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Abstract

In this study, we investigate a new smoothing approach to estimate the hid-
den states of random variables and to handle multiple noisy non-stationary
time series data. Kunitomo and Sato (2021) have developed a new method to
solve the smoothing problem of hidden random variables, and the resulting
separating information maximum likelihood (SIML) method enables the han-
dling of multivariate non-stationary time series. We continue to investigate
the filtering problem. In particular, we propose the backward SIML smoothing
method and the multi-step smoothing method to address the initial value issue.
The resulting filtering methods can be interpreted in the time and frequency
domains.
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1. Introduction

We investigate a new smoothing method to estimate the hidden states of random
variables and to handle multiple noisy non-stationary time series data. The main
motivation for the study has been to handle small sample non-stationary economic
time series. Kunitomo, Sato, and Kurisu (2018) have developed the separating in-
formation maximum likelihood (SIML) method for financial high-frequency time
series. Subsequently, Kunitomo and Sato (2021) utilized their results to solve the
smoothing or filtering problem of hidden random variables, which enables a new
estimation method to handle macro-economic time series. In this study, we con-
tinue to investigate the smoothing or filtering problem; in particular, we develop
the backward SIML smoothing method and multi-step SIML smoothing method to
address the initial value issue in the procedure. Based on our analysis, the SIML
forward and backward smoothing methods can be interpreted both in the time and
frequency domains. Although some econometrician may not distinguish smoothing
from filtering and the latter terminology has been sometimes used, we use smoothing
mainly rather than filtering in this study.

A large body of published research exists on the use of time series analysis
for macro-economic time series, which have non-stationary trend, cycle, seasonal.
and measurement errors. For statistical filtering and smoothing methods, Kita-
gawa (2010) discussed the standard statistical methods already known, including
the Kalman filtering and particle-filtering methods. Harvey and Trimbur (2008)
have investigated the relation between Kalman filtering and Hodorick-Prescott fil-
ter in econometrics, for example. Although many studies have examined statistical
filtering theories, we must exercise caution in analyzing non-stationary multivari-
ate time series. Existing methods often depend on underlying distributions such
as the Gaussian distributions for Kalman filtering. As some procedure essentially
depends on the dimension of state variables, some difficulty may exist in extending
the existing methods to high-dimensional cases, despite that the dimension is about
10. Meanwhile, we expect that our method is simple and has some advantage when
handling small sample economic times series with non-stationarity and seasonality
with many variables. It is because our method does not depend on specific dis-
tributions as well as the dimension of the underlying random variables. Refer to
Kunitomo, Awaya, and Kurisu (2020) for a comparison of small sample properties
of the maximum likelihood and SIML estimation methods for the non-stationary
errors-in-variables model, and Nishimura, Sato, and Takahashi (2019) for an appli-
cation of financial data smoothing. In particular, the most important feature of the
present procedure is that it may be applicable to small sample time series data.

In Kunitomo and Sato (2021), an implicit assumption exists, that is, we can han-
dle the initial value problem in smoothing or filtering. However, in non-stationary
time series, the initial value of state estimate may play a crucial role in the resulting
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estimates of unobservable state vectors; thus we need to investigate this problem
in a systematic manner. The present study mainly aims to resolve this problem
in a general manner. In this study we shall demonstrate that backward smoothing
and iterative smoothing procedures can be developed, and we obtain their con-
vergence. However, some related issues arise, and we develop the multi-step and
band-smoothing procedures, which are new in this field. It seems that they are
related to the general problem in the analysis of non-stationary time series data.

The reminder of this paper is organized as follows. In Section 2, we explain the
non-stationary errors-in-variables model and the SIML method. In Section 3, we de-
velop the SIML-filtering methods, including the forward, backward, and multi-step
smoothing procedures. Furthermore, we present a theoretical result of convergence
of the smoothing or filtering method for the initial value problem and then discuss
the evaluation criteria. In Section 4, we discuss generalizations of the non-stationary
errors-in-variables model and the mathematical interpretation of our procedure. In
Section 5, we provide some numerical examples and in Section 6, conclusions are
drawn. Some details of mathematical derivations and figures are given in the Ap-
pendix.

2. Non-stationary Errors-in-variables models

Let yji be the i−th observation of the j−th time series at i for i = 1, · · · , n; j =
1, · · · , p. We set yi = (y1i, · · · , ypi)

′
as a p× 1 vector and Yn = (y

′
i) (= (yij)) as an

n× p matrix of observations, and we denote y0 as the initial p× 1 vector, which is
assumed to be observable. Furthermore, we attempt to estimate the underlying non-
stationary trends when the nonstationary state vector xi (= (xji)) (i = 0, 1, · · · , n),
and the vector of noise component v

′
i = (v1i, · · · , vpi) are mutually independent.

Then, we use the non-stationary errors-in-variables representation

yi = xi + vi (i = 0, 1, · · · , n),(2.1)

where xi (i = 0, 1, · · · , n) is a sequence of the non-stationary I(1) process, which
satisfies

∆xi = (1− L)xi = v
(x)
i (i = 1, · · · , n),(2.2)

(x0 as the initial vector), and v
(x)
i is a sequence of the i.i.d. random vectors with

E(v
(x)
i ) = 0 and E(v

(x)
i v

(x)′

i ) = Σx. The random vector vi (i = 0, 1, · · · , n) is a
sequence of i.i.d. random variables with E(vi) = 0 and E(viv

′
i) = Σv.

We consider a situation wherein each pair of vectors ∆xi and vi are indepen-
dently, identically, and normally distributed (i.i.d.) as Np(0,Σx) and Np(0,Σv),
respectively, and we have the observations of an n× p matrix Yn = (y

′
i). Given the

initial condition y0, the np× 1 random vector (y
′
1, · · · ,y

′
n)

′
follows

vec(Yn) ∼ Nn×p

(
1n · y

′

0, In ⊗Σv +CnC
′

n ⊗Σx

)
,(2.3)
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where 1
′
n = (1, · · · , 1) and

Cn =


1 0 · · · 0 0
1 1 0 · · · 0
1 1 1 · · · 0
1 · · · 1 1 0
1 · · · 1 1 1


n×n

.(2.4)

We use the Kn−transformation that is from Yn to Zn (= (z
′
k)) by

Zn = Kn

(
Yn − Ȳ0

)
,Kn = PnC

−1
n ,(2.5)

where

C−1
n =


1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1


n×n

,(2.6)

and the (k, j)−th element of Pn = (p
(n)
kj ) is defined by

p
(n)
kj =

√√√√ 2

n+ 1
2

cos
[

2π

2n+ 1
(k − 1

2
)(j − 1

2
)
]
.(2.7)

By using the spectral decomposition, C−1
n C

′−1
n = PnDnPn, and Dn is a diagonal

matrix with the k-th element dk = 2[1− cos(π( 2k−1
2n+1

))] (k = 1, · · · , n) , and we write

a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .(2.8)

By taking a positive integer mn, the SIML estimator of Σ̂x can be defined by

Gm = Σ̂x,SIML =
1

mn

mn∑
k=1

zkz
′

k .(2.9)

Given the initial condition y0, the log-likelihood function, except some constants
when the underlying distributions are Gaussian, can be written as

ln(θ) =
n∑

k=1

log |a∗knΣv +Σx|−1/2 − 1

2

n∑
k=1

z
′

k[a
∗
knΣv +Σx]

−1zk(2.10)

and

(−2)ln(θ) =
n∑

k=1

log |a∗knΣv +Σx|+
n∑

k=1

z
′

k[a
∗
knΣv +Σx]

−1zk ,(2.11)
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where θ is a vector of parameters.

The model of (2.1) and (2.2) can be generalized to the cases when we have
cycle and seasonal components, and when vt and ∆xt are auto-correlated (refer
to Kunitomo and Sato (2021a, b)). However, in this study, we first focus on the
smoothing or filtering procedure of the simple non-stationary multiple time series.
We discuss briefly several extensions in Section 4.

3. SIML Smoothing and Backward Smoothing

3.1 Forward SIML Smoothing

Kunitomo and Sato (2021) investigated the general filtering procedure based on
Kn−transformation. Because the elements of the resulting n × p random matrix
Zn by this transformation take real values in the frequency domain, their roles are
easy to understand. As Pn is a type of real-valued discrete Fourier transformation,
vectors zk (k = 1, · · · , n) in Zn are asymptotically uncorrelated. We consider the
partial inversion of the transformed orthogonal processes. Let an n× p matrix be

X̂n(Q) = CnPnQnPnC
−1
n (Yn − Ȳ0)(3.1)

and
Zn = PnC

−1
n (Yn − Ȳ0) ,Yn = Ȳ0 +X(0)

n +Vn ,(3.2)

where X(0)
n = (x

(0)′

i ) and Vn = (v
′
i) are n × p matrices, and x

(0)
i = xi − x0 (i =

1, · · · , n). We set the initial vector as y0 = x0.
The stochastic process Zn is the orthogonal decomposition of the original time series
Yn in the frequency domain, and Qn is an n×n filtering matrix. BecauseYn consists
of non-stationary time series, we need a special form of transformation Kn in (2.5).
We offer explicit form for the trend smoothing (or filtering) procedure. Let an m×n
choice matrix be Jm = (Im,O), and let an n× p matrix be

X̂n(m) = CnPnQ
(m)
n PnC

−1
n (Yn − Ȳ0) ,(3.3)

and we denote an n× n matrix Q(m)
n = J

′
mJm.

We construct an estimator of the n × p hidden state matrix Xn only in the lower-
frequency parts by using the inverse transformation of Zn and by deleting the esti-
mated noise parts (refer to Nishimura, Sato and Takahashi (2019)). We denote the
hidden trend state as

Xn(m) = CnPnQ
(m)
n PnC

−1
n X(0)

n .(3.4)
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This quantity is different from Xn because xi (i = 1, · · · , n) in (3.1) and (3.2) con-
tains not only the trend component of yi (i = 1, · · · , n) but also the noise component
in the frequency domain, which is different from the measurement noise component
vi (i = 1, · · · , n) of (3.1) and (3.3). We attempt to estimate the trend component
of xi by using (3.3) and recover the trend component of Xn close to zero frequency
because the effects of differenced measurement error noises (vi−vi−1) are negligible
at zero frequency. This method differs from some existing procedures that consider
the decomposition of time series only in the time domain. Our arguments can be
justified by using the frequency decomposition of yi and r

(n)
i = ∆yi (= yi−yi−1 and

y0 being fixed). We discuss this issue in Section 4 (refer to Section 5.2 of Kunitomo
and Sato (2021)).

3.2 Backward Smoothing

We investigate the role of the initial condition in the non-stationary process and
consider the situation when the time is reversed, that is, from n to 0, rather than
from 0 to n. We take the n × p matrix Y∗

n = (y
′
i−1) and set the np × 1 random

vector (y
′
0, · · · ,y

′
n−1)

′ 1. Given the initial condition yn, we rewrite

vec(Y∗
n) ∼ Nn×p

(
1n · y

′

n, In ⊗Σv +C
′

nCn ⊗Σx

)
,(3.5)

where 1
′
n = (1, · · · , 1) and Cn is given by (2.4).

We use K∗
n−transformation that from Y∗

n to Z∗
n (= (z∗

′
k )) by

Z∗
n = K∗

n

(
Y∗

n − Ȳ∗
n

)
,K∗

n = P∗
nC

′−1
n ,(3.6)

where Ȳ∗
n = 1ny

′
n,

C
′−1
n =


1 −1 · · · 0 0
0 1 −1 · · · 0
0 0 1 −1 · · ·
0 0 0 1 −1
0 0 0 0 1


n×n

,(3.7)

and the (k, j)−th element of P∗
n = (p

(n)
kj ) is defined by

p
∗(n)
kj =

√√√√ 2

n+ 1
2

sin
[

2π

2n+ 1
(k − 1

2
)j
]
.(3.8)

By using the spectral decomposition, C
′−1
n C−1

n = P∗′
nDnP

∗
n, and Dn is a diagonal

matrix with the k-th element dk = 2[1 − cos(π( 2k−1
2n+1

))] (k = 1, · · · , n) . Then, we

1Given the initial condition yn, we consider the joint distribution of (y
′

n−1, · · · ,y
′

0)
′
, while we

took yi (i = 0, 1, · · · , n) in Section 3.1.
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write

a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .(3.9)

(Refer to Appendix for the derivation.)

We consider the partial inversion of the transformed orthogonal processes. Let an
n× p matrix be

X̂∗
n(Qn) = C

′

nP
∗′
nQnP

∗
nC

′−1
n (Y∗

n − Ȳ∗
n)(3.10)

and
Z∗

n = P∗
nC

′−1
n (Y∗

n − Ȳ∗
n) ,Y

∗
n = Ȳ∗

n +X∗
n +V∗

n ,(3.11)

whereX∗
n = (x∗′

i−1) andV∗
n = (v∗′

i−1) are the n×pmatrices, and x∗
i−1 = xi−1−xn (i =

1, · · · , n).
The stochastic process Z∗

n is the orthogonal decomposition of the original time series
Y∗

n in the frequency domain, and Qn is an n × n filtering matrix. Because Y∗
n

consists of non-stationary time series, we need a special form of transformation K∗
n.

We provide an explicit form for the trend filtering procedure. Then, let the n × p
matrix be

X̂∗
n(m) = C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1
n (Y∗

n − Ȳ∗
n)(3.12)

and Q(m)
n = J

′
mJm.

We construct an estimator of n × p hidden state matrix X∗
n only in the lower-

frequency parts by using the inverse transformation of Z∗
n and by deleting the esti-

mated noise parts. We denote the hidden trend state as

X∗
n(m) = C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1
n X∗

n .(3.13)

3.3 Initial Value Problem and Convergence

When we have non-stationary time series observation that follows a random walk as a
statistical model, the role of the initial value is important because of non-stationarity.
This aspect is different from stationary time series models, in which the effects of
the initial value are negligible when the sample size is large. Hence, a smoothing or
filtering procedure of non-stationary time series, that does not depend much on the
initial value, is important. As the initial value, there can be two possibilities as y0

and yn when we have n+1 vector observations yi (i = 0, 1, · · · , n). In this problem,
we have an interesting useful result.

We consider two operators T
(m,n)
2k and T

(m,n)
2k−1 (k ≥ 1) to an n× 1 vector. Let T0 = In

and define T
(m,n)
2k−1 and T

(m,n)
2k recursively for k = 1, · · · ,M by

T
(m,n)
2k+1 (y) = CnPnQ

(m)
n PnC

−1[y − 1n(e
′

1T
(m,n)
2k (y))] + 1n(e

′

1T
(m,n)
2k (y)) ,(3.14)
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and

T
(m,n)
2k (y) = C

′

nP
∗ ′

n Q(m)
n P∗

nC
′−1[y − 1n(e

′

nT
(m,n)
2k−1 (y))] + 1n(e

′

nT
(m,n)
2k−1 (y)) ,(3.15)

where Q(m)
n = J

′
mJm, 1

′
n = (1, · · · , 1), and e

′
1 = (1, 0, · · · , 0) and e

′
n = (0, · · · , 0, 1)

are unit vectors.
The operator T

(m,n)
2k−1 (k ≥ 1) is the SIML filtering with the initial value at i = 0 y0

and T
(m,m)
2k (k ≥ 1) is the backward filtering with the initial value at i = n. For non-

stationary time series, two operators have different roles in smoothing procedure.
We can repeat the smoothing procedures such that for k ≥ 1

T
(m,n)
2k+1 (y) = CnPnQ

(m)
n PnC

−1y + [In −CnPnQ
(m)
n PnC

−1]

×1ne
′

1

[
C

′

nP
∗ ′

n Q(m)
n P∗

nC
′−1

(
y − 1n(e

′

nT
(m,n)
2k−1 (y))

)
+ 1n(e

′

nT
(m,n)
2k−1 (y))

]
.

Then, we have the next proposition on the convergence of the smoothing procedure
and the proof is given in the Appendix.

Theorem 3.1 : As k → ∞, there exists n0 such that, for n0 < n and m < n, we
have

T
(m,n)
2k+1 → T

(m,n)
1∗ =

∞∑
s=0

(A
(m,n)
2 )sA

(m,n)
1 ,(3.16)

and

T
(m,n)
2k → T

(m,n)
2∗ =

∞∑
s=0

(A
(m,n)
2∗ )sA

(m,n)
1∗ ,(3.17)

where

A
(m,n)
1 = CnPnQ

(m)
n PnC

−1 + [In −CnPnQ
(m)
n PnC

−1]1ne
′

1C
′

nP
∗′
nQ

(m)
n P∗

nC
′−1 ,

A
(m,n)
2 = [In −CnPnQ

(m)
n PnC

−1]1n × [1− e
′

1C
′

nP
∗′
nQ

(m)
n P∗

nC
′−11n]e

‘
n ,

A
(m,n)
1∗ = C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1 + [In −C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1]1ne

′

nCnPnQ
(m)
n PnC

−1 ,

A
(m,n)
2∗ = [In −C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1]1n × [1− e

′

nCnPnQ
(m)
n PnC

−11n]e
‘
n .

The absolute values of all eigenvalues of A
(m,n)
2 and A

(m,n)
2∗ are less than one. Then,

we can express

∞∑
s=0

(A
(m,n)
2 )s = (In −A

(m,n)
2 )−1 ,

∞∑
s=0

(A
(m,n)
2∗ )s = (In −A

(m,n)
2∗ )−1 .

Given that the initial value is the starting point of non-stationary time series, we
need to develop a smoothing procedure that does not depend on the initial value.
Practically, often we do want to use the procedure that does not depend on the first
or latest observation y0 or yn. In these cases, it may be reasonable to use the T

(n)
2
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or T
(n)
1 , respectively.

It may be interesting to find the difference between the two procedures of smooth-
ing. Let the two operators be Hn = (h

(n)
ab ) = PnQ

(m)
n Pn and Fn = (f

(n)
ab ) =

P∗′
nQ

(m)
n P∗

n. Then, each term of h
(n)
ab and f

(n)
ab are sums of m trigonometric functions

in the forward and backward SIML smoothing. They are similar as we summarize
in the next result. The proof is given in the Appendix.

Theorem 3.2 : (i) Assume that n/mn → ∞ as n → ∞. Then,

(
n

mn

) max
a,b

|h(n)
ab − f

(n)
ab | → 0 .(3.18)

(ii) Define the forward and backward operators by H(0)
n = CnHnC

−1
n and F∗

n =
C‘

nFnC
−1‘
n , respectively. For any δ > 0, we take m = mn such that 0 < mn <

m1+δ
n < n. Then, as n → ∞,

(
n

m1+δ
n

)Tr[H(0)
n − F∗

n] → 0 ,(3.19)

where the trace of an n× n matrix A = (aij) is defined by Tr(A) =
∑n

i=1 aii.

From this result, the backward SIML smoothing is essentially the same method
as the forward smoothing. As we shall see in Section 4.2, it is a real (finite- and
discrete) Fourier transformation if we take that the time is reversed from n to 0,
rather than from 0 to n.

3.4 Band Smoothing

We consider a general filtering based on the Kn and K∗
n transformations and use

the inversion of some frequency parts of the random matrix Zn and Z∗
n. The leading

example is the seasonal frequency in the discrete time series, and we take s (> 1) as
a positive integer.
Let an m2 × [m1 +m2 + (n−m1 −m2)] choice matrix be Jm1,m2 = (O, Im2 ,O) (we
take m1 +m2 < n), and let also n× p matrices be

X̂n(m1,m2) = CnPnJ
′

m1,m2
Jm1,m2PnC

−1
n (Yn − Ȳ0)(3.20)

and
X̂∗

n(m1,m2) = C
′

nP
∗′
n J

′

m1,m2
Jm1,m2P

∗
nC

′−1
n (Yn − Ȳn)(3.21)

and an n× n matrix Qn = Q(m1,m2)
n = J

′
m1,m2

Jm1,m2 .

As an example in economic data, when we have the seasonal frequency s (> 1),
we can take m1 = [2n/s]− [m/2] and m2 = m. For instance, we take s = 4 for the
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quarterly data and s = 12 for the monthly data. (See Sato and Kunitomo (2021).)
Similar to the trend smoothing problem, the SIML-filtering value

Xn(m1,m2) = CnPnQ
(m1,m2)
n PnC

−1
n X(0)

n ,(3.22)

and
X∗

n(m1,m2) = C
′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1
n X∗

n ,(3.23)

respectively, which are based on the estimated frequency components of x
(0)
i (i =

1, · · · , n) or x∗
i (i = 0, · · · , n− 1).

In this case, we can define T2k−1 and T2k for k = 1, · · ·M as (3.14) and (3.15) by using
Jm1,m2 , rather than Jm. Then, it is straightforward to to find the next proposition
on the convergence of smoothing procedure, and the proof is in the Appendix.

Theorem 3.3 : As k → ∞, there exists n0 such that, for n0 < n, we have

T
(m1,m2,n)
2k+1 → T

(m1,m2,n)
1∗ =

∞∑
s=0

(A
(m1,m2,n)
2 )sA

(m1,m2,n)
1 ,(3.24)

and

T
(m1,m2,n)
2k → T

(m1,m2,n)
2∗ =

∞∑
s=0

(A
(m1,m2,n)
2∗ )sA

(m1,m2,n)
1∗ ,(3.25)

where

A
(m1,m2,n)
1 = CnPnQ

(m1,m2)
n PnC

−1

+ [In −CnPnQ
(m1,m2)
n PnC

−1]1ne
′

1C
′

nP
∗
nQ

(m1,m2)
n P∗

nC
′−1 ,

A
(m1,m2,n)
2 = [In −CnPnQ

(m1,m2)
n PnC

−1]1n × [1− e
′

1C
′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−11n]e

‘
n ,

A
(m1,m2,n)
1∗ = C

′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1

+ [In −C
′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1]1ne

′

nCnPnQ
(m1,m2)
n PnC

−1

A
(m1,m2,,n)
2∗ = [In −C

′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1]1n × [1− e

′

nCnPnQ
(m1,m2)
n PnC

−11n]e
‘
n .

The absolute values of all eigenvalues of A
(m1,m2,n)
2 and A

(m1,m2,n)
2∗ are less than one;

then, we can express

∞∑
s=0

(A
(m1,m2,n)
2 )s = (In −A

(m1,m2,n)
2 )−1 ,

∞∑
s=0

(A
(m1,m2,n)
2∗ )s = (In −A

(m1,m2,n)
2∗ )−1 .

This result would be useful for handling seasonality of economic time series, as an
example. Theorem 3.1 can be regarded as a special case of Theorem 3.3 when m1 = 0
and m2 = m.
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3.5 Multi-step Smoothing

In the forward and backward smoothing procedures, choosing an appropriate m is
important. Howver, the problem becomes difficult when seasonal components exist.
Then, it may be normal to repeat smoothing because the forward and backward
smoothing several times, which may be called multi-stage smoothing, can be run.

Let T
(m1,n)
1∗ be the first stage forward smoothing with a specific choice of m1.

Then, we can define the double-stage forward smoothing by

T
(m1,m2,n)
1,1 = T

(m1,n)
1∗ T

(m2,n)
1∗ .(3.26)

Similarly, we can define the double-stage backward smoothing by

T
(m1,m2,n)
2,2 = T

(m1,n)
2∗ T

(m2,n)
2∗ .(3.27)

More complicated smoothing procedures can also exist. Hence, we need some cri-
terion to find an appropriate smoothing procedure for applications. Consequently,
handling complicated seasonal patterns in the frequency domain is possible, for in-
stance, because we first take a rather large m1 and then we take a smaller m2.

For real applications, finding an appropriate m or m1 and m2 at the beginning
might not be certain. Section 6.1 of Kunitomo and Sato (2021) has discussed a guide
on choosing frequencies. In addition, at the first stage, one strategy in the trend
estimation would be to choose a relatively large m1, which should be less than the
seasonality frequency. Then, at the second stage, we choose m2, which is smaller
than m1 and use the following evaluation criterion.

3.6 Prediction Errors and Evaluation Criteria

The problem of choosing an appropriate filtering, including the choice of m (or
m1 and m2 in a more general case) in smoothing, is an important question for
applications. Given that our procedure does not assume a particular distribution
such as Gaussianity and semi-parametric, it finds a challenging one. As we discuss in
the next section (refer to Kunitomo and Sato (2021)), a typical method to handle the
problem exists, which has been illustrated by the forward filtering case. However,
in the backward smoothing case, we have a similar argument.

Let r
(n)
j = y

(n)
j − y

(n)
j−1 (j = 1, · · · , n); hence we write

r̂
(n)
j =

n∑
k=1

pjkzk ,(3.28)

where z∗k is the orthogonal process at the frequency λ
(n)
k = (k − 1/2)/(2n+ 1) (k =

1, · · · , n) (refer to Section 5 of Kunitomo and Sato (2021)).

11



Then, for h ≥ 1, it may be standard to use the predictor

r̂
(n)
n+h(m) =

m∑
k=1

pn+h,kzk ,(3.29)

which is a linear combination of m orthogonal processes with different frequencies.
Then, for h ≥ 1, it may be reasonable to use the linear predictor

x̂
(n)
n+h(m) =

n+h∑
s=h+1

r̂(n)s (m) =
n+h∑

s=h+1

m∑
k=1

pskzk .(3.30)

By using (3.1) and (3.2), the prediction error can be written as

x̂
(n)
n+h(m)− x

(n)
n+h =

m∑
k=1

n+h∑
s=h+1

n∑
j=1

psj(C
−1
n Vn)kj .+

n∑
k=m+1

n+h∑
s=h+1

n∑
j=1

psj(C
−1
n Xn)kj .

We use an elementary relation that

n+h∑
s=h+1

psk =
1√

2n+ 1

sin 2π
2n+1

(n+ h)(k − 1
2
)− sin 2π

2n+1
h(k − 1

2
)

sin 2π
2n+1

1
2
(k − 1

2
)

.

Then, when p = 1, for example, by using a∗kn (k = 1, · · · ,m) in (2.8), we can derive
the prediction MSE as

MSE(m) =
4σ2

v

2n+ 1

m∑
k=1

[sin
2π

2n+ 1
(n+ h)(k − 1

2
)− sin

2π

2n+ 1
h(k − 1

2
)]2

+
σ2
x

2n+ 1

n∑
k=m+1

[
sin 2π

2n+1
(n+ h)(k − 1

2
)− sin 2π

2n+1
h(k − 1

2
)

sin 2π
2n+1

1
2
(k − 1

2
)

]2 .(3.31)

As a typical example, we set σ2
v = 2, σ2

x = 1, h = 4, n = 100. The minimum value of
MSE is attained when m∗ = 23.
We notice that the first term is an increasing function of m, while the second term is
a decreasing function of m. A point of m∗ exists such that MSE(m) is minimized.
Several criteria that are based on the prediction MSE exist. Because the prediction
error depends on the unknown parameters of Σx and Σv, we must replace them in a
simple manner. When p = 1, we need the ratio of estimated variances, which were
constructed in the discussion of Section 3 of Kunitomo, Awaya, and Kurisu (2019).

4. Discussions
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4.1 Extended Errors-in-Variables Models

Possible generalizations of the basic model in Section 3 exist. In this section, we
consider the additive decomposition model

yi = xi + si + vi (i = 0, 1, · · · , n),(4.1)

where ∆xi = v
(x)
i and we take positive integers s (s > 1), N , and n = sN

for the resulting simplicity. Furthermore, we consider that the noise component
vi (i = 0, 1, · · · , n) and seasonal component si (i = 0, 1, · · · , n) are sequences of the
stationary processes, which satisfy

vi =
∞∑

j=−∞
C

(v)
j e

(v)
i−j ,(4.2)

and

si =
∞∑

j=−∞
C

(s)
sj e

(s)
i−sj ,(4.3)

where e
(v)
i and e

(s)
i are sequences of i.i.d. random vectors with E(e

(v)
i ) = E(e

(s)
i ) = 0,

and E(e
(v)
i e

(v)′

i ) = Σ(v)
e (a positive definite matrix), and E(e

(s)
i e

(s)′

i ) = Σ(s)
e (a non-

negative definite matrix).

The p × p coefficient matrices C
(v)
j and C

(s)
j are absolutely summable such that∑∞

j=−∞ ∥C(v)
j ∥ < ∞, and

∑∞
j=−∞ ∥C(s)

sj ∥ < ∞, where ∥C(v)
j ∥ = maxk,l=1,···,p |c(v)k,l (j)|

for C
(v)
j = (c

(v)
k,l (j)), and ∥C(s)

sj ∥ = maxk,l=1,···,p |c(s)k,l (j)| for C
(s)
sj = (c

(s)
k,l (sj))), respec-

tively.

Let f∆x(λ), fs(λ), and fv(λ) be the spectral density (p × p) matrices of ∆xi, si
and vi (i = 1, · · · , n). Then

fv(λ) = (
∞∑

j=−∞
C

(s)
j e2πiλj)Σ(v)

e (
∞∑

j=−∞
C

(v)′

j e−2πiλj) (−1

2
≤ λ ≤ 1

2
) ,(4.4)

and

fs(λ) = (
∞∑

j=−∞
C

(s)
sj e

2πiλsj)Σ(s)
e (

∞∑
j=−∞

C
(s)′

sj e−2πiλsj) (−1

2
≤ λ ≤ 1

2
) ,(4.5)

where we set C
(v)
0 = C

(s)
0 = Ip as normalizations and i2 = −1.

Then, the relation between the p×p spectral density matrix of the transformed vector
process, which are observable, and the spectral density of the observed difference
series ∆yi (= yi − yi−1) can be represented as

f∆y(λ) = f∆x(λ) + (1− e2πiλ)[fs(λ) + fv(λ)](1− e−2πiλ) .(4.6)
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We denote the long-run variance-covariance matrices of trend components and sta-
tionary components for g, h = 1, · · · , p as

Σx = f∆x(0) (= (σ
(x)
gh )) , Σv = fv(0) = (σ

(v)
gh ) .(4.7)

Let f (SR)
v (λk), f (SR)

s (λk), and f
(SR)
∆x (λk) be the symmetrized p × p spectral ma-

trices of vi, si and ∆xi at λk (= (k − 1
2
)/(2n + 1)) for k = 1, · · · , n, that is,

f (SR)
v (λk) = (1/2)[f (SR)

v (λk) + f̄ (SR)
v (λk)], f

(SR)
s (λk) = (1/2)[f (SR)

s (λk) + f̄ (SR)
s (λk)]

and f
(SR)
∆x (λk) = (1/2)[f

(SR)
∆x (λk) + f̄

(SR)
∆x (λk)].

Theorem 5.1 of Kunitomo and Sato (2021) offers the condition that the orthogonal
processes are approximately distributed as the Gaussian distribution. Then, (-2)
times the log-likelihood function in the general model can be approximated as

(−2)ln(θ) =
n∑

k=1

log |a∗kn(f (SR)
v (λk) + f (SR)

s (λk)) + f
(SR)
∆x (λk)|(4.8)

+
n∑

k=1

z
′

k[a
∗
kn(f

(SR)
v (λk) + f (SR)

s (λk)) + f
(SR)
∆x (λk)]

−1zk .

In the forward smoothing, Kunitomo and Sato (2021) have used the causal MA
representation of the stationary process and discussed its interpretation in their
Section 5. In the backward smoothing, we need the non-causal MA representation of
the stationary process. For causal and non-causal MA models, we refer to Chapter
4 of Brockwell and Davis (1990). However, we have a similar interpretation of
the backward smoothing based on the frequency domain analysis, which shall be
discussed in the next subsection.

4.2 Frequency Interpretation

The SIML smoothing method might be regarded initially as an ad-hoc statistical
procedure without any mathematical foundation. However, conversely, there is a
rather solid statistical foundation exists. Section 5 of Kunitomo and Sato (2021a)
has discussed the justification of the SIML forward-smoothing, and it may differ from
the standard usage of traditional time series analysis in the frequency domain. (Doob
(1953), and Brockwell and Davis (1990), and its extensions to the non-stationary
process, and Brillinger and Hatanaka (1969), Brillinger (1980) for related topics.)

We can proceed a similar argument as Kunitomo and Sato (2021), but it is on

the backward smoothing. For λ
(n)
k = (k − 1/2)/(2n+ 1) (k = 1, · · · , n), we write

z∗n(λ
(n)
k ) =

n∑
j=1

r
(n)∗
j−1 [

2√
2n+ 1

sin[2πλ
(n)
k j] (k = 1, · · · , n),(4.9)

where r
(n)∗
j−1 = y

(n)
j−1 − y

(n)
j (j = 1, · · · , n).

(We note that under the assumption of (4.1)-(4.3), r
(n)∗
j is a stationary process and
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has a MA representation.)
Then, by using the inversion transformation with P∗

n, we can confirm that

r
(n)∗
s−1 =

n∑
k=1

p∗skz
∗
n(λ

(n)
k ) (s = 1, · · · , n).(4.10)

It is another representation of R∗
n = (r

∗(n)′
i−1 ) = C

′−1
n X̂∗

n(Q
∗) when Q∗

n = In. For

any s− 1 (s = 1, · · · , n), r(n)s−1∗ can be recovered as the weighted sum of orthogonal

processes z∗(n)(λ
(n)
k ) at frequency λ

(n)
k (k = 1, · · · , n).

Then, by using Y∗
n = C

′
nR

′
n, we recover the non-stationary process y

(n)
t (t =

0, · · · , n− 1) given the initial condition y0 as

y
(n)
t = yn +

t∑
s=1

r
∗(n)
n−s .(4.11)

Let

αn(λ
(n)
m , j) =

1

n

m∑
k=1

[2 sin 2πλ
(n)
k j](4.12)

Then, when λ(n)
m → λ as n → ∞ (0 < λ < 1

2
), we find

βn(λ
(n)
m , j) → β(λ, j) =

2[1− cos 2πλ j]

π j
.

If we set the uncorrelated stochastic process of uncorrelated increments with con-
tinuous parameter λ (0 ≤ λ ≤ 1

2
) as Bn(λ) =

∑n
j=1 β(λ, j)r

∗(n)
j−1 , then we find

∫ 1
2

0
sin[2πλs]dBn(λ) = r

∗(n)
s−1 (s = 1, · · · , n) .(4.13)

This corresponds to the continuous representation of a discrete (real-valued) station-
ary time series in the frequency domain (refer to Chapter 7.4 of Anderson (1971)). If
we write the limit of B = limn→∞ Bn(λ) (assuming it exists), then the (real-valued)
spectral distribution matrix FRS for any 0 ≤ λ1 < λ2 ≤ 1/2 can be defined as

FRS(λ2 − λ1) = E[(B(λ2 − λ1)B(λ2 − λ1)
′
] =

∫ λ2

λ1

fRS(λ)dλ(4.14)

if FRS is absolutely continuous and the matrix-valued density process fRS(λ) (0 ≤
λ1 < λ2 ≤ 1/2) exists.

We set R̂∗
n(m) = (r̂

∗(m,n)′

i ) = C
′−1
n X̂∗

n(m), where r
∗(m,n)
i are p × 1 vectors for i =

1, · · · , n. If we write

r̂
∗(m,n)
s−1 =

m∑
k=1

p∗skz
∗
n(λ

(n)
k ) (s = 1, · · · ,m; 0 < m < n),(4.15)

15



it is the trend SIML-smoothing value for r∗(m,n)
s . It is X̂∗

n(m) (= C
′
nR

∗
n(m)). and

r
∗(m,n)
s−1 =

m∑
k=1

p∗skz
∗∗
n (λ

(n)
k ) (s = 1, · · · ,m; 0 < m < n),(4.16)

where z∗∗(n)(λ
(n)
k ) are constructed from the n × p hidden states matrix X∗

n, rather
than the observed n × p matrix data Y∗

n. Hence, it is the same as the element of
C

′−1
n X̂∗

n(m), and for λ(n)
m = m/n in the frequency domain, it is a discrete version of

r̂
∗(n)
s−1 (λ

(n)
m ) =

∫ λ
(n)
m

0
sin[2πλ s]dBn(λ) .(4.17)

Then, this term corresponds to the element of C
′−1
n X̂∗

n(m), and has the correspond-
ing (continuous) version in the frequency domain.

Similarly, r̂
∗m1,m2,n)
s−1 =

∑m1+m2
k=m1+1 psk∆λz

∗(n)(λ
(n)
k ) = r̂

∗(m2,n)
s−1 −r̂

∗(m1,n)
s−1 (s = 1, · · · ,m; 0 <

m1 < m2 < n) can be regarded as a discrete version of

r̂
∗(n)
s−1 (λ

(n)
m1

, λ(n)
m2

) =
∫ λ

(n)
m2

λ
(n)
m1

sin[2πλ s]dBn(λ) .(4.18)

5. Numerical Example

We illustrate the use of the SIML-forward smoothing and SIML-backward smooth-
ing for real data. We have used the monthly US Manufacturers’ New Orders Data
within 2010-2020 because it is known that this time series data has trend, wild
seasonal fluctuation and noise components.

The red curve in Figure 1 shows the forward smoothing, given the first observa-
tion as the initial condition with m = 5. The green curve in the figure shows T ∗

1 as
the limit of the forward-backward iterations. The violet curve in the figure shows
the two-step forward filtering with m1 = 15 (first smoothing) and m = 5 (second
smoothing). The blue curve in Figure 2 shows the backward smoothing given the
last observation as the initial condition with m = 5. The sky-blue curve in the figure
show T ∗

2 as the limit of the backward-backward iterations. The violet curve in the
figure shows the two-step backward filtering with m1 = 15 (first smoothing) and
m = 5 (second smoothing).

As we have expected, the initial values of the both forward and backward
smoothers have significant effects around the initial values at which we start smooth-
ing. The effects of choosing the initial value become negligible either repeating
smoothing (or filtering) and multi-step smoothing. In particular, the resulting dif-
ferences in two procedures after a few steps are small for practical purposes.

6. Conclusions
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Figure 1: Forward filtering results for monthly US Manufacturers’ New Orders from 2010 to
2020. (https://www.census.gov/manufacturing/m3/index.html)
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Figure 2: Backward filtering results for monthly US Manufacturers’ New Orders from 2010 to
2020. (https://www.census.gov/manufacturing/m3/index.html)
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When the observed non-stationary multivariate time series contain noises, undoing
the effects of trends and noises may be difficult. This study follows Kunitomo and
Sato (2021), who investigated a new statistical smoothing procedure to decompose
time series into non-stationary trend, seasonal, and stationary noise (or measure-
ment errors) components. The resulting smoothing or filtering method for the non-
stationary multivariate series is simple and free from the underlying distributions of
the noise and state vector. Therefore, it is robust against possible misspecification
in the non-stationary multivariate time series.

Several interesting problems were developed by the approach proposed in this
study. Our method framework presents some earlier studies on the filtering methods
in the time and frequency domains. Although our method is a non-parametric
smoothing method, a close relationship is observed with the existing smoothing
and filtering methods such as Decomp by Kitagawa (2010), which followed Akaike
(1980) (refer to in Kunitomo and Sato (2021)). This problem is currently under
investigation. Furthermore, there are likely to have many empirical applications,
which will be examined in future studies, including the one in Sato and Kunitomo
Sato (2021).
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APPENDIX : Mathematical Derivations

We present here some details of derivations that we have omitted in the previous
sections. Most of our derivations is to apply trigonometric relations, which are
mathematically elementary and straightforward. Hence, we show only the essential
parts of derivations and prepare a lemma on the characteristic roots and eigen
vectors of a patterned matrix, Then, we show the proof of theorems.

Lemma A.1 : (i) Define an n× n matrix A∗
n by

A∗
n =

1

2


0 1 0 · · · 0
1 0 1 · · · 0
0 1 0 1 · · ·
0 0 · · · 0 1
0 · · · 0 1 1

 .(A.1)

Then, cos π( 2k−1
2n+1

) (k = 1, · · · , n) are eigen-values of A∗
n, and the eigen-vectors are

sin[π( 2k−1
2n+1

)1]

sin[π( 2k−1
2n+1

)2]
...

sin[π( 2k−1
2n+1

)n]

 (k = 1, · · · , n).(A.2)

(ii) We have the spectral decomposition

C
′−1
n C−1

n = P∗′
nDnP

∗
n = 2In − 2A∗

n ,(A.3)

where P∗′ is the matrix consisting of eigen-vectors in (A.2), Dn is a diagonal matrix
with the k−th element

dk = 2

[
1− cos(π(

2k − 1

2n+ 1
))

]
(k = 1, · · · , n) ,(A.4)

C
′−1
n =


1 −1 · · · 0 0
0 1 −1 · · · 0
0 0 1 −1 · · ·
0 0 0 1 −1
0 0 0 0 1

(A.5)

and the (k, j)−the element of P∗
n = (p∗kj) is given by

p∗kj =

√√√√ 2

n+ 1
2

sin
[

2π

2n+ 1
(k − 1

2
) j
]
.(A.6)
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Proof of Lemma A.1 : (i) Let A∗
n = (a∗ij) (i, j = 1, · · · , n) and an n × 1

vector x = (xt) (t = 1, · · · , n) satisfying A∗
nx = λx . Then,

x2

2
= λx1 ,(A.7)

xt−1 + xt+1

2
= λxt (t = 2, · · · , n− 1) ,(A.8)

1

2
[xn−1 + xn] = λxn .(A.9)

Let ξi (i = 1, 2) be the solutions of ξ2 − 2λξ + 1 = 0. Because 2λ = ξ1 + ξ2 and
ξ1ξ2 = 1, we have the solution as xt = c1ξ

t
1 + c2ξ

−t
1 (t = 1, · · · , n) and ci (i = 1) are

real constants. The first equation implies 0 = c1ξ
2
1 + c2ξ

−2
1 − (ξ1+ ξ−1

1 )(c1ξ1+ c2ξ
−1
1 ),

and c1+ c2 = 0 . Then, we find that xt = c1[ξ
t
1− ξ−t

1 ], and the third equation implies
(ξ2n+1

1 + 1)(1− ξ1) = 0. Because ξ1 ̸= 1, we find that ξ2n+1
1 = −1 = eπi(2k−1) for any

positive integer k.
Then,

λk = cos[π
2k − 1

2n+ 1
] (k = 1, · · · , n) .(A.10)

By taking c1 = (1/2i), the elements of the characteristic vectors ofA∗
n with cos[π(2k−

1)/(2n+ 1)] are

xt =
1

2i

[
ξt1 − ξ−t

1

]
= sin

[
π
2k − 1

2n+ 1
t

]
.(A.11)

(ii) The rest of the proof involves the standard arguments of spectral decomposition
in linear algebra. Q.E.D.

Proof of Theorem 3.1 :

(i) We consider the case of T2k+1 (k ≥ 1). By using the recursive relations, for k ≥ 1
we can represent

T2k+1 = A
(m,n)
1 + A

(n)
2 T2(k−1)+1 ,(A.12)

where an n× n matrix A
(m,n)
2 is defined by

A
(m,n)
2 = (In −CnPnJ

′

mJmPnC
−1)1ne

′

1(In −C
′

nP
∗′
n J

′

mJmP
∗
nC

′−1)1ne
′

n .(A.13)

Then, we consider the characteristic roots of the coefficient matrix A
(m,n)
2 . Because

the rank of A
(n)
2 is one, there are n− 1 zero roots and one non-zero root, which is

a2n = e
′

n(In −CnPnJ
′

mJmPnC
−1)1ne

′

1(In −C
′

nP
∗′
n J

′

mJmP
∗
nC

′−1)1n(A.14)

= [1− 1‘
nPnJ

′

mJmPne1][1− 1‘
nP

∗′
n J

′

mJmP
∗
nen] .

(We have used that e
′
nCn = 1‘

n and e
′
1C

′
n = 1‘

n.)
By using the relation 1 − 1

′
nPnJ

′
mJmPne1 = 1

′
nPnJ

′
n−mJn−mPne1 for Jn−m =
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(O, In−m) ((n − m) × [m + (n − m)] matrix), we evaluate two terms in (A.14).
The first term of (A.14) becomes

[

√√√√ 2

n+ 1
2

]2
n∑

k=m+1

[
n∑

j=1

cos
2π

2n+ 1
(j − 1

2
)(k − 1

2
)]× cos

2π

2n+ 1
(k − 1

2
)(1− 1

2
)] ,

which is less than 1. It is because, by using Lemma 5.1 of Kunitomo et al. (2018),
the above term is

[
2

2n+ 1
]

n∑
k=m+1

[[
sin 2π

2n+1
(k − 1

2
)n

sin π
2n+1

(k − 1
2
)
]× cos

2π

2n+ 1
(k − 1

2
)(1− 1

2
)]

and the relation

sin
π

2n+ 1
(k − 1

2
)[2n+ 1− 1] = sin π(k − 1

2
) cos

π

2n+ 1
(k − 1

2
) ,

it becomes

[
2

2n+ 1
]

n∑
k=m+1

sin π(k − 1

2
)× [

[cos π
2n+1

(k − 1
2
)]2

sin π
2n+1

(k − 1
2
)

] .

Because sin π(k − 1
2
) takes +1 and −1 alternatively, we evaluate the difference of

[cos π
2n+1

(k − 1
2
)]2

sin π
2n+1

(k − 1
2
)

−
[cos π

2n+1
(k − 1− 1

2
)]2

sin π
2n+1

(k − 1− 1
2
)

∼
[cos π

2n+1
(k − 1

2
)]2[1− cos π

2n+1
]

sin π
2n+1

(k − 1
2
)

.

We can take n > n0 such that sin π
2n+1

and 1− cos π
2n+1

being sufficient small. Then,

each term becomes small, and then 1
′
nPnJ

′
n−mJn−mPne1 is less than one.

Similarly, for the second term of (A.14), we use

[1− 1
′

nP
∗′
n J

′

mJmP
∗
nen] = 1

′

nP
∗′
n J

′

n−mJn−mP
∗
nen .

Then, the second term of (A.14) becomes

[

√√√√ 2

n+ 1
2

]2
n∑

k=1

n∑
j=m+1

[sin
2π

2n+ 1
(k − 1

2
)j sin

2π

2n+ 1
(n− 1

2
)j ,

which is less than 1. In this evaluation, we have utilized the relation that

n∑
k=1

sin
2π

2n+ 1
(k − 1

2
)j =

1

2i

ei
2π

2n+1
jn + e−i 2π

2n+1
jn − 2

ei
2π

2n+1
j 1
2 − e−i 2π

2n+1
j 1
2

(A.15)

=
1

2

1− cos 2π
2n+1

jn

sin 2π
2n+1

j 1
2

23



and the elementary relation on trigonometric functions that for 2(n− 1/2) = (2n+
1)− 2

sin
2π

2n+ 1
(n− 1

2
)j = [− cos πj] sin

2π

2n+ 1
j = 2[− cos πj] sin

π

2n+ 1
j cos

π

2n+ 1
j .

Because each term of (A.14) is less than one, we have |a2n| < 1. Then, by using
(A.12), we have convergence of T2k+1 as k → ∞.
(ii) We can apply the similar arguments to T2k (k ≥ 1). By using the recursive
relations, for k ≥ 1 we can represent

T2k = A
(m,n)
1∗ + A

(n)
2∗ T2(k−1)+1 ,(A.16)

where A
(m,n)
1∗ and A

(m,n)
2∗ are n×n matrices as defined in Theorem 3.1. By evaluating

the eigenvalues of A
(m,n)
2∗ , we find that the absolute value of engenvalues are less than

one, and we have convergence of T2k as k → ∞.
(Q.E.D.)

Proof of Theorem 3.2 :

(i) From (3.8) and (2.9), we set

h(a, b, n) = [
2n+ 1

4
]h

(n)
ab =

m∑
j=1

cos
2π

2n+ 1
(a− 1

2
)(j− 1

2
) cos

2π

2n+ 1
(b− 1

2
)(j− 1

2
)

(A.17)
and

f(a, b, n) = [
2n+ 1

4
]f

(n)
ab =

m∑
j=1

cos
2π

2n+ 1
(a− 1

2
)j cos

2π

2n+ 1
(b− 1

2
)j .(A.18)

Then, we evaluate h(a, b, n) − f(a, b, n) by using elementary trigonometric rela-
tions such as 2 cos θ1 cos θ2 = cos(θ1 + θ2) + cos(θ1 − θ2), cos θ1j = cos θ1(j −
1
2
) cos(θ1/2) − sin θ1(j − 1

2
) sin(θ1/2) for some θ1 and θ2. Also we use the relation∑m

k=1 cos[2π/(2n+1)]l(k− 1/2) = (1/2)[sin(2πml/(2n+1))]/[sin(2πl/(2n+1))] for
positive integers l,m (Lemma 5.1 of Kunitomo, Sato and Kurisu (2018)). There
are four terms to be evaluated. One (typical) term of the resulting many terms is
(1/2)[1− cos 2π/(2n+ 1)(a+ b− 1)/2]

∑m
j=1 cos 2π/(2n+ 1)(a+ b− 1)(j − 1/2). If

(a+b−1)/n → 0, then [1−cos 2π/(2n+1)(a+b−1)/2] → 0. If (a+b−1)/n → c (a
non-zero constant),

∑m
j=1 cos 2π/(2n+1)(a+ b−1)(j−1/2) converges to a constant.

In both cases, the term (1/m)[1 − cos 2π/(2n + 1)(a + b − 1)/2]
∑m

j=1 cos 2π/(2n +
1)(a+ b− 1)(j − 1/2) becomes small arbitrary as m → ∞.
After these (straightforward) calculations, we find that (1/m)[h(a, b, n)−f(a, b, n)] →
0 as n → ∞ and n/m → ∞ (m = mn).
(ii) We take the trace operation to find that

Tr[H(0)
n − F∗

n] = Tr[Hn − Fn] .(A.19)
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From (A.17) and (A.18), by using the simple relation 2 cos θ1 cos θ2 = cos(θ1 + θ2) +
cos(θ1 − θ2), we have

2h(a, a, n) =
m∑
j=1

[
cos

2π

2n+ 1
(2a− 1)(j − 1

2
) + 1

]
,(A.20)

2f(a, a, n) =
m∑
j=1

[
cos

2π

2n+ 1
(2a− 1)j + 1

]
.(A.21)

We use Lemma 5.1 of Kunitomo, Sato and Kurisu (2018) when m = n to find

n∑
k=1

cos[
2π

2n+ 1
]l(k − 1

2
) = (−1

2
) cos πl(A.22)

for any positive intege l. Then

2
n∑

a=1

[h(a, a, n)− f(a, a, n)] =
m∑
j=1

n∑
a=1

[cos
2π

2n+ 1
(a− 1

2
)(2j − 1)− cos

2π

2n+ 1
(a− 1

2
)2j]

=
m∑
j=1

(−1

2
)[cos π(2j − 1)− cos π(2j)] = m .

Because

Tr[Hn − Fn] =
4

2n+ 1

n∑
a=1

[h(a, a, n)− f(a, a, n)] ,(A.23)

we have the result.
(Q.E.D.)

Proof of Theorem 3.3 :

The proof is basically the same as Theorem 3.1. We replace Q(m)
n = J

′
mJm by

Q(m1,m2)
n = J

′
m1,m2

Jm1,m2 .

We illustrate an example and consider T2k+1 = A
(m1,m2,,n)
1 + A

(m1,m2,n)
2 T2k−1. Then,

the non-zero eigenvalue of A
(m1,m2,n)
2 is

a2n = e
′

n(In −CnPnJ
′

m1,m2
Jm1,m2PnC

−1)1ne
′

1(In −C
′

nP
∗′
n J

′

m1,m2
Jm1,m2P

∗
nC

′−1)1n

= [1− 1‘
nPnJ

′

m1,m2
Jm1,m2Pne1][1− 1‘

nP
∗
nJ

′

m1,m2
Jm1,m2P

∗
nen] .

In this case, we use the relation

[1− 1‘
nPnJ

′

m1,m2
Jm1,m2Pne1] = 1‘

nPnJ
′

m1
Jm1Pne1

+ 1‘
nPnJ

′

n−m1−m2,n−m1−m2
Jn−m1−m2,n−m1−m2Pne1 .

Then, by using the similar arguments as the proof of Theorem 3.1, we find that the
absolute values of the eigenvalues of A

(m1,m2,n
2 is less than one. We use a similar

argument to show that non-zero eigenvalue of A
(m1,m2,n
2∗ is less than one, and then,

we have the convergence of the repeated smoothing procedures.
(Q.E.D.)
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