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Abstract

We develop a new regression method called frequency regression and smooth-
ing. This method is based on the separating information maximum likelihood
developed by Kunitomo and Sato (2021) and Sato and Kunitomo (2020) for
estimating the hidden states of random variables and handling noisy nonsta-
tionary (small sample) time series data. Many economic time series include
not only the trend-cycle, seasonal, and measurement error components, but
also factors such as structural breaks, abrupt changes, trading-day effects, and
institutional changes. Frequency regression and smoothing can be applied to
handle such factors in nonstationary time series. The proposed method is
simple and applicable to several problems when analyzing nonstationary eco-
nomic time series and handling seasonal adjustments. An illustrative empirical
analysis of the macroconsumption in Japan is provided.
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1. Introduction

A considerable amont of research has been published on the use of statistical time
series analysis of macroeconomic time series. An important feature of the macroe-
conomic time series, which is different from the standard time series analysis, is
that the observed time series is an apparent mixture of nonstationary and station-
ary components including apparent seasonarity. The nonstationarity may include
not only classical trend-cycle components, but also abrupt changes and outliers in
the trend-noise components. A recent (vivid) example may be the macro-effects of
Corona-Virus occurring in 2020-2021. Another feature is the fact that measurement
errors in the economic time series play an important role because macroeconomic
data are constructed from various sources including sample surveys from major of-
ficial statistics, whereas in the statistical time series analysis often ignores the mea-
surement errors. Further, official agencies apply the X-12-ARIMA program, which
uses the univariate reg-ARIMA model to remove seasonality, as the standard filter-
ing procedure to publish the seasonally adjusted data. The last important feature is
that the sample size of the macroeconomic data is rather small; we obtain 120 time
series observations for each series after collecting quarterly data over 30 years. The
quarterly GDP series, which has been the most important data in macroeconomy
have been published since 1994 by the cabinet office of Japan. Since the sample
size is small, it is important to use an appropriate statistical procedure to extract
information on the trend-cycle and noise (or measurement error) components in a
systematic manner from data.

In this study, we develop a new regression method called frequency regression and
smoothing, based on the separating information maximum likelihood (SIML) filter-
ing (or smoothing). SIML filtering was developed by Kunitomo and Sato (2021) to
estimate hidden states of random variables and handle multiple time series data. In
particular, it can be applicable to small sample economic time series. Kunitomo and
Sato (2017), Kunitomo and Sato (2021), and Sato and Kunitomo (2020) developed
the SIML method for estimating nonstationary errors-in-variables models. They
discussed the asymptotic and finite sample properties of the estimation of unknown
parameter and developed the filtering method. We utilize their results to develop
the linear regression methods in the frequency domain for nonstationary economic
time series. Macroeconomic variables include important factors such as structural
breaks, trading-day effects, and institutional changes in macro-economic variables
in addition to trend, cycle, and seasonal components as well as the measurement
errors. Since there are many factors in nonstationary time series, statistical method
that can habdle them in a systematic and coherent manner yet to be developed. The
proposed frequency regression method can be applied to handle these factors in a
nonstationary time series. Our method is simple and applicable to several problems
when analyzing a nonstationary economic time series.
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As a classical study, Granger and Hatanaka (1964) reported the spectral analysis
of economic time series. Engle (1974) introduced band spectrum regression for
stationary time series. Our method of frequency regression could be regarded as
extensions of their analyses to nonstationary time series.

The rest of the manuscript is organized as follows. In Section 2, we explain the
nonstationary errors-in-variables model and SIML filtering (or smoothing) method.
Then, in Section 3, we introduce the frequency regression method and as an ap-
plication, we mention the method developed by Müller and Watson (2018) briefly.
In Section 4, we discuss the regression smoothing method based on SIML smooth-
ing. In Section 5, we discuss the likelihood function. In Section 6, we discuss an
illustrative empirical analysis of the macroconsumption of durable goods in Japan
as an illustrative case. In Section 7, we provise some concluding remarks. Some
details of the mathematical derivations of the results on frequency regression and
the corresponding figures are presented in the Appendix.

2. Nonstationary Errors-in-variables models and SIML Fil-
tering

2.1 Nonstationary Errors-in-variables models

Let yji be the i−th observation of the j−th time series at i for i = 1, · · · , n; j =
1, · · · , p. Let yi = (y1i, · · · , ypi)

′
be a p × 1 vector and Yn = (y

′
i) (= (yij)) be

an n × p matrix of observations, further let y0 be the initial p × 1 vector. We
estimate the model when the underlying nonstationary trend-cycle component xi (=
(xji)) (i = 1, · · · , n), the vector of the seasonal component s

′
i = (s1i, · · · , spi), and

the vector of the noise (or measurement error) component v
′
i = (v1i, · · · , vpi), which

are independent of xi. We use the nonstationary errors-in-variables representation

yi = xi + si + vi (i = 1, · · · , n),(2.1)

where xi, si, and vi (i = 1, · · · , n) are sequences of non-stationary I(1), stationary
I(0) seasonal process, and stationary I(0) noise process. The trend-cycle component
xi satisfies

∆xi = (1− L)xi = v
(x)
i(2.2)

with the lag operator Lxi = xi−1, ∆ = 1− L, and

v
(x)
i =

∞∑
j=0

C
(x)
j e

(x)
i−j ,(2.3)

where e
(x)
i denotes a sequence of i.i.d. random vectors with E(e

(x)
i ) = 0 and

E(e
(x)
i e

(x)′

i ) = Σ(x)
e (a positive-semi-definite matrix). The p× p coefficient matrices
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C
(x)
j (= c

(x)
kl (j)) are absolutely summable and ∥C(x)

j ∥ = O(ρj), where 0 ≤ ρ < 1 and

∥C(x)
j ∥ = maxk,l=1,···,p |c(x)kl (j)|.

The random noise component vi satisfies

vi =
∞∑
j=0

C
(v)
j e

(v)
i−j ,(2.4)

where the p × p coefficient matrices C
(v)
j are absolutely summable and ∥C(v)

j ∥ =

O(ρj), where 0 ≤ ρ < 1 and e
(v)
i represents a sequence of i.i.d. random vectors with

E(e
(v)
i ) = 0, E(e

(v)
i e

(v)′

i ) = Σ(v)
e (positive definite matrix).

The seasonal component si (i = 1, · · · , n) is a sequence of stationary processes
satisfying

si =
∞∑
j=0

C
(s)
sj e

(s)
i−sj ,(2.5)

where the lag operator is defined by Lssi = si−s (s ≥ 2), and e
(s)
i represents a

a sequence of i.i.d. random vectors with E(e
(s)
i ) = 0 and E(e

(s)
i e

(s)′

i ) = Σ(s)
e (non-

negative definite matrix). The p×p coefficient matricesC
(s)
j are absolutely summable

and ∥C(s)
j ∥ = O(ρj), where 0 ≤ ρ < 1.

Thus, we obtain the observations of an n×p matrix Yn = (y
′
i) and set the np×1

random vector (y
′
1, · · · ,y

′
n)

′
. When there is no seasonal component and each pair of

vectors ∆xi and vi are independently, identically, and normally distributed (i.i.d.)
as Np(0,Σx) and Np(0,Σv), respectively, Σx = Σ(x)

e and Σv = Σ(v)
e . Then, given

the initial condition y0, vec(Yn) ∼ Nn×p

(
1n · y

′
0, In ⊗Σv +CnC

′
n ⊗Σx

)
, where

1
′
n = (1, · · · , 1) and

Cn =


1 0 · · · 0 0
1 1 0 · · · 0
1 1 1 · · · 0
1 · · · 1 1 0
1 · · · 1 1 1


n×n

.(2.6)

In the general case with (2.1)-(2.5), we introduce the K∗
n−transformation from

Yn to Zn (= (z
′
k)) using

Zn = K∗
n

(
Yn − Ȳ0

)
,K∗

n = PnC
−1
n ,(2.7)

where Ȳ0 = 1ny
‘
0,

C−1
n =


1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1


n×n

,(2.8)
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and

Pn = (p
(n)
jk ) , p

(n)
jk =

√√√√ 2

n+ 1
2

cos
[

2π

2n+ 1
(k − 1

2
)(j − 1

2
)
]
.(2.9)

We find thatDn is a diagonal matrix with the k-th element dk = 2[1−cos(π( 2k−1
2n+1

))] (k =

1, · · · , n) by using the spectral decomposition C−1
n C

′−1
n = PnDnP

′
n, and therefore,

we can write

a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .(2.10)

2.2 SIML filtering method

We consider the general filtering procedure based on the K∗
n−transformation (2.7).

It is easy to interpret the role of the elements of the resulting n×p random matrix Zn

in the data analysis because they are obtained by the transformation that considers
real values in the frequency domain. We consider the inversion of the transformation
of orthogonal frequency processes. Let an n× p matrix

X̂n = CnPnQnPnC
−1
n (Yn − Ȳ0) ,(2.11)

where Zn = PnC
−1
n (Yn − Ȳ0) and Qndenotes an n× n filtering matrix.

The stochastic process Zn represents the orthogonal decomposition of the original
time series Yn (Section 5 of Kunitomo and Sato (2021)). We provide explicit forms
of useful examples including the trend-cycle filtering procedure and seasonal filtering
procedure for macro time series. Kunitomo and Sato (2021) developed the filtering
(or smoothing) method in the form of (2.11), and we provide the following examples.

Example 1 : Trend Smoothing : Let an m × n choice matrix (0 < m < n)
Jm = (Im,O), and let n× p matrix

X̂n = CnPnJ
′

mJmPnC
−1
n (Yn − Ȳ0)(2.12)

and an n× n matrix
Qn = J

′

mJm .(2.13)

We will construct an estimator of the n×p hidden state matrix Xn in the frequency
domain using the inverse transformation of Zn. We can recover the trend-cycle com-
ponent by deleting the estimated noise parts in the high-frequency. (See Nishimura,
Sato and Takahashi (2019) as a financial application.) Let the [m+(n−m)]× [m+
(n−m)] partitioned matrix

Pn =

(
P11 P12

P21 P22

)
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and

PnJ
′

mJmPn =

(
P

′
11

P
′
12

)
(P11,P12) = In −

(
P

′
21

P
′
22

)
(P21,P22) .(2.14)

Then the (j, j
′
)-th element of An = PnJ

′
mJmPn (= (aj,j′ )) is given by

aj,j =
2m

2n+ 1
+

1

2n+ 1

[
sin 2mπ

2n+1
(2j − 1)

sin π
2n+1

(2j − 1)

]
,(2.15)

ai,j′ =
1

2n+ 1

sin 2mπ
2n+1

(j + j
′ − 1)

sin π
2n+1

(j + j ′ − 1)
+

sin 2mπ
2n+1

(j − j
′
)

sin π
2n+1

(j − j ′)

 (j ̸= J
′
) .

Example 2 : Band Smoothing : We consider the band filtering based on the
K∗

n− transformation in (2.7) and use the inversion of only low-frequency parts from
the random matrix Zn. A leading example is the seasonal frequency in the discrete
time series, we consider s (> 1) to be a positive integer in this case. Let an m2 ×
[m1 +m2 + (n−m1 −m2)] choice matrix Jm1,m2,n = (O, Im2 ,O), and let the n× p
matrix

X̂n = CnPnJ
′

m1,m2,n
Jm1,m2,nPnC

−1
n (Yn − Ȳ0)(2.16)

and the n× n matrix
Qn = J

′

m1,m2,n
Jm1,m2,n .(2.17)

As an example, when we have the seasonal frequency λs (0 ≤ λs ≤ 1
2
), we take m1 =

[2n/s]−h and m2 = 2h+1. The (j, j
′
)-th element of An = PnJ

′
m1,m2,n

Jm1,m2,nPn (=
(aj,j′ )) is given by

aj,j =
2m2

2n+ 1
+

1

2n+ 1

sin 2(m1+m2)π
2n+1

(2j − 1)− sin 2(m1)π
2n+1

(2j − 1)

sin π
2n+1

(2j − 1)

 ,(2.18)

ai,j′ =
1

2n+ 1

sin 2(m11+m2)π
2n+1

(j + j
′ − 1)− sin 2(m1)π

2n+1
(j + j

′ − 1)

sin π
2n+1

(j + j ′ − 1)

+
sin 2(m1+m2)π

2n+1
(j − j

′
)− sin 2(m1)π

2n+1
(j − j

′
)

sin π
2n+1

(j − j ′)

 (j ̸= j
′
) .

When m1 = 0 and m2 = m, (2.17) becomes (2.13) in Example 1. However, when
we have seasonality, there is a complication in the data analysis and we need to
use several transformations. (We shall discuss examples in Section 4 in details.)
For quarterly data, a 1 year (4 quarters) cycle cannot be distinguished from the 2
quarters cycle. For monthly data, the 1 year cycle cannot be distinguished from the
6, 4, 3, 2.4, and 2 months cycles.
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3. Frequency Regression

In this section, we consider a linear regression model based on observations of q× p
matrix Z∗

m by
Z∗

m = FqPnC
−1
n (Yn − Ȳ0) = [z∗1m,Z

∗
2m] ,(3.1)

where Fq denotes a q × n matrix and q (> p) depends on n as q = qn.
There are several interesting examples. Since we consider the case when the rank of
Fq is p (p < q), let us investigate this case.
When we have nonstationary time series, we often have trend, cycle, seasonal, and
noise components. To handle these components, we can use a more complicated
transformation Fq. Further, there are trading-day components, leap year effects,
structural changes such as the 2008 financial crisis and 2020 corona-virus crisis, and
institutional changes such as the consumption tax in Japan. When we generate
seasonal adjusted data, it is important to handle these effects in meaningful ways.
Since there are many components, it is known that an ad hoc method may be
followed to handle these effects in official statistics from a standard statistical view.

The case investigated by Kunitomo and Sato (2021) considered the transformation
when Fq = Jm. We first investigate this case and assume that the rank of Fq is
p (p < q). We define p× p matrices

G∗
m =

1

m
Z∗′

mZ
∗
m ,Gn =

1

n
Z

′

nZn(3.2)

and we denote their probability limits as m = mn → ∞ (n → ∞,mn/n → 0) when
they exist as

plimn→∞G∗
m = Σx , plimn→∞Gn = Σ∆y ,(3.3)

where

Σx = (
∞∑
j=0

C
(x)
j )Σ(x)

e (
∞∑
j=0

C
(x)′

j ) (= f∆x(0)) ,(3.4)

(Σx represents the spectral density matrix of ∆xi at zero frequency) and Σ∆y is
different from Σx.

We partition G∗
m and Σx into (1 + k)× (1 + k) (k = p− 1) submatrices as

G∗
m =

[
g∗11 g∗

12

g∗
21 G∗

22

]
,Σx =

[
σ11 σ12

σ21 Σ22

]
.(3.5)

Then, we investigate the least squares estimator

β̂m = G∗−1
22 g∗

21 ,(3.6)
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which is an estimator of vector βm = Σ−1
22 σ21 under the assumption that the inverse

matrices of G∗
22 and Σ22 exist. (We need to assume that Σ22 has a full rank.)

We write

β̂m − β = [Z∗′
2mZ

∗
2m]

−1Z∗′
2mZ

∗
m

(
1
−β

)
,(3.7)

where we partitioned Z∗
m into q × (1 + k) submatrices Z∗

m = (z∗1m,Z
∗
2m).

Then we have the next result on the asymptotic properties of the least squares
estimator and the proof is presented in the Appendix.

Theorem 3.1 : Let m = mn = [nα] and m → ∞ (n → ∞). In (2.1)-(2.5), assume

that the fourth-order moments of e
(x)
i , e

(s)
i , and e

(v)
i are bounded.

(i) For 0 < α < 1.0, G∗
m is a consistent estimator of Σx.

(ii) Assume that the rank of Σ22 is k (= p−1). Let m = mn = [nα] and 0 < α < 0.8.
Then when m → ∞ (n → ∞),

√
mn[β̂m − β] is asymptotically and normally

distributed as N(0, σ11.2Σ
−1
22 ) and σ11.2 = σ11 − σ12Σ

−1
22 σ21.

Then, we can rewrite um = z∗1m − Z∗
2mβ, that is,

z∗1m = Z∗
2mβ + um(3.8)

and E[um] = 0. This is a linear regression equation, however, the error term of um

has a specific form of heteroscedasticity.
Theorem 3.1 is used for the case when Gn is used for Σ∆y, which is different from
Σx.

One application of Theorem 3.1 would be Müller and Watson (2018), who proposed
the so-called long-run co-variability of macroeconomic time series. They investi-
gated many nonstationary time series using their method and obtained some in-
teresting findings. Kunitomo and Sato (2021) have suggested an interpretation of
their method as the relationships among long-run trends in our framework when
p = 2. Let 2 × 2 matrices Σ(x)

e = (σ
(x)
ij ); then, we define the regression coefficient

β = [σ
(x)
22 ]

−1σ
(x)
21 under the assumption that σ

(x)
22 > 0.

Further, let G∗
m = (ĝ

(x)
ij ), and an n× 2 matrix

(a1n, a2n) = C−1
n (Yn −Y0) .(3.9)

For estimating β, we define the estimated regression coefficient as

β̂ = [ĝ
(x)
22 ]

−1ĝ
(x)
21 = [a

′

2nPnJmJ
′

mPna2n]
−1[a

′

2nPnJmJ
′

mPna1n] .(3.10)

This quantity can be interpreted as the least squares slope of the transformed vector
from y1n on the transformed vector from y2n for a n × 2 matrix Yn = (y1n,y2n);
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that is, essentially the same as the one proposed by Müller and Watson (2018) 1.
Then, from Theorem 3.1, we immediately obtain the following result; the proof is
reported in Kunitomo and Sato (2021).

Corollary 3.1 : When p = 2, we assume that Σ(x)
e is positive semi-definite, Σ(s)

e is
positive semi-definite, Σ(v)

e is positive definite, and that that the fourth-order mo-

ments of e
(x)
i , e

(s)
i , and e

(v)
i (i = 1, · · · , n) are bounded.

(i) We consider a sequence of integers m = mn. Then β̂ cannot be consistent when
n → ∞.
(ii) Set mn = [nα] and 0 < α < 1, then, as n −→ ∞, β̂m − β

p−→ 0 .
(iii) Set mn = [nα] and 0 < α < 0.8, then, as n −→ ∞,

√
mn[β̂m − β] is asymptoti-

cally normal.

It may be rather straight-forward to incorporate the regression effects of dummy
variables in trend relations such as structural breaks.

4. Regression Smoothing

When we have noisy-nonstationary multivariate time series, we often need to remove
the seasonality and/or low frequency component. However, in some applications of
official statistics, we need to construct the seasonally adjusted data after removing
additional effects such as trading-day components including the leap year effect,
structural changes such as the 2008 financial crisis and institutional changes such as
the introduction of consumption tax in Japan. These effects are can be defined in
deterministic ways.

Let the observed vector times series yi be decomposed as

yi = xi + SCOi + Si + vi (i = 1, · · · , n),(4.1)

and SCOi = SCi +Oi, where xi denotes the trend-cycle component, SCi denotes
the structural break component, Si represents the seasonal component, vi denotes
the noise component, and Oi represents the outlier component.
In this section we consider the case where in SCi and Oi can be expressed as
SCi +Oi = SCOi(w), where w denotes the set of instrumental variables. If these
terms can be expressed as linear relationships, we write

yi = B
′
wi + ui (i = 1, · · · , n),(4.2)

where B
′
denotes a p×r matrix, wi denotes a r×1 vector of instrumental variables,

zi and ui = xi+Si+vi represents a sequence of I(1) process. Hence, the model is a
multivariate regression model when the noise terms are I(1) process with stationary

1In their notation, m corresponds to q, which is fixed. They did use (differenced) stationary
data, and thus, we could interpret that they calculated the linear regression from the filtered data
X̂∗

n = P
′

nJ
′

mJmPnC
−1
n (Yn −Y0) as a modification of (2.11) in our notation.
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noise term and seasonal terms. We extend the SIML smoothing method developed
by Kunitomo and Sato (2021) and Sato and Kunitomo (2020) and incorporate ex-
traneous information such as dummy variables to extract or delete some components
from the observed time series based on (4.1).
To find the regression and smoothing procedure of trend and seasonal components,
we use the K∗

n−transformation of data and rewrite (4.2) as

Y∗
n = W∗

nB+U∗
n ,(4.3)

where Y∗
n = PnC

−1
n (Yn −Y0) and W∗

n = PnC
−1
n Wn (Wn = (w

′
t)) represent n× p

and n×r matrices of the explained variables and explanatory variables, respectively,
and U∗

n = PnC
−1
n Un denotes an n × p disturbance matrix. (We fix the initial

condition y0 (= x0) and the state variables x∗
i = xi − x0. See Kunitomo and Sato

(2021) and Sato and Kunitomo (2021) for details.)
As a consequence of the K∗

n−transformation, we have the disturbance terms in (4.3),
that are stationary processes.

Because (4.2) is a linear regression equation, it is possible to apply Theorem 3.1
by defining a (p+ r)× 1 vector

y∗
i =

[
yi

wi

]
.

Then we can estimate the regression coefficients and calculate the residuals from the
regression equations. When vectors wi (i = 1, · · · , n) are deterministic, we assume
that

lim
m→∞

1

m
W∗′

mW
∗
m = Σw∗ ,(4.4)

where Σw∗ denotes a positive definite matrix and W∗
m = JmPnC

−1
n Wn represents

an m× r matrix.
When the r× 1 instrumental variables wi (i = 1, · · · , n) are exogenous or determin-
istic, we have the following result from Theorem 3.1.

Corollary 4.1 : We assume the nonsingularity condition (4.4), wi (i = 1, · · · , n)
is exogenous or deterministic, and the fourth-order moments of e

(x)
i , e

(s)
i and e

(v)
i

are bounded. In (4.3), we represent the transformed Y∗
m = JmPnC

−1
n Yn on W∗

m =
JmPnC

−1
n Wn and B̂m denotes the least squares estimator of B. Let mn = [nα]

(0 < α < 0.8), and then, as n −→ ∞, we have the asymptotic normality

√
mn[B̂m −B]

w−→ N(0,Σ−1
w∗ ⊗Σx) .(4.5)

Define the general transformed instrumental variables

Ŵn = JWPnC
−1
n Wn ,(4.6)
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where JW represents a q × n choice matrix, and we denote the idempotent matrix
(q × q matrix)

QW = Ŵn(Ŵ
′

nŴn)
−1Ŵ

′

n .(4.7)

We utilize the regression information on smoothing by utilizing the projection matrix
QW to construct

X̂n = CnPnQWPnC
−1
n (Yn − Ȳ0) .(4.8)

There are several possibilities to how we incorporate the extraneous information
in the smoothing procedure. It is reasonable to consider the case when QW is
an idempotent matrix such as Q2

W = QW . In our study, we use two alternative
smoothing procedures : Type-I and Type II. Type-I smoothing may be appropriate
for change-point smoothing in the trend component and Type-II smoothing may be
appropriate for outlier detection in the noise component.

(i) Type-I Smoothing : Type-I is based on Example 1 presented in Section 2.
The (trend-cycle) regression part of Yn is (4.1) when we take JW = (Im,O) (Ŵn

represents an m× r matrix and J
′
m = (Im,O)

′
represents an n×m matrix) and an

n× n matrix
Q(0)

n = J
′

mŴn(Ŵ
′

nŴn)
−1Ŵ

′

nJm .(4.9)

If we want to remove the regression effects and use only the trend-cycle part, we
need to take JW = Jm, Jm = (Im,O) (m× n choice matrix, m ≤ n) and

Q(1)
n = J

′

mJm −Q(0)
n = J

′

m[Im − Ŵn(Ŵ
′

nŴn)
−1Ŵ

′

n]Jm .(4.10)

Then we have the decomposition

X̂n = CnPnJ
′

mJmPnC
−1
n (Yn − Ȳ0)(4.11)

= CnPnJ
′

m[Q
(0)
n +Q(1)

n ]JmPnC
−1
n (Yn − Ȳ0) .

In this case, we have the property Q2
n = Qn = Q(0)

n +Q(1)
n = J

′
mJm , and we have

the decomposition of the trend-cycle part and the regression part. There is a simple
interpretation of this smoothing because we use only the regression part at m low
frequencies. We first remove the regression part from Yn by taking

X(1)
n = CnPn[In −Q(0)

n ]PnC
−1
n (Yn − Ȳ0) .(4.12)

We apply the 2nd smoothing to Y(1)
n as

X(2)
n = CnPnJ

′

mJmPnC
−1
n X(1)

n(4.13)

by taking another transformation.
Then, the resulting transformation is (4.8) with QW = Q(1)

n after an iteration. Since
Sato and Kunitomo (2020) developed an iterated smoothing procedure, there should
be some mechanism for performing further iterations.
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(ii) Type-II Smoothing : Type-II smoothing is based on Example 2 presented
in Section 2. When we need to estimate not only the trend component, but also
the noise component, it is important to estimate structural changes and outlier
components consistently. For instance, we need to estimate the seasonal component
for obtaining the seasonally adjusted series, and it is related to Example 2. Thus,
we construct an q × n choice matrix Fq such that the seasonal components can be
removed in their frequencies.
When s = 4, we want to remove the data with frequencies around λs = 1/4, 1/2
(1/2 corresponds to the cycle of 2 quarters and 1/4 corresponds to the cycle of 4
quarters). However, we cannot distinguish the 4 quarters cycle from the 2 quarters
cycle by using quarterly observations. We set m1 = [2n/s], and an (n− 2h− 1)× n
choice matrix and an (n− 3h− 2)× (n− 2h− 1) choice matrix as

JQ
1 =

[
Im1−(h+1) O O

O O In−m1−h

]
, JQ

2 = [In−3h−2 , O] .(4.14)

Then we take a q × n matrix
FQ

q = JQ
2 J1

Q(4.15)

with a small positive integer h > 0.
When s = 12, we need a more complicated transformation to remove season-
ality because we cannot distinguish the 12 month cycle from the 6, 4, 3, 2.4,
and the 2 month cycles using monthly observations with frequencies around λs =
1/12, 2/12, 3/12, 4/12, 5/12, 6/12. We set mi = i[2n/s] and take (n − i(2h + 1)) ×
(n − (i − 1)(2h + 1)) choice matrices (i = 1, · · · , 5) and an (n − 5(2h + 1) − (h +
1))× (n− 5(2h+ 1)) choice matrix such that

JM
i =

[
Imi−(i−1)(2h+1)−(h+1) O O

O O In−mi−h

]
, JM

6 = [In−11h−6 , O] ,(4.16)

with a small positive integer h > 0. To remove the data with seasonal frequencies
around λjs (j = 2, 3, 4, 5) using JM

j (j = 1, · · · , 6), we set a q × n matrix

FM
q =

6∏
j=1

JM
7−j .(4.17)

Although we do not know the unknown coefficient matrix B, we can incorporate the
estimated coefficient by regressing

Y∗
m = FqPnC

−1
n (Yn − Ȳ0)(4.18)

to
W∗

m = FqPnC
−1
n (Wn − W̄0) ,(4.19)
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where Fq is either F
Q
q or FM

q .
Type-II smoothing is defined by

Q(2)
n = W∗

n(W
∗′
nW

∗
n)

−1W∗′
n .(4.20)

and
Q(3)

n = F
′

qFq −Q(2)
n .(4.21)

Then, we have the decomposition

X̂∗
n = CnPnF

′

qFqPnC
−1
n (Yn − Ȳ0)(4.22)

= CnPn[Q
(2)
n +Q(3)

n ]PnC
−1
n (Yn − Ȳ0) .

In this case, we have the decomposition Q(2)
n +Q(3)

n = F
′
qFq and the corresponding

decomposition of the trend-cycle and regression parts.

Examples of Dummy Variables :
There are some examples of outlier and trend dummies. For nonstationary time
series, we should be careful about normalization because there can be significant
effects on smoothing. Although there are many other possible dummy variables, we
provide some examples that have been used in official data handling such as official
seasonal adjustment. Let ws (s = 1, · · · , n) be the dummy variable.

Example 1 :
The level shift (LS) variable can be defined as ws = 0 if s < t and wt = 1 if s ≥ t
for s = 1, · · · , n. This can be handled by Type-I smoothing.

Example 2 :
The outlier variable can be defined as ws = 1 if s = t and wt = 0 if s ̸= t for
s = 1, · · · , n. This variable is often called additive outlier (AO).

Example 3 :
The ramp variable can be defined by ws = 1 if s < t0, ws = 1− (t− t0)/(t1 − t0) if
t0 ≤ t ≤ t1, and wt = 0 if s ≥ t1.

Example 4 :
The double ramp variable can be defined by ws = 1 if s < t0, ws = 1−(t−t0)/(t1−t0)
if t0 ≤ t ≤ t1, ws = (t− t1)/(t2 − t1) if t1 ≤ t ≤ t2, and wt = c if s ≥ t2.

5. Frequency Domain and Likelihood

We consider the additive decomposition model yi = xi + si + vi (i = 1, · · · , n)
and take positive integers s (s > 1), N , and n = sN for the resulting simplicity and
arguments.
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Let f∆x(λ), fs(λ), and fv(λ) be the spectral density (p× p) matrices of ∆xi, si, and
vi (i = 1, · · · , n), respectively, such that

f∆x(λ) = (
∞∑
j=0

C
(x)
j e2πiλj)Σ(x)

e (
∞∑
j=0

C
(x)′

j e−2πiλj) (−1

2
≤ λ ≤ 1

2
) ,(5.1)

fv(λ) = (
∞∑
j=0

C
(v)
j e2πiλj)Σ(v)

e (
∞∑
j=0

C
(v)′

j e−2πiλj) (−1

2
≤ λ ≤ 1

2
) ,(5.2)

and

fs(λ) = (
∞∑
j=0

C
(s)
sj e

2πiλsj)Σ(s)
e (

∞∑
j=0

C
(s)′

sj e−2πiλsj) (−1

2
≤ λ ≤ 1

2
) ,(5.3)

where we set C
(x)
0 = C

(v)
0 = C

(s)
0 = Ip as normalizations and i2 = −1. Then, the p×p

spectral density matrix of the transformed vector process, which are observable, and
the spectral density of the difference series ∆yi (= yi − yi−1) can be represented as

f∆y(λ) = f∆x(λ) + (1− e2πiλ)[fs(λ) + fv(λ)](1− e−2πiλ) .(5.4)

We denote the long-run variance-covariance matrices of trend and stationary com-
ponents for g, h = 1, · · · , p as

Σ(x)
e = f∆x(0) (= (σ

(x)
gh )) , Σ

(v)
e = fv(0) = (σ

(v)
gh ) .(5.5)

Let f (SR)
v (λk), f (SR)

s (λk) and f
(SR)
∆x (λk) be the symmetrized p × p spectral ma-

trices of vi, si and ∆xi at λk (= (k − 1
2
)/(2n + 1)) for k = 1, · · · , n, that is,

f (SR)
v (λk) = (1/2)[f (SR)

v (λk) + f̄ (SR)
v (λk)], f

(SR)
s (λk) = (1/2)[f (SR)

s (λk) + f̄ (SR)
s (λk)],

and f
(SR)
∆x (λk) = (1/2)[f

(SR)
∆x (λk) + f̄

(SR)
∆x (λk)].

Proposition 1 of Kunitomo and Sato (2021) yields the condition that orthogonal
processes are approximately distributed as Gaussian distributions. Then, (-2) times
the log-likelihood function in the general model can be approximated as

(−2)ln(θ) =
n∑

k=1

log |a∗kn(f (SR)
v (λk) + f (SR)

s (λk)) + f
(SR)
∆x (λk))|(5.6)

+
n∑

k=1

z
′

k[a
∗
kn(f

(SR)
v (λk) + f (SR)

s (λk)) + f
(SR)
∆x (λk)]

−1zk .

We further consider the case when ∆xi, si, and vi are a sequence of independent
random vectors. Then we have Σ(x)

e = f
(SR)
∆x (λk) and Σ(v)

e = f (SR)
v (λk) for k =

1, · · · , n, and Σ(s)
e = f (SR)

s (λk) for some index set k ∈ In(s).

Moreover, when we have some dummy variables Wn, we have assumed that
they are independent of other noise, cycle, seasonal, and trend components. Then,
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under Gaussian assumption given the initial condition and the information set of
explanatory variables Wn, we can write (−2) times the conditional log-likelihood as

(−2)ln(θ|Wn) =
n∑

k=1

log |Σu∗(k, w)|+
n∑

k=1

[y∗′
k −w∗‘B][Σu∗(k,w)]

−1[y∗
k −B‘w∗

k] ,(5.7)

where y∗
k and w∗

k are the transformed explained variables and explanartory variables
(using K∗

ntransformation from the observed yi and wi (i = 1, · · · , n), respectiely,
and Σu∗(k, w) = a∗kn(Σ

(v)
e (w)+Σ(s)

e (w))+Σ(x)
e (w), which is the variance-covariance

matrix of u∗
k (k = 1, · · · , n). If we regard ak,n as constants with respect to k, the

log-likelihood function becomes a standard form. This analysis is useful because the
likelihood function is a complicated function and we oten need some approximation.

When we use the explanatory variablesWn, we can estimate the unknown matrix
B by Corollary 4.1 consistently. Let B̂ be the SIML estomator and z∗k = y∗

k −
B̂‘w∗

k (k = 1, · · · , n), which depend son Wn and denote z∗k(w) (k = 1, · · · , n).
To estimate Σx, it is reasonable to use

G∗
m(w) =

1

mn

mn∑
k=1

z∗k(w)z
∗′
k (w)(5.8)

with m/n → 0 and m → ∞.
There are two remarks. First, the ML estimation in the nonstationary errors-

in-variables models may have some difficulty when p > 1 without some strong re-
strictions of the parameter space as illustrated by Kunitomo, Awaya and Kurisu
(2019). Second, the likelihood functions in this section can be interpreted as the
Whittle-type likelihood function that does not depend on the Gaussian distributions
as utilized by Hosoya (1997).

6. Example of macroconsumption of durable goods

We use the official macroconsumption data of durable goods in Japan from 1994Q1
to 2019Q4 to illustrate the regression smoothing 2. Further, we need to estimate the
trend, seasonal, and noise components to deal with the original quarterly time series.
We applied the SIML smoothing procedure with m = 29 and h = 2, which yields
the minimum numbers of AIC. Kunitomo and Sato (2021) and Sato and Kunitomo
(2020) explained some aspects of the choice problem of m. All corresponding figures
are presented in Appendix B.

Figure 1 shows a summary of SIML smoothing for log-transformed data. This
is done because the original series has a significant heteroscedastic seasonality. In

2We have taken data from https://www.esri.cao.go.jp/jp/sna/menu.html (Economic and Social
Research Institute (ESRI), Cabinet Office, Japan). They are original series in real terms and ESRI
uses the X-12-ARIMA smoothing program for constructing seasonal-adjusted official data.
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Figures 1-4, “org ” stands for the original series, “trend ”, “seasonal ”, “noise ”
mean the estimated trend, seasonal, and noise components,]while “adj ” means the
estimated seasonally adjusted series, i.e., the observed series minus the estimated
seasonal component. “Z ” means the transformed series. In Figures 2-4, “reg ”
stands for the dummy variable.

The original time series has typical characteristics of macroeconomic time series
in Japan, i.e., it is a realization of nonstationary time series and exhibits rather
clear trend, cycle, seasonal and irregular components. We applied SIML filtering
with m = 29; red curve indicates the estimated trend-cycle component. Using Z-
transfprmed data, we capture the segnificant effects at the seaeasonal frequencis.
Although the estimated seasonal component gives regular seasonal pattern, the es-
timated trend-cycle and noise components suggest there are some abrupt changes
around the year of 2008-2009, 2011, and 2014, which may be different from the usual
noise component.

Then, we applied two AO-dummy variables at 2011Q1 and 2014Q1. In these
periods, there was a large effect caused by the 2011 earthquake in Japan, in addition
to introduction of consumption tax, both these events had significant effects on the
macroeconomy and consumption in Japan. We applied the ramp-dummy variable
from 2008Q3 to 2009Q1. In this period, there was a rapid downward effect attributed
by the 2008 financial crisis, and we can consider it to be appropriate to use the
ramp-dummy at 2008Q3-2009Q1. Figures 2 and 3 summarize SIML smoothing and
frequency regression results for the cases.

Finally, Figure 4 represents a summary of SIML smoothing and frequency regres-
sion with three dummy variables considered simultaneously. Based on the criteria
of AIC, we selected the last case for the best modelling for the macroconsumption of
durable goods; these effects are captured by our method. By using the transformed
data of (4.14) and (4.15) and the dummy variables, the AIC(w) was calculated based
on the regression equation by

AIC(w) = n log σ̂2
w + 2r(6.1)

where we use σ̂2
w calculated from the residuals of the dummy regression ((4.2) with

p = 1) and r denotes the number of dummy variables 3.
In our example we have p = 1, and two AICs were calculated: the first AIC in
figures was calculated using m low frequencies while the AIC in the parenthesis was
calculated using all frequency data except data around the seasonal frequency.

By using the model selection criteria for minimizing these AICs, we find that
SIML smoothing with three dummy variables (i.e., two AOs and a double ramp)
is the best model. We have reasonable result on the decomposition of original

3This AIC(w) is based on (4.3) and (5.7), which can be implemented easily. However, we have
taken the case as if akn were constant with respect to k because we use the procedure, that is free
from the maximum likelihood (ML) estimation of unknown parameters needed. In this sense, our
AIC(w) is an appromimate one.
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time series into trend-cycle, seasonal, and noise components. In the selected model,
the trend-cycle component includes one structural change and the noise component
includes two outliers.

This empirical analysis illustrates that we need to consider the important role
of incorporating the effects of the change point problem and abrupt changes in the
seasonal adjustment procedure.

7. Concluding Remarks

In many official time series, it is common to observe nonstationary trend, cycles,
seasonal, and measurement errors simultanepusly. In addition to these components,
we sometimes observe abrupt changes, trading-day effects, and other irregular com-
ponents. Thus, it seems difficult to remove the seasonal component and construct
macro-index, which involve multiple nonstationary time series. This paper presents
a new approach to handle nonstationary time series using frequency regression based
on SIML modelling in a systematic manner. Our method sheds new light on some
practical approaches to handle published economic time series, which have been prac-
tically used in official seasonal adjustments without formal justifications. There are
many empirical examples, and we reported an application of constructing a monthly
macroconsumption index in Kunitomo, Sato and Sakurai (2021) in some detail as
a real illustration. Another application would be the macro effects of Corona-Virus
occurring in 2020-2021, which is currently under investigation.

There are some problems that stilll need to be investigated. The present study
is based on the standard time series decomposition in (2.1) and (5.1), and assume

that v
(x)
i , v

(s)
i and v

(x)
i are i.i.d. sequences of random variables with mean zero and

variance-covariance matrix. This implies that their spectral densities are constant
in the frequency domain. There may be another approach to formulate the problem
and decompose the time series. For instance, it may be reasonable to consider the
case when the spectral density of v

(s)
i is zero except the region around the zero

frequency.
Another issue would be the computation of the procedure we explained in this

paper. We have developed R-programs (Sato (2020), Kunitomo, Sato and Sakurai
(2021)), which will be available in the future.
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APPENDIX A : Mathematical Derivations

We present the details for the derivation of Theorem 3.1 as an application of Theorem
A.1 below, that is an extension of Proposition 2 in Kunitomo and Sato (2021) and
Chapter 5 of Kunitomo, Sato and Kurisu (2018). Since some details are essentially
the same in the existing literature, we omit some of them and only refer to them. We
denote them as KS (2021) and KSK (2018), and use notations and some arguments
in their proof. We first provide the intuition for our result based on KS (2021) and
then present our proof.

A-I A Heuristic Derivation : We use the arguments in Section 5 of KS (2021).

Let θjk = 2π
2n+1

(j − 1
2
)(k − 1

2
) , p

(n)
jk = 1√

2n+1
(eiθjk + e−iθjk) and for Yn = (y

′
i) we

write zk (k = 1, · · · , n) as

zn(λ
(n)
k ) =

n∑
j=1

p
(n)
jk rj , rj = yj − yj−1 ,(A.1)

which is a (real-valued) Fourier type transformation and y0 is fixed.

Then, we find that zn(λ
(n)
k ) (k = 1, · · · , n) are the (real-valued) Fourier-transformation

of data at the frequency λ
(n)
k (= (k − 1/2)/(2n + 1)), which is a (real-part of) esti-

mate of the orthogonal incremental process z(λ) (0 ≤ λ ≤ 1/2), which is continuous
in the frequency domain. They are asymptotically uncorrelated random variables.
(See Chapters 8-9 of Anderson (1971) or Section 5 of KS (2021).)
Then, using a similar argument as in Proposition 1 of KS (2021), we find that for
k ̸= k

′

E[zin(λ
(n)
k )zjn(λ

(n)
k )zhn(λ

(n)

k′
)zln(λ

(n)

k′
)] = σij(λ

(n)
k )σhl(λ

(n)

k′
) + o(1)(A.2)

and for k = k
′

E[zin(λ
(n)
k )zjn(λ

(n)
k )zhn(λ

(n)
k )zln(λ

(n)
k )](A.3)

= σij(λ
(n)
k )σhl(λ

(n)
k ) + σih(λ

(n)
k )σjl(λ

(n)
k ) + σil(λ

(n)
k )σjh(λ

(n)
k ) + o(1) ,

where

σij(λ
(n)
k ) =

n−1∑
h=−(n−1)

[
cos 2πλ

(n)
k h

]
Γij(h) ,(A.4)

E[rjr
′
j−h] = Γ(h), rj = yj − yj−1 (j = 1, · · · , n) and y0 is a fixed vector.

As n → ∞ and m/n → 0, we have λ
(n)
k → 0 for 1 ≤ k ≤ m. We write for

k = 1, · · · ,m and as m/n → 0,

lim
n→∞

σij(λ
(n)
k ) = σ

(x)
ij (i, j = 1, · · · , p)(A.5)
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and Σx = (σ
(x)
ij ). Then

Var[
1

m

m∑
k=1

zin(λ
(n)
k )zjn(λ

(n)
k )] −→ σ

(x)
ii σ

(x)
jj + σ

(x)2
ij .(A.6)

We construct a sequence of random variables, which are approximately uncorrelated
(see Proposition 1 of KS (2021)) and for i, j = 1, · · · , p

sij(t) = zin(λ
(n)
t )zjn(λ

(n)
t )− E[zin(λ

(n)
t )zjn(λ

(n)
t )]

and

Mij(n, k) =
k∑

t=1

sij(t) .

Then, heuristically, we can apply the central limit theorem (CLT) for the stationary
process to obtain the asymptotic normality. However, to show this argument in a
rigorous way, we need further developments.

A-II Proof of Main Results : We first prepare a general result of the consistency
and asymptotic normality of the SIML estimation in nonstationary time series; this
is new and an extension of Proposition 2 of KS (2021).

Theorem A.1: Assume that the fourth order moments of each element of v
(x)
i and

vi in (2.1)-(2.5) are bounded. Let

Σ̂x(= (σ̂
(x)
gh )) =

1

m
Z∗′

mZ
∗
m ,(A.7)

which is G∗
m in (3.2). Then

(i) For mn = [nα] and 0 < α < 1, as n −→ ∞

Σ̂x −Σx
p−→ O .(A.8)

(ii) We set Σx = (σ
(x)
gh ). For mn = [nα] and 0 < α < 0.8, as n −→ ∞

√
mn

[
σ̂
(x)
gh − σ

(x)
gh

] L−→ N
(
0, σ(x)

gg σ
(x)
hh +

[
σ
(x)
gh

]2)
.(A.9)

The covariance of the limiting distributions of
√
mn[σ̂

(x)
gh −σ

(x)
gh ] and

√
mn[σ̂

(x)
kl −σ

(x)
kl ]

is given by σ
(x)
gk σ

(x)
hl + σ

(x)
gl σ

(x)
hk (g, h, k, l = 1, · · · , p).

Proof of Theorem A.1 : The proof consists of two steps.
(Step 1) : Let z

(x)
k = (z

(x)
kj ) and Z

(s+v)
k = (z

(s+v)
kj ) (k = 1, · · · , n) be the k-th row

vector elements of n× p matrices

Z(x)
n = K∗

n(Xn − Ȳ0) , Z
(s+v)
n = K∗

n(Sn +Vn) , K
∗
n = PnC

−1
n ,(A.10)
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respectively, where we denote Xn = (x
′
k) = (xkg), Sn = (s

′
k) = (skg), Vn = (v

′
k) =

(vkg), Zn = (z
′
k) (= (zkg)) as n × p matrices with zkg = z

(x)
kg + z

(s+v)
kg . We write

zkg, z
(x)
kg , z

(s+v)
kg as the g−th component of zk, z

(x)
k , and z

(s+v)
k (k = 1, · · · , n; g =

1, · · · , p). We use z
(f)
kg (f = x, s + v) and decompose Σ̂x −Σx(= (σ̂

(x)
gh − σ

(x)
gh )gh) for

g, h = 1, · · · , p). We rewrite

√
mn

[
1

mn

mn∑
k=1

zkz
′

k −Σx

]
(A.11)

=
√
mn

[
1

mn

mn∑
k=1

z
(x)
k z

(x)′

k −Σx

]
+

1
√
mn

mn∑
k=1

E[z
(s+v)
k z

(s+v)′

k ]

+
1

√
mn

mn∑
k=1

[
z
(s+v)
k z

(s+v)′

k − E[z
(s+v)
k z

(s+v)′

k ]
]
+

1
√
mn

mn∑
k=1

[
z
(x)
k z

(s+v)′

k + z
(s+v)
k z

(x)′

k

]
.

Then we can show that three terms except the first one of (A.11) are op(1) (as in
Theorem 4.1 of KS (2021), also see Chapter 5 of KSK (2018)) and the dominant
term

√
mn

[
1

mn

mn∑
k=1

z
(x)
k z

(x)′

k −Σx

]
(A.12)

is asymptotically normal as mn → ∞ (n → ∞), where Γ(h) = E[∆xt∆x
′
t−h] and

Σx = f∆x(0) =
+∞∑

h=−∞
Γ(h) .(A.13)

Then, the second term of (A.5) is op(1) if m = [nα] (0 < α < 0.8).

We show that the second, third and fourth terms on the right-hand-side of (A.11)
are asymptotically negligible as n → ∞. By modifying the proof of Proposition 2 of
KS (2021), it is straightforward to show these conditions because of the independence
assumption among ∆xi, si and vi (i = 1, · · · , n). We utilized the relation that

√
mn

1

mn

mn∑
k=1

a∗kn =
1

√
mn

2
mn∑
k=1

[
1− cos(π

2k − 1

2n+ 1
)

]
= O(

m5/2
n

n2
) ,(A.14)

and

1

m

m∑
k=1

2 cos(π
2k − 1

2n+ 1
) =

1

m

m∑
k=1

[ei
2π

2n+1
(k− 1

2
) + e−i 2π

2n+1
(k− 1

2
)] =

1

m

sin( 2π
2n+1

m)

sin( π
2n+1

)
.(A.15)

Then, we find that (A.14) is o(1) when mn = [nα] (0 < α < 0.8) while (A.15) is
bounded when mn/n → 0 and n → ∞.
Because of (A.14), (1/m)

∑m
k=1 a

∗
kn = O([m/n]2). Uing (A.15), we have the consis-

tency result of Σ̂x in (i) under the condition m/n → 0 as n → ∞ as in Kunitomo
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and Sato (2017) and KSK (2018).
(Step 2) : When we have the condition 0 < α < 0.8, we need to evaluate the
limiting distribution of the first term of (A.11) because of (A.14). Instead of (A.12),
we consider the asymptotic distribution of

s
(m)∗
ij =

1√
m
[g

(m∗)
ij − E(g

(m∗)
ij )](A.16)

and

g
(m∗)
ij = (

1

m

m∑
k=1

z
(x)
k z

(x)′

k )ij (i, j = 1, · · · , p) .(A.17)

Then, we decompose

s
(m)∗
ij =

1√
m

m∑
k=1

[
n∑

s=t=1

p2ks(r
∗
isr

∗
js − E(r∗isr

∗
js))](A.18)

+
1√
m

m∑
k=1

[
n∑

s ̸=t=1

p2ks(r
∗
isr

∗
jt − E(r∗isr

∗
jt))]

and

r∗i = ∆xi =
∞∑
s=0

Γswi−s ,(A.19)

where Γs (= (γis)) are p × p matrices with Γ(h) = O(ρ|h|) (0 ≤ ρ < 1), and we

consider wi (= e
(x)
i ) as a sequence of mutually independent random variables with

E[wi] = 0, E[wiw
′
i] = Σ(x)

v (> 0).
When we have the condition mn/n → 0 as n → ∞, the proof of Proposition 1 of
KS (2021) implies that

1
√
mn

[σ
(x)
ij − E(g

(m∗)
ij )] = o(1) .(A.20)

The evaluation of the limiting distribution of (A.16) or (A.18) is considerably simpler
than that for (A.12).

We set cst = [(2n + 1)/2m]ast for ast (s, t = 1, · · · , n) in (2.15). Then the first
term of (A.18) is asymptotically negligible because

∑n
k=1 p

2
ks = [2m/[2n+ 1]css and∑n

s=1 c
2
ss = O(n) as given in Chapter 5 of KSK (2018). We show the asymptotic

normality of the leading term

s
(m)∗∗
ij =

2
√
m

2n+ 1

n∑
s ̸=t=1

cst[r
∗
isr

∗
jt − E(r∗isr

∗
jt)] ,(A.21)

where

cst =
2

m

m∑
k=1

sskstk , sjk = cos
2π

2n+ 1
(j − 1

2
)(k − 1

2
) .(A.22)
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Under the stationarity condition of (A.19), the difference between (A.21) and the
second term of (A.18) is asymptotically negligible.
The proof of the asymptotic normality requires a lengthy derivation, which is a
modification of the method for the spectral density estimation used in the proof of
Theorem 9.4.1 presented by Anderson (1971). Because some of our arguments are
quite similar, we only repeat the essential arguments and differences. We provide
the proof for the case when p = 1 and use the notation Γs = γs (s = 0, 1, · · ·) and
s(m)∗∗ = s

(m)∗∗
ij because the proof of the general case when p ≥ 1 can be obtained

by using the standard device of r∗∗j = a
′
r∗j (j = 1, · · · , n) with an arbitrary (p × 1

non-zero constant) vector a.

Let Kn = [n/m] be a sequence of positive integers and Kn → ∞ (n → ∞).
Then, given s, cst → 0 for t− s > Kn as m,n → ∞ and m/n → 0. Then, by taking
t = s+ k (k = 1, · · · , n− s) we rewrite

s(m)∗∗ =
4
√
m

2n+ 1

n∑
t>s=1

cst[r
∗
sr

∗
t − E(r∗sr

∗
t )] ,(A.23)

=
4
√
m

2n+ 1

∞∑
l,l′=1

γlγl′
n∑

s=1

n∑
t=s+1,s−l ̸=t−l′

cstws−lwt−l
′ .

=
4
√
m

2n+ 1

∞∑
l,l′=1

γlγl′
n∑

s=1

n+1−s∑
k=1

n∑
s=1,s−l ̸=s+k−l′

cs,s+kws−lws+k−l′ .

We truncate the sum
∑∞

l,l′=1
[ · ], which decomposes as (

∑rn
l=1 +

∑∞
l=rn+1) (

∑rn
l′=1

+
∑∞

l′=rn+1
)[ · ]

by a sequence of sums
∑rn

l,l′=1
[ · ] such that rn → ∞ and

∑∞
l=rn+1 |γl| → 0. We can

approximate the infinite sum by a finite sum because the remaing terms are of
smaller order. The main term is

s
(m)∗∗
1 =

4
√
m

2n+ 1

rn∑
l,l′=1

γlγl′
n∑

s=1

n+1−s∑
k=1,s−l ̸=s+k−l′

cs,s+kws−lws+k−l′(A.24)

=
4
√
m

2n+ 1

rn∑
l,l′=1

γlγl′
n−q−l

′∑
h=l−l′+1,h ̸=0

n−l∑
q=1−l

cq+l,q+h+l′wqwq+h .

Since some parts of the above summation (i.e., the terms in
∑

l−l′≤h<1[ · ],∑
n−q−l′≤h<n−q[ · ],

∑
1−l≤q<0[ · ] and

∑
n−l≤q≤n−1[ · ] ) can be of negligible order, we

can approximate the summation as

s
(m)∗∗
11 =

4
√
m

2n+ 1
[
rn∑
l=1

γl
rn∑
l′=1

γl′ ]
n−q−l

′∑
h=l−l′+1

n−l∑
q=1−l

cq+l,q+h+l′wqwq+h(A.25)

∼ 4
√
m

2n+ 1
[
rn∑
l=1

γl
rn∑
l′=1

γl′ ]
n−q∑
h=1

n∑
q=1

cq+l,q+h+l′wqwq+h ,
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where we denote cs,t = 0 (s > n or t > n) for the resulting notational convenience.

Let m = [nα] (0 < α < 0.8), Kn = [n/m], Nn = [nδ/2] (δ > 0), and Mn = [n1−δ/2]
such that 1 − δ/2 > 0 and α + δ/2 > 1. Then, Kn/Nn → 0, Nn/n → 0

√
m/n ∼

[1/
√
n][1/

√
Kn] and Mn ∼ n/Nn as n → ∞. In the following we utilize the relation

cq+l,q+h+l′ − cq,q+h = o(1) for l, l
′
= 1, · · · , rn if we take rn such that rn ×mn/n → 0

as n,mn → ∞. This is because

sin 2πm[
2q + h+ l + l

′

2n+ 1
]− sin 2πm[

2q + h

2n+ 1
]

= sin 2πm[
2q + h

2n+ 1
][cos 2πm(

l + l
′

2n+ 1
)− 1] + cos 2πm[

2q + h

2n+ 1
] sin 2πm[

l + l
′

2n+ 1
] → 0

as n → ∞.
Furthermore, by using that some parts of (A.25) are of smaller orders as n → ∞
(the terms in

∑
h=Kn+1[ · ]), we can apply the CLT to

s
(m)∗∗∗
11 = 2[

rn∑
l=1

γl]
2 1√

n

1√
Kn

n∑
q=1

Kn∑
h=1

cq,q+hwqwq+h ,(A.26)

where we denote cq,q+h = 0 (q + h > n) for notational convenience. We notice that
cq,q+h (q = 1, · · · , n) is a sequence of bounded real numbers.
Let

Wqn =
1√
Kn

Kn∑
h=1

cq,q+hwqwq+h(A.27)

and

Ujn =
1√
Nn

[W(j−1)Nn+1,n + · · ·+WjNn−Kn,n] (j = 1, · · · ,Mn) .(A.28)

Then, we find that E[Wq,n] = 0, E[Wq,nWq+h,n] = 0 (h is any non-zero integer),
E[W 2

q,n] are bounded. Further, we have that U1,n, · · · , UMn,n are mutually indepen-
dent and E[U4

i,n] (i = 1,Mn) are uniformly bounded using the assumption of the
boundedness of the 4-th order moments of Wq (q = 1, · · · , n). Since other terms
except the leading term are stochastically of the smaller order, we can ignore them
when evaluating the limiting distribution, and we apply the Liyaponov-type CLT.
By using the relation that

1√
n

n∑
q=1

Wqn −
1√
Mn

Mn∑
j=1

Ujn
p−→ 0(A.29)

as n → ∞, the remaining terms are of smaller order (i.e. Kn terms in each Ujn (j =
1, · · · ,Mn)) when m,n → ∞ and m = nα, 0 < α < 0.8 because of Kn/Nn → 0.
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Then we have the asymptotic normality of (A.19) when p = 1. By using the relation∑n
s,t=1 c

2
st = (n+ 1/2)2/m ((5.16) of KSK (2018)) and

4[
∞∑

j=−∞
γj]

2
n∑

g=1

Kn∑
h=1

cg,g+h[σ
(x)
v ]4 ∼ 2[

∞∑
j=−∞

γj]
2

n∑
s,t=1

c2st[σ
(x)
v ]4 ,(A.30)

we have the desired result of the asymptotic variance when p = 1.
When p ≥ 1, we can evaluate the asymptotic covariance by calculating the covari-
ance of

∑
a,b,q,h cq,q+hγaswqγbtwq+h and

∑
c,d,q′ ,h′ cq′ ,q′+h′γcswq′γbtwq′+h′ , where γac

represents the a-th row vector of Γs. Then, after a straightforward evaluation, we fi-
nally find the asymptotic covariance in Theorem A.1 as σ(x)

ac σ
(x)
bd +σ

(x)
ad σ

(x)
bc (a, b, c, d =

1, · · · , p). (The argument here is essentially the same as the one in Chapter 5 of KSK
(2018) in the high-frequency financial formulation.)
(Q.E.D)

Proof of Theorem 3.1 : We use the representation

β̂m − β = G−1
22 [(0, Ik)G

(
1
−β

)
.(A.31)

Because (1/m)Gm
p→ Σ22 (m/n → 0, n → ∞) and under the assumption that Σ22

is a positive definite matrix, we investigate the asymptotic distribution of

√
mn[β̂

∗
m − β] = Σ−1

22

1√
m
(0, Ik)G

(
1
−β

)
.(A.32)

Then, the asymptotic variance-covariance matrix can be written as

AV[β̂m] = Σ−1
22 Cov[(0, Ik)Sb , b

′
S

(
0

′

Ik

)
]Σ−1

22 ,(A.33)

where S =
√
mn[G−Σ] (= (sjk)) and b =

(
1
−β

)
(= (bj)) .

By using Theorem A.1, we can evaluate the (l, l
′
)-th element (l, l

′
= 2, · · · , k+1) as

Cov[
k+1∑
j=1

bjsjl
k+1∑
j′=1

bj′sj′ l′ ] =
k+1∑

j,j′=1

bjbj′ (σj,j′σl,l′ + σj,l′σj′ ,l)

= σl,l′

k+1∑
j=1

bj[
k+1∑
l′=1

bj′σj,j′ ] + [
k+1∑
j=1

bjσj,l′ ][
k+1∑
j′=1

bj′σl,j′ ]

= σl,l′σ11.2

because [σ21,Σ22]b = 0 and

[σ11,σ12]b = σ11 − σ12Σ
−1
22 σ21 .(A.34)
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Then we have the result of the asymptotic variance-covariance matrix.
(Q.E.D)

Proof of Corollary 4.1 : We use the representation

B̂m −B = (W∗′
nW

∗
n)

−1W∗′
nU

∗
n ,(A.35)

where U∗
n = JmPnC

−1
n Un. By using a similar argument as the proof of Theorem

3.1 under the assumption of (4.4), we find that

AV[B̂m] = Σ−1
w∗Cov[

1√
m
W∗′

nU
∗
n,

1√
m
W∗′

nU
∗
n]Σ

−1
w∗ .(A.36)

Then, by using Theorems A.1 and 3.1 we have the result.
(Q.E.D)

APPENDIX B : Figures

In this Appendix, we gather some figures cited in Section 6. All computations have
been done by x12siml6 written in R (Sato (2020)), which will be available in the
near future.
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Figure 1: Macroconsumption (Data are the Quarterly real consumption of durable goods
(after log-transformation) between 1994Q1-2018Q4 published by the Economic Social Research
Institute (ESRI), Cabinet Office, Japan.)
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Figure 2: Macroconsumption (Data are the Quarterly real consumption of durable goods
(after log-transformation) between 1994Q1-2018Q4 published by the Economic Social Research
Institute (ESRI), Cabinet Office, Japan.)
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Figure 3: Macroconsumption (Data are the Quarterly real consumption of durable goods
(after log-transformation) between 1994Q1-2018Q4 published by the Economic Social Research
Institute (ESRI), Cabinet Office, Japan.)
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Figure 4: Macroconsumption (Data are the Quarterly real consumption of durable goods
(after log-transformation) between 1994Q1-2018Q4 published by the Economic Social Research
Institute (ESRI), Cabinet Office, Japan.)

30


