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Abstract

We present positive evidence of price stability of cryptocurrencies as a medium of

exchange. For the sample years from 2016 to 2020, the prices of major cryptocurrencies

are found to be stable, relative to major financial assets. Specifically, after filtering

out the less-than-one-month cycles, we investigate the daily returns in US dollars of

the major cryptocurrencies (i.e., Bitcoin, Ethereum, and Ripple) as well as their com-

parators (i.e., major legal tenders, the Euro and Japanese yen, and the major stock

indexes, S&P 500 and MSCI World Index). We examine the stability of the filtered

daily returns using three different measures. First, the Pearson correlations increased

in later years in our sample. Second, based on the dynamic time-warping method that

allows lags and leads in relations, the similarities in the daily returns of cryptocur-

rencies with their comparators have been present even since 2016. Third, we check

whether the cumulative sum of errors to predict cryptocurrency prices, assuming sta-

ble relations with comparators’ daily returns, does not exceeds the bounds implied by
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the Black-Scholes model. This test, in other words, does not reject the efficient market

hypothesis.

1 Introduction

A key question on cryptocurrencies is whether they can be used as money, a medium of

exchange. Many argue they cannot. It is said to be primarily because they are not backed

by any valuable goods and because their price movements are too volatile to use as money.

This paper presents positive evidence of price stability of cryptocurrencies as a medium of

exchange. For this purpose, we examine price stability after filtering out the high frequency

components. For example, the Euro or Japanese yen are known to be quite volatile against

the US dollar but still they are used in the daily lives by people in the Euro area countries or

in Japan because the high-frequency exchange rate volatility does not matter much for daily

real-goods transactions, as long as their average values are stable against the US dollar.

Specifically, we apply the frequency-filtering technique developed by Müller and Watson

(2018), abbreviated as the MW filter hereafter, to the daily returns of major cryptocurrencies,

legal tenders, and stock indexes. We essentially get rid of the less-than-one-month (i.e., 20

business days) movements in their daily returns. Then, we compare the stability in the

filtered daily returns of cryptocurrencies against those of legal tenders and stock indexes.

For cryptocurrencies, we pick the three major ones, that is, Bitcoin (BTC), Ethereum (ETH),

and Ripple (XRP). For major legal tenders to compare, we pick the Euro (EUR) and Japanese

yen (JPY), and we pick the S&P 500 (S&P500) and MSCI World Index (MSCI) for the major

stock indexes. All values are defined in terms of US dollars. The daily data are taken from

the beginning of 2016 to the end of 2020.

To see the stability of these prices based on the MW-filtered daily returns, we use three

different measures. The first one is the Pearson correlation as is also used by Müller and

Watson (2018) in a different context. We find that the MW filter makes cryptocurrency
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returns closer to the other financial asset returns. Moreover, the correlations in daily returns

between cryptocurrencies and other assets increased in later years in our sample.

The second one is a measure based on the dynamic time warping (DTW) algorithm. In

general, DTW is a method that calculates an optimal match between two time series data.

For the Pearson correlation, we compare, for example, BTC returns with S&P 500 returns

in each same day. However, in DTW, the data sequences are warped non-linearly in the time

dimension to see a similar pattern allowing for lags and leads. DTW is a widely applied

algorithm in non-economic fields, such as speech pattern recognition, though some studies

have already used DTW in economics, for example, Augustyński and Laskoś-Grabowski

(2018), Franses and Wiemann (2020), and Sidi (2020). Based on the DTW-based similarity

measure, we find that the similarity in daily returns of cryptocurrencies with other assets

has been present even since 2016, the beginning of our sample, and not much has changed

throughout our sample period. Note that the MW filtering also does the job by removing

erratic ups and downs in the similarity over the years for some pairs of cryptocurrencies and

other assets.

The third one is the cumulative sum (CUSUM) test, a test of the structural stability

under the efficient market hypothesis. It is simply a two-sample Kolmogorov-Smirnov test

in statistics. It was first developed based on the recursive residuals by Brown, Durbin,

and Evans (1975), and the method was refined using the OLS residuals by Ploberger and

Krämer (1992). Some discussions on the boundaries were made by Zeileis (2004)1. The

CUSUM test is essentially based on the Black-Scholes model with the assumption of stable

relationships with other financial assets. In economics literature, for example, the stability

of money-demand models has been examined by the CUSUM test (see Stock and Watson

(1996), Piehl, Cooper, Braga, and Kennedy (2003) and Elliott and Müller (2006)).

We find that cryptocurrency daily returns, based on the whole sample period, do pass

1R package was also developed by Zeileis, Leisch, Hornik, and Kleiber (2002).
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the CUSUM test after the MW filtering, though they do not pass before the MW filtering.

As for the other assets (EUR, JPY, S&P500, and MSCI), all of them essentially pass the

test either before or after the MW filtering. In other words, cryptocurrency price movements

have been enjoying stable relations with other major assets over the whole sample period,

from 2016 to 2020. We also conduct the CUSUM tests for later years only, that is, samples

starting from 2017, 2018, or 2019. BTC starting 2018, and JPY starting 2018 do not pass

the test before the MW filtering. However, after the MW filtering, only ETH starting 2018

fails the test.

There have been a few studies that examined the price stability of cryptocurrencies, such

as Vejačka (2014). A typical finding is a high price volatility of cryptocurrency compared

with traditional financial assets. Some similarity between Bitcoin and gold has been discussed

in Dyhrberg (2016). A more comprehensive study has been done in Sovbetov (2018), who

analyzed the underlying factors that influence prices of cryptocurrencies, stocks, and gold

in both the short- and long-term. Also, Kim, Kim, and Kim (2020) show a somewhat

stable relationship across prices of Bitcoin, gold, and S&P 500 based on a GARCH model.

Moreover, Shams (2019) shows that cryptocurrency prices co-move a lot, perhaps based

on SNS-based demand effects. Most of these existing studies, however, methodologically

requires some sort of stationarity or parametric stability, for which Müller and Watson

(2018) renounce for key economic and financial time series data and instead advocate to use

nonparametric or semi-parametric models, such as the Pearson correlation after the MW

filtering. Note that DTW is also nonparametric, and the CUSUM test is the test for a stable

relationship itself, not taking it as given.

A few studies on cryptocurrency price movements have shown that the high frequency

movements may be contaminated by inefficient market forces. This is also a key reason to

get rid of such high frequency components of price movements. For example, Aoyagi and

Hattori (2018) find that a technical cost issue (i.e., hash rate) matters for determining the

daily raw returns of Bitcoin. Moreover, Li, Shin, and Wang (2020) show that pump-and-
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dump schemes have been prevalent in cryptocurrency markets. Such a scheme is an illegal

act in the US stock market as it is backed by a small group of people who buy up a target

cryptocurrency up to a target price level and then sell it, all under close coordination, to

obtain huge profits.

A fact that a cryptocurrency is not backed by real assets cannot be used as a reason to

dismiss a cryptocurrency’s role as a medium of exchange. The theory-of-money literature

has shown the existence of a fiat money that is not backed by any real assets. Indeed, money

has a role when financial contracts are not completely enforceable due to costs (especially for

small transactions), and such an environment is often considered as trading with strangers

for whom contract enforcement is difficult (Bewley (1979), Townsend (1980), and Kiyotaki

and Wright (1989)). Moreover, intrinsically valueless money has a value only when people

think it is accepted by other people, who think it is accepted by yet other people, who

think. . . (repeated infinitely). This means that money is in essence a bubble and has to be

common knowledge (Chwe (1999)). Given these formal theoretical definitions in economics,

cryptocurrencies (or sea shells in old times) are legitimate candidates of money. What has

remained is an empirical question as to whether an acceptance by the people is stable or not.

The rest of the paper is organized as follows. In Section 2, we give a detailed description

of the data for the cryptocurrencies and other financial assets. In Section 3, we perform

a standard spectrum analysis to see the frequency distributions. Section 4 gives a brief

explanation of the MW filter. In Section 5, we show the Pearson correlation before and after

the MW filtering. Section 6 explains the DTW method and results. In Section 7, we discuss

the structural stability based on the CUSUM test. Section 8 concludes.

2 Data

We use daily time series data from January 1, 2016, to December 31, 2020, for three major

cryptocurrencies, Bitcoin (BTC), Ethereum (ETH), and Ripple (XRP). Those data are ob-
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tained through the API provided by the Cryptocompare (https://min-api.cryptocompare.

com/). We evaluate the stability of cryptocurrency values compared with the other fi-

nancial data, such as S&P500, gold, MSCI World Index (MSCI), Japanese Yen (JPY),

and the Euro (EUR). While the historical data of gold prices and the MSCI World In-

dex are obtained from Investing.com (https://investing.com/), the historical data of

S&P500 is obtained from Yahoo finance (https://finance.yahoo.com/), and the his-

torical data of JPY and EUR are obtained from the API provided by Cryptocompare

(https://min-api.cryptocompare.com/).

The prices of the cryptocurrencies and other financial assets are all defined in US dollars.

We let Pt denote the price of a financial asset at time t and Pt−1 the price of the asset at

time t− 1, and rt the (logarithmic) returns of the asset at t by

rt = log
Pt

Pt−1

× 365 . (2.1)

The descriptive statistics of the daily returns of cryptoprices and the key financial assets

for the whole sample period are described in Table 12. Figure 1 shows the 50-day moving

averages of the daily returns of the cryptocurrencies and other financial assets.

3 Short-Run and Long-Run Movements

The short-run and long-run price stability appear a bit differently in the return data. The

daily movements of cryptocurrencies are in general very large, relative to the traditional

financial assets. This means that when we make a Fourier transformation from the time

domain to the frequency domain, it is expected to see a large amount of high-frequency

component in their spectrum.

2The skewness measures symmetricity of the distribution. The kurtosis tells us whether the data is heavy-

tailed or light-tailed, relative to a normal distribution. Both skewness and kurtosis of normal distribution

are equal to 0.
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A power spectrum analysis is a useful tool to see the frequency distribution of some

financial assets data. Let us consider the daily return of asset data rt of length T = n∆t =

1.258×105, where n = 1258 is the number of daily data and ∆t = 100 is taken as the sampling

interval, and the frequency is defined by f = 1/T = 1/(n∆t) = 7.949 × 10−6. Then, the

discretized frequency and the discretized time are given by fk = k/(n∆t) (k = 1, · · · , n) and

tj = j∆t (j = 1, · · · , n), respectively. With this setup, the discrete Fourier transformation

(DFT) of the return of asset data rj is defined by

Qk =
n∑

j=1

rj exp(−i 2πj k/n) , (3.2)

where i =
√
−1 is the imaginary unit. The discretization of time with the sampling period

∆t implies a limitation of frequency f to the band f ∈ [− 1
2∆t

, 1
2 ∆t

] as frequencies outside

the range are folded inside by the finite sampling (see, for example, Hamming (2012)). This

boundary frequency is called the Nyquist frequency, fNQ = 1/(2∆t).

The power spectrum density IPSD(fk) for the return of asset data rt is then calculated by

IPSD(fk) =
2∆t2

n
Qk Q

∗
k , (3.3)

where ∗ stands for the complex conjugate. In practice, we use the Fast Fourier Transforma-

tion (FFT) to calculate the Fourier transformation of the return of asset data, and take the

sampling period as ∆t = 100, hence, the Nyquist frequency is fNQ = 0.005.

The power spectrum density for the returns of cryptocurrencies and key financial assets

are shown in Figures 2, 3, 4, 5, 6, 7, 8, and 9. These figures typically show that returns of

cryptocurrencies and key financial assets vary intensively with frequency. In the frequency

region higher than fNQ = 0.005, the noises seem dominant over the structurally important

signals. On the other hand, the structural signals are quite clear in the frequency region

lower than fNQ = 0.005 (i.e., 5× 10−3).
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4 Frequency Filtering

Now we know that the short-run movements of cryptocurrencies are somewhat strange, we

focus on the rest by filtering out the short-run movements. A proper way of using a high-

frequency filtering method for noisy non-stationary data has been proposed in Müller and

Watson (2018), who use an orthogonal projection of time series data yj(j = 1, · · · , n) onto

the space spanned by the cosine function based on low-frequency periodic vectors. Their

approach is an extension of the discrete cosine transformation (DCT) for the time series yj,

ŷ1 =

√
1

n

n∑
j=1

yj ,

ŷk =

√
2

n

n∑
j=1

cos

[
(j − 1)

(
k − 1

n

)
π

n

]
yj , for k = 2, · · · , n . (4.4)

The long-run projection of Müller-Watson is made by using the following transformation,

truncating the approximation with q < n,

ŷ1 =

√
1

n

q∑
j=1

yj ,

ŷk =

√
2

n

q∑
j=1

cos

[
(j − 1)

(
k − 1

2

)
π

n

]
yj , for k = 2, · · · , q . (4.5)

Here, up to the frequency that is represented by parameter q are extracted. More specif-

ically, ŷq is the data that is filtered to extract only frequencies lower than f̂ = 1/T̂ = q/(2n)

or T̂ = 2n/q period. We use the following condition to decide the value of parameter q.

q =
[ n

10

]
+ 3 , (4.6)

where
[
n
10

]
is the integer part of n

10
. For example, in the case of BTC, we set these parameters

as n = 1420 (i .e., q = 145), T̂ = 19, f̂ = 0.0526. This roughly means that we take out

short-run cycles occurring for less than 20 business days, which is essentially one month in
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the calendar3.

In other words, the MW filtering smooths the higher frequency movements in more than

one month (20 business days) as shown in the power spectrum density in Figures 2, 3, 4, 5,

6, 7, 8, and 9. Note that the MW filtering also somewhat smooths the low frequencies.

5 Similarity to the Major Financial Assets: The Müller-

Watson (2018) Approach

Recall that our objective in this study is to see the stability of prices or returns of cryp-

tocurrencies relative to key financial assets. The time series similarity could be measured by

the degree of comovements across two or more variables. How to evaluate comovements is

discussed extensively in Müller and Watson (2018). They renounce the cointegtation ap-

proach and instead propose to use the Pearson correlation after filtering out high-frequency

movements in the data.

Recall that the Pearson correlation is defined for two time series of data xt and yt as

P (xt, yt) =
cov (xt, yt)

σx σy

=
E [(xt − µx) (yt − µy)]

σx σy

. (5.7)

In order to show the importance of the Müller-Watson filtering, we show the correlation ma-

trices for both before and after filtering. The correlations before the Müller-Watson filtering

are shown in Tables 2, 3, 4, 5, and 6 for 2016, 2017, 2018, 2019, and 2020, respectively. The

correlations after the Müller-Watson filtering are shown in Tables 7, 8, 9, 10, and 11 for

2016, 2017, 2018, 2019, and 2020, respectively.

The correlation matrices indicate the long-run stability of cryptocurrencies relative to

the major financial assets. More specifically, we find three patterns. First, the correlations

3In the literature, a similar method of high-frequency filtering has been proposed and named as the

separating information maximum likelihood (SIML) method in Kunitomo and Sato (2013). We use an R

script provided by Sato, for whom we are grateful.
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between the returns of cryptocurrencies and key financial assets becomes more significant

after the Müller-Watson filtering for each year. Second, the returns of cryptocurrencies and

key financial assets become more and more correlated to each other in later years. Third,

the correlations among cryptocurrencies are getting stronger over time.

6 Dynamic Time Warping

Next, we investigate the similarities of cryptocurrency returns to key financial asset returns

by looking at the Dynamic Time Warping (DTW). This is often used in pattern recognition,

as developed by Itakura (1975) and Sakoe and Chiba (1978) (for a review, see Müller

(2007)), which allows leads and lags of data sequences over time when measuring the simi-

larity.

A set of time series, which are the returns of assets in our case, x = {xt} = (x1, · · · , xn)

and y = {yt} = (y1, · · · , ym), can be expressed in terms of the warping path, Λ = (w1, · · · , wK).

The warping path is a contiguous set of matrix elements that define a mapping between xt

and yt. A typical element wℓ is represented by (i, j), that selects xi from x and yj from y.

Formally, the DTW distance between two given sequences, x and y, can be calculated by

D(x, y) = min
Λ∗

∑
(i,j)∈Λ∗

d(xi, yj) , (6.8)

where Λ∗ is the warping path that minimizes the cumulative distance of all mapped point-

pairs on the path. Although the element distance function d(xi, yj) could take one of several

forms, normally and here, it is given by the Euclidean distance, that is,

d(xi, yj) =

√
(xi − yj)

2 . (6.9)

The best warping path Λ∗ is found using a dynamic programming approach to align two

sequences. Going through all possible paths is combinatorially explosive, as pointed out by

Berndt and Clifford (1994), hence, the possible warping paths need to be restricted. When
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we apply the DTW method to two economic data series, we think it natural to constrain the

possible warping paths by following three conditions.

The first constraint is the boundary condition. This requires the warping path to start

and finish in diagonally opposite corner cells (i.e., the starting date and the ending date of

the sample) of the warping path matrix,

w1 = (1, 1) and wK = (n,m) . (6.10)

The second constraint is the continuity condition. This constraint limits the path transitions

to adjacent points in time,

wℓ − wℓ−1 ∈ {(1, 0) , (0, 1) , (1, 1)} . (6.11)

The third constraint is the monotonicity condition. This constraint preserves the time-order

of points.

If wℓ = (i, j) and wℓ+1 = (i′, j ′) , then i ≤ i′ and j ≤ j′ . (6.12)

In practice, the DTW distance is calculate in a recursive way. First, we construct two

subsequences x̃i = (x1, · · · , xi) for i = 1, · · · , n and ỹj = (y1, · · · , yj) for j = 1, · · · ,m from

an assumed optimal path sequence. Then, we define the cost function for each subsequence

as

γ(i, j) = D(x̃i, ỹj) for i = 1, · · · , n and j = 1, · · · ,m . (6.13)

The cost function γ(i, j) specifies the total cost of an assumed optimal warping path

starting from w1 = (1, 1) and ending at wℓ = (i, j).

Second, we find the cost function γ(i, j) in the recursive way. Namely, it is computed

iteratively using a nested loop according to the following formula,

γ̂(i, j) = d(xi, yj) + min{γ(i− 1, j), γ(i, j − 1), γ(i− 1, j − 1)} , (6.14)

and

γ̂(i, j) = γ(i, j) , (6.15)
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where i = 1, · · · , n and j = 1, · · · ,m, with appropriate initial values4. Once the cost function

is found, it is the DTW distance, D(x, y) = γ(n,m), and the optimal warping path Λ∗ is

identified. For example, the paired data (i.e., the DTW optimal warping path Λ∗) between

BTC and GOLD in 2020 is shown in Figure 10.

Note that the Pearson correlation always compares the same period data (xt, yt). For the

DTW distance, the periods to compare are related (xi, yj), though i and j are not necessary

the same time t. For example, if x = {xt} and y = {yt} follow the simple sine and cosine

functions, respectively, in the time dimension, then they are orthogonal, and thus their

Pearson correlation is zero. However, they look the same when one of their phases is shifted

by π, thus, their DTW distance is 0, which means their shapes are exactly the same.

It is useful to normalize the DTW distance relative to some base value. Let us use the

maximum of the DTW distance between a pair of key financial assets (i.e., JPY, EUR,

GOLD, S&P500, and MSCI), Dmax, as the base value for all other DTW distances. That is,

we normalize the DTW distance as follows,

D̄(x, y) =
D(x, y)

Dmax

. (6.16)

We show the normalized DTW distance D̄(x, y) before the Müller-Watson filtering in

Tables 12, 13, 14, 15, and 16 for each sample year. The corresponding results after the

Müller-Watson filtering are shown in Tables 17, 18, 19, 20, and 21.

There are several salient features which appear in these Tables. First, the strengthening

trend in similarities among returns of cryptocurrencies and key financial assets seem less clear

than in the Pearson correlations (Tables 2 and 3). Before the MW filtering, they, especially

BTC, seem to behave similarly even in 2016, that is the initial period of our sample. These

similarities dwindled in 2017 until 2019. In 2020, it recovered especially for BTC. However,

after the MW filtering, similarities are less fluctuating and relatively stable, especially for

BTC, in almost all the sample years.

4The python code is available upon request.
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Second, frequency filtering does make some differences. For example, Table 13 shows

quite a different movement only in XRP in 2017 compared with the other assets. This result

also seems to be supported in Figure 1. In particular, it is shown in Figure 1 that the

returns of XRP dramatically rises in 2017. However, after the MW filtering, the returns of

XRP behave in a similar way, as shown in Table 18. The following year, 2018, also show

almost the same case for the returns of XRP before the MW filtering (see Table 14) and

after the frequency filtering (see Table 19). This is interesting as there was the well-known

2018 cryptocurrency crash (also known as the great crypto crash). Note, however, that even

after the MW filtering, XRP seems to move somewhat differently compared to other assets

in 2020.

7 Stability from the Viewpoint of the Black-Scholes

Model

Under a simple, efficient market hypothesis, can we assume the price stability of cryptocur-

rencies? Since the traditional financial asset returns can be considered as more or less

following the Brownian motion, we test whether the cryptocurrency returns also follows a

simple form of the Black-Scholes formula under stable relationships with key financial asset

returns.

Following Elliott and Müller (2006), we consider the tests of the null hypothesis of a

stable coefficient β̄ in

zt = XT
t β̄ + ZT

t γ̄ + ϵ̄t (7.17)

against the alternative of variable coefficient βt in

zt = XT
t βt + ZT

t γ + ϵt . (7.18)

The null hypothesis of stable β̄ is rejected, if the cumulative sum (CUSUM) of residual
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with constant β̄ exceed the limit that is consistent with the Brownian bridge (see, Appendix

A).

First, we consider the structural stability based on the OLS-CUSUM test by using all

the data. Here, β̄ is obtained once by OLS. As is clearly explained in Krämer, Ploberger

and Schlüter (1991), the sum of the OLS residual always starts from 0 and ends with 0. In

between, it has some bounds.

Second, we also employ the recursive CUSUM (Rec-CUSUM) test, which can be useful to

monitor price stability every day. Here, the residuals are obtained as one-step ahead forecast

errors. In other words, β̄ is obtained using historical data at each date. The null hypothesis

of the structural stability depends on the choice of the sampling periods. We divide our data

into four sets of data samples as follows: (i) all the data; (ii) a sample data from 2017 to

2020; (iii) a sample data from 2018 to 2020; and (iv) a sample data from 2019 to 2020. We

then proceed with the Rec-CUSUM test for each sample set.

We consider two types of boundaries for the CUSUM tests5. We use the following two

types of boundaries for the OLS-CUSUM test. One is a constant in time and another is

proportional to the standard deviation function of the corresponding theoretical process, as

proposed in Zeileis (2004),

b(t) = ν (7.19)

b(t) = 2ν
√
t(1− t) (7.20)

for the OLS-CUSUM path. We take ν = 1.358 at the 95% confidence interval.

When we apply the Rec-CUSUM test, we consider the following two types of boundaries

5The crucial difference between the Rec-CUSUM test and the OLS-CUSUM test is in the limiting process.

In the former case, the limiting process is the Wiener process (Brownian motion), but in the latter case, the

limiting process is the Brownian bridge.
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as proposed in Brown, Durbin, and Evans (1975) and Zeileis (2004),

b(t) = λ (2 t− 1) (7.21)

b(t) = 2ν
√
t (7.22)

with λ takes the value λ = 0.948 at the 95% confidence interval6.

Note that there is no need to change conditions in the test of the structural stability even

if we apply frequency filtering. This is known as pattern recovery in Mehrizi and Chenouri

(2020) and Mehrizi and Chenouri (2021). Similar studies can be found, for example, in

Kim, Koh, Boyd, and Gorinevsky (2009) and Phillips and Jin (2021).

We perform the test of this structural stability, based on the following regression for the

daily returns of each cryptocurrency or key financial asset on the returns of other financial

assets. For example, for Bitcoin,

BTCt = β̄0 + BTCt−1 β̄1 + JPYt−1 β̄2 + EURt−1 β̄3 + GOLDt−1 β̄4 + S&P500t−1 β̄5

+ MSCIt−1 β̄7 + ϵ̄t , (7.23)

where the symbolic notations stand for the daily returns, for example, BTCt for the BTC

daily return at time t.

First, we show the results of the OLS-CUSUM test for both before and after the MW

filtering is applied. Figures 11, 12, 13, 14, 15, 16, 17 and 18 illustrate the results, that is,

whether the daily returns exceed the boundary consistent with the Black-Scholes formula

under the assumption of a stable relationship with other financial assets before the Müller-

Watson filtering.

6There are several constructions of the boundaries of the stochastic process. In the monitoring context,

a nearly linear boundary was considered in Chu, Stinchcombe and White (1996) and Leisch, Hornik, and

Kuan (2000), which is written as follows:

b(t) =

[
t(t− 1)

(
a2 + ln

(
t

t− 1

))]1/2
,

where a only depends on the confidence level α.
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Based on the OLS-CUSUM test, there are two findings from the structural stability tests.

We find that before the MW filtering, only ETH and XRP apparently exceed the boundaries

of the Brownian bridge. Moreover, BTC almost reaches the boundaries of the Brownian

bridge as well.

However, this is not the case after the MW filtering. Also, all the other assets do not

exceed the boundaries either, before or after the MW filtering (see Figures 19, 20, 21, 22, 23,

24, 25 and 26). In other words, cryptocurrencies are stable enough within the boundaries

of the Brownian bridge after the MW filtering is applied, as is the case for the key financial

assets.

Second, we conduct the Rec-CUSUM test. Figures 27, 31, 35, 39, 43, 47, 51 and 55

illustrate the results using all the data, that is, whether the daily returns exceed the boundary

consistent with the Black-Scholes formula before the MW filtering.

Similar to the OLS-CUSUM test, we find that before the MW filtering, only ETH (and

perhaps GOLD) exceeds the boundaries of the Brownian motion in the Rec-CUSUM test

when we use all the data from 2016 to 2020.

However, once again, this is not the case after the MW filtering. All assets (perhaps

except for GOLD) do not exceed the boundaries of the Brownian motion after the MW

filtering (see Figures 59, 63, 67, 71, 75, 79, 83 and 87). Once again, these results show that

cryptocurrencies are stable enough within the boundaries of the Brownian motion after the

MW filtering is applied, as is the case for the key financial assets.

In addition to that, we also conduct the Rec-CUSUM tests using the latter parts of data

before the MW filtering, that is, (i) a sample data from 2017 to 2020; (ii) a sample data

from 2018 to 2020; and (iii) a sample data from 2019 to 2020. The results before the MW

filtering can be seen in Figures 28, 29, and 30 for BTC, Figures 32, 33, and 34 for ETH,

Figures 36, 37, and 38 for XRP, Figures 40, 41, and 42 for JPY, Figures 44, 45, and 46 for

EUR, Figures 48, 49, and 50 for GOLD, Figures 52, 53, and 54 for S&P500, and Figures 56,

57, and 58 for MSCI.
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For the sample data from 2018 to 2020, BTC and JPY before the MW filtering exceed the

boundaries of the Brownian motion. For other subsample years, all the return movements

are within the boundaries.

However, the results change in the Rec-CUSUM tests after the MW filtering (see Figures

60, 61, and 62 for BTC, Figures 64, 65, and 66 for ETH, Figures 68, 69, and 70 for XRP,

Figures 72, 73, and 74 for JPY, Figures 76, 77, and 78 for EUR, Figures 80, 81, and 82 for

GOLD, Figures 84, 85, and 86 for S&P500, and Figures 88, 89, and 90 for MSCI). Even for

the sample data from 2018 to 2020, all the assets, except for ETH, after the MW filtering

do not exceed the boundaries of the Brownian motion.

In summary, we confirm that the returns on cryptocurrencies after the MW filtering are

essentially stable enough within the boundaries of the Brownian bridge or the Brownian

motion, as is the case for the key financial assets.

8 Conclusion

A key question on cryptocurrencies is whether they can be used as money, a medium of

exchange. Many argue they cannot. A major reason is that their price movements are too

volatile to use as money.

We have presented positive evidences of price stability of cryptocurrencies. We focus on

the daily returns after filtering out the high frequency components, which are contaminated

by technical forces. Also, for the daily transaction uses, people do not seem to care about the

high frequency movements of money, say, the Euro or Japanese yen against the US dollar.

Specifically, we apply the filter developed by Müller and Watson (2018) to the daily

return data of major cryptocurrencies (i.e., Bitcoin (BTC), Ethereum (ETH), and Ripple

(XRP)) as well as their comparators (i.e., major legal tenders, the Euro (EUR) and Japanese

yen (JPY), and major stock indexes, the S&P 500 and the MSCI World Index (MSCI)). By

doing so, we essentially get rid of the less-than-one-month cycles of their price movements.
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We then investigate the stability of the filtered daily returns using three different mea-

sures. First, we find that the Pearson correlations in the daily returns between cryptocur-

rencies and other assets increased in latter years in our sample from the beginning of 2016 to

the end of 2020. Second, however, based on the DTW method that allow lags and leads, we

find that the similarity in the daily returns of cryptocurrencies with other assets has been

present even since 2016, the beginning of our sample, and not much changed throughout

our sample period. Third, we test the stability of the relationships between daily returns of

cryptocurrencies and those of their comparators by checking if the cumulative sum of errors,

under the assumption of stable coefficients on comparators’ daily returns, does not exceeds

the statistical bounds. This CUSUM test is based on the efficient market hypothesis and

the results assure the market efficiency and structural price stability of cryptocurrencies, as

is also the case for other major financial assets.

In summary, interestingly, for the years from 2016 to 2020, the prices of major cryptocur-

rencies are found to be stable. This conclusion is not well shown without filtering out the

high frequency movements or without conducting deeper investigations than simple correla-

tions. Still, apparently, an empirical question remains if such stability can be continued for

the foreseeable future.
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Appendix

A CUSUM Test

Let {zt}, for t = 1, · · · , n, be the observed time series and we write it as.

zt = µt + ϵt , (A.24)

where µt = XT
t βt is a trend component in the linear regression model and ϵt is the i.i.d.

disturbances, which are assumed to be stationary and ergodic with the following condition:

E [ϵt] = 0 and V [ϵt] = σ2 . (A.25)

In the standard linear regression model, the coefficients βt is estimated as β̂t by using the

ordinary least squares (OLS) method. Then, the OLS residual ϵ̂t, can be also estimated with

E[ϵ̂t] = 0 and V[ϵ̂t] = σ̂2 . (A.26)

The key is to evaluate the fluctuations of the cumulative sum (CUSUM) of residuals. The

null hypothesis is that σ̂2 is not explosive. See discussion by Brown, Durbin, and Evans

(1975).

It is useful to define a continuous time stochastic process (sometimes known as the em-

pirical fluctuation process) of the sum of residuals as

Wn(τ) =
1

σ̂
√
n

n∑
i=1

1{τ≤t}ϵ̂i . (A.27)

In the recursive CUSUM (Rec-CUSUM) test, the residual ϵ̂t is essentially the one-step-

ahead forecast error and given by

ϵ̂t =
zt −XT

t β̂t−1√
1 +XT

t

(∑t−1
i=1 XiXT

i

)−1
Xt

. (A.28)
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Here, β̂t−1 is estimated by the OLS using the data up to the previous period t − 1. In this

case, the limiting process becomes the Brownian motion (i.e., Wiener process).

In fact, according to the functional central limit theorem or the Donsker’s theorem, Wn(τ)

converges to the Wiener process W (τ):

W (τ) = lim
n→∞

∥Wn(τ)∥ , for 0 ≤ τ ≤ 1 , (A.29)

where the convergence means the weak convergence of the associated probability measures.

The Wiener process (i.e., the Brownian motion) has the following properties:

E [W (τ)] = 0 and V [W (τ)] = τ . (A.30)

Based on this property, the Rec-CUSUM test bounds are obtained.

In the case of the OLS-CUSUM tests, β̂ based on all samples is used instead of β̂t−1.

As the OLS residuals are correlated to each other and their sum is zero by definition, the

limiting process of the OLS-CUSUM is no longer a Brownian motion. Instead, the limiting

process is known to become a Brownian bridge:

B(τ) = W (τ)− τ W (1) , for 0 ≤ τ ≤ 1 . (A.31)

An alternative representation of the Brownian bridge is given by the stochastic differential

equation,

dB(τ) = dW (τ)− B(τ)

1− τ
dτ , for 0 ≤ τ ≤ 1 , (A.32)

whose solution is given by

B(τ) =

∫ τ

0

1− τ

1− t
dW (t) , for 0 ≤ τ ≤ 1 . (A.33)

The Brownian bridge has the following properties:

E [B(τ)] = 0 and V [B(τ)] = τ(1− τ) . (A.34)
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Here, the OLS-CUSUM test uses the following quantity:

Mn(τ) = max
0≤s≤τ

∥Wn(s)∥ . (A.35)

The distribution Mn(τ) converges to the Kolmogorov distribution (or the Markov process)

as follows:

M(τ) = lim
n→∞

∥Mn(τ)∥ , (A.36)

then, it satisfies

M(τ) = sup
0≤τ≤1

∥B(τ)∥ . (A.37)

In general, the cumulative distribution function of the Kolmogorov distribution M(τ) is

given by

P (M(τ) ≤ x) = 1− 2
∞∑
k=1

(−1)k−1 exp(−2k2x2) . (A.38)

The goodness-of-fit test or the Kolmogorov–Smirnov test can be constructed by using

the critical values of the Kolmogorov distribution,

P
(

sup
0≤τ≤1

∥B(τ)∥ ≤ b(τ)

)
= 1− α , (A.39)

where 1− α represents the confidence interval.
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Figure 1: 50 days moving average returns (annualized, %) of cryptocurrencies and key

financial assets

(a) 50 days moving average returns (annualized, %) of cryptocurrencies (BTC,

ETH, and XRP)

(b) 50 days moving average returns (annualized, %) of JPY, EUR, and GOLD

(c) 50 days moving average returns (annualized, %) of S&P500 and MSCI



Figure 2: The power spectrum density (PSD) of BTC

(a) The power spectrum density (PSD) of BTC (before the Müller-Watson filtering)

(b) The power spectrum density (PSD) of BTC (after the Müller-Watson filtering)
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Figure 3: The power spectrum density (PSD) of ETH

(a) The power spectrum density (PSD) of ETH (before the Müller-Watson filtering)

(b) The power spectrum density (PSD) of ETH (after the Müller-Watson filtering)
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Figure 4: The power spectrum density (PSD) of XRP

(a) The power spectrum density (PSD) of XRP (before the Müller-Watson filtering)

(b) The power spectrum density (PSD) of XRP (after the Müller-Watson filtering)
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Figure 5: The power spectrum density (PSD) of JPY

(a) The power spectrum density (PSD) of JPY (before the Müller-Watson filtering)

(b) The power spectrum density (PSD) of JPY (after the Müller-Watson filtering)
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Figure 6: The power spectrum density (PSD) of EUR

(a) The power spectrum density (PSD) of EUR (before the Müller-Watson filtering)

(b) The power spectrum density (PSD) of EUR (after the Müller-Watson filtering)
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Figure 7: The power spectrum density (PSD) of GOLD

(a) The power spectrum density (PSD) of GOLD (before the Müller-Watson filtering)

(b) The power spectrum density (PSD) of GOLD (after the Müller-Watson filtering)
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Figure 8: The power spectrum density (PSD) of S&P500

(a) The power spectrum density (PSD) of S&P500 (before the Müller-Watson filtering)

(b) The power spectrum density (PSD) of S&P500 (after the Müller-Watson filtering)
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Figure 9: The power spectrum density (PSD) of MSCI

(a) The power spectrum density (PSD) of MSCI (before the Müller-Watson filtering)

(b) The power spectrum density (PSD) of MSCI (after the Müller-Watson filtering)
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Figure 10: DTW alignment between BTC and GOLD in 2020
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Figure 11: The OLS-CUSUM test of BTC (before the Müller-Watson filtering)
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Figure 12: The OLS-CUSUM test of ETH (before the Müller-Watson filtering)
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Figure 13: The OLS-CUSUM test of XRP (before the Müller-Watson filtering)
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Figure 14: The OLS-CUSUM test of JPY (before the Müller-Watson filtering)
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Figure 15: The OLS-CUSUM test of EUR (before the Müller-Watson filtering)
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Figure 16: The OLS-CUSUM test of GOLD (before the Müller-Watson filtering)
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Figure 17: The OLS-CUSUM test of S&P500 (before the Müller-Watson filtering)
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Figure 18: The OLS-CUSUM test of MSCI (before the Müller-Watson filtering)
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Figure 19: The OLS-CUSUM test of BTC (after the Müller-Watson filtering)
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Figure 20: The OLS-CUSUM test of ETH (after the Müller-Watson filtering)
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Figure 21: The OLS-CUSUM test of XRP (after the Müller-Watson filtering)
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Figure 22: The OLS-CUSUM test of JPY (after the Müller-Watson filtering)
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Figure 23: The OLS-CUSUM test of EUR (after the Müller-Watson filtering)
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Figure 24: The OLS-CUSUM test of GOLD (after the Müller-Watson filtering)
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Figure 25: The OLS-CUSUM test of S&P500 (after the Müller-Watson filtering)
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Figure 26: The OLS-CUSUM test of MSCI (after the Müller-Watson filtering)
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Figure 27: The Rec-CUSUM test of BTC [2016-2020] (before the Müller-Watson filtering)
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Figure 28: The Rec-CUSUM test of BTC [2017-2020] (before the Müller-Watson filtering)
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Figure 29: The Rec-CUSUM test of BTC [2018-2020] (before the Müller-Watson filtering)
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Figure 30: The Rec-CUSUM test of BTC [2019-2020] (before the Müller-Watson filtering)
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Figure 31: The Rec-CUSUM test of ETH [2016-2020] (before the Müller-Watson filtering)
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Figure 32: The Rec-CUSUM test of ETH [2017-2020] (before the Müller-Watson filtering)
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Figure 33: The Rec-CUSUM test of ETH [2018-2020] (before the Müller-Watson filtering)
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Figure 34: The Rec-CUSUM test of ETH [2019-2020] (before the Müller-Watson filtering)
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Figure 35: The Rec-CUSUM test of XRP [2016-2020] (before the Müller-Watson filtering)
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Figure 36: The Rec-CUSUM test of XRP [2017-2020] (before the Müller-Watson filtering)

62



Figure 37: The Rec-CUSUM test of XRP [2018-2020] (before the Müller-Watson filtering)
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Figure 38: The Rec-CUSUM test of XRP [2019-2020] (before the Müller-Watson filtering)
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Figure 39: The Rec-CUSUM test of JPY [2016-2020] (before the Müller-Watson filtering)
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Figure 40: The Rec-CUSUM test of JPY [2017-2020] (before the Müller-Watson filtering)
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Figure 41: The Rec-CUSUM test of JPY [2018-2020] (before the Müller-Watson filtering)
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Figure 42: The Rec-CUSUM test of JPY [2019-2020] (before the Müller-Watson filtering)
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Figure 43: The Rec-CUSUM test of EUR [2016-2020] (before the Müller-Watson filtering)
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Figure 44: The Rec-CUSUM test of EUR [2017-2020] (before the Müller-Watson filtering)

70



Figure 45: The Rec-CUSUM test of EUR [2018-2020] (before the Müller-Watson filtering)
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Figure 46: The Rec-CUSUM test of EUR [2019-2020] (before the Müller-Watson filtering)
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Figure 47: The Rec-CUSUM test of GOLD [2016-2020] (before the Müller-Watson filtering)
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Figure 48: The Rec-CUSUM test of GOLD [2017-2020] (before the Müller-Watson filtering)
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Figure 49: The Rec-CUSUM test of GOLD [2018-2020] (before the Müller-Watson filtering)
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Figure 50: The Rec-CUSUM test of GOLD [2019-2020] (before the Müller-Watson filtering)
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Figure 51: The Rec-CUSUM test of S&P500 [2016-2020] (before the Müller-Watson filtering)
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Figure 52: The Rec-CUSUM test of S&P500 [2017-2020] (before the Müller-Watson filtering)
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Figure 53: The Rec-CUSUM test of S&P500 [2018-2020] (before the Müller-Watson filtering)
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Figure 54: The Rec-CUSUM test of S&P500 [2019-2020] (before the Müller-Watson filtering)
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Figure 55: The Rec-CUSUM test of MSCI [2016-2020] (before the Müller-Watson filtering)
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Figure 56: The Rec-CUSUM test of MSCI [2017-2020] (before the Müller-Watson filtering)
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Figure 57: The Rec-CUSUM test of MSCI [2018-2020] (before the Müller-Watson filtering)
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Figure 58: The Rec-CUSUM test of MSCI [2019-2020] (before the Müller-Watson filtering)
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Figure 59: The Rec-CUSUM test of BTC [2016-2020] (after the Müller-Watson filtering)
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Figure 60: The Rec-CUSUM test of BTC [2017-2020] (after the Müller-Watson filtering)
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Figure 61: The Rec-CUSUM test of BTC [2018-2020] (after the Müller-Watson filtering)
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Figure 62: The Rec-CUSUM test of BTC [2019-2020] (after the Müller-Watson filtering)
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Figure 63: The Rec-CUSUM test of ETH [2016-2020] (after the Müller-Watson filtering)
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Figure 64: The Rec-CUSUM test of ETH [2017-2020] (after the Müller-Watson filtering)
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Figure 65: The Rec-CUSUM test of ETH [2018-2020] (after the Müller-Watson filtering)
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Figure 66: The Rec-CUSUM test of ETH [2019-2020] (after the Müller-Watson filtering)
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Figure 67: The Rec-CUSUM test of XRP [2016-2020] (after the Müller-Watson filtering)
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Figure 68: The Rec-CUSUM test of XRP [2017-2020] (after the Müller-Watson filtering)
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Figure 69: The Rec-CUSUM test of XRP [2018-2020] (after the Müller-Watson filtering)
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Figure 70: The Rec-CUSUM test of XRP [2019-2020] (after the Müller-Watson filtering)
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Figure 71: The Rec-CUSUM test of JPY [2016-2020] (after the Müller-Watson filtering)
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Figure 72: The Rec-CUSUM test of JPY [2017-2020] (after the Müller-Watson filtering)
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Figure 73: The Rec-CUSUM test of JPY [2018-2020] (after the Müller-Watson filtering)

99



Figure 74: The Rec-CUSUM test of JPY [2019-2020] (after the Müller-Watson filtering)
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Figure 75: The Rec-CUSUM test of EUR [2016-2020] (after the Müller-Watson filtering)
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Figure 76: The Rec-CUSUM test of EUR [2017-2020] (after the Müller-Watson filtering)
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Figure 77: The Rec-CUSUM test of EUR [2018-2020] (after the Müller-Watson filtering)
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Figure 78: The Rec-CUSUM test of EUR [2019-2020] (after the Müller-Watson filtering)
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Figure 79: The Rec-CUSUM test of GOLD [2016-2020] (after the Müller-Watson filtering)
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Figure 80: The Rec-CUSUM test of GOLD [2017-2020] (after the Müller-Watson filtering)
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Figure 81: The Rec-CUSUM test of GOLD [2018-2020] (after the Müller-Watson filtering)
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Figure 82: The Rec-CUSUM test of GOLD [2019-2020] (after the Müller-Watson filtering)
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Figure 83: The Rec-CUSUM test of S&P500 [2016-2020] (after the Müller-Watson filtering)

109



Figure 84: The Rec-CUSUM test of S&P500 [2017-2020] (after the Müller-Watson filtering)
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Figure 85: The Rec-CUSUM test of S&P500 [2018-2020] (after the Müller-Watson filtering)
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Figure 86: The Rec-CUSUM test of S&P500 [2019-2020] (after the Müller-Watson filtering)
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Figure 87: The Rec-CUSUM test of MSCI [2016-2020] (after the Müller-Watson filtering)
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Figure 88: The Rec-CUSUM test of MSCI [2017-2020] (after the Müller-Watson filtering)
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Figure 89: The Rec-CUSUM test of MSCI [2018-2020] (after the Müller-Watson filtering)
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Figure 90: The Rec-CUSUM test of MSCI [2019-2020] (after the Müller-Watson filtering)
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Table 1: Descriptive statistics of daily returns (annualized, %) for the whole sample period

Statistics BTC ETH XRP JPY EUR GOLD S&P500 MSCI

N 1258 1258 1258 1249 1249 1249 1249 1258

Mean (%) 0.446 0.804 0.648 0.022 0.012 0.049 0.057 0.045

SD (%) 4.695 7.567 9.159 1.400 0.647 0.872 1.211 1.023

Min (%) -38.118 -43.420 -43.069 -12.702 -4.160 -5.723 -11.984 -9.915

Max (%) 25.561 65.995 109.760 15.346 6.071 4.805 9.383 8.770

Skewness -0.059 1.281 3.750 0.823 0.278 -0.200 -0.731 -1.234

Kurtosis 7.096 9.353 33.954 36.265 10.922 4.652 20.552 22.681

Table 2: Correlation matrix in 2016 (before the Müller-Watson filtering)
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Table 3: Correlation matrix in 2017 (before the Müller-Watson filtering)

Table 4: Correlation matrix in 2018 (before the Müller-Watson filtering)
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Table 5: Correlation matrix in 2019 (before the Müller-Watson filtering)

Table 6: Correlation matrix in 2020 (before the Müller-Watson filtering)
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Table 7: Correlation matrix in 2016 (after the Müller-Watson filtering)

Table 8: Correlation matrix in 2017 (after the Müller-Watson filtering)
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Table 9: Correlation matrix in 2018 (after the Müller-Watson filtering)

Table 10: Correlation matrix in 2019 (after the Müller-Watson filtering)
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Table 11: Correlation matrix in 2020 (after the Müller-Watson filtering)

Table 12: DTW similarity matrix in 2016 (before the Müller-Watson filtering)
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Table 13: DTW similarity matrix in 2017 (before the Müller-Watson filtering)

Table 14: DTW similarity matrix in 2018 (before the Müller-Watson filtering)
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Table 15: DTW similarity matrix in 2019 (before the Müller-Watson filtering)

Table 16: DTW similarity matrix in 2020 (before the Müller-Watson filtering)
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Table 17: DTW similarity matrix in 2016 (after the Müller-Watson filtering)

Table 18: DTW similarity matrix in 2017 (after the Müller-Watson filtering)
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Table 19: DTW similarity matrix in 2018 (after the Müller-Watson filtering)

Table 20: DTW similarity matrix in 2019 (after the Müller-Watson filtering)
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Table 21: DTW similarity matrix in 2020 (after the Müller-Watson filtering)
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