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Abstract 
 

We investigate the implementation of social choice functions (SCFs) from an 
epistemological perspective. We consider the possibility that in higher-order beliefs 
there exists an honest agent who is motivated by intrinsic preference for honesty as well 
as material interest. We assume weak honesty, in that an honest agent is mostly 
motivated by material interests and even tells white lies. Importantly, this study assumes 
that “all agents are selfish” never happens to be common knowledge. We then show the 
following positive results for the implementability: In complete information 
environments, with three or more agents, any SCF is uniquely implementable in the 
Bayesian Nash equilibrium (BNE). In asymmetric information environments, with a 
minor restriction named information diversity, any incentive-compatible SCF is fully 
implementable in BNE. An SCF, whether material or nonmaterial (ethical), can be 
implemented even if all agents are selfish and “all agents are selfish” is mutual 
knowledge. 
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1. Introduction 

 

 This study investigates the implementation problem of social choice functions 

(SCFs) from an epistemological perspective. A central planner attempts to implement 

the desirable allocation implied by an SCF contingent on the state. She (or he)3 does 

not know the state, while there exist multiple agents (participants) who are informed of 

it, fully (complete information) or partly (asymmetric information). The central planner 

attempts to incentivize these agents to announce the state sincerely by designing a 

decentralized mechanism that consists of message spaces, an allocation rule, and a 

payment rule. The question is, under what condition can the central planner implement 

the SCF as a unique equilibrium outcome? 

 We assume that each agent is either selfish or honest. A selfish agent is only 

concerned about her material utility, while an honest agent is concerned about the 

intrinsic preference for honesty as well. However, importantly, we do not assume any 

possibility that there exists an honest agent as a participant in the central planner’s 

problem. Instead, we consider the epistemological possibility that an honest agent exists, 

not in the mechanism, but in the participants’ higher-order beliefs. By considering the 

epistemological type space, we show that a slight possibility of an honest agent in 

higher-order beliefs incentivizes all agents, whether selfish or honest, to behave 

sincerely. 

 This study assumes that “all agents are selfish (i.e., all agents are motivated only 

by their monetary interests)” never happens to be common knowledge. With this, we 

demonstrate the following positive results for the implementability: In complete 

information environments, with three or more agents, any SCF is uniquely 

implementable in the Bayesian Nash equilibrium (BNE). In asymmetric information 

environments, any incentive-compatible SCF is fully implementable in BNE whenever 

the private signal structure satisfies information diversity; that is, any observation of a 

private signal is informative in that the resultant posterior is different from the prior, 

and the informativeness of a private signal is diversified in that no private signal 

 
3 For convenience, this study uses the gendered pronoun “she,” instead of “she or he” 
or “they.” 
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changes the prior in the same direction as any other private signal does. Information 

diversity is a very weak restriction, because the posterior distribution does not 

necessarily reveal an agent’s private signal. 

With complete information, we utilize a simple form of the quadratic scoring rule 

(Brier, 1950), which aligns agents’ payoffs with the distance between their messages, 

as a part of the payment rule design. The quadratic scoring rule plays a significant role 

in incentivizing all agents, whether selfish or honest, to announce sincerely as unique 

BNE behavior, whenever the common knowledge of selfishness is eliminated. 

The usefulness of the simple form of the quadratic scoring rule, however, crucially 

depends on the assumption of complete information. Hence, for asymmetric 

information environments, we create a new, more elaborate, method of the quadratic 

scoring rule design, where we do not require the sincere strategy profile to be the unique 

BNE. Instead, we require each agent to gradually reveal her private signal through 

multiple announcements. 

 This study requires only a weak honesty. Even honest agents are motivated mostly 

by their monetary interests; that is, the influences of the intrinsic preferences for 

honesty on decision making are arbitrarily small. Agents do not expect the possibility 

that there exists an honest participant; that is, they have mutual knowledge that all 

agents are selfish (i.e., all agents know that all agents are selfish). Despite these 

weaknesses in honesty, the central planner can elicit correct information from all agents 

if “all agents are selfish” never happens to be common knowledge. 

 

2. Literature Review 

 

The early literature on social choice and implementation theory has assumed that 

“all agents are selfish” is common knowledge, and focused on those considerations of 

SCFs that are material, that is, those that depend only on agents’ material utilities 

(Arrow, 1951; Hurwicz, 1972; Gibbard, 1973; Satterthwaite, 1975; Maskin, 1977/1999; 

Abreu and Matsushima, 1992a; 1992b). 4  With this common knowledge, it is 

 
4 For surveys of implementation theory, see Moore (1992), Jackson (2001), Palfrey 
(2002), and Maskin and Sjöström (2002). 



4 
 

impossible in principle to implement any SCF that is nonmaterial; that is, it depends 

not only on an agent’s material utilities but also on nonmaterial factors such as ethics, 

equity, fairness, future generation, and environmental concerns. This study suggests a 

highly positive potential for implementing such nonmaterial SCFs.5 

 Matsushima (2008a) and Matsushima (2008b) are the pioneering works 

incorporating an intrinsic preference for honesty into implementation theory and 

demonstrating a new research trend to overcome the above-mentioned difficulty. 

Matsushima (2008a) showed that in complete information environments, with three (or 

more) agents, any SCF, whether material or nonmaterial, is uniquely implementable if 

there exists a weakly honest agent who dislikes telling a white lie. Matsushima (2008b) 

showed that in asymmetric information environments, any incentive-compatible SCF, 

whether material or nonmaterial, is uniquely implementable if all agents are honest. 

Many subsequent studies such as Dutta and Sen (2012), Kartik, Tercieux, and Holden 

(2014), Saporiti (2014), Ortner (2015), and Mukherjee, Muto, and Ramaekers (2017) 

have studied the complete information environments and showed their respective 

positive results.6 

 This study makes two significant advances in this line of research under complete 

information. First, the previous works assumed that there exists an honest agent as a 

participant in the mechanism, at least with a positive probability, while this study does 

not assume it at all. We only rule out the case in which “all agents are selfish” is 

common knowledge: we permit the case where all agents are selfish and “all agents are 

selfish” is mutual knowledge. 

Second, previous works assumed that an honest agent never tells a white lie, that 

is, a lie that does not influence material utilities. However, given that real people may 

be more or less influenced by various irrational motives, we contend that this 

assumption is restrictive. In contrast to this assumption, this study permits even honest 

 
5 An exception is Matsushima (2019; 2021a), which assumed that the state is ex-post 
verifiable and proved that any SCF, whether material or nonmaterial, is uniquely 
implementable even if “all agents are selfish” is common knowledge. 
6 See also Matsushima (2013), Yadav (2016), Lombardi and Yoshihara (2017; 2018; 
2019), Dogan (2017), and Savva (2018). 
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agents to tell white lies: an honest agent feels guilty about lying only when this lying 

increases the agent’s material benefit. 

Many empirical and experimental studies indicate that human beings are not 

purely motivated by monetary payoffs but have an intrinsic preferences for honesty. 

Abeler, Nosenzo, and Raymond (2019) provided a detailed meta-analysis using data 

from 90 studies involving more than 44,000 subjects across 47 countries, showing that 

subjects who were in trade-offs between material interest and honesty gave up a large 

fraction of potential benefits from lying.7 

 We permit that an honest agent can tell white lies. We do not assume that there 

exists an honest agent in the mechanism. To make full use of the slight possibility of 

weak honesty in epistemology, we utilize the quadratic scoring rules, which can set 

aside various non-selfish motives and prioritize the agent’s monetary interest. As Abeler, 

Nosenzo, and Raymond point out, the intrinsic preference for honesty remains included, 

and an honest agent prefers announcing more honestly than selfish agents. This will be 

the driving force for a tail-chasing competition through which each agent announces 

more honestly than the other agents, reaching a point at which all agents report honestly 

in the complete information environment. 

The quadratic scoring rule is one of the standard mechanism design methods for 

partial implementation.8 However, if “all agents are selfish” is common knowledge, 

there exists a serious multiplicity of unwanted BNEs: “all agents tell the same lie” is a 

BNE, regardless of what this lie is. 

 
7  Various works in behavioral economics and decision theory have modeled 
preferences for honesty, such as a cost of lying (e.g., Ellingsen and Johannesson, 2004; 
Kartik, 2009; Kartik et al, 2007; Kartik and Tercieux, 2012), a reputational cost (e.g., 
Mazar, Amir, and Ariely, 2008), and guilt aversion (e.g., Charness and Dufwenberg, 
2006). 
8 See Cooke (1991) for a survey of scoring rules. For the applications to mechanism 
design, see for example Johnson et al. (1990), Matsushima (1990; 1991; 1993; 2007), 
Aoyagi (1998), and Miller et al. (2007). A number of studies extended the scoring rule 
of Brier (1950) to a setting in which a central planner collects information from a group 
of agents (e.g., Dasgupta and Ghosh, 2013; Prelec, 2004; Miller et al., 2005; Kong and 
Schoenebeck, 2019). Previous studies commonly assumed that all agents are selfish and, 
thus, suffered from the multiplicity of equilibria in a “single-question” setting in which 
the state is realized only once (as in our model). 
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Matsushima and Noda (2020) first found in the context of information elicitations 

that truth-telling is a unique BNE if there exists an honest agent, thereby suggesting 

that the quadratic scoring rule design is a potentially powerful solution not only for 

partial implementation but also for unique implementation. This study generalizes the 

usefulness of the quadratic scoring rule design by showing positive results for the 

general implementability of SCFs. 

Research on asymmetric information environments has made little progress since 

Matsushima (2008b), although that study’s sufficient condition was quite restrictive and 

more careful analyses were eagerly awaited. The second half of this study is devoted to 

this consideration, and demonstrates a sufficient condition for the full implementation 

named “information diversity,” which is a very weak restriction on the asymmetric 

information structure. Information diversity implies that any observation of a private 

signal is informative in the sense that the resultant posterior is different from the prior, 

and that the informativeness of a private signal is diversified in the sense that no private 

signal changes the prior in the same direction as any other private signal does. 

Information diversity does not require the distribution to reveal an agent’s type. Hence, 

information diversity is much weaker than any informational restriction discussed in 

the implementation literature such as Bayesian monotonicity (Jackson, 1991), 

measurability (Abreu and Matsushima, 1992b), or no consistent deception (Matsushima, 

1993). With information diversity and without common knowledge on selfishness, this 

study demonstrates a new design of the quadratic scoring rules and proves that the full 

implementation of all incentive-compatible SCFs is possible. 

 The equilibrium analysis of games with behavioral agents and asymmetric 

information has a long history. Kreps et al. (1982) studied how the existence of 

behavioral agents changes the equilibria of finitely repeated games. Postlewaite and 

Vives (1987), Carlsson and van Damme (1993), and Morris and Shin (1998) studied 

how incomplete information shrinks the set of equilibria. These studies focused on the 

analysis of given games, while our focus is on the design of mechanisms that can take 

full advantage of the potential existence of behavioral agents in higher-order beliefs. 

Similar to Rubinstein’s (1989) email game, this study contrasts the outcome under 

common knowledge and “almost common knowledge.” Rubinstein’s (1989) email 

game demonstrates that “almost common knowledge” could lead to an unintuitive 
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outcome; while our study demonstrates the vulnerability of the common knowledge 

assumption, its implication contrasts Rubinstein’s. The intuitive outcome is truth-

telling, and people can naturally expect that a truthful strategy profile is a focal point, 

while there are many equilibria under common knowledge of selfishness. By carefully 

designing a “game” (mechanism), we can eliminate all the unwanted and unintuitive 

equilibria where “all agents are selfish” is not common knowledge (while it could be 

“almost common knowledge”). 

 The remainder of this paper is organized as follows. The basic model is presented 

in Section 3. Section 4 considers the complete information environments in which all 

agents are fully informed of the state. We semantically define a class of indirect 

mechanisms and then define the intrinsic preference for honesty. We define the unique 

implementation in BNE and state that any SCF is uniquely implementable if “all agents 

are selfish” never happens to be common knowledge (Theorem 1). Section 5 considers 

the asymmetric information environments in which each agent is informed of the state 

only partly. We demonstrate information diversity, define the unique implementation in 

BNE, and then show that with information diversity, any incentive-compatible SCF is 

fully implementable in BNE if “all agents are selfish” never happens to be common 

knowledge (Theorem 2). Section 6 concludes. 

 

3. The Model 

 

 This study investigates a situation in which a central planner attempts to achieve a 

desirable allocation contingent on the state. Let {1, ..., }N n  denote the finite set of 

all agents, where 2n   . Let A   denote the non-empty and finite set of all the 

allocations. Let   denote the non-empty and finite set of states. The social choice 

function (SCF) is defined as : ( )f A  . 9  For every   , ( ) ( )f A   

implies a desirable distribution of allocation at state  .10 We assume that the central 

 
9  We denote by ( )Z   the space of probability measures on the Borel field of a 
measurable space Z  . If Z   is finite and ( )Z    satisfies ( ) 1z    for some 
z Z , I will simply write z  . 

10 This study considers both deterministic and stochastic SCFs. 
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planner does not know the state, while all agents are informed of the state fully (Section 

4) or partly (Section 5). 

 Each agent is either selfish or honest. Details on the meaning of selfishness and 

honesty will be explained in Sections 4 and 5. No agent knows if the other agents are 

selfish or honest. To describe agents’ higher-order beliefs concerning their selfishness 

and honesty, we define an epistemological type space as follows: 

    ( , , )i i i i NT     , 

where i it T   is agent 'i s   epistemological type, : ( )i i iT T    , and 

: {0,1}i iT  .11 Agent i  is selfish (honest) if ( ) 0i it   ( ( ) 1i it  , respectively). 

Agent i   expects that the epistemological types of other agents are distributed 

according to the probability measure ( ) ( )i i it T  . We assume that there exists a 

common prior ( )    from which ( )i i N   is derived. 

 We call a subset of epistemological type profiles ii NE T T   an event. For 

convenience, for each event E T , we write ( | ) ( ( ) | )i i i i i iE t E t t   , where we 

denote ( ) { | ( , ) }i i i i i iE t t T t t E       . We denote by *E T   the event that all 

agents are selfish, that is, 

    * { | : ( ) 0}i iE t T i N t     . 

 Consider an arbitrary event E T . Let 

    1( ) { | ( | ) 1}i i i i iV E t T E t   . 

Recursively, for each positive integer 2h  , let 

    1( ) { | ( ( ) | ) 1}h h
i i i i j ij N
V E t T V E t 


    . 

We then define 

    
1

( ) ( )h
i i

h
V E V E





  . 

An event E T  is said to be common knowledge at an epistemological type profile

t T  if 

    ( )ii N
t V E


  . 

 
11 We denote ii N

Z Z


  , i jj i
Z Z 

  , ( )i i Nz z Z  , and ( )i j j i iz z Z    . 
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Note that if E  is common knowledge at t T , then 

    ( ) 1i j ij N
V E t 



   
 

 for all i N . 

 Fix an arbitrary positive real number 0   . We define a mechanism as 

( , , )G M g x  , where ii N
M M


   , iM   denotes agent 'i s   message space, 

: ( )g M A  denotes an allocation rule, ( )i i Nx x   denotes a payment rule, and 

: [ , ]ix M      denotes the payment rule for agent i  . Here, 0    implies the 

level of limited liability. Each agent i   simultaneously announces a message 

i im M , and the central planner determines the allocation according to )( ()g Am   

and pays the monetary transfer ( )ix m R  to each agent i . 

Each agent 'i s  material benefit is given by a quasi-linear utility ( , )i iv a r  , 

provided that the central planner determines the allocation a A   and gives the 

monetary transfer ir R  to agent i  at state  . We assume expected utility for 

convenience, and denote ( , )iv     the expected payoff derived from stochastic 

allocation ( )A  . When all agents announce m M  in the mechanism G , the 

resultant expected material payoff is given by ( ( ), ) ( )i iv f m x m  . 

This study considers a small liability  , which is positive but close to zero. Quasi-

linearity is a convenient, but rather redundant, assumption: all we need for this study is 

that an agent’s material benefit increases as the monetary transfer to her increases. The 

expected utility assumption is also redundant: see Matsushima (2019, 2021a) for this 

detail. 

 

4. Complete Information 

 

 This section considers the complete information environments concerning the 

state, where all agents are fully informed of the state. We assume 3n   . From a 

semantic point of view, we focus on the following class of mechanisms. We fix an 

arbitrary positive integer 1K  , the specification of which is explained in Subsection 

4.2. Let 
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1

K
k

i ik
M M


  , and 

    ( )k
iM     for all {1, ..., }k K , 

where we denote 1( )k K
i i km m  , and k k

i im M  for each {1, ..., }k K . Each agent i  

reports K  sub-messages at once, which typically concern which state actually occurs. 

At each k-th sub-message, agent i  announces a distribution over states ( )k
im   . 

 Under complete information, we define a strategy for agent i  as 

    :i i is T M  , 

according to which, agent i   with epistemological type it   announces 

( , )i i i im s t M    at the state   . Denote 1( )k K
i i ks s   , :k k

i i is T M   , and 

1( , ) ( ( , ))k K
i i i i ks t s t   , where ( , ) ( )k k

i i is t M      denotes agent 'i s  k-th sub-

message. 

 We define the sincere strategy for agent i , denoted by * *
1( )k K

i i ks s  , as 

    * ( , )k
i is t   for all i N ,  , i it T , and {1, ..., }k K , 

according to which, agent i  announces the state truthfully at any sub-message. 

 Each agent i N  is either selfish ( ( ) 0i it  ) or honest ( ( ) 1i it  ). If agent i  

is selfish, she is only concerned with the material benefit; that is, she maximizes the 

expected value of material benefit: 

    [ ( ) 0i it  ] 

     [ ( , ) arg max [ ( ( ), ) ( ) | , , ]
i i

i i i i i i
m M

s t E v g m x m t s   


  ], 

where we assumed that the other agents announce according to ( )i j j is s  .12 

 If agent i  is honest, she is motivated not only by material benefit but also by an 

intrinsic preference for honesty: she has a psychological cost ( , , , )i ic m t G R   such 

that for every  , m M , and i im M , 

(1)    [ ( ) 1i it  , ( ) ( )i im m   , ( ) ( )i im m   , and 

    ( ( , ), ) ( , ) ( ( ), ) ( )i i i i i i i iv g m m x m m v g m x m      ] 

 
12 [ | ]E   denotes the expectation operator conditional on  . 
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     [ ( , , , , ) ( , , , )i i i i i ic m m t G c m t G   ], 

and 

(2)    [ ( ) 1i it   and ( ) ( )i im m   ] 

     [ ( , , , , ) ( , , , )i i i i i ic m m t G c m t G   ], 

where we denote 1( ) ( ( ))k K
i i km m   . From (1), an honest agent feels guilty if she 

gains material payoffs from telling a lie. We do not impose any restriction on the 

strength of the psychological cost. She maximizes the expected value of the material 

benefit minus the psychological cost: 

    [ ( ) 1i it  ] [ ( , ) arg max [ ( ( ), ) ( )
i i

i i i i
m M

s t E v g m x m 


   

    ( , , , ) | , , ]i i i ic m t G t s   ]. 

 Formally, each agent 'i s  payoff function, ( ; , ) :i iU t M R  , is defined as 

    ( ; , ) ( ( ), ) ( )i i i iU m t v g m x m    if ( ) 0i it  , 

and 

    ( ; , ) ( ( ), ) ( ) ( , , , )i i i i i iU m t v g m x m c m t G      

            if ( ) 1i it  . 

A strategy profile s  is said to be a Bayesian Nash equilibrium (BNE) in the game 

associated with the mechanism G   if for every   , i N  , i it T  , and 

i im M , 

    [ ( ( , ), ; , , ) | , , ]i i i i i i iE U s t m t G t s     

    [ ( , ; , , ) | , , ]i i i i i iE U m m t G t s   . 

 A mechanism G  is said to uniquely implement an SCF f  if there exists the 

unique BNE s , and it induces the value of f ; that is, 

    ( ( , )) ( )g s t f   for all   and t T , 

where we denote ( , ) ( ( , ))i i i Ns t s t   . An SCF is said to be uniquely implementable 

if there exists a mechanism that uniquely implements it. 

 

Theorem 1: Any SCF f  is uniquely implementable if 



12 
 

(3)    *( )ii N
V E 


  . 

 

 Equality (3) implies that “all agents are selfish” never happens to be common 

knowledge. Hence, Theorem 1 states that any SCF is uniquely implementable if “all 

agents are selfish” never happens to be common knowledge. The proof of Theorem 1 

is presented in the subsequent subsections. 

 

4.1. Special Case: Information Elicitation 

 

 To understand the proof of Theorem 1, it is helpful to investigate a special case 

called information elicitation, where each agent’s material payoff is irrelevant to the 

allocation; that is, 

    ( , ) 0iv a    for all i N , a A , and   . 

 

Proposition 1: In the information elicitation problem, any SCF f   is uniquely 

implementable if equality (3) holds. 

 

4.1.1. Mechanism Design 

 

 To prove Proposition 1, we design the following mechanism: ( , , )G M g x . Let 

1K  . Let 

1 ( )i iM M     for all i N , 

and 

*( )g m a  for all m M , 

where *a   is selected arbitrarily. For each i N   and j i  , we specify 

1 1
, : [ 1,0]i j i jy M M    as a quadratic scoring rule: 

    1 1 1 1 2
, ( , ) { ( ) ( )}i j i j i jy m m m m



 


   , 

which implies the distance between agent 'i s  1-st sub-message and agent 'j s  1-st 

sub-message. For each i N , we specify the payment rule: for every m M , 
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    1 1
,

ˆ ( ) ( , )
1i i j i j
j i

x m y m m
n





   

1 1 2[ { ( ) ( )} ]
1 i j
j i

m m
n 

  
 

  
   , 

where we denote 1
i im m  because of 1K  . 

 From the nature of the quadratic scoring rule, any selfish type prefers to mimic the 

average of the other agents’ messages. Importantly, any honest type prefers announcing 

slightly more honestly than selfish types. These are the driving forces that tempt even 

selfish types to announce truthfully. 

 

4.1.2. Proof of Proposition 1 

 

From the nature of the quadratic scoring rules, it is clear that the sincere strategy 

profile *s  is a BNE in the game associated with the specified mechanism G ; thus, it 

suffices to show uniqueness. 

 Suppose that s  is a BNE. Fix    arbitrarily. Let 

    
( , )
min ( , )( )

i
i ii t
s t   , 

and 

 { | ( , )( ) }i i i i iT t T s t      for each i N . 

Suppose that Eq. (3) holds. Note that Eq. (3) is equivalent to 
*( )iV E    for all i N . 

Suppose that 1  , that is, there exists an agent i N  with type i it T  that 

does not adopt the sincere strategy. Note from the definition of psychological cost that 

any honest agent prefers making announcements more honestly than selfish agents. 

Hence, no honest type belongs to iT ; that is, *
i iT E . 

Let us consider an arbitrary i N  and i it T  . Note that   equals the average 

of the other agents’ announcements on    in expectation but not greater than any 

announcement. Hence, an epistemological type it  assumes that any other agent j i  

announces )(im   , that is, 
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1i j ij N
T t



   
 

 . 

This, along with the definition of the psychological cost, implies that agents i  with 

epistemological type it  expect that the other agents are surely selfish, that is, 

*( | ) 1i iE t  . 

Hence, we have 

1 *( )i iT V E . 

Moreover, since 

1 *( ) 1i j i i j ij N j N
V E t T t 

 

         
   

 , 

we have 1 *( ( ) | ) 1i jN ij V E t   , that is, 

2 *( )i iT V E . 

Similarly, we have 

*( )k
i iT V E  for all 2k  . 

Hence, we have 

*( )i iT V E , 

which contradicts the assumption that *( )iV E   . Hence, we conclude that 1  , 

or, equivalently, ,( )i its    for all  . Accordingly, *s s  must be the case 

for any BNE. From these observations, we prove Proposition 1. 

 

Remark 1: It is well known that quadratic scoring rules incentivize agents to be honest 

as a BNE in the information elicitation problem. The seminal work of Matsushima and 

Noda (2020) first pointed out that truth-telling is not only a BNE but also a unique NBE, 

provided that “all agents are selfish” is not mutual knowledge. Proposition 1 applies the 

logic of higher-order beliefs such as email games (Rubinstein,1989) and global games 

(Carlsson and van Damme, 1993; Morris and Shin, 1998) to the information elicitation 

problem, and succeeded in extending the findings of Matsushima and Noda (2020) to 

the situation in which “all agents are selfish” may be mutual knowledge but is not 

common knowledge. 
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4.2. General Case 

 

4.2.1. Mechanism Design 

 

 To prove Theorem 1 generally, we design another mechanism G  as follows. Let 

3K  . Let 

    1 ( )iM    , and 

k
iM    for all {2, ..., }k K . 

For each {3, ..., }k K  , we specify : ( )k kg M A    as a majority rule: for every 

 , 

    ( ) ( )k kg m f   if k
im   for more than 2

n  agents, 

and 

    *( )k kg m a    if there exists no such  . 

The central planner randomly selects {3, ..., }k K   and determines the allocation 

according to ( ) ( )k kg m A ; that is, we specify the allocation rule g : 

    3

( )
( )

2

K
k k

k

g m
g m

K





 for all m M . 

It is important to note that ( )g m  is independent of the 1-st and 2-nd sub-messages, 

1m  and 2m . 

 To specify the payment rule, we use the quadratic scoring rules ,i jy  as well as 

the following functions, iz , iw , and ir ; that is, we define 2 1
1: [ 1,0]i i iz M M    : 

    2 1
1( , ) 1i i iz m m      if 2 1

1i im m  , 

and 

    2 1
1( , ) 0i i iz m m     if 2 1

1i im m  ,13 

which implies that the agent i  is fined if her 2-nd sub-message is different from her 

neighbor’s 1-st sub-message. We define : [ 1,0]iw M   : 

 
13 We denote 1 1i    if i n . 
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    ( ) 1iw m      if there exists {3, ..., }k K  such that 

        2k
i im m , and 2k

j jm m   for all k k   and 

        j N , 

and 

    ( ) 0iw m    if there exists no such {3, ..., }k K , 

which implies that agent i  is fined if she is the first deviant from the own 2-nd sub-

message. We further define ( ) {0, ..., 2}i ir m K    as the number of integers 

{3, ..., }k K   such that 2k
i im m  , that is, the number of agent 'i s   sub-messages 

after her 3-rd sub-message that are different from her 2-nd sub-message. 

 Fix an arbitrary positive real number 0  , which is set sufficiently large. We 

specify the payment rule ix  for agent i : 

    1 1 2 1
, 1

1
( ) { ( , ) ( , )

3 1i i j i j i i i
j i

x m y m m z m m
n

 
 



 
    

( )
( ) }

2
i i

i

r m
w m

K
 


. 

Note that the specified payment rule x  satisfies limited solvency; that is, 

( ) [ , ]ix m     for all i N  and m M . 

 Let us select 3K   sufficiently large to satisfy 

(4)    
2( , )

3
max { ( , ) ( , )} 2i i
a a A

K v a v a
  

  

    . 

With 3n   , the sincere strategy profile *s   satisfies that for every ( , )t T   , 

m M , and i N , 

    ( ) ( )k kg m f     if * ( , )i i im s t   ,14 

    ( ) 0ix m      if * ( , )m s t , 

and 

    ( ) 0ix m      if * ( , )i i im s t    and * ( , )i i im s t . 

 
14 I denote ( , ) ( ( , ))i i j j j is t s t    . 
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This implies that *s   is a BNE, and it achieves the value of the SCF f   without 

monetary transfers on the equilibrium path. 

 The next subsection will show that if a strategy profile s  is a BNE in the game 

associated with the specified mechanism, then *s s  must hold, which completes the 

proof of Theorem 1. 

 

4.2.2. Proof of Theorem 1 

 

 The proof of Theorem 1 is divided into two parts: “information elicitation” and 

“implementation with provability” in the following manner. 

 

Part 1 (Information Elicitation): Part 1 shows that 1 *1s s  , that is, every agent, 

whether selfish or honest, announces the state truthfully for the 1-st sub-message. Note 

that each agent 'i s   1-st sub-message influences her welfare only through 

1 1
, ( , )i j i j

j i

y m m

 . Hence, we can directly apply Proposition 1 and show that 1 *1s s . 

 

Part 2 (Implementation with Provability): Assume that a BNE strategy profile s  

satisfies 1 *1s s . Part 2 shows that *k ks s  for all {2, ..., }k K , that is, all agents 

announce the state truthfully at their remaining sub-messages. 

First, because 2 1
1( , )i i iz m m    imposes a relatively large fine, each agent i   is 

willing to announce truthfully for the 2-nd sub-message, irrespective of the other sub-

messages of this agent. 

 Each agent i  regards her 2-nd sub-message as reference, and she is tempted to 

announce this reference at any sub-message {3, ..., }k K  of this agent. Given that this 

reference is equivalent to the true state in equilibrium, that is, the state that actually 

occurs is substantially provable, it follows that all agents are tempted to announce the 

state truthfully at every sub-message. 

 To understand the logic behind Part 2, consider a case in which   is sufficiently 

large to satisfy 
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(5)    
2( , )

max { ( , ) ( , )}
3 i i

a a A
v a v a


 

  
 


. 

From (4) and (5), we can select 3K   and simply write the designed mechanism as 

follows: for every   and m M  such that 1 2
i im m    for all i N , 

    ( ) ( )g m f     if 3
im   for more than 2

n  agents, 

    *( )g m a    if there exists no such  , 

and 

    * 2
( ( , ), ) ( )

3 3i i i i ix s t m x m
 


    

 
 

        if 3 *3 ( , )i i im s t   . 

From (5), we have 

    
2

*

( , )
( ( , ), ) ( ) max { ( , ) ( , )}i i i i i i i

a a A
x s t m x m v a v a    

     

    *( ( ( , ), ), ) ( ( ), )i i i iv g s t m v g m    . 

Hence, the penalty on lying for the 3-rd sub-message is greater than the impact of this 

on the determination of allocation, and 3 *3s s  must hold. 

 Following Abreu and Matsushima (1992a), we can extend this observation to the 

case where   is small, if we select a sufficiently large K  to satisfy (4). The designed 

mechanism incentivizes each agent to avoid being the first deviant starting from the 3-

rd sub-message and also provides each agent i  with an incentive to reduce the number 

( )i ir m . This method drives all agents into a tail-chasing competition toward honest 

reporting from the 3-rd to the K-th sub-messages. Hence, *s s  must hold. 

 

The formal proof is as follows. Suppose that s  is a BNE. Fix an arbitrary state 

  . First, we show that 

    1( , )i is t   for all i N  and i it T . 

Because the selection of 1
im   influences agent 'i s   welfare only through 

1 1
, ( , )i j i j

j i

y m m

  and the psychological cost, the following properties are obtained: 

    [ ( ) 0i it  ] 
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     [ 0 1 1
,( , ) argmax [ ( , ) | , , , ]

i i

i i i j i j i i
m M j i

s t E y m m t s G  
 

  ], 

and 

    [ ( ) 1i it  ] [ 1 1
,( , ) argmax [ ( , )

i i

i i i j i j
m M j i

s t E y m m
 

   

( , , ) | , , , ]i i i i ic m t t s G   . 

From the nature of the quadratic scoring rule and the psychological cost, we can 

calculate the best response as follows: 

    [ ( ) 0i it  ] [

1

1

( , )

( , ) [ | , ]
1

i j
j i

i i i

s t

s t E t
n


 




], 

and 

     [ ( ) 1i it  ] [either 1( , )( ) 1i is t    or 

    

1

1

( , )( )

( , )( ) [ | , ]
1

i j
j i

i i i

s t

s t E t
n

 
  




]. 

In other words, any selfish agent mimics the average of the other agents’ 1-st sub-

messages in expectation, while any honest agent announces more honestly than the 

selfish types. This will drive agents into a tail-chasing competition, reaching the point 

at which all agents report honestly at their 1-st sub-messages. Hence, from Proposition 

1, we can prove that any BNE s  satisfies 1 *1
i is s  for all i N . 

 Because 2 1
1( , )i i iz m m    imposes a relatively large fine, it follows from 

1 *1
1 1i is s   that each agent i  is willing to select 2

im  . Hence, 2 *2
i is s  must hold 

for all i N . 

 We further prove that 

    ( , )k
i is t   for all {3, ..., }k K , i N , and i it T . 

The specifications of iw  and ix  imply that if an agent i  announces a sub-message 

different from her 2-nd sub-message as the first deviation starting from the 3-rd sub-

message, she is fined the monetary amount 
3




 . Because we have selected a 

sufficiently large K , that is, inequality (4) holds, the impact of the selection of each 

sub-message on the determination of the allocation is sufficiently small compared with 
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the monetary amount 
3




 . This will drive agents into another tail-chasing 

competition, through which each agent avoids becoming the first deviant. Because we 

have already proved that all agents announce truthfully at their 2-nd sub-messages, this 

competition drives them to announce the state truthfully at all sub-messages. 

 To be precise, consider an arbitrary {3, ..., }k K  and suppose that *k ks s   for 

all k k   . If k
jm    for some j i  , agent i   strictly prefers announcing 

truthfully at the k-th sub-message, because she can avoid being the first deviant. Even 

if k
jm   for all j i , agent i  still strictly prefers announcing truthfully at the k-

th sub-message because she does not want to increase ( )i ir m  . Hence, through the 

iterative elimination of dominated strategies, we can inductively prove that *k k
i is s  

for all i N  and {3, ..., }k K . In other words, there exists no BNE other than the 

sincere strategy profile *s . 

 Because *s  is a BNE and achieves the value of f , we have completed the proof 

of Theorem 1. 

 

Remark 2: To better understand mechanism G , let us consider the following decision 

procedure: The central planner asks each agent to input a distribution on   . The 

central planner also asks each agent to input an element of  , and gives all agents a 

one-hour grace period. During this continuous period, each agent can change her second 

input at any time and number of times. After this grace period, the first and second 

inputs become public. The central planner selects one point from the grace period and 

then determines the allocation according to the majority rule and their inputs at this 

point. The central planner imposes just a small monetary fine to any agent who is the 

last person to change the second input. The central planner imposes another small, but 

slightly larger, monetary fine to any agent whose initial second input is different from 

her neighbor’s first input. The central planner also makes monetary transfers according 

to the quadratic scoring rule and the first inputs. 

Because of the nature of the quadratic scoring rule, all agents are willing to make 

their first inputs equivalent to the true state. Given that the possibility of selecting a 
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point in the continuous period is negligible, any agent prefers to make her initial input 

equal to the true state and avoid becoming the last person to change the second input: 

she is willing to keep her correct input unchanged during the grace period. 

 

Remark 3: In the proof of Theorem 1, we have proved the uniqueness of not only the 

pure but also the mixed-strategy BNE. In fact, in Part 1, any agent has the unique best 

response of the 1-st sub-message to any mixture of the other agents’ 1-st sub-messages. 

In Part 2, we eliminated all unwanted strategies through an iterative dominance process. 

This guarantees the uniqueness of the mixed-strategy BNE. 

 

Remark 4: Without substantial difficulty, we can replace the payment rule with a 

budget-balancing payment rule. We redefine iw  by replacing the first deviant among 

all agents with the first deviant among all agents other than some agent and set it as the 

transfer from this agent. We also set other parts of the payment rule as the transfers from 

agents whose announcements are irrelevant. This modification can be applied to the 

remaining arguments in this study (Section 5). 

 

5. Asymmetric Information 

 

 This section considers asymmetric information environments, where each agent is 

informed of the state only partly. Let 

    ii N
    , i i  , and ( )i i N ii N

   
    . 

Each agent i N   is informed of the i th   component i   as a private signal 

(material type). We denote by , ( | ) : [0,1]i j i jp     the probability distribution on 

j   which is conditional on i i   . For each ( )i i    , let 

, ,( | ) ( | ) ( )
i i

i j i i j i i ip p


   


    . We assume that there exists a common prior 

: [0,1]p    from which , ( | )i j ip    is derived. Let : [0,1]i ip     denote the 

prior distribution over i , where 
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    ( ) ( )
i i

i ip p


 
 

   for all i i  . 

We assume that the epistemological type space T  is finite, and that   and t  are 

independently drawn. 

We assume the following condition on the prior p  , which is a very weak 

restriction: 

 

Information Diversity: For every i N , \ { }j N i , i i  , and i i   , there 

exists no 0   such that 

     , ,( | ) ( ) ( | ) ( )i j i j i j i jp p p p         . 

 

 Information diversity implies that any observation of a private signal is 

informative in the sense that the resultant posterior is different from the prior, and that 

the informativeness of a private signal is diversified in the sense that no private signal 

changes the prior in the same direction as any other private signal does. Information 

diversity is a very weak restriction because the distribution does not necessarily reveal 

an agent’s type. In fact, for each i i  , information diversity permits the existence 

of a mixture ( ) \ { }i i i    such that , ,( | ) ( | )i j i i j ip p    . 

From a semantic point of view, this section considers a class of mechanisms 

( , , )M g x  in which there exists a positive integer L  such that 

1

L
l

i il
M M


  , and 

( )l
i iM     for all {1, ..., }l L . 

Each agent i   announces L   sub-messages at once, concerning the distribution on 

i . 

An agent is either selfish ( ( ) 0i it  ) or honest ( ( ) 1i it  ). An honest agent i  

has a psychological cost ( , , , )i ic m t G R   such that for every   , m M , and 

i im M , 

    [ ( ) 1i it  , ( ) ( )i i i im m   , ( ) ( )i i i im m   , and 
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    ( ( , ), ) ( , ) ( ( ), ) ( )i i i i i i i iv g m m x m m v g m x m      ] 

     [ ( , , , , ) ( , , , )i i i i i ic m m t G c m t G   ], 

and 

    [ ( ) 1i it   and ( ) ( )i i i im m   ] 

     [ ( , , , , ) ( , , , )i i i i i ic m m t G c m t G   ], 

where we denote 1( ) ( ( ))l L
i i i i lm m    . In the same manner as in the complete 

information environment, an honest agent feels guilty if she gains material payoffs from 

telling a lie. We do not impose any restriction on the strength of the psychological cost. 

Each agent 'i s  payoff function is defined as 

    ( ; , ) ( ( ), ) ( )i i i iU m t v g m x m     if ( ) 0i it  , 

and 

    ( ; , ) ( ( ), ) ( ) ( , , , )i i i i i iU m t v g m x m c m t G      

            if ( ) 1i it  . 

The strategy for agent i  is defined as :i i i is T M   . A strategy profile s  is said 

to be a Bayesian Nash equilibrium (BNE) in the game associated with the mechanism 

G  if for every i N , i i  , i it T , and i im M , 

    [ ( ( , ), ; , , ) | , , ]i i i i i i i iE U s t m t G t s     

    [ ( , ; , , ) | , , ]i i i i i i iE U m m t G t s   . 

A mechanism G  is said to fully implement an SCF f  if there exists a BNE, and 

any BNE s  satisfies 

    ( ( , )) ( )g s t f   for all   and t T , 

where we denote ( , ) ( ( , ))i i i i Ns t s t   . An SCF is said to be fully implementable if 

there exists a mechanism that fully implements it. 

An SCF f  is said to be incentive compatible if for every i N  and i i  , 

    [ ( ( )) | ] [ ( ( , )) | ]i i i i i iE v f E v f      for all i i . 
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Theorem 2: Any incentive-compatible SCF is fully implementable if information 

diversity holds and “all agents are selfish” never happens to be common knowledge; 

that is, Eq. (3) holds. 

 

The proof of Theorem 2 will be shown in the subsequent subsections. 

 

5.1. Special Case: Information Elicitation 

 

 To understand the proof of Theorem 2, it is helpful to investigate the special case 

called information elicitation, where we assume that 

( , ) 0iv a    for all i N , a A , and   . 

 

Proposition 2: In the information elicitation problem, any SCF f   is fully 

implementable if information diversity and Eq. (3) hold. 

 

5.1.1. Mechanism Design 

 

In the complete information environment, we used the simplest form of the 

quadratic scoring rule for the unique implementation, where the sincere strategy profile 

was considered as the unique BNE. However, we cannot directly apply this method to 

the asymmetric information environment, because the method crucially depends on the 

common knowledge of the state among the agents. Because of this application failure, 

we will create a new, more elaborate, quadratic scoring rule design, in which each agent 

is required to make multiple announcements in the information elicitation problem. 

This design does not incentivize each agent to be honest. Instead, it incentivizes each 

agent to announce partial information about her private signal at a sub-message. 

To prove Proposition 2, we design the following mechanism ( , , )G M g x : Fix 

an arbitrary positive integer H . Let 

( 1)L n H  . 

We denote ( , )j h  and ,
h
i jM  instead of l  and l

iM . Let 
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1

H
h

i ih
M M


  , 

,
h h
i i jj i

M M


  , 

and ,
h
i jM  is specified as a subset of ( )i  : 

    , { ( ) | ( , ) [0,1]: (1 ) }h
i j i i i i i i iM p              . 

Each agent i  simultaneously announces multiple ( 1)n H  sub-messages. For 

convenience, we call , ,( )h h h h
i i j j i i i jj i

m m M M 
      the h-th sub-message, and 

, ,
h h
i j i jm M  its sub-sub-message. 

From information diversity, for each , , \ { }h h
i j i j im M  , there exists the unique 

( , )i   such that 

, (1 )h
i j i im p    . 

Hence, we can define : ( ) ( )i i iI       as follows: 

    ( )i i iI      if (1 )i i ip      for some 0  , 

and 

    , ( )i j i iI p    if there exists no such i . 

Hence, ( )i i iI    implies that the announcement of i  reveals private signal i . 

For each {1, ..., }h H , we define : ( )h h
i i iI M     as follows: 

    ( )h h
i i iI m     if ,( )h

i i j iI m   for some j i  and 

        ,( ) { , }h
i i j i iI m p  for all j i , 

and 

    ( )h h
i i iI m p   if there exists no such i . 

Hence, ( )h h
i i iI m   implies that there exists an h-th sub-sub-message that reveals i  

and there exists no h-th sub-sub-message of agent i  that reveals a different private 

signal. In this case, agent i   is considered to reveal i   in her h-th sub-message 

,( )h h
i i j j im m  . 

We specify the allocation rule g : for every m M , 
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    ( ) ( )g m f    if ( ( , ))H H
i i i i iI s t   for all i N , 

and 

    *( )g m a   if there exists no such  . 

The central planner selects the allocation ( )f    if all agents’ H-th announcements 

Hm  reveal the state  . 

 To specify the payment rule x  , we define a quadratic scoring rule 

2: ( )i i R    : 

    2( , ) { ( ) ( )}
i i

i i i i i i i


      


    . 

Note that i i   uniquely maximizes ( , )i i i   . Note that this equivalence holds 

even if i  is uncertain: the expected value of ( , )i i i    in terms of i  is uniquely 

maximized by selecting i   equal to the expectation of i  . We define another 

quadratic scoring rule , : ( ) ( )i j i j R      : 

    , ,( , ) ( ( | ), )i j i j j i j i jp       . 

If , ( | ) ( )i j i jp     , then i  maximizes , ( , )i j i j   . We then specify the payment 

rule x : for every m M  and i N , 

    1 1 1
, , ,

2

( ) ( , ) ( , ( ))
( 1)

H
h h h

i i i j i i j i j j j
j i h

x m m p m I m
n H

    

 

 
    

  . 

Note that this specification satisfies the limited solvency. 

 

5.1.2. Proof of Proposition 2 

 

We show that the mechanism ( , , )M g x   designed in Subsection 5.1.1 fully 

implements the SCF f   in the information elicitation problem. For each 

{1, ..., }h H , we define 

    ( , ) { | ( ( , )) }h h
i i i i i i i i i iT s t T I s t p    , 

and 

    ( , , ) { | ( ( , )) }h h
i i i i i i i i i i iT s t T I s t       . 
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According to the iterative eliminations of dominated strategies from the 1-st sub-

messages to the H-th sub-messages, we prove that there exists a BNE, and any BNE s  

satisfies 

    ( , , )H
i i i i iT s T    for all i N  and i i  . 

Hence, the H-th sub-messages of all agents succeed in revealing the state fully through 

( )i i NI  , regardless of the BNEs. 

First, we consider the 1-st sub-messages. If agent i  is selfish, she maximizes the 

quadratic scoring rule 1
,( , )i i j i

j i

m p

 , which uniquely determines 1

, ( , )i j i i is t p   for 

all j i . Hence, we have 

    1 1( ( , ))i i i i iI s t p  . 

If she is honest, she is willing to be more honest than the selfish types. In other words, 

she maximizes the quadratic scoring rule 1
,( , )i i j i

j i

m p

  minus her psychological cost, 

where because of the definition of the psychological cost, the selected 1 1( , )i i i im s t  

satisfies that for every j i , there exists 0   such that 1( , ) (1 )i i i i is t p     . 

Hence, this honest agent truthfully reveals her private signal, that is, 

    1 1( ( , ))i i i i iI s t  . 

Note that an honest agent may have multiple best responses in this case. However, any 

best response 1
im  satisfies 1 1( )i i iI m  . Accordingly, we have 

    1 *( , )i i iT s E  , 

    1 1( , , ) \ ( , )i i i i i i i iT s T T s   , 

    and 1( , , )i i i iT s     for all i i   . 

Because 1( , )i i iT s  is independent of i , we can write 

1 1( ) ( , )i i i i iT s T s . 

 Next, consider the 2-nd sub-messages. If agent i   is selfish and expects agent 

j i  to belong to 1( )j jT s  with certainty, she maximizes the expected value of the 
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second quadratic scoring rule 2 1 1
, ,( , ( ))i j i j j jm I m ; that is, she maximizes 2

, ,( , )i j i j jm p , 

and this maximization uniquely determines 2
, ( , )i j i i is t p  . Hence, we have 

    2 2( ( , ))i i i i iI s t p  . 

If she is selfish and expects agent j   to belong to 1( )\j j jT T s   with a positive 

probability, there exists 0    such that she maximizes the expected value of 

2
, ,( , (1 ) )i j i j j jm p     , and this maximization uniquely determines 

2 ( , ) (1 )i i i i is t p      . Hence, this selfish agent reveals her private signal 

correctly; that is,we have 

    2 2( ( , ))i i i i iI s t  . 

If she is honest, then there exist 0    and 0    such that she maximizes the 

expected value of 2
, ,( , (1 ) )i j i j j jm p     minus her psychological cost, and this 

maximization selects 2 ( , ) (1 )i i i i is t p        . Hence, this honest agent reveals 

her private signal correctly; that is, we have 

    2 2( ( , ))i i i i iI s t  . 

Accordingly, we have 

    2 1 *( , ) ( )i i i iT s V E  , 

    2 2( , , ) \ ( , )i i i i i i i iT s T T s   , 

and 

    2 ( , , )i i i iT s     for all i i   . 

Because 2 ( , )i i iT s  is independent of i , we can write 2 2( ) ( , )i i i i iT s T s . 

 Third, consider an arbitrary {3, ...., }h H  and the h-th sub-messages. Suppose 

that for every i N , i i  , and {1, ..., 1}h h  , ( , )h
i i iT s  is independent of 

i , that is, 

( ) ( , )h h
i i i i iT s T s  , 

    ( , , ) \ ( )h h
i i i i i i iT s T T s   , 

    ( , , )h
i i i iT s      for all i i   , 

and 
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    1 *( ) ( )h h
i i iT s V E  . 

In the same manner as the argument for the 2-nd sub-messages, if agent i  is selfish 

and expects all agents j i  to belong to 1( )h
j jT s  with certainty, then 

    ( ( , ))h h
i i i i iI s t p  . 

If she is selfish and expects some agent j i   to belong to 1( )\ h
j j jT T s   with a 

positive probability, then 

    ( ( , ))h h
i i i i iI s t  . 

If she is honest, then 

    ( ( , ))h h
i i i i iI s t  . 

Accordingly, we have 

    1 *( , ) ( )h h
i i i iT s V E  , 

    ( , , ) \ ( , )h h
i i i i i i i iT s T T s   , 

    ( , , )h
i i i iT s     for all i i   , 

and ( , )h
i i iT s  is independent of i . We can write ( ) ( , )h h

i i i i iT s T s . 

From the above observations, we have 

   1 *( ) ( )H H
i i iT s V E , 

    ( , , ) \ ( )H H
i i i i i i iT s T T s   , 

and 

    ( , , )H
i i i iT s     for all i i   . 

Because the epistemological type space is finite, we can derive the common knowledge 

event through finite steps of iterations; that is, for each event E T , there exists a 

positive integer K  such that 

    ( ) ( )k
i iV E V E   for all k K  and i N . 

From information diversity and Eq. (3) ( *( )iV E   ), there exists K  such that 

    *( )k
iV E   for all k K . 

By selecting H K , we have 

    1 *( ) ( )H H
i i iT s V E   , 

which implies 
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    ( , , )H
i i i i iT s T   , 

that is, 

    ( ( , ))H H
i i i i iI s t   for all i N , i i  , and i it T . 

Hence, we have proved Proposition 2. 

Unlike in complete information environments, here the central planner fails to 

incentivize each agent i  to tell the truth literally. However, the central planner can 

obtain the correct information through indication iI  . In the 1-st sub-message, the 

central planner can obtain the correct information only from honest types through iI , 

while she interprets selfish types as uninformative. In the 2-nd sub-message, the central 

planner can obtain the correct information from a wider range of types including selfish 

types, because, thanks to the second quadratic scoring rule, a selfish agent i  is willing 

to make 2
, ( )i j im   greater than ( )i ip  , that is, to reveal the true private signal through 

iI , whenever she expects the other agents to reveal the true signals in the 1-st sub-

message. By repeating the same reasoning, the central planer can get the correct 

information from more selfish types in later sub-messages. With the finiteness of the 

epistemological type space, with a sufficiently large H  , and without common 

knowledge of all agents’ selfishness, we can prove that the central planner can 

eventually obtain the correct information from all agents and all types at the H-th (final) 

sub-messages. 

 

5.2. General Case 

 

5.2.1. Mechanism Design 

 

To prove Theorem 2, we design, as follows, a mechanism ( , , )G M g x , which 

is an extension of the mechanism designed in Subsection 5.1.1, where the manner of 

this extension is basically the same as in the complete information environments 

(Subsection 4.2.1). Fix arbitrary positive integers H  and K , which are sufficiently 

large. Let 

( 1)L n H K   . 
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We specify 

1

H K
k

i ik
M M




  . 

For each {1, ..., }h H , let 

    ,
h h
i i jj i

M M


  , 

and ,
h
i jM  is specified in the same manner as in Subsection 5.1.1: 

    , { ( ) | ( , ) [0,1]: (1 ) }h
i j i i i i i i iM p              . 

For each { 1, ..., }k H H K   , we specify 

    k
i iM   . 

Each agent announces the h-th sub-message for each {1, ..., }h H   in the same 

manner as the mechanism designed in the information elicitation problem (in 

Subsection 5.1.1). For each { 1, ..., }k H H K   , she further announces an element 

of i  as the k-th sub-message. 

We specify the allocation rule g as follows: 

    2

( )
( )

1

H K
k

k H

f m
g m

K



 



 for all m M . 

Note that ( )g m   is independent of the first 1H    sub-messages 1
1( )h H

hm 
  . The 

central planner randomly selects { 2, ..., }k H H K    , and then determines the 

allocation according to ( ) ( )kf m A . 

We specify the payment rule x   as follows. We define ˆ : [ 2, 0]iw M     as 

follows: 

    ˆ ( ) 1iw m      if there exists { 2, ..., }k H H K    such 

that 1k H
i im m  , and 1k H

j jm m   for all 

{ 2, ..., 1}k H k    and j N , 

and 

    ˆ ( ) 0iw m    if there exists no such { 2, ..., }k H H K   . 
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Note that ˆ ( )iw m   indicates whether agent i   is the first deviant from the (H+1)-th 

sub-message. We denote by ˆ ( ) {0, ..., 1}i ir m K    the number of integers 

{ 2, ..., }k H H K    such that 1k H
i im m  . 

We specify the payment rule ix  for agent i  as a combination of the payment 

rule specified in the information elicitation problem (in Subsection 4.1.1), the above-

specified ˆ
iw  and îr , and a quadratic score given by 1

, ,( , ( ))H H H
i j i j j jm I m  ; that is, for 

every m M  and i N , 

1 1 1
, , ,

2

1
( ) ( , ) ( , ( ))

3 ( 1)

H
h h h

i i i j i i j i j j j
j i h

x m m p m I m
n H

  


 

 

  
     

   

1
, ,

ˆ ( )
ˆ( , ( )) ( )

1
H H H i i

i j i j j j i

r m
m I m w m

K
      

, 

where 0   is an arbitrarily positive real number that is set sufficiently large. Note 

that the specified x  satisfies limited solvency. We select a sufficiently large H . We 

also select K  sufficiently large to satisfy for every i N  and   , 

(6)    
2( , )

3
max { ( , ) ( , )} 1i i
a a A

K v a v a
  

  

    . 

 

5.2.2. Proof of Theorem 2 

 

 We prove Theorem 2 generally by showing that the mechanism G  designed in 

Subsection 5.2.1 fully implements the SCF f . In the same manner as the proof of 

Theorem 1, the proof of Theorem 2 is divided into two parts: “information elicitation” 

and “implementation with provability.” 

 

Part 1 (Information Elicitation): Because H  is sufficiently large, we can show in 

the same manner as in the information elicitation problem (in Subsection 5.1) that any 

BNE s  satisfies 

( ( , ))H H
i i i i iI s t   for all i N , i i  , and i it T . 



33 
 

Hence, any agent truthfully reveals her private signal at the H-th announcement through 

( )H
i i NH  . The iterative elimination method guarantees the existence of strategy profiles 

that satisfy the Bayesian equilibrium property for the first H sub-messages. 

 

Part 2 (Implementation with Provability): Consider a strategy profile s  whose first 

H  announcements satisfy the BNE property. We define the sincere strategy for agent 

i , which we denote by 1
ˆ ˆ( )k H K
i i ks s 

 , as 

    ˆh hs s  for all {1, ..., }h H , 

and 

    ˆ ( , )k
i i i is t   for all { 1, ..., }k H H K   . 

Clearly, ŝ  induces the value of the SCF f . Part 2 shows that if s  is a BNE, then 

ˆs s  must hold. 

Because ( )H H
j j jI m   , , ,( | ) ( | )i j i i j ip p      for all i i    , and    was 

selected sufficiently large, it follows from the nature of the quadratic scoring rule 

1
, ,( , ( ))H H H
i j i j j jm I m    that each agent i   is willing to announce 1

,
H
i j im    

irrespective of the selection of 2( )k H K
i k Hm 

  . Hence, we have 

1 1ˆH Hs s  . 

If an agent i  announces a sub-message that is different from her ( 1)H th   

sub-message as the first deviation starting from the ( 2)H th   sub-messages, she is 

fined the monetary amount 
3




. Because we have made K  sufficiently large, the 

impact of the selection of each sub-message on the determination of the allocation is 

small compared with the monetary amount 
3




. Following Abreu and Matsushima 

(1992a; 1992b), this drives agents into a tail-chasing competition in a manner similar 

to the mechanism designed for the proof of Theorem 1, through which each agent 

avoids becoming the first deviant. Given that we have already proved that all agents 

announce truthfully at their ( 1)H th   sub-messages, this competition drives them 
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to announce the state truthfully from the ( 2)H th    sub-message to the 

( )H K th   sub-message. 

 To be precise, consider an arbitrary { 2, ..., }k H H K    and suppose that 

ˆk ks s   for all k k  . 

If k
j jm   for some j i , the agent i  strictly prefers announcing truthfully at the 

k-th sub-message, because she can avoid being the first deviant. Even if k
j jm   for 

all j i  , the agent i   still strictly prefers announcing truthfully at the k-th sub-

message, because she does not want to increase ( )i ir m   and because the SCF is 

incentive-compatible. Accordingly, through the iterative elimination of dominated 

strategies, we can inductively prove that 

ˆk ks s  for all { 2, ..., }k H H K   . 

Hence, there is no BNE other than ŝ . Because ŝ  is a BNE and achieves the value of 

f , we have completed the proof of Theorem 2. 

 

Remark 5: By assuming that the psychological cost ( , , , )i ic m t G   is convex in 

( )i im  , we can replace the full implementation with the unique implementation, which 

strengthens the results in this section. For the first H  sub-messages, an honest agent 

may have multiple best response sub-messages although any best response guarantees 

truthful revelation ( ( , ))H H
i i i i iI s t  . However, convexity guarantees the uniqueness 

of the honest agents’ best responses; the SCF is not only fully but also uniquely 

implementable in the asymmetric information environment. 

 

Remark 6: Incentive compatibility is a necessary condition for implementation, 

provided that only small fines are permitted. However, if we can utilize large transfers 

under quasi-linearity, we can prove that any SCF, whether it is incentive compatible or 

not, is fully implementable. Information diversity implies that 

    , ,( | ) ( | )i j i i j ip p     for all i i   , 

which guarantees the presence of a payment rule x  such that truth-telling is a strict 

BNE in the information elicitation problem. Hence, we can make any SCF incentive 
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compatible with the help of payment rule design; that is, any SCF is fully 

implementable. 

 

6. Conclusion 

 

This study investigated a society in which people are either selfish or honest, and 

showed that every incentive-compatible SCF, whether material or nonmaterial, is 

implementable in BNE if “all agents are selfish” never happens to be common 

knowledge. 

This study assumed that there exist only two motives for agents: selfishness and 

honesty. In reality, there could be adversarial motives such as “always tell a lie.” 

However, our results are robust to the consideration of such motives although it is not 

explicitly shown in this study. The equilibrium messages are attracted to somewhere 

close to truth-telling whenever these motives are not as important as honesty; that is, 

the central planner can still identify the true state by checking whether agents’ messages 

are attracted by a certain message through the indications ,( )i jI . 

Our findings will bring hope to central planners who lack the information 

necessary for normative judgments such as “Are social benefits fairly distributed in the 

society?”, “Who needs relief from poverty?”, “How will decision-making affect 

outsiders and future generations?”, and others. Selfish people are generally unmotivated 

by such ethical concerns even if they have a keen interest in ethical concerns and are 

knowledgeable about them. From the viewpoint of social network (Putnam, 2006) and 

social common capital (Uzawa, 2005) in epistemology, the common knowledge 

assumption on selfishness implies that society is divided into a group of selfish people 

and a group of honest people and these groups are disconnected from each other. With 

this common knowledge, the central planner cannot derive ethical information from 

selfish people correctly. However, if selfish people and honest people are path-

connected with each other, the central planner can properly derive such information 

even from selfish agents and reflect it in her normative judgment, that is, she can 

implement any ethical SCF she desires. 
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 This study considered the role of a social network epistemologically, implicitly 

assuming that preference for honesty and prosocial propensity are consistent. 

Consideration of the situation where this premise does not hold is an important issue. 

The situation where the SCF is given for the central planner’s private purpose, which 

agents do not agree with, is an example. Matsushima (2013) analyzes the unique 

implementation in this situation as the possibility of psychological guidance, which 

causes those agents to reveal information truthfully through a manipulation of the 

revelation process. Another example is a situation such as scarce resource allocation in 

a pandemic, where agents have different ethical criteria and the central planner 

composes an SCF by finding those compromises. The related works are Pathak et al. 

(2020) and Matsushima (2021b; 2021c). Such research is expected to develop further 

in the future. 
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