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Abstract

Coibion and Gorodnichenko (2015) provide a useful framework to test the null

hypothesis of full-information rational expectations against two popular classes of

information rigidities, sticky information (SI) and noisy information (NI). However,

the observational equivalence of SI and NI in average forecast errors gives no power

in the test for one against the other. We identify the source of information rigidities

by estimating the equations for the average forecast errors and variance of forecasts.

The results show the importance of both SI and NI, but favor a type of NI in which

agents quickly learn the underlying state.
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1 Introduction

Coibion and Gorodnichenko (2015) introduce a useful regression framework to test the

null hypothesis of the full-information rational expectations against the alternative hy-

pothesis of rational expectations in the presence of information rigidities. In particular,

their proposed test, which is based on a regression of average forecast errors on the

average forecast revision, has power against two popular classes of information rigidi-

ties frequently employed in the macroeconomic literature: sticky information (SI) and

noisy information (NI). Once deviation from the full-information model is confirmed by

data using Coibion and Gorodnichenko’s regression, it is natural to examine which one

of the two classes of information rigidities is more appropriate in describing the actual

expectation formation process in the next step. However, the observational equivalence

of SI and NI in their regression makes it impossible to construct a testing procedure to

distinguish between the two. In other words, a test for the null hypothesis of NI has no

power against an alternative of SI, and vice versa.

In this paper, we discuss the identification issue of the two sources of information

rigidities in Coibion and Gorodnichenko’s regression framework. To clarify the issue, we

first construct a simple hybrid model of SI and NI and show the implications of the model

for the cross-sectional average of forecast errors. Second, we show the implications of

the hybrid model for the cross-sectional variance of forecasts. We then shut down one of

the two sources of information rigidity to consider the conditions for identifying SI from

NI and/or NI from SI.

The three main outcomes from our analytical exercise are as follows. First, the iden-

tification of the source of information rigidity based solely on the cross-sectional average

of forecast errors crucially depends on the speed of learning in NI models. Specifically,

if an underlying state becomes common knowledge at the end of each period, as in

the case of Lucas (1972), Angelotos and La’O (2009), and Crucini, Shintani, and Tsu-

ruga (2015), among others, additional terms appearing in Coibion and Gorodnichenko’s
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regression enable the identification of NI from SI. This result is in contrast with the

observational equivalence of SI and NI in their regression when realizations are never

revealed to agents in the NI model, as in the case of Woodford (2003) and Coibion and

Gorodnichenko (2012, 2015), among others. Second, as appropriately pointed out by

Coibion and Gorodnichenko (2012), the dependence of disagreements among agents on

aggregate shocks is a useful feature in distinguishing NI from SI. We further derive a

simple analytical form for the cross-sectional variance that is useful in identifying SI

from NI, irrespective of the specification of NI. Accordingly, testing the null hypothesis

of NI based on cross-sectional variance has a power against an alternative of SI, and vice

versa.1 Third, we point out that the joint estimation of the two equations, one for av-

erage forecast errors and the other for cross-sectional variance, is helpful, not only from

the perspective of identification but also from the efficiency in estimating the structural

parameters.

Basing our analysis on these considerations, we revisit the empirical findings of

Coibion and Gorodnichenko (2015) by using the same dataset on inflation forecasts from

the U.S. Survey of Professional Forecasters (SPF).2 The results of our empirical anal-

yses are summarized as follows. First, from the single-equation estimation for average

forecast errors, we find that the null hypothesis of pure SI is not rejected against the

alternative of pure Lucas (1972)-type NI. Second, from the single-equation estimation for

cross-sectional variance, we find that the null hypothesis of pure NI is rejected against

the alternative of pure SI, while the null hypothesis of pure SI is also rejected against

the alternative of pure NI. Third, from the joint estimation of the two equations for pure

models of information rigidities, the nonnested test suggests that the null hypothesis

of the pure SI model is not rejected against both types of pure NI models, while the

1Andrade and Le Bihan (2013) and Hur and Kim (2016) also use cross-sectional variance to detect
NI.

2Most empirical studies focus on either of the two information rigidities. For example, pure SI is
studied by Mankiw, Reis, and Wolfers (2004), Branch (2007), Crucini, Shintani, and Tsuruga (2010),
and Armantier et al. (2016), while pure NI is studied by Crucini, Shintani, and Tsuruga (2015). An
exception is Andrade and Le Bihan (2013), who consider a hybrid model. However, they do not derive
simple analytical forms as we do.
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null hypotheses of the two types of pure NI models are significantly rejected against

the alternative of other pure models of information rigidities. Fourth, from the joint

estimation of the two equations for hybrid models of information rigidities, we find a

nonnegligible degree of information stickiness. At the same time, while the information

noise is relatively small, the formulation of Lucas (1972) better fits the data than that

of Woodford (2003) for the NI part of the hybrid model.

The remainder of this study is structured as follows. We discuss the main implications

of our model of information rigidities on the average forecast errors and cross-sectional

variance of forecasts in Sections 2 and 3, respectively. The joint estimation of the average

and variance equations for pure models of information rigidities is conducted in Section

4, followed by the joint estimation for hybrid models of information rigidities in Section

5. Section 6 concludes our discussion.

2 Cross-sectional Average Forecast Errors

2.1 Models for Cross-sectional Average Forecast Errors

Following the analysis of Coibion and Gorodnichenko (2015), we focus on the two classes

of information rigidities, SI and NI. For the purpose of clarifying the identification issue,

in what follows, we introduce a hybrid model of SI and NI. See Online Appendix A for

the detailed derivation of the results.

Sticky Information and Woodford-type Noisy Information

We let the inflation rate πt follow a stationary AR(1) process that is given by πt =

ρπt−1 + νt, where |ρ| < 1 and νt represents an i.i.d. normal shock with mean zero. As for

NI, we follow Woodford (2003) and assume that agent i cannot observe the current and

past values of πt directly in period t. She can instead receive her individual signal πit in

period t, where πit = πt+ωit and ωit is the mean-zero normal noise, which is i.i.d. across

time t and agent i with variance σ2
ω. As for SI, we assume that agent i can update her
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information set and revise her forecasts with probability 1− λ, where 0 ≤ λ < 1. Agent

i who revises her expectation in period t can incorporate current and past individual

signals πit−j for all j ≥ 0. The cross-sectional average of h-period ahead forecasts in

period t is then given by

Ftπt+h = (1− λ)
∞∑
j=0

λjzt−jπt+h,

where ztπt+h denotes the cross-sectional average of zitπt+h, namely, the forecast of

agent i who revises her forecast in period t. By the recursive substitution of the AR(1)

structure, we have

zitπt+h = ρhzitπt = ρhGπit + ρh(1−G)zit−1πt

= ρhGπit + (1−G)zit−1πt+h

where G denotes the Kalman gain (0 < G ≤ 1), which takes a value one when the noise

is absent in the signal (ωit = 0). The average forecast error among the agents who revise

their forecasts is given by

πt+h −ztπt+h = (1−G)(πt+h −zt−1πt+h) +Gνt+h,t,

where νt+h,t is the weighted sum of the future shocks in the AR(1) process, from νt+1

to νt+h. Here νt+h,t is uncorrelated with all the information dated t or earlier. Most

importantly, the average ex post forecast error (FE) in the hybrid model is given by

πt+h−Ftπt+h =
1− (1− λ)G

(1− λ)G
(Ftπt+h−Ft−1πt+h)−

(1−G)λ

(1− λ)G
(Ft−1πt+h−Ft−2πt+h)+νt+h,t,

(1)

which depends both on the current and lagged ex ante forecast revisions (FRs). Clearly,

equation (1) nests the cases of pure SI (λ > 0 and 1 − G = 0) and pure NI (λ = 0

and 1 − G > 0). In particular, the equation reduces to equation (5) of Coibion and
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Gorodnichenko (2015) when 1−G = 0, while it reduced to their equation (9) when λ = 0.

This relationship suggests that pure SI and NI models are observationally equivalent. If

the information structure is one of the two models, a test for the null hypothesis of pure

NI (or SI) has no power against an alternative of pure SI (or NI) in the framework of

Coibion and Gorodnichenko’s regression.3

It should also be noted that the second term on the right-hand side of the equation

does not show up in Coibion and Gorodnichenko’s (2015) regression. However, when

information is both sticky and noisy, the coefficient for the second term is non-zero, so

that the average FE in period t depends on the FR in period t− 1 (the second term on

the right-hand side of the equation) as well as that in period t (the first term). Thus, in

principle, we can obtain the values of 1−G and λ separately from the two coefficients.

However, if one of the two parameters on the degree of information rigidity is small,

namely, either 1 − G or λ is close to zero, the second coefficient will be small and the

model is only weakly identified. This situation poses an econometric challenge for the

identification between the two pure models of information rigidities, namely, the model

with only SI (1 − G = 0) and the model with only NI (λ = 0). As we will discuss

in Section 3, the identification of Woodford-type NI calls for the use of cross-sectional

variance or joint estimation.4

3Recently, Fuhrer (2018), Angeletos, Huo and Sastry (2020), Bordalo et al. (2020), and Broer and
Kohlhas (2020), have investigated Coibion and Gorodnichenko’s regression at the individual level by
regressing individual FE on individual FR, rather than regressing average FE on average FR. Kohlhas
and Walther (2021), on the other hand, regress individual FE on average FR. However, since a non-zero
coefficient on FR implies the irrationality of forecasters irrespective of information rigidities, running
the regression at the individual level does not solve the issue of identifying the source of information
rigidities.

4An equation similar to equation (1) is also estimated by Coibion and Gorodnichenko (2015) in the
context of forecast smoothing. They estimate the equation using two lags of log changes in oil prices
as instruments. In Column (3) of Table 3 they report that the estimated coefficient for the second
term is −0.05, which is not significant, while the estimated coefficient for the first term is 2.23, which
is significantly different from zero. Our analysis here suggests that the same equation can be obtained
from the hybrid model without assuming a forecast smoothing.
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Sticky Information and Lucas-type Noisy Information

There is another well-known type of NI structure, different from the assumption of

Woodford (2003). We again consider a hybrid of two classes of information rigidities, SI

and NI. However, regarding the NI part, we assume that agent i can observe the past

values, πt−1, πt−2, ..., in period t if she can update the information in period t. This type

of imperfect information assumption has long been employed in many studies since the

seminal work of Lucas (1972), and recent examples include Angelotos and La’O (2009)

and Crucini, Shintani, and Tsuruga (2015), among others. In principle, the true state

can be revealed to the agent after any j period between j = 1 (the Lucas-type) and

j →∞ (the Woodford-type). Therefore, in terms of the timing for agents to find out the

true state, Lucas-type NI and Woodford-type NI can be viewed as two extreme cases of

NI.

When SI is combined with Lucas-type NI, the average FE is given by

πt+h − Ftπt+h =
1

1− λ

(
λ+

1−G
G

)
(Ftπt+h − Ft−1πt+h)

− 1−G
G

1

1− λ

∞∑
j=0

(
−1−G

G

)j (
λ+

1−G
G

)
(Ft−j−1πt+h − Ft−j−2πt+h) + νt+h,t.

(2)

This equation for the average FE embeds the case of pure SI (λ > 0 and 1−G = 0)

as well as pure NI (λ = 0 and 1 − G > 0). As in the hybrid model with Woodford-

type NI, in the case of pure SI, the FE equation reduces to equation (5) of Coibion

and Gorodnichenko (2015). In the case of pure NI, however, the second term on the

right-hand side of the equation does not disappear. Unless 1 − G = 0, the average FE

in period t depends on the FR in period t− 1 and earlier (the second term on the right-

hand side of the equation), as well as that in period t (the first term). For this reason, to

estimate the pure NI model, we need to extend Coibion and Gorodnichenko’s regression

with additional regressors of lagged FRs. Most importantly, in Lucas-type NI, a test for
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the null hypothesis of pure SI (1−G = 0) has nontrivial power against an alternative of

pure NI (λ = 0). This feature of Lucas-type NI differs from the case of Woodford-type

NI discussed above because the identification of pure SI and pure NI has now become

possible by extending Coibion and Gorodnichenko’s regression.5

2.2 Single-equation Estimation for Average Forecast Errors

We now revisit the analysis of Coibion and Gorodnichenko (2015) using the same dataset:

the forecasts of U.S. inflation from the SPF (Online Appendix B contains the descriptive

statistics of the data). The observation period extends from 1970:1Q to 2014:2Q. The

inflation rate is based on the GDP/GNP deflator.

In Coibion and Gorodnichenko’s regression based on FE equation (1), we cannot

conduct a test for the null hypothesis of SI since such a test has no power against an

alternative of Woodford-type NI. However, as discussed in Section 2.1, we can extend

Coibion and Gorodnichenko’s regression using FE equation (2) and conduct a test against

an alternative hypothesis of Lucas-type NI. For this reason, here we consider only the

latter type of NI and determine if the data are more favorable to SI or NI as a sole

candidate of the information rigidity.

Specifically, we can test the null hypothesis of pure SI (H0: 1 − G = 0) against

an alternative of pure NI (H1 : λ = 0) by examining whether the coefficients on the

FR in period t − 1 and earlier are all zero in equation (2). Here, we do not impose a

parameter restriction among coefficients on the FR. In Sections 4 and 5, however, we

directly estimate the two structural parameters, 1 − G and λ, by imposing theoretical

restrictions of (2) in the regression.

Our strategy is to employ the two-stage least squares (2SLS) method to estimate

FE equation (2) with a constant term and to examine the significance of the estimated

coefficients on lagged FRs. In the SPF, we can observe FR in the previous periods,

5The comparison of equations (1) and (2) shows that the latter serves as a nested model in a reduced-
form regression. The model of Woodford-type NI corresponds to the case in which the coefficients on
the FRs in period t− 2 and earlier are all zero.
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Ft−jπt+h − Ft−j−1πt+h, only from j = 0 to 3 − h for a certain h. This data limitation

leads to bias for the estimates because the omitted variables are likely to be correlated

with the explanatory variables. To circumvent the omitted-variable bias problem, we

utilize instruments: ν̂t−j and ν̂oil,t−j for j = 0 to 3 − h, where ν̂t and ν̂oil,t represent

estimated shocks to inflation and change in oil prices, respectively, obtained from the

regressions of πt = ρπt−1 + νt and πoil,t = ρoilπoil,t−1 + νoil,t. Because these instrumental

variables are unexpected shocks in periods from t−3+h to t, they are uncorrelated with

the omitted variables that consist of the forecast revisions in period t− 4 + h or earlier,

whereas they are correlated with the explanatory variables.6

The new estimate of FE equation (2) is given by

πt − Ftπt = − 0.143 + 1.564 (Ftπt − Ft−1πt)

(0.176) (0.632)

−1.952 (Ft−1πt − Ft−2πt) − 0.651 (Ft−2πt − Ft−3πt)

(1.220) (1.185)

+4.057 (Ft−3πt − Ft−4πt) + residuals,

(1.561)

where the numbers in parentheses are heteroskedasticity and autocorrelation consistent

standard errors. Here, we report the result of h = 0 because we can use the largest

number of regressors. The coefficient on the FR in period t is positive and significant at

the five percent level. This coefficient implies that λ = 0.61 for pure SI and G = 0.39 for

pure NI. The Wald test statistic for the zero restrictions on all the coefficients on lagged

FRs is 6.93. Since the statistic is lower than 7.81, the critical value at the five percent

6Coibion and Gorodnichenko (2015) use the forecasts of the inflation rate over the next four quarters
(from h = 0 to 3). Here, we focus on the single horizon forecast using a particular h, because the number
of available regressors decreases with h increases, which complicates the estimation of FE equation (2).
Moreover, it is convenient in deriving equations on cross-sectional variance, which we discuss in the next
section. Note also that the same data for oil prices have been also used to obtain results in Table 3 in
Coibion and Gorodnichenko (2015).
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significance level, the null hypothesis of pure SI (1 − G = 0) is not rejected against an

alternative of pure Lucas-type NI (λ = 0).7

3 Cross-sectional Variance of Forecasts

3.1 Models for Cross-sectional Variance of Forecasts

Coibion and Gorodnichenko (2012) have pointed out that the dependence of disagree-

ments among agents on aggregate shocks is a useful feature in distinguishing NI from

SI. We now revisit this claim and derive an expression for the cross-sectional variance

(CV) based on our hybrid model, which is useful for identifying the source of information

rigidity. We follow Coibion and Gorodnichenko (2012) and employ CV given by

Vtπt+h = (1− λ)
∞∑
j=0

λjVart,t−j (zi,t−jπt+h − Ftπt+h)

=(1− λ)
∞∑
j=0

λjVart,t−j [(zi,t−jπt+h −zt−jπt+h) + (zt−jπt+h − Ftπt+h)] ,

as a proxy for the disagreement of forecasts, where Vart,t−j(·) denotes the cross-sectional

variance of forecasts in period t for agents who last update their forecasts in period t− j.

Online Appendix A shows that, depending on the type of NI, our hybrid model yields

the following CV equation:

Vtπt+h =

 λVt−1πt+h + λ
1−λ(Ftπt+h − Ft−1πt+h)

2 + (1−λ)ρ2hG2

1−(1−G)2ρ2
σ2
ω (Woodford-type NI)

λVt−1πt+h + λ
1−λ(Ftπt+h − Ft−1πt+h)

2 + (1− λ)ρ2hG2σ2
ω (Lucas-type NI).

(3)

This equation suggests that CV depends both on the variance of forecasts made in the

previous period and the squared forecast revisions, (Ftπt+h − Ft−1πt+h)
2, with common

coefficients for both types of NI. This result is consistent with Coibion and Gorodnichenko

7However, the hypothesis is rejected at the ten percent significance level. See Online Appendix B for
the additional analyses for the robustness of this result.
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(2012), Andrade and Le Bihan (2013), and Hur and Kim (2016), who explain that CV is

state dependent in the SI model with λ > 0. The coefficients on two regressors, lagged

CV and squared FR, can be used to test the null hypothesis of pure NI (λ = 0) against

an alternative of pure SI (1−G = 0).

With the same regression, switching the null and alternative hypotheses is also pos-

sible. As shown in Online Appendix A, Kalman gain G is a decreasing function of the

variance of noise σω and as σω approaches zero, G approaches one. This fact implies that

the third term in (3) disappears when the noise is small, regardless of the type of NI. For

this reason, testing for the zero restriction on the intercept term is equivalent to testing

the null hypothesis of pure SI (1−G = 0) against an alternative of pure NI (λ = 0).

3.2 Single-equation Estimation for Cross-sectional Variance

We use the same dataset as before. To obtain the CV of inflation forecasts, in each quar-

ter, we collect each professional’s inflation forecasts and calculate their cross-sectional

sample variance after dropping the top and bottom one percent of samples. We estimate

CV equation (3) using the OLS without imposing a parameter restriction between the

two coefficients on the lagged CV and squared FR. Since the number of regressor does

not change for any forecast horizon in the CV equation, in what follows, we simply set

h = 1. Our estimate is given by

Vtπt+1 = 0.463 + 0.489Vt−1πt+1 + 0.678(Ftπt+1 − Ft−1πt+1)2 + residuals,

(0.098) (0.060) (0.151)

where the numbers in parentheses are heteroskedasticity and autocorrelation consistent

standard errors. We obtain the Wald test statistic of 119.6 for the restriction that the

coefficients on the lagged CV and squared FR are zero. Since the statistic is greater than

9.21, the critical value at the one percent level, the null hypothesis of pure NI (λ = 0)
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is rejected against an alternative of pure SI (1 − G = 0). Online Appendix B provides

the details. We also find that the constant term is significantly different from zero at

the one percent level. Thus, the null hypothesis of pure SI (1 − G = 0) is also rejected

against an alternative of pure NI (λ = 0).

4 Joint Estimation of Pure Models of Information

Rigidities

In the previous section, we noted that the CV equation is useful to identify the source

of information rigidity. Given the fact that the CV contains additional information, it

seems natural to combine the CV equation with FE equation (1) or (2) in the estimation

of the model. The joint estimation of the two equations is helpful, not only from the

perspective of identification but also from the efficiency in estimating the structural

parameters. In this section, we jointly estimate the FE and CV equations for pure

models of information rigidities (i.e., either pure SI or pure NI). We then employ the

nonnested GMM test proposed by Smith (1992) to test the null hypothesis of one of the

pure models of information rigidities against the other.

4.1 Estimation

To evaluate the empirical performance of pure models of information rigidities, we jointly

estimate FE equation (1) (or (2)) and CV equation (3) by applying the generalized

method of moments (GMM) to the orthogonality condition for two equations. In partic-

ular, for the pure SI model, the restriction 1 − G = 0 is imposed on two equations. In

contrast, for the pure Woodford-type NI model, we use equation (1) for the average FE

and impose λ = 0 on two equations. Likewise, for the pure Lucas-type NI model, we use

equation (2) for the average FE and impose λ = 0 on two equations.

Recall that we used 2SLS in the estimation of the FE equation for the pure Lucas-
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type NI model to circumvent the omitted-variable bias in Section 2. For the purpose of

applying the nonnested GMM test, we use the common set of instruments to estimate

the FE equation for all the three classes of pure models of information rigidities.8 For the

CV equation, the regressors, the lagged CV and squared FR, correspond to instruments

in the GMM. We also impose parameter restrictions on λ and 1−G so that their values

satisfy the theoretical requirements of 0 ≤ λ < 1 and 0 < G ≤ 1.9

Columns (1) to (3) in Table 1 show the estimation results.10 In the pure SI model,

the estimate of λ is 0.51 and significantly different from zero. The point estimate implies

that agents update their information set every six months on average. Our estimate of λ

is close to 0.54, the value reported by Coibion and Gorodnichenko (2015). In the pure NI

models, the estimate of 1−G is similar and significantly different from both zero and one.

The value is 0.54 and 0.45 in Woodford-type NI and Lucas-type NI, respectively, while

Coibion and Gorodnichenko (2015) report the value of 0.54 for 1−G in Woodford-type

NI.

8Note that this set of instruments is also valid in the estimation for the other classes of pure models
of information rigidities.

9Specifically, we impose parameter restrictions using the following reparameterization. First, we
introduce parameter λ∗ to replace λ with 1 − exp(−λ∗2). With this transformation, the range of λ
becomes 0 ≤ λ < 1 for −∞ < λ∗ < ∞. No information stickiness (λ = 0) corresponds to the case of
λ∗ = 0. Second, we introduce parameter G∗ to replace G with exp(−G∗2). With this transformation,
the range of G becomes 0 < G ≤ 1 for −∞ < G∗ < ∞. Information noise is absent (1 − G = 0) when
G∗ = 0. See Online Appendix B for the estimation results without the parameter restrictions.

10While the parameters we estimate are λ∗ and G∗, we report the values of λ and 1−G in the table
because the latter values contain clearer economic meanings. Figures in square brackets represent the
95% confidence intervals. We calculate the point estimates and 95% confidence intervals as follows.
Denote the point estimates for λ∗ and G∗ by λ̂∗ and Ĝ∗, respectively. Then, the point estimates for λ
and 1−G are 1−exp(−λ̂∗2) and 1−exp(−Ĝ∗2). Further, denote the heteroskedastic and autocorrelation
consistent standard errors for λ∗ and G∗ by σλ and σG, respectively. Then, the 95% confidence intervals
λ and 1−G are calculated as 1−exp(−(λ̂∗±2σλ)2) and 1−exp(−(Ĝ∗±2σG)2), respectively. The lower
end of confidence intervals becomes zero for λ or 1−G when λ∗ or G∗ takes zero within its confidence
interval.
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4.2 Relative Performance of the Pure SI, Pure Woodford-type

NI, and Pure Lucas-type NI Models

In the joint estimation of the FE and CV equations, neither pure SI nor pure NI nests the

other model. Thus, we cannot test for the null hypothesis of a pure model of information

rigidity simply by imposing some restriction on the coefficients of some other model, as

we did in Sections 2 and 3. For this reason, we follow Smith’s (1992) approach and

employ a nonnested GMM test to compare two competing models, say, models A and

B. Under the null hypothesis of model B against the alternative hypothesis of model

A, the Cox-type statistic asymptotically follows normal distribution N(0, 1).11 The null

hypothesis of model A can be also considered by switching the order of two models.

Table 1 also shows the results of the nonnested GMM test. The figures in the table

indicate the p-value, based on the Cox-type statistic for the null hypothesis of model B

against an alternative hypothesis of model A. Because there are three pure models of

information rigidities, we compute 6(= 3 × 2) statistics. The table shows that the null

hypothesis of pure SI is not rejected (column (1)), while both the null hypotheses of two

types of pure NI are always rejected (columns (2)(3)). Thus, the pure SI model seems

to be preferable to the pure NI models, according to the results of the nonnested test.

At the same time, however, the J test for the overidentifying restrictions is rejected in

all three models (p-value is shown in the table). This result motivates us to investigate

the hybrid model that allows for the combination of SI and NI.

11Each of the models, A and B, is estimated by the GMM using moment functions E[gA(wt, α)] = 0
and E[gB(wt, β)] = 0, where gA(wt, α) and gB(wt, β) are kA × 1 and kB × 1 function vectors, respec-
tively; α and β are pA × 1 and pB × 1 parameter vectors, respectively; and wt is a vector of observable
variables including instruments zt. Here, we use the same instrumental variables zt and the same obser-
vations for models A and B. Then, the Cox-type statistic is given by CT (B|A)/ω̂B where CT (B|A) =
ĝ′A,T ŴB

√
T ĝB,T , ĝA,T equals gA,T (α̂), α̂ is the GMM estimator of α in model A (ĝ′B,T is defined simi-

larly), T is the number of observations, and ŴB represents a consistent positive semi-definite estimator

of the weight matrix in model B, and ω̂2
B = ĝ′A,T ŴB ĝA,T − ĝ′A,T ŴBĜB

(
Ĝ′BŴBĜB

)−1
Ĝ′BŴB ĝA,T ,

where ĜB represents the Jacobian matrix in model B evaluated by β̂ . Further, we set the A matrix in
Smith (1992) at W−1A0WB , where WA0 is the limit of ŴA when model B is correct.
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5 Joint Estimation of Hybrid Models of Information

Rigidities

In this section, we allow for the combination of NI and SI and simultaneously estimate

FE and CV equations of the hybrid model. We then evaluate the relative performance

of hybrid models based on the model selection criterion proposed by Andrews (1999).

5.1 Estimation

As for the hybrid model of SI and Woodford-type NI, we jointly estimate the FE and

CV equations given by (1) and (3) by employing the GMM. For each equation, the

instruments correspond to regressors. As for the hybrid model of the SI and Lucas-type

NI, we jointly estimate the FE and CV equations given by (2) and (3). As before, we use

instruments ν̂t−j and ν̂oil,t−j for j = 0, 1, 2, in FE equation (2). As for the CV equation

(3), the instruments correspond to regressors.

Columns (1) and (2) in Table 2 show the estimation results for the hybrid model where

SI is combined with Woodford-type and Lucas-type NI, respectively. In the hybrid model

of SI and Woodford-type NI, the estimated value of λ is 0.42 and is significantly different

from zero. This result provides support for SI. In contrast, evidence of Woodford-type

NI is rather weak since the point estimate of 1 − G is zero, namely, it is on the lower

boundary of the parameter range. When we turn to the hybrid model of SI and Lucas-

type NI, the estimate of λ is 0.43, which is similar to the one obtained with the hybrid

model of SI and Woodford-type NI. The estimate of 1−G is 0.11. Although this value

is not significantly different from zero, the estimate is not on the boundary of parameter

range. Moreover, the J test shows that the overidentifying restriction is not rejected.

Let us now examine the robustness of our results using different forecast horizons h.12

While our benchmark estimation focuses on the case of h = 1, we can conduct a similar

12In Online Appendix B, we provide further estimation results by using different equations and/or
instrument variables.
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joint estimation by pooling equations for different h’s from zero to two. Specifically, we

use three equations for the FE equation and three equations for the CV equation, which

differ in h (h = 0, 1, 2). When the hybrid model is based on the combination of SI and

Woodford-type NI, the FE equation is given by equation (1). Instruments correspond

to regressors of the equation, irrespective of h. When the hybrid model is based on SI

and Lucas-type NI, the FE equation is given by equation (2). The number of regressors

differs, depending on h owing to data availability. The explanatory variables we can use

in the SPF data are Ft−j−1πt+h − Ft−j−2πt+h from j = −1 to 2− h, and the instrument

variables are ν̂t−j and ν̂oil,t−j for j = 0 to 3− h. The CV equation is given by equation

(3), where instruments correspond to regressors, for both models.

Columns (3) and (4) of Table 2 show that the parameter estimates do not change

much. For the hybrid model of SI and Lucas-type NI, the estimates of λ and 1−G are

about 0.4 and 0.2, respectively, suggesting a large degree of information stickiness and

a small degree of information noise. It should be noted that the estimate of 1 − G is

now significantly different from zero, showing the presence of Lucas-type NI. However,

the overidentifying restriction is rejected by the J test for the hybrid model of SI and

Lucas-type NI. For the hybrid model of SI and Woodford-type NI, the estimate of 1−G

is zero, suggesting the absence of Woodford-type NI.

5.2 Relative Performance of Pure and Hybrid Models of Infor-

mation Rigidities

Which model performs the best in explaining the FE and CV equations together? To

answer this question, in the bottom two rows of Tables 1 and 2, we report the GMM-BIC,

the model selection criterion proposed by Andrews (1999).13 The GMM-BIC is defined

13We can also apply the nonnested GMM test again and we report the results in Online Appendix B.
However, repeating the same test too many times should be avoided because the results may be subject
to a multiple testing problem. As the number of tests increases, it becomes more likely that the null
hypothesis will be rejected at some point, even if the null hypothesis is correct. If we want to compare
all the pairs in five models (the pure SI model, the pure Woodford-type NI model, the pure Lucas-type
NI model, the hybrid model of SI and Woodford-type NI, and the hybrid model of SI and Lucas-type
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by J − (|c| − p)log(T ), where J is the J test statistic for overidentifying restrictions, and

|c|, p, and T represent the number of moment conditions, the number of parameters, and

the number of observations, respectively. The model with the lowest GMM-BIC should

be selected as the best model.

Comparing the GMM-BIC in Tables 1 and 2, we find that the hybrid models of SI and

NI (both the Woodford- and Lucas-types) yield smaller values than the pure models of

either SI or NI. Therefore, the hybrid model is preferable to pure models of information

rigidities. Between the two types of hybrid models of SI and NI, the one with Lucas-type

NI yields the lower value (i.e., −20.6) than the one with Woodford-type NI. This result

seems reasonable when we consider the fact that respondents of the SPF are professionals

rather than households. It is more likely that they have easier access to the data and

would learn the value of πt−1 in period t. Columns (3) and (4) of Table 2 show the

robustness of our results. When we pool equations for different h’s from zero to two, we

find that GMM-BIC of the hybrid model of SI and Lucas-type NI is lower than that of

the hybrid model of SI and Woodford-type NI.

6 Concluding Remarks

For the purpose of identifying the source of information rigidities in the analysis of

Coibion and Gorodnichenko (2015), we have constructed a hybrid model of SI and NI

and derived a very simple form showing the cross-sectional average forecast errors and

the cross-sectional variance of inflation forecasts. We find that the hybrid model of SI

and Lucas-type NI is useful in explaining the actual expectation formation process.
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Table 1: Joint Estimation for the Average Forecast Errors and Variance: Pure Models
of Information Rigidities

(1) (2) (3)
Pure model of Pure model of Pure model of

SI Woodford-NI Lucas-NI
λ 0.510 – –

[0.453, 0.566]
1−G – 0.536 0.450

[0.374, 0.68] [0.262, 0.628]
c1 -0.059 -0.046 -0.104

[-0.243, 0.125] [-0.248, 0.156] [-0.292, 0.084]
c2 – 0.856 0.856

[0.68, 1.032] [0.68, 1.032]

# of obs 172 172 172
# of moments 10 10 10
# of params 2 3 3

J test 0.0000 0.0002 0.0002

Nonnested test
against H1:

Pure SI – 0.002 0.005
Pure Woodford-NI 0.458 – 0.000

Pure Lucas-NI 0.446 0.000 –

GMM-BIC -1.89 -7.52 -7.16

Notes: SI represents the sticky information, while Woodford-NI and Lucas-NI represent the Woodford-type noisy infor-
mation and Lucas-type noisy information, respectively. The coefficients, c1 and c2, represent intercepts for the equations
of average forecast errors (FEt) and cross-sectional variance (CVt), respectively. The instrumental variables used for the
FEt equation are ν̂t−j , ν̂oil,t−j for j = 0, 1, 2, while those used for the CVt equation are CVt−1 and squared FRt, where
FRt represents the forecast revision. Figures in square brackets show the 95 percent confidence intervals. The J test
shows the p-value for the test of overidentifying restrictions. The nonnested test shows the p-value, based on Smith (1992),
for the null hypothesis of a pure model of information rigidity against another type of model. GMM-BIC indicates the
model selection criterion based on Andrews (1999), where smaller values are preferable.
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Table 2: Joint Estimation for the Average Forecast Errors and Variance: Hybrid Models
of Information Rigidities

(1) (2) (3) (4)
Hybrid model of Hybrid model of Hybrid model of Hybrid model of
SI/Woodford-NI SI/Lucas-NI SI/Woodford-NI SI/Lucas-NI

h 1 1 0,1,2 0,1,2

λ 0.423 0.433 0.411 0.434
[0.355, 0.491] [0.363, 0.502] [0.362, 0.461] [0.381, 0.486]

1−G 0 0.114 0 0.174
[0, 0] [0, 0.689] [0, 0] [0.02, 0.414]

c1 (h = 0) – – -0.004 -0.125
[-0.164, 0.156] [-0.293, 0.043]

c1 (h = 1) -0.032 -0.074 -0.042 -0.088
[-0.224, 0.16] [-0.268, 0.12] [-0.234, 0.15] [-0.274, 0.098]

c1 (h = 2) – – -0.094 -0.134
[-0.326, 0.138] [-0.352, 0.084]

c2 (h = 0) – – 0.500 0.461
[0.33, 0.67] [0.287, 0.635]

c2 (h = 1) 0.460 0.454 0.454 0.436
[0.31, 0.61] [0.302, 0.606] [0.308, 0.6] [0.288, 0.584]

c2 (h = 2) – – 0.661 0.632
[0.435, 0.887] [0.406, 0.858]

# of obs 172 172 167 167
# of moments 6 10 18 30
# of params 4 4 8 8

J test 0.583 0.114 0.614 0.000
GMM-BIC -8.346 -20.611 -42.094 -60.668

Notes: See Table 1 for the notations. Here, h indicates a forecast horizon (the unit is a quarter). The instrumental
variables used for the FEt equation from the hybrid model of SI and Woodford-type NI are FRt and FRt−1, irrespective
of h. Those from the hybrid model of SI and Lucas-type NI are ν̂t−j and ν̂oil,t−j for j = 0 to 3 − h. The instrumental
variables used for the CVt equation are CVt−1 and squared FRt for all the specifications.

22



Appendix for “Identifying the Source of Information Rigidities in

the Expectations Formation Process”

Mototsugu Shintani∗ Kozo Ueda†

2021

A Model Details

A.1 Average Forecast Errors

A.1.1 Sticky Information and Woodford-type Noisy Information

We introduce the hybrid model which combines the sticky information and noisy information.

We let an aggregate variable xt, such as the inflation rate πt , follow a stationary AR(1) process

that is given by xt = ρxt−1 + νt, where |ρ| < 1 and νt represents an i.i.d. normal shock with

mean zero. As for information noise, we follow Woodford (2003) and assume that agents cannot

observe the past actual value xt−1 (in the main test, it is the inflation rate πt−1) in period t.

An agent i can instead receive an individual signal xit in period t, where xit = xt + ωit and

ωit is the mean-zero normal noise, which is i.i.d. across time t and agent i with variance σ2
ω.

Regarding sticky information, we assume that agent i can update her information set and revise

her forecasts with probability 1− λ, where 0 ≤ λ < 1. The agent i who has an opportunity to

revise her forecasts zitxt in period t can gather all past information (xit,xit−1, xit−2, · · · ) up

to t. She thus revises her forecasts zitxt based on zit−1xt as if she revised her forecasts every

period up to t− 1 to form zit−1xt.

The average of forecasts is given by

Ftxt+h = (1− λ)
∞∑
j=0

λjzt−jxt+h, (A.1)

where zt denotes average forecasts among the agents who revise their forecasts as zit in period

∗University of Tokyo (Email: shintani@e.u-tokyo.ac.jp)
†Waseda University (Email: kozo.ueda@waseda.jp).
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t:

zitxt+h = ρhzitxt = ρhGyit + ρh(1−G)zit−1xt

= ρhGyit + (1−G)zit−1xt+h,

which yields

ztxt+h = ρhGxt + (1−G)zt−1xt+h

= Gxt+h + (1−G)zt−1xt+h −Gνt+h,t.

Here, Kalman gainG depends on the degree of information noise σω and the size of the aggregate

shock σν as

G = P/(P + σ2
ω)

P = ρ2σ2
ωP/(P + σ2

ω) + σ2
ν .

This outcome implies that G equals one when σω = 0 (information is not noisy) and that G

decreases as σω increases.

We have

xt+h −ztxt+h = (1−G)(xt+h −zt−1xt+h) +Gνt+h,t. (A.2)

Note that

Ft−1xt+h = (1− λ)
∞∑
j=0

λjzt−1−jxt+h

= (1− λ)
∞∑
j=1

λj−1zt−jxt+h.

Ftxt+h − λFt−1xt+h = (1− λ)ztxt+h. (A.3)

Using equations (A.2) and (A.3), we have

xt+h −
Ftxt+h − λFt−1xt+h

1− λ
= (1−G)

(
xt+h −

Ft−1xt+h − λFt−2xt+h
1− λ

)
+Gνt+h,t

xt+h − Ftxt+h =
1− (1− λ)G

(1− λ)G
(Ftxt+h − Ft−1xt+h)− (1−G)λ

(1− λ)G
(Ft−1xt+h − Ft−2xt+h) + νt+h,t.

(A.4)

They embed both the case of only sticky information, G = 1, and the case of only noisy
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information, λ = 0. Unless information is both sticky and noisy, the second term on the right-

hand side would not appear.

A.1.2 Sticky Information and Lucas-type Noisy Information

As for information noise, we now follow Lucas (1972) and assume that agents can observe the

past actual value xt−1 in period t. In terms of sticky information, we assume that agent i who

has an opportunity to revise her forecasts zitxt in period t can gather all past information,

including xt−1.

The average of forecasts is given by

Ftxt+h = (1− λ)
∞∑
j=0

λjzt−jxt+h, (A.5)

where zt denotes average forecasts among the agents who revise their forecasts as zit in period

t:

zitxt = G(yit − ρxt−1) + ρxt−1,

ztxt = G(xt − ρxt−1) + ρxt−1,

ztxt+h = G(ρhxt − ρh+1xt−1) + ρh+1xt−1

= G(xt+h − νt+h,t) + ρh+1(1−G)xt−1,

where G represents the Kalman gain (again, G equals one when information is not noisy (i.e.,

σω = 0)) and νt+h,t =
∑h

j=1 ρ
h−jνt+j . We further have

zt−1xt+h = G(xt+h − νt+h,t−1) + ρh+2(1−G)xt−2,

and

ztxt+h −zt−1xt+h = G(νt+h,t−1 − νt+h,t) + ρh+1(1−G) (xt−1 − ρxt−2)

= Gρhνt + ρh+1(1−G)νt−1,

where νt+h,t−1 − νt+h,t = ρhνt. This result leads to

νt =
1

Gρh
(ztxt+h −zt−1xt+h)− ρ1−G

G
νt−1

=

∞∑
j=0

(
−ρ1−G

G

)j 1

Gρh+j
(zt−jxt+h −zt−j−1xt+h) , (A.6)
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if (1−G)/G < 1.

Because

Ft−1xt+h = (1− λ)
∞∑
j=0

λjzt−1−jxt+h

= (1− λ)

∞∑
j=1

λj−1zt−jxt+h,

we have

Ftxt+h − λFt−1xt+h = (1− λ)ztxt+h. (A.7)

Using this, we rewrite equation (A.6) as

νt =
1

G(1− λ)ρh
(Ftxt+h − (1 + λ)Ft−1xt+h + λFt−2xt+h)− ρ1−G

G
νt−1 (A.8)

=
∞∑
j=0

(
−ρ1−G

G

)j 1

G(1− λ)ρh+j
(Ft−jxt+h − (1 + λ)Ft−j−1xt+h + λFt−j−2xt+h) . (A.9)

Using

ztxt+h = G(xt+h − νt+h,t) + ρh+1(1−G)xt−1

= G(xt+h − νt+h,t) + (1−G)(xt+h − νt+h,t−1)

= xt+h +Gρhνt − νt+h,t−1,

we have

Ftxt+h − λFt−1xt+h = (1− λ)
{
xt+h +Gρhνt − νt+h,t−1

}
= (1− λ)

{
xt+h +Gρhνt − νt+h,t − ρhνt

}
,

or

xt+h − Ftxt+h =
λ

1− λ
(Ftxt+h − Ft−1xt+h) + (1−G)ρhνt + νt+h,t,

that is,

xt+h − Ftxt+h =
λ

1− λ
(Ftxt+h − Ft−1xt+h)

+
1−G

G(1− λ)
(Ftxt+h − (1 + λ)Ft−1xt+h + λFt−2xt+h)− ρh+1 (1−G)2

G
νt−1 + νt+h,t.

(A.10)

4



It becomes

xt+h − Ftxt+h =
λ

1− λ
(Ftxt+h − Ft−1xt+h)

+
1−G
G

∞∑
j=0

(
−1−G

G

)j 1

1− λ
(Ft−jxt+h − (1 + λ)Ft−j−1xt+h + λFt−j−2xt+h) + νt+h,t,

(A.11)

and then

xt+h − Ftxt+h =
λ

1− λ
(Ftxt+h − Ft−1xt+h)

+
1−G
G

∞∑
j=0

(
−1−G

G

)j 1

1− λ
(Ft−jxt+h − Ft−j−1xt+h)

− 1−G
G

∞∑
j=0

(
−1−G

G

)j λ

1− λ
(Ft−j−1xt+h − Ft−j−2xt+h)

+ νt+h,t,

or

xt+h − Ftxt+h =
1

1− λ

(
λ+

1−G
G

)
(Ftxt+h − Ft−1xt+h)

− 1−G
G

1

1− λ

∞∑
j=0

(
−1−G

G

)j (
λ+

1−G
G

)
(Ft−j−1xt+h − Ft−j−2xt+h) + νt+h,t.

(A.12)

The coefficients on forecast revisions depend on both λ and G.

A.2 Cross-sectional Variance of Forecasts

A.2.1 Sticky Information and Woodford-type Noisy Information

The variance of forecasts is given by

Vtxt+h = (1− λ)
∞∑
j=0

λjVart,t−j (zi,t−jxt+h − Ftxt+h)

= (1− λ)
∞∑
j=0

λjVart,t−j ((zi,t−jxt+h −zt−jxt+h) + (zt−jxt+h − Ftxt+h)) . (A.13)
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Regarding the first term, we define V N
t xt+h as

V N
t xt+h ≡ (1− λ)

∞∑
j=0

λjVart,t−j (zi,t−jxt+h −zt−jxt+h)

= (1− λ)

∞∑
j=0

λjVart,t−j

(
ρh+jGωi,t−j + (1−G) (zi,t−j−1xt+h −zt−j−1xt+h)

)
= (1− λ)

∞∑
j=0

λj
(
ρ2h+2jG2σ2

ω

)
+ (1−G)2V N

t−1xt+h

=
(1− λ)ρ2h

1− λρ2
G2σ2

ω + (1−G)2V N
t−1xt+h.

Regarding the second term, we define V S
t xt+h as

V S
t xt+h ≡(1− λ)

∞∑
j=0

λjVart,t−j (zt−jxt+h − Ftxt+h)

=(1− λ)

∞∑
j=0

λj (zt−jxt+h − Ftxt+h)2

=(1− λ)

∞∑
j=1

λj (zt−j−1xt+h − Ft−1xt+h − (Ftxt+h − Ft−1xt+h))2

+ (1− λ) (ztxt+h − Ftxt+h)2

=λ(1− λ)
∞∑
j=0

λj (zt−j−1xt+h − Ft−1xt+h)2 + λ(Ftxt+h − Ft−1xt+h)2

+ (1− λ)

(
Ftxt+h − λFt−1xt+h

1− λ
− Ftxt+h

)2

=λV S
t−1xt+h +

λ

1− λ
(Ftxt+h − Ft−1xt+h)2

using equation (A.3). Note that the interaction term of the first and second terms in equation

(A.13) is zero because the first term is determined essentially only by the history of idiosyncratic

shocks ωi,t−j , while the second term is their aggregation.

Inserting these two equations to equation (A.13), we have

Vtxt+h = V N
t xt+h + V S

t xt+h, (A.14)
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where

V N
t xt+h =

(1− λ)ρ2h

1− λρ2
G2σ2

ω + (1−G)2V N
t−1xt+h, (A.15)

V S
t xt+h = λV S

t−1xt+h +
λ

1− λ
(Ftxt+h − Ft−1xt+h)2. (A.16)

The variance can be also written as follows:

Vtxt+h =
(1− λ)ρ2h

1− λρ2
G2σ2

ω +
λ

1− λ
(Ftxt+h − Ft−1xt+h)2 + εt−1, (A.17)

where εt−1 = (1 − G)2V N
t−1xt+h + λV S

t−1xt+h. They embed both the case of only sticky infor-

mation, G = 1, and the case of only noisy information, λ = 0.

The above equation can be further simplified in the following way. Equation (A.15) can be

written as

V N
t xt+h =

(1− λ)ρ2h

1− λρ2
G2σ2

ω + (1−G)2

{
(1− λ)ρ2(h+1)

1− λρ2
G2σ2

ω + (1−G)2V N
t−2xt+h

}

= · · · = (1− λ)ρ2h

1− λρ2
G2σ2

ω

{
1 + (1−G)2ρ2 + · · ·

}
=

(1− λ)ρ2h

1− λρ2

G2

1− (1−G)2ρ2
σ2
ω,

and, thus, V N
t πt+h converges to a constant. Hence, we have

Vtxt+h = V Nxt+h + V S
t xt+h

=
(1− λ)ρ2h

1− λρ2

G2

1− (1−G)2ρ2
σ2
ω + λV S

t−1xt+h +
λ

1− λ
(Ftxt+h − Ft−1xt+h)2

=λ

{
(1− λ)ρ2(h+1)

1− λρ2

G2

1− (1−G)2ρ2
σ2
ω + V S

t−1xt+h

}
+

λ

1− λ
(Ftxt+h − Ft−1xt+h)2

+ (1− λρ2)
(1− λ)ρ2h

1− λρ2

G2

1− (1−G)2ρ2
σ2
ω

=λVt−1xt+h +
λ

1− λ
(Ftxt+h − Ft−1xt+h)2 +

(1− λ)ρ2hG2

1− (1−G)2ρ2
σ2
ω. (A.18)

This result suggests that the disagreements of forecasts depend on the past disagreements, the

constant term (σ2
ω), and the revision of forecasts.

7



A.2.2 Sticky Information and Lucas-type Noisy Information

We have

zi,t−jxt+h − Ftxt+h = (zi,t−jxt+h −zt−jxt+h) + (zt−jxt+h − Ftxt+h)

= ρh+jGωi,t−j + (zt−jxt+h − Ftxt+h) .

Thus, the variance of forecasts is written as

Vtxt+h = (1− λ)

∞∑
j=0

λjVart,t−j (zi,t−jxt+h − Ftxt+h)

= (1− λ)

∞∑
j=0

λj
{(

ρh+jG
)2
σ2
ω + (zt−jxt+h − Ftxt+h)2

}

= (1− λ)
∞∑
j=0

λj
(
ρh+jG

)2
σ2
ω

+ (1− λ)
∞∑
j=0

λj
{

(zt−jxt+h)2 − 2 (zt−jxt+h) (Ftxt+h) + (Ftxt+h)2
}

= (1− λ)

∞∑
j=0

λj
(
ρh+jG

)2
σ2
ω + (1− λ)

∞∑
j=0

λj (zt−jxt+h)2 − (Ftxt+h)2 .

Similarly, we have

Vt−1xt+h = (1− λ)
∞∑
j=0

λj
{(

ρh+1+jG
)2
σ2
ω + (zt−1−jxt+h − Ft−1xt+h)2

}

= (1− λ)
∞∑
j=1

λj−1
(
ρh+jG

)2
σ2
ω + (1− λ)

∞∑
j=1

λj (zt−jxt+h)2 − (Ft−1xt+h)2 .

Thus, we have

Vtxt+h − λVt−1xt+h = (1− λ)
(
ρhG

)2
σ2
ω + (1− λ) (ztxt+h)2 − (Ftxt+h)2 + λ (Ft−1xt+h)2 .

Using equation (A.7), we have

Vtxt+h − λVt−1xt+h = (1− λ)
(
ρhG

)2
σ2
ω + (1− λ)

(
Ftxt+h − λFt−1xt+h

1− λ

)2

− (Ftxt+h)2 + λ (Ft−1xt+h)2

= (1− λ)
(
ρhG

)2
σ2
ω +

λ

1− λ
(Ftxt+h − Ft−1xt+h)2 ,
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which yields

Vtxt+h = λVt−1xt+h +
λ

1− λ
(Ftxt+h − Ft−1xt+h)2 + (1− λ)

(
ρhG

)2
σ2
ω. (A.19)

Importantly, this disagreement equation based on the hybrid model of SI and Lucas-type NI is

expressed in the same form as that based on the hybrid of SI and Woodford-type NI provided

in equation (A.18).

B Estimation

B.1 Data

Table B.1 shows the basic statistics of the SPF data we use.

B.2 Estimation Results

B.2.1 Single-equation Estimation for Average Forecast Errors

Table B.2 shows the estimation results of FE equation (1) or (2) that are shown in the main

text. Depending on the type of NI models and the forecast horizon of h, we use different

equations and explanatory variables. In columns (1), (2), (3), (6), and (7), we assume Lucas-

type NI (i.e., the pure Lucas-type NI model or the hybrid model of SI and Lucas-type NI).

Specifically, in column (1), we set h = 1 where explanatory variables are Ftπt+1 − Ft−1πt+1,

Ft−1πt+1−Ft−2πt+1, and Ft−2πt+1−Ft−3πt+1, and instrumental variables are ν̂t−j and ν̂oil,t−j

for j = 0, 1, 2 in employing the 2SLS (i.e., the number of instrumental variables is six, which is

denoted by IV(6) in the table).

The last row represents the Wald test statistics for the zero restrictions on coefficients on

the forecast revisions in periods t − 1 and t − 2. This statistic can be used to test the null

hypothesis of pure SI (H0: G = 1) against an alternative of pure Lucas-type NI (H1 : λ = 0).

Alternatively, we use instrumental variables of ν̂t−j for j = 0, 1, 2 (IV(3) in column (2))

or conduct the OLS (column (3)). If we estimate equation (2) in the main text using the

finite number of regressors, the omitted variables lead to a bias. This is the reason we use the

instrumental variables, but this bias may be small if one of information rigidities is small (G ' 1

or λ ' 0) because the coefficient on the past FR approaches zero quickly as j increases. If this

is the case, we do not need to use instrumental variables. We run a regression of FE on current

and past FRs, namely, Ftπt+1−Ft−1πt+1, Ft−1πt+1−Ft−2πt+1, and Ft−2πt+1−Ft−3πt+1; that

is, we employ the OLS.
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In column (4), we assume either SI or Woodford-type NI. In this case, the FE equation

does not embed FRs in period t− 1 and t− 2, and thus, we cannot test the null hypothesis of

pure SI (H0: G = 1) against an alternative of pure Woodford-type NI (H1 : λ = 0). Thus, the

Wald test statistic is not reported in the table. In column (5), we assume the hybrid model

of SI and Woodford-type NI. Columns (6) and (7) show the estimation results when we use a

different forecast horizon of h = 0 and 2, respectively.

B.2.2 Single-equation Estimation for Cross-sectional Variance

Table B.3 shows the estimation results of the CV equation (3) in the main text (equation (A.18)

in the appendix). In column (1), we set h = 1 and employ the OLS.

The CV equation can be expressed and estimated differently. In columns (2) and (3),

we estimate equation (A.17), rather than equation (A.18), by employing the 2SLS with the

instrumental variables of ν̂t, ν̂
2
t , ν̂oil,t, and ν̂2

oil,t (i.e., the number of instrumental variables is

four, which is denoted by IV(4) in the table). In column (3), we estimate the same equation

as column (2) but with the instrumental variables of ν̂t and ν̂2
t (denoted by IV(2)). Note

that in equation (A.17), the third and fourth terms on the right-hand side of the equation

are not only unobservable but also correlated with the second term because both depend on

past shocks for xt, that is, νt−i for i = 1, 2, · · · . Thus, if we regress the equation with the

OLS using (Ftxt+h − Ft−1xt+h)2 as an independent variable, the estimate is biased. However,

(Ftxt+h − Ft−1xt+h)2 depends on today’s shock νt, while the third and fourth terms do not.1

Therefore, if we use today’s new information as instrumental variables, we expect to obtain an

unbiased coefficient for the term of (Ftxt+h − Ft−1xt+h)2. Considering that the FR is squared

in equation (A.17), we use ν̂2
t as well as ν̂t.

Columns (4) and (5) examine the robustness of our results to changes in the measurement of

the CV. We exclude the top and bottom 2.5 percent of samples in column (4) and the samples

in which the inflation forecasts exceed 30 percent in their absolute term in column (5). Finally,

1To be precise, it is shown in the following way. Note that

ztxt+h = ρhGxt + (1−G)zt−1xt+h

= ρhGνt + ρh+1Gxt−1 + (1−G)zt−1xt+h

and

Ftxt+h = (1− λ)

∞∑
j=0

λjzt−jxt+h = (1− λ)ztxt+h + (1− λ)

∞∑
j=1

λjzt−jxt+h

= (1− λ)ρhGνt + (1− λ)

{
ρh+1Gxt−1 + (1−G)zt−1xt+h +

∞∑
j=1

λjzt−jxt+h

}
.

The second term is determined at t− 1 or earlier, and is thus independent of νt. Thus, it is clear that (Ftxt+h−
Ft−1xt+h)2 depends on νt unless λ = 1, G = 0, or ρ = 0.
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in columns (6) and (7), we estimate the CV equation for h = 0 and 2, respectively.

B.2.3 Joint Estimation of Pure Models of Information Rigidities

We consider one of pure models of information rigidities, SI or one type of NI. The results are

shown in Table B.4. In columns (1) to (3), we use different instrumental variables for the FE

equation, that is, Ftπt+1 −Ft−1πt+1, Ft−1πt+1 −Ft−2πt+1, and Ft−2πt+1 −Ft−3πt+1. They are

the same variables as those appearing on the right-hand side of the FE equation based on the

pure Lucas-type NI model, which implies that we estimate the FE equation by the OLS. As we

stated in Section B.2.1, the bias in the estimates will be small if one of information rigidities

is small (G→ 1 or λ→ 0) when using the OLS.

In columns (4) to (6), we estimate the model without imposing parameter restrictions on

λ and G, which allows them to take below zero and above one.

The estimation results do not change much. In the pure SI model, the estimate of λ is

around 0.5 and significantly different from zero. In pure NI models, the estimate of 1 − G is

around 0.3 to 0.5, depending on the models and significantly different from zero. According to

the J test, the validity of overidentifying restrictions is rejected in all the models. Furthermore,

the GMM-BIC based on pure models of information rigidities is higher, and thus, worse, than

that based on the hybrid model of SI and Lucas-type NI.

B.2.4 Joint Estimation of Hybrid Models of Information Rigidities

We check the robustness of the estimation results when we use a different forecast horizon:

h = 0 or 2. Table B.5 shows the robustness of our main results. The estimate of λ is around 0.4

and significantly different from zero. The estimate of 1−G is 0 (corner solution) when based

on Woodford-type NI, but positive when based on Lucas-type NI. In particular, it is 0.3, which

is significantly positive when h = 0. However, in this model, the validity of overidentifying

restrictions is rejected.

As in Section B.2.3, we also check the robustness of the estimation results when we adopt

a different estimation strategy. Table B.6 shows the results, where columns (1) to (3) indicate

the case of using different equations and/or instrumental variables and columns (4) and (5)

show the case of not imposing restrictions on λ and G.

Specifically, in column (1), the hybrid model of SI and Woodford-type NI is estimated based

on the CV equation (A.17), rather than (A.18). As explained in Section B.2.2, we estimate

this equation by using ν̂t, ν̂
2
t , ν̂oil,t, and ν̂2

oil,t as instrumental variables. Column (1) shows that

the value of λ is 0.54, while the value of 1 − G is zero. Furthermore, the intercept of the CV

equation, c2, is significantly different from zero, which is inconsistent with G = 1.
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Columns (2) and (3) show the estimation results for the hybrid model of SI and Lucas-type

NI. In column (2), we reduce the number of instrumental variables for the FE equation from

six to three by using ν̂t−j (j = 0, 1, 2). The estimation results do not change much, compared

to those shown in column (2) in Table 2 in the main text, which is an outcome suggesting the

robustness of our results. In column (3), we estimate the FE equation using the variables on

the right-hand side of the equation (i.e., OLS). In this case, the estimate of 1−G reaches zero

(corner solution). The intercept of the CV equation, c2, is significantly different from zero,

which is inconsistent with G = 1. Nevertheless, the estimate of λ is robust at around 0.4.

In Columns (4) and (5), we do not impose parameter restrictions for λ and G. Specifically,

λ and G can take any values (−∞ to ∞). The estimation results show that 1 − G becomes

negative for the hybrid model of SI and Woodford-type NI. The results are almost unchanged

for the hybrid model of SI and Lucas-type NI.

Last and not least, the comparison of the GMM-BIC shows that column (2) in Table 2 in

the main text yields the lowest value, and thus, the best fit of all the specifications.

B.2.5 Nonnested Test

In Table B.7, we report the p-values, based on the Cox-type statistic proposed by Smith (1992),

to compare five nonnested models. They are the pure SI model, the pure Woodford-type NI

model, the pure Lucas-type NI model, the hybrid model of SI and Woodford-type NI, and the

hybrid model of SI and Lucas-type NI. One-by-one test of five models leads to 20(= 5 × 4)

statistics.

For comparison, we use the same instruments. instrumental variables are ν̂t−j and ν̂oil,t−j

(j = 0, 1, 2) for the FE equation and CVt−1 and FR2
t for the CV equation. The estimation

results show that all the models tend to be rejected by an alternative. However, it is important

to note that this one-by-one test involves the so-called multiple testing problem. As the num-

ber of inferences increases, the more likely a null hypothesis would be rejected and, in turn,

erroneous inferences are made.
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Table B.1: Descriptive Statistics

Horizon h Obs Mean S.D.
Forecast error (FE) 0 182 0.020 1.147
πt+h − Ftπt+h 1 181 0.044 1.487

2 180 0.030 1.685
3 179 0.021 1.823

Forecast revision (FR) 0 181 0.023 0.663
Ftπt+h − Ft−1πt+h 1 181 -0.006 0.520

2 181 0.003 0.410
3 176 0.014 0.435

Disagreements (V) 0 182 1.420 1.631
Vtπt+h 1 182 1.297 1.780

2 182 1.367 1.702
3 182 1.462 2.057
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Table B.2: Regression of the Cross-sectional Average Forecast Error

(1) (2) (3) (4) (5)
Pure L-NI Pure L-NI Pure L-NI Pure SI or Hybrid of

or hybrid of SI/NI or hybrid of SI/NI or hybrid of SI/NI pure W-NI SI/W-NI
IV(6) IV(3) OLS

FRt -0.586 10.967 0.523 0.655 0.58
(1.254) (33.587) (0.423) (0.455) (0.400)

FRt−1 1.667 -0.287 0.417 0.540*
(1.278) (9.093) (0.357) (0.313)

FRt−2 2.182 -22.479 0.212
(1.360) (72.893) (0.389)

FRt−3

c1 -0.065 0.488 -0.017 0.04 0.023
(0.174) (1.698) (0.137) (0.143) (0.131)

# of obs 172 173 173 180 179
R2 0.070 0.053 0.077

F for weak ident 2.536 0.030
Wald for zero restr 3.889 0.127 2.418

(6) (7)
Pure L-NI Pure L-NI

or hybrid of SI/NI or hybrid of SI/NI
h = 0 h = 2

FRt 1.564** 1.069
(0.632) (1.221)

FRt−1 -1.952 2.928**
(1.220) (1.265)

FRt−2 -0.651
(1.185)

FRt−3 4.057***
(1.561)

c1 -0.143 -0.089
(0.176) (0.175)

# of obs 172 172
R2

F for weak ident 1.684 4.230
Wald for zero restr 6.926* 5.36**

Notes: ***, **, and * indicate that coefficients are significant at the 1 percent, 5 percent, and 10 percent level, respectively.
NI represents the model of noisy information based on either Woodford (2003, W-NI) or Lucas (1972, L-NI), whereas SI
represents the model of sticky information. FRt represents forecast revisions at t and h indicates a forecast horizon (the
unit is a quarter, benchmark h is one). The figures in parentheses show the heteroskedastic and autocorrelation consistent
(HAC, Newey–West) standard errors. The last two rows represent the F statistics for weak identification and the Wald
statistics for the hypothesis that all the coefficients on the FR in period t− 1 and earlier are zero, respectively.
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Table B.3: Regression of the Cross-sectional Variance

(1) (2) (3) (4) (5) (6) (7)
Omit Omit

OLS IV(4) IV(2) ±2.5% |π| > 30% h = 0 h = 2

FR2
t 0.678*** 1.746*** 1.723*** 0.582*** 1.302** 0.800*** 0.934***

(0.151) (0.536) (0.544) (0.135) (0.544) (0.270) (0.340)
CVt−1 0.489*** 0.493*** 0.288** 0.373*** 0.342***

(0.060) (0.081) (0.134) (0.120) (0.123)
c2 0.463*** 0.809*** 0.819*** 0.391*** 0.719*** 0.531*** 0.733***

(0.098) (0.195) (0.194) (0.082) (0.164) (0.120) (0.197)

# of obs 181 180 181 181 181 181 181
R2 0.361 0.371 0.269 0.447 0.195

F stat for weak ident 6.467 3.609
Wald for zero restr 119.6*** 83.74*** 47.95*** 74.18*** 18.89***

Notes: See Table 2 for the notations. FR2
t and CVt−1 represent the squared forecast revisions and the cross-

sectional variance of forecasts in the previous period, respectively. In IV(4), the instrumental variables are ν̂t,
ν̂2t , ν̂oil,t, and ν̂2oil,t. In IV(2), the instrumental variables are the first two variables used in IV(4). The Wald
statistic is for the hypothesis that the coefficients on both FR2

t and CVt−1 are zero, respectively.

Table B.4: Robustness Check: Joint Estimation of Pure Models of Information Rigidities

(1) (2) (3) (4) (5) (6)
Different IV Unrestricted λ, G

Model Pure SI Pure W-NI Pure L-NI Pure SI Pure W-NI Pure L-NI
λ 0.489 0.511

[0.433, 0.543] [0.455, 0.567]
1−G 0.354 0.256 0.536 0.450

[0.093, 0.639] [0.016, 0.604] [0.308, 0.62] [0.36, 0.74]
c1 -0.014 -0.069 -0.106 -0.059 -0.046 -0.104

[-0.204, 0.176] [-0.281, 0.143] [-0.304, 0.092] [-0.243, 0.125] [-0.248, 0.156] [-0.292, 0.084]
c2 0.856 0.856 0.856 0.856

[0.68, 1.032] [0.68, 1.032] [0.68, 1.032] [0.68, 1.032]

# of obs 172 172 172 172 172 172
# of moments 7 7 7 10 10 10
# of params 2 3 3 2 3 3

J test 0.0000 0.0004 0.0003 0.0000 0.0002 0.0002
Nonnested test against H1:

Pure SI – 0.018 0.034 – 0.002 0.005
Pure W-NI 0.016 – 0.000 0.458 – 0.000
Pure L-NI 0.007 0.000 – 0.446 0.000 –

Model comparison criteria
GMM-BIC 7.88 -0.28 0.49 -1.89 -7.52 -7.16

Notes: SI represents the model of sticky information, while W-NI and L-NI represent the Woodford- and Lucas-type model
of noisy information, respectively. The coefficients, c1 and c2, represent intercepts for the equations of average forecast
errors (FEt) and cross-sectional variance (CVt), respectively. In columns (1) to (3), the instrumental variables used for
the FEt equation are FRt, FRt−1, and FRt−2, where FRt represents the forecast revision. In columns (4) to (6), the
instrumental variables used for the FEt equation are ν̂t−j , ν̂oil,t−j for j = 0, 1, 2. The instrumental variables used for
the CVt equation are CVt−1 and FR2

t in all the columns. In columns (4) to (6), no restriction is imposed for the range
of values that λ and G can take. Figures in square brackets show the 95% confidence intervals. J test shows the p-value
for the test of overidentifying restrictions. The nonnested test shows the p-value, based on Smith (1992), for the null
hypothesis of a pure model of information rigidity against another type of model. GMM-BIC indicates the model selection
criterion based on Andrews (1999) where smaller values are preferable.
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Table B.5: Robustness Check: Joint Estimation of Hybrid Models of Information Rigidities
(Different Forecast Horizons)

(1) (2) (3) (4)
Hybrid model of Hybrid model of

SI/W-NI SI/L-NI SI/W-NI SI/L-NI
h 0 0 2 2

λ 0.386 0.422 0.434 0.442
[0.297, 0.474] [0.323, 0.519] [0.32, 0.546] [0.316, 0.565]

1−G 0 0.271 0 0.001
[0, 0] [0.1, 0.473] [0, 0] [0, 1]

c1 (h = 0) -0.024 -0.13
[-0.184, 0.136] [-0.308, 0.048]

c1 (h = 2) -0.088 -0.159
[-0.318, 0.142] [-0.385, 0.067]

c2 (h = 0) 0.549 0.488
[0.341, 0.757] [0.262, 0.714]

c2 (h = 2) 0.647 0.638
[0.387, 0.907] [0.368, 0.908]

# of obs 172 172 172 172
# of moments 6 12 6 8
# of params 4 4 4 4

J test 0.623 0.000 0.468 0.071
GMM-BIC -8.532 -8.687 -7.753 -11.941

Notes: See Table 4 for the notations. h indicates a forecast horizon (the unit is a quarter). The instrumental variables
used for the FEt equation from the hybrid model of SI and Woodford-type NI are FRt and FRt−1 irrespective of h.
Those from the hybrid model of SI and Lucas-type NI are ν̂t−j and ν̂oil,t−j for j = 0 to 3−h. The instrumental variables
used for the CVt equation are CVt−1 and FR2

t for all the specifications.

Table B.6: Robustness Check: Joint Estimation of Hybrid Models of Information Rigidities
(Different instrumental Variables and Less Restricted Parameters)

(1) (2) (3) (4) (5)
Different IV Unrestricted λ, G

SI/W-NI SI/L-NI SI/L-NI SI/W-NI SI/L-NI
λ 0.541 0.432 0.423 0.437 0.433

[0.429, 0.644] [0.362, 0.501] [0.355, 0.491] [0.369, 0.505] [0.363, 0.503]
1−G 0 0.075 0 -0.222 0.114

[0, 0] [0, 0.898] [0, 0] [-0.76, 0.316] [-0.338, 0.566]
c1 0.031 -0.088 -0.043 -0.022 -0.074

[-0.179, 0.241] [-0.302, 0.126] [-0.231, 0.145] [-0.222, 0.178] [-0.268, 0.12]
c2 0.804 0.454 0.46 0.486 0.454

[0.564, 1.044] [0.302, 0.606] [0.31, 0.61] [0.324, 0.648] [0.302, 0.606]

# of obs 172 172 172 172 172
# of moments 8 7 7 6 10
# of params 4 4 4 4 4

J test 0.11 0.07 0.70 0.45 0.11
GMM-BIC -11.56 -8.42 -13.23 -9.11 -20.61

Notes: See Table 4 for the notations. See the text for the choice of the instrumental variables.
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Table B.7: Nonnested GMM Test

H0 vs H1 Pure SI Pure W-NI Pure L-NI Hybrid of SI/W-NI Hybrid of SI/L-NI
Pure SI – 0.458 0.446 0.000 0.000

Pure W-NI 0.002 – 0.000 0.001 0.001
Pure L-NI 0.006 0.000 – 0.001 0.001

Hybrid of SI/W-NI 0.000 0.046 0.012 – 0.001
Hybrid of SI/L-NI 0.000 0.003 0.002 0.001 –

Notes: The nonnested GMM test shows the p-value, based on Smith (1992), for the null hypothesis of a certain model H0

(each row) against another type of model H1 (each column). The instrumental variables used for the FEt equation are
ν̂t−j and ν̂oil,t−j (j = 0, 1, 2), while those used for the CVt equation are CVt−1 and FR2

t .
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