E

2

4
 

nX

u=0

mn

u

!2
3

5  2E

"
nX

u=0

n�uX

k=0

mn

um
n

u+k

#
.

By the Law of Iterated Expectations and (85), we have

E[mn

um
n

u+k
] = E[mn

uE[mn

u+k
| mn

u]] = E[mn

uE[· · ·E[mn

u+k
| mn

u, . . . ,m
n

u+k�1] · · · | mn

u]]

 #kE[(mn

u)
2].

Hence,

E[(Ln)2]  2E

"
nX

u=0

n�uX

k=0

mn

um
n

u+k

#
 2

nX

u=0

n�uX

k=0

#kE[(mn

u)
2]  2

1� #

nX

u=0

E[(mn

u)
2].

Using the conditional mean and variance of mn
u and (85) we obtain

E[(mn

u)
2 | mn

u�1 = ju�1] = n(1� rnu�1)
n

u�1(1� nu�1) + (n(1� rnu�1)
n

u�1)
2

 n(1� rnu�1)
n

u�1 + (n(1� rnu�1)
n

u�1)
2

 #ju�1 + (#ju�1)
2.
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Applying this inequality iteratively, we obtain

E[(mn

u)
2]  #(E[mn

u�1] + #E[(mn

u�1)
2])

 #(E[mn

u�1] + #2(E[mn

u�2] + #E[(mn

u�2)
2]))

=
uX

i=1

#2i�1E[mn

u�i] + #2uE[(mn

0 )
2].

The Law of Iterated Expectations and (85) imply that E[mn

u�i
]  #u�iE[mn

0 ]. Substituting
this into the previous inequality yields

E[(mn

u)
2]  #uE[mn

0 ]

 
uX

i=1

#i�1

!
+ #2uE[(mn

0 )
2]  #u

E[mn

0 ]

1� #
+ #2uE[(mn

0 )
2],

and thus,

nX

u=0

E[(mn

u)
2]  E[mn

0 ]

1� #

 
nX

u=0

#u
!

+ E[(mn

0 )
2]

 
nX

u=0

#2u
!

 E[mn

0 ]

(1� #)2
+

E[(mn

0 )
2]

1� #2
.

Using E[mn

0 ]  ✓0(s)  ✓  # and E[(mn

0 )
2]  ✓0(s) + ✓20(s), we obtain

E[(Ln)2]  2

1� #

✓
✓

(1� #)2
+
✓ + ✓2

1� #2

◆
 2#(2� #)

(1� #)3
. 2

Remark 3. We know from Proposition 8 that lim⇡!1(q(⇡)µ/⇡ � 1) = �+⌘µ. Hence, if
�+ < 1/(⌘µ), we have ⇥ = (qµ/⇡ � 1)✓ < 1 for su�ciently large ⇡, and hence the condition
for Lemma 9 holds. The condition of Lemma 9 is also satisfied under our calibrated parameter
values for various values of ⇡. Figure 5 shows ⇥ and ✓F (r⇤) under US-calibrated parameters
except for ⇡. We observe that ✓F (r⇤) < 1 holds for ⇥ > 1.

A.13 Proof of Proposition 7(d)

First we establish the following lemma.

Lemma 10. The mean and variance of L conditional on m0 = 1 are 1/(1�✓) and ✓/(1�✓)3,
respectively.

Proof. The probability generating function  (z) of the sum L of a branching process with
initial value 1 is a fixed point of a functional equation  (z) = z�( (z)), where � is a
probability generating function of the number of children born from a parent. In our case, �
is the probability generating function of a Poisson distribution with mean ✓. By the property
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Figure 5: Conditions for assumption of Lemma 9 for parameter values calibrated in Section
5

of a probability generating function, �(1) =  (1) = 1, and the mean and variance of the
Poisson corresponds to �0(1) = ✓ and �00(1) + �0(1) � (�0(1))2 = ✓, respectively. Hence,
�00(1) = ✓2.

Using the functional equation, we obtain  0(z) = �( (z))+ z�0( (z)) 0(z) and  00(z) =
2�0( (z)) 0(z) + z�00( (z))( 0(z))2 + z�0( (z)) 00(z). Evaluating at z = 1, we obtain the
mean of L conditional on m0 = 1 as  0(1) = 1/(1� ✓). For  00(1), we have

 00(1) =
2✓

(1� ✓)2
+

�00(1)

(1� ✓)3
=

2✓

(1� ✓)2
+

✓2

(1� ✓)3
.

Hence, the variance of L conditional on m0 = 1 is

 00(1) + 0(1)� ( 0(1))2 =
2✓ � ✓2

(1� ✓)3
+

1

1� ✓
� 1

(1� ✓)2
=

✓

(1� ✓)3
. 2

Proof of Proposition 7(d). Using (40) and Lemma 10, we obtain E[L] = E[E[L|m0]] =
E[m0E[L|m0 = 1]] = ✓0/(1� ✓) and

V (L) = E [V (L|m0)] + V (E [L|m0]) = E[m0V (L|m0 = 1)] + V (m0E[L|m0 = 1])

= E[m0]V (L|m0 = 1) + V (m0)E[L|m0 = 1]2 =
✓0✓

(1� ✓)3
+

V (m0)

(1� ✓)2
.

61



With notation �2
✓0

:= V Gs(✓0(s)), we have

V (m0) = EGs [V (m0 | s)] + V Gs(E[m0 | s]) = EGs [✓0(s)] + V Gs(✓0(s)) = ✓0 + �2
✓0
.

Hence, we obtain

V (L) =
✓0✓

(1� ✓)3
+
✓0 + �2

✓0

(1� ✓)2
=

✓0
(1� ✓)3

+
�2
✓0

(1� ✓)2
.

Furthermore, applying (36) gives

�2
✓0

= V Gs(✓0(s)) = V Gs

 
q1�⌘ � q(1�⌘)s

(1� ⌘)'(q, 1� ⌘ + µ/⇡)

!
=

EGs [q2s(1�⌘)]� EGs [q(1�⌘)s]2

(1� ⌘)2'2(q, 1� ⌘ + µ/⇡)
.

We note that EG[qsx] for any x is derived as follows:

Z 1

0
qsx

qsµ/⇡ log q

'(q, µ/⇡)
ds =

log q

'(q, µ/⇡)

qs(x+µ/⇡)|10
(x+ µ/⇡) log q

=
'(q, x+ µ/⇡)

'(q, µ/⇡)
. (86)

Substituting in �2
✓0

above, we obtain

�2
✓0

=
1

(1� ⌘)2'2(q, µ/⇡)

✓
'(q, 2(1� ⌘) + µ/⇡)'(q, µ/⇡)

'2(q, 1� ⌘ + µ/⇡)
� 1

◆
.

A.14 Volatility of logPt � logPt-

The main determinants of the variance of a price jump logPt � logPt- are Ln
t and h(⇡) =

'(q,µ/⇡)'(q,1�⌘)
'(q,1�⌘+µ/⇡) , the extensive and intensive margins of aggregate price adjustment due to

menu-cost paying firms. For the intensive margin, we note that h(⇡) = '(q(⇡), µ/⇡)✓(⇡). In
A.10, we showed that ✓ is increasing in ⇡ for large ⇡. Also, '(q(⇡), µ/⇡) = (eµ log(q(⇡))/⇡ �
1)⇡/µ asymptotically increases linearly in ⇡, since log(q(⇡))/⇡ converges to a constant as
⇡ ! 1. Hence, h(⇡) is increasing for large ⇡.

For the extensive margin, Proposition 7(d) showed that the variance of L conditional on
s is

�2L =
✓0

(1� ✓)3
+

�2
✓0

(1� ✓)2
,

where

�2
✓0

=
1

(1� ⌘)2'2(q, µ/⇡)

✓
'(q, 2(1� ⌘) + µ/⇡)'(q, µ/⇡)

'2(q, 1� ⌘ + µ/⇡)
� 1

◆
.

By (37), ✓0 = '(p⇤, 1 � ⌘)/'(q, µ/⇡). In A.10, we showed that 1 � ✓ = '(p⇤, 1 � ⌘)µ/⇡.
Thus,

✓0
(1� ✓)3

=
1

(1� ✓)2
1

eµ log(q)/⇡ � 1
.
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Since (log q(⇡))/⇡ converges to a constant, and since 1/(1�✓(⇡))2 ! 1 as ⇡ ! 1, ✓0/(1�✓)3
is asymptotically increasing in ⇡.

Next, we show that �2
✓0
/(1�✓)2 is also asymptotically increasing in ⇡. Note that '(q, 2(1�

⌘) + µ/⇡) and '(q, 1� ⌘ + µ/⇡) are bounded uniformly on q for any ⇡ > µ/(⌘ � 1), whereas
'(q(⇡), µ/⇡) increases asymptotically linearly in ⇡. Hence, �2

✓0
⇠ 1/((1 � ⌘)2'(q(⇡), µ/⇡))

as ⇡ ! 1. Note that '(q(⇡), µ/⇡)(1� ✓(⇡)) = (eµ log(q(⇡))/⇡ � 1)'(p⇤(⇡), 1� ⌘) is uniformly
bounded and converges to �+⌘µ/(⌘ � 1) as ⇡ ! 1. Thus,

�2
✓0
(⇡)

(1� ✓(⇡))2
⇠ 1

(⌘ � 1)⌘µ�+
1

1� ✓(⇡)
as ⇡ ! 1.

Hence, �2
L
is increasing in ⇡ for su�ciently large ⇡.
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