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We consider the statistical inference of jumps in nonparametric regres-
sion models with long memory noise. A test statistic is proposed for the pres-
ence of jumps based on a robust estimator of the variance of the wavelet coef-
ficients. The sequential applications of tests allow us to estimate the number
of jumps and their locations. In comparison with the existing inference pro-
cedure, in which test statistic converges very slowly to the extreme value dis-
tribution, ours processes a more accurate finite sample performance derived
from the asymptotic normality of our test statistic.

1. Introduction. We consider the model

(1) Yi = f(i/n) + εi,

for i= 1, ..., n, where f(x) is an unknown nonparametric regression function defined on [0,1]
and εi is a zero mean Gaussian error term allowing for long-range dependence. We observe
the data {Y1, ..., Yn} but the trend function f(x) and noise εi are not separately observed.
The objective of the analysis is two-fold. First, we consider the statistical inference on the
presence of structural breaks in the form of abrupt mean shifts, or jumps, in the trend function
f(x). Second, once the presence of jumps is confirmed by the test, we estimate the number
of jumps and their locations. To achieve these goals, we utilize the convenient properties
of the wavelet transformation of the data. While the use of the wavelet in the detection of
jumps has been also considered by Wang (1995, 1999), a notable feature of our proposed
procedure is that the test statistic is constructed on the basis of the wavelet variance instead
of the supremum of wavelet coefficients.

The nonparametric inference of regression functions with jumps in (1) has been an active
area of research. In the context of the kernel estimation of f(x), Müller (1992), Wu and Chu
(1993), Qiu and Yandell (1998), Spokoiny (1998), Müller and Stadtmüller (1999), Gijbels
and Goderniaux (2004), Gao, Gijbels and Bellegem (2008), and Porter and Yu (2015), among
others, have investigated various procedures of jump detection (see also references therein for
further information). Nevertheless, for most cases, the error term εi is assumed to be serially
independent. Such a restriction is particularly problematic in time series analysis, in which
dependence is the rule rather than the exception. The work of Wu and Zhao (2007) is one of
the few exceptions to allow the serial dependence of εi in jump detection, but they consider
only the case of short-range dependence. In contrast, our procedure, which is based on the
wavelet variance estimation, allows for the long-range dependence of εi in (1).1 The wavelet-
based procedure of Wang (1995, 1999) also allows for long-range dependence.2 However,
under the null hypothesis of no jump, Wang’s sup-type test statistic converges very slowly to

Keywords and phrases: additive outlier, jumps, long memory, nonparametric regression, wavelet transforma-
tion, wavelet variance.

1Under the parametric trend with long-memory noise, see Krämer and Sibbertsen (2002), Lazarová (2005)
and Lavielle and Moulines (2000) for the inference of jumps.

2Wang (1995) focuses on εi to be independent Gaussian errors, while Wang (1999) studies εi as fractional
Gaussian errors.
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an extreme-value distribution, while our test statistic based on the wavelet variance converges
faster to normal distribution. As a result, our procedure works better than Wang’s procedure
in the finite sample, which has been confirmed by simulation experiments.

Following the notations of Müller and Stadtmüller (1999), we now introduce some con-
ditions on the trend function f(x) and noise εi. The trend function f(x) may be given by
f(x)≡ fC(x), where

fC : [0,1]→R, fC is continuously differentiable, sup
0≤x≤1

∣∣f ′C(x)∣∣≤M.

Since the trend function is continuously differentiable, the number of jumps m0 is 0, in this
case. Alternatively, the trend function f(x) may consist of the continuous part fC(x) and the
discontinuous part fJ (x), or f(x)≡ fC(x) + fJ (x) where

fJ(x)≡
m0∑
l=1

dlI{x≥ λl},

for x ∈ [0,1] . Here, m0 ∈ {1,2,3, ...} is the finite number of jumps, λl’s are jump locations
satisfying 0 < λ1 < λ2 < · · · < λm0

< 1, and dl’s are jump sizes with dl > 0 for all l ∈
{1, ..,m0}. Regarding the condition on the noise εi, we assume that its autocorrelation of εi
satisfies

corr (εi, εi′)≍
∣∣i− i′

∣∣−2+2H
, i− i′ →∞,

for H ∈ [0.5,1), where an ≍ bn if 0 < lim infn→∞ |an/bn| ≤ limsupn→∞ |an/bn| < ∞.
Here, H represents the Hurst parameter. The process εi is an independent Gaussian error
when H = 0.5. The εi has long-range dependence (or long memory) when H ∈ (0.5,1).

The rest of the paper is organized as follows. In Section 2 we introduce two types of
wavelet variance estimators, which play key roles in our test statistic. In Section 3, we propose
a new procedure to detect jumps and to estimate the number of jumps. In Section 4 we
revisit Wang’s (1995, 1999) procedure and draw comparisons between Wang’s and ours. A
simulation experiment to evaluate the finite sample properties is carried out in Section 5.
Section 6 contains applications of our procedure to the Dow-Jones Industrial Average and
Nile river data. Proofs are given in Appendix A.

2. Wavelet Variance Estimation and Test Statistic.

2.1. Discrete wavelet transformation. We define WA
j,k as the discrete wavelet transfor-

mation (DWT) coefficient of {A1, ...,An} at scale j ∈ Z and location k ∈ Z , such that,

WA
j,k ≡

1

n

n∑
i=1

ψj,k

(
i

n

)
Ai

where

ψj,k

(
i

n

)
≡ 2j/2ψ

(
k− 2j

i

n

)
,

and ψ(t) is a wavelet function, that is,
∫
ψ (t)dt= 0. Mathematically, the wavelet coefficient

is spatially adaptive to the pointwise smoothness of f (x) (Donoho and Johnstone, 1995;
Wang, 1995; Chen, Choi and Zhou, 2008), and the wavelet coefficient also decorrelates the
long-memory noise εi (Wang, 1996); See Appendix A.3 for details. When there is no jump
in the trend function f(x), the wavelet coefficients are asymptotically Gaussian observations.
On the other hand, when the trend function f(x) has jumps, the magnitude of wavelet coef-
ficients WY

j,k at locations k near jumps will be large, and they essentially become outliers in
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the wavelet domain. Following spatial adaptivity and decorrelation properties, Wang (1995,
1999) proposed the test statistic supk∈K

∣∣∣WY
j,k

∣∣∣ where K ≡
{
1, · · · ,2j

}
for jump detection

because it would diverge in the presence of jumps.
Unlike Wang’s approach, our test statistic is based on the second moment of wavelet co-

efficients. In particular, we utilize the wavelet variance, which measures the variability of
wavelet coefficients (Percival, 1995). We define wavelet variance at a given scale j by

σ2j ≡ V ar
(
WBH

j,1

)
where WBH

j,k ≡ 1
n

∑n
i=1ψj,k

(
i
n

)
εi. Notice that σ2j ≍ n2H−2/2(2H−1)j , which is converging

to 0 as n→ ∞.3 There are two different estimators of wavelet variance σ2j that have been
frequently used in the literature. In what follows, we consider a new test statistic based on
the difference of the two estimators of wavelet variance.

2.2. Wavelet variance estimators. The first estimator of wavelet variance is the so-called
classical scale estimator, which has been considered in Serroukh, Walden and Percival (2000).
It can be viewed as the sample variance in the wavelet domain, and is given by

σ̂2j,K ≡
∑

k∈K(WY
j,k)

2

2j
,

for any j and WY
j,k ≡

1
n

∑n
i=1ψj,k

(
i
n

)
Yi. Since the wavelet coefficients WY

j,k are asymptot-
ically Gaussian, σ̂2j,K is an estimator of σ2j when there is no jump. On the other hand, when
the trend function f(x) contains a jump part fJ (x), the wavelet coefficients WY

j,k at loca-
tions k near jumps will become outliers in the wavelet domain. Since the presence of outliers
typically leads to an inconsistency of sample variance, σ̂2j,K is not robust to the presence of
jumps in f (x).

The second estimator of wavelet variance is the square of median absolute deviation. In
general, median absolute deviation is well-known for its robust property to outliers. In the
context of the wavelet domain, it has been used in wavelet denoising applications (Donoho
and Johnstone, 1994). Since the wavelet coefficients WY

j,k are asymptotically centered Gaus-

sian observations, the square of the median absolute deviation of
{
WY

j,k

}2j

k=1
is defined as

σ̃2j,K ≡

[
medk∈K

∣∣∣∣∣ WY
j,k

0.6745

∣∣∣∣∣
]2
.

Since median absolute deviation is robust to outliers, σ̃2j,K is robust to the presence of jumps
in f (x).

2.3. Test Statistic. To construct a test statistics for the purpose of detecting jumps, we
use the fact that σ̃2j,K is a robust estimator of σ2j , regardless of the presence of jumps, and that

3Our parameter of interest σ2j is shrinking to 0 and its convergence rate depends on H . This feature is similar
to a feature in Kouamo et al. (2013), which they use to estimate the memory parameter. Also note that in Kouamo
et al. (2013), their definition of wavelet variance instead diverges to infinity at the rate 2(2H−1)j , which is
different from ours. This result occurs because: first, our ψj,k (t) is defined as 2j/2ψ

(
k− 2jt

)
, while their

ψj,k (t) is 2−j/2ψ
(
k− 2−jt

)
; second, our wavelet transformation WA

j,k is based on the sample analogue of∫
ψj,k (t)A (dt), while Kouamo et al. (2013) simply use

∫
ψj,k (t)A (dt) .
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σ̂2j,K is not robust to the presence of outliers in the wavelet domain. We define our (infeasible)
test statistic Dj,K as

Dj,K ≡
σ̂2j,K − σ̃2j,K√

ω

where

ω ≡ (1,−1)

(
v1 v12
v12 v2

)(
1

−1

)
and

v1 ≡ V ar


∑2j

k=1

(
WBH

j,k

)2
2j


v2 ≡ V ar


[
medk∈{1,··· ,2j}

∣∣∣∣∣ W
BH

j,k

0.6745

∣∣∣∣∣
]2

v12 ≡ Cov


∑2j

k=1

(
WBH

j,k

)2
2j

,

[
medk∈{1,··· ,2j}

∣∣∣∣∣ W
BH

j,k

0.6745

∣∣∣∣∣
]2 .

The intuition of why Dj,K can detect jumps is as follows. When the trend function f(x)
is smooth (i.e., fJ(x) = 0 and m0 = 0), both σ̂2j,K and σ̃2j,K are consistent estimators of
the shrinking target σ2j , and the difference σ̂2j,K − σ̃2j,K should be small. On the other
hand, when fJ(x) ̸= 0 and m0 > 0, the difference σ̂2j,K − σ̃2j,K would be large because
σ̃2j,K is the outlier-robust wavelet variance estimator, while σ̂2j,K is not a robust estimator
in the presence of outliers in the wavelet domain. Moreover, note that the normalizer in
the denominator of the test statistic Dj,K is not the squared root of V ar

(
σ̂2j,K − σ̃2j,K

)
=

V ar

(∑
k∈K(WY

j,k)
2

2j −
[
medk∈K

∣∣∣ WY
j,k

0.6745

∣∣∣]2), which behaves differently under H0 and H1.

Instead we use the squared root of ω ≡ V ar

(∑2j

k=1(W
BH
j,k )

2

2j −
[
medk∈{1,··· ,2j}

∣∣∣∣ WBH
j,k

0.6745

∣∣∣∣]2
)

,

because such a normalizer does not depend on the presence of jumps.

3. Inference of Jumps. In this section, we first study the properties of the infeasible test
statistic Dj,K in detecting jumps. Second, we estimate the number of jumps m0 and their
locations {λl}m0

l=1 based on Dj,K. Third, we replace the denominator of Dj,K by a consistent
standard error and propose a feasible test statistic D̂j,K.

3.1. Testing for the hypothesis of no jumps. We use the test statistic Dj,K for the purpose
of the testing H0 : fJ(x) = 0 and m0 = 0 against H1 : fJ(x) ̸= 0 and m0 > 0. To derive the
asymptotic distribution of Dj,K, we introduce the following set of the assumptions.

Assumption 1:H−M ≤−1/2, whereM is the vanishing moment of ψ, i.e.
∫∞
−∞ tmψ (t)dt=

0 for m= 0,1, ...,M − 1 and
∫∞
−∞ tMψ (t)dt ̸= 0.

Assumption 2: min1≤l≤m0−1 (λl+1 − λl)>
T
2j > 0 and λ1,1− λm0

≥ T
2j > 0, where the

support of wavelet function ψ is [0, T ] with T <∞.
Assumption 3: As n→∞, we have (i) n(H−1)/(H−3/2)

2j → 0; (ii) n(2H−2)/(2H−5/2)

2j →∞.
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Assumption 1 imposes a restriction on the relationship between the Hurst parameterH and
the vanishing momentM. This assumption implies that a sufficiently large vanishing moment
M is required to achieve the decorrelation of the wavelet coefficients. Assumption 2 ensures
that distances between jump locations will not be too short asymptotically, so that there is at
most one jump in the interval of the length T/2j . Assumption 3 imposes conditions on the
divergence rate of the scale j. Assumption 3 (i) suggests that the scale j should not diverge
too slowly to infinity to ensure the non-degenerating limiting distribution of Dj,K under H0.
At the same time, Assumption 3(ii) suggests that the scale j should not diverge too quickly
to infinity, so that Dj,K diverges to infinity under H1 and the test would be consistent. When
H = 0.5 (the i.i.d. Gaussian error), Assumption 3 simplifies to 2j ≍ nβ with β ∈ (1/2,2/3) .

Let Φ(·) and Φ−1 (·) be the probability and quantile function of the standard Gaussian
variable, and Cγ = Φ−1

(
1− γ

2

)
, where γ ∈ (0,1). The following theorem provides asymp-

totic properties of Dj,K under H0 and H1.

THEOREM 3.1. Suppose Assumptions 1,2 and 3 hold. Then
(i) Under H0 :

lim
n→∞

Pr [|Dj,K| ≥Cγ ] = γ;

(ii) Under H1 :

lim
n→∞

Pr [|Dj,K| ≥Cγ ] = 1.

From the theorem above, we can test the presence of jumps by comparing |Dj,K| and the
critical value Cγ at the 100× γ percent significance level from the quantile of the standard
Gaussian distribution. When |Dj,K| ≥ Cγ , the null hypothesis H0 is rejected against the
alternative hypothesis H1, which suggests the presence of jumps. As for the power of the
test, the second part of the theorem suggests that our test is consistent under H1.

For an intuitively understand of the first part of the theorem, namely, the asymptotic nor-
mality of the test statistic under H0, it might be helpful to investigate separately the asymp-
totic behavior of σ̂2j,K and σ̃2j,K with an appropriate normalizer. Since σ2j ≍ n2H−2/2(2H−1)j ,

the limit of rescaled 2(2H−1)j

n2H−2 σ2j is a positive constant. We can also apply the central limit the-
orem to the rescaled versions of σ̂2j,K and σ̃2j,K to obtain

2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ2j

)
= 2j/2

[
2(2H−1)j

n2H−2
σ̂2j,K − 2(2H−1)j

n2H−2
σ2j

]
d→N (0,v∗1)

and

2(2H−1/2)j

n2H−2

(
σ̃2j,K − σ2j

)
= 2j/2

[
2(2H−1)j

n2H−2
σ̃2j,K − 2(2H−1)j

n2H−2
σ2j

]
d→N (0,v∗2)

where

v∗1 ≡ lim
n→∞

2(4H−1)j

n4H−4
v1

v∗2 = lim
n→∞

2(4H−1)j

n4H−4
v2.
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By combining the limiting behaviors of σ̂2j,K and σ̃2j,K, we have

2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ̃2j,K

) d→N (0,ω∗)

where

ω∗ ≡ lim
n→∞

2(4H−1)j

n4H−4
· ω = (1,−1)

(
v∗1 v

∗
12

v∗12 v
∗
2

)(
1

−1

)
v∗12 ≡ lim

n→∞

2(4H−1)j

n4H−4
v12.

Therefore, under H0, we have

Dj,K =

2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ̃2j,K

)
√

2(4H−1)j

n4H−4 · ω

d→N (0,1)

Next, for the second part of the theorem, namely, the asymptotic power of the test, we
can understand the intuition by examining how the presence of jumps affects the asymptotic
behavior of σ̂2j,K and σ̃2j,K, respectively. Under H1, the asymptotic normality of σ̂2j,K can be
obtained as

2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ2j

) d→N (BiasJ ,v
∗
1)

where BiasJ is the asymptotic bias caused by the presence of jumps. On the other hand,
because of the robustness of σ̃2j,K, the asymptotic distribution of σ̃2j,K under H1 is given by

2(2H−1/2)j

n2H−2

(
σ̃2j,K − σ2j

) d→N (0,v∗2) ,

which is the same as the limiting distribution under H0. Thus, under H1, we have

Dj,K =

(
σ̂2j,K − σ2j

)
−
(
σ̃2j,K − σ2j

)
√
ω

=

2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ2j

)
− 2(2H−1/2)j

n2H−2

(
σ̃2j,K − σ2j

)
√

2(4H−1)j

n4H−4 ω
.

Under Assumption 3(ii), BiasJ →∞, so that 2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ2j

)
→∞ as n→∞. By

combining this result with 2(2H−1/2)j

n2H−2

(
σ̃2j,K − σ2j

)
= Op (1) and

√
2(4H−1)j

n4H−4 ω → ω∗ <∞ as
n→∞, we have Dj,K →∞.

So far, the computation of Dj,K requires knowledge of ω. Later in Section 3.3, we replace
ω with its estimator ω̂ to obtain the feasible test statistic. It is important to note that our
procedure does not require prior knowledge of the function fC(x) or of the Hurst parameter
H . These advantages come from the following properties of wavelet transformation: (i) the
wavelet coefficient of fC(x), WC

j,k, is asymptotically of a smaller order than WJ
j,k and WBH

j,k ,
so that its contribution to the test statistic is asymptotically negligible (Wang, 1995); (ii) the

sequence of
{

2(H−1/2)j

nH−1 WBH

j,k

}2j

k=1
is asymptotically short-range dependent (Wang, 1996), so

that the appearance of H is present only in the scaling parameter 2(H−1/2)j

nH−1 , which could be
cancelled out from both the numerator and denominator of Dj,K. Avoiding the estimation
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of the nonparametric trend function is desirable, because its convergence rate depends on
the Hurst parameter (Hall and Hart, 1990). In addition, the precise estimation of the Hurst
parameter is known to be difficult because it is sensitive to the choice of the tuning parameter
(Faÿ et al., 2009).

3.2. Estimating the number of jumps and their locations. Here we consider the issue
of estimating the number of jumps m0 and their locations {λl}m0

l=1 by using the theoretical
results from Section 3.1. Our approach relies on the sequential test using our test statistic
Dj,K, which is similar to those employed in the previous studies on the inference of multiple
breaks, including Wang (1995) and Bai and Perron (1998). The procedure consists of multiple
steps of computing the updated Dj,K′ using a new set of wavelet coefficients indexed by K′.
Suppose we reject the null hypothesis of no jumps using Dj,K in the first step. In the second

step, the neighborhood of the largest DWT coefficient
∣∣∣WY

j,k

∣∣∣ included in the computation of
Dj,K in the first step is removed because such DWT coefficients are likely to be outliers. This
process is repeated until the latest Dj,K′ fails to reject the null hypothesis of no additional
jumps. The formal steps of this sequential procedure are described below.

Step 1 Conduct a test for H0 : m0 = 0 (no jump) against H1 : m0 > 0 (at least one jump).
Reject H0 if

|Dj,K|>Cγ

where K≡
{
1, · · · ,2j

}
. If H0 is not rejected, set m̂= 0;

Step 2 IfH0 :m0 = 0 is rejected in Step 1, conduct a test forH0 :m0 = 1 (one jump) against
H1 : m0 > 1 (at least two jumps). Reject H0 if∣∣∣Dj,K\K̂1

∣∣∣>Cγ

where

K̂1 ≡
{
k : k̂1 − k ∈ supp(ψ)

}
with k̂1 ≡ arg supk∈K

∣∣∣WY
j,k

∣∣∣. If H0 is not rejected, set m̂= 1;

Step 3 If H0 : m0 = 1 is rejected, conduct a test for H0 : m0 = 2 (two jumps) against H1 :
m0 > 2 (at least three jumps). Reject H0 if∣∣∣Dj,K\(K̂1∪K̂2)

∣∣∣>Cγ

where

K̂2 ≡
{
k : k̂2 − k ∈ supp(ψ)

}
with k̂2 ≡ arg supk∈K\K̂1

∣∣∣WY
j,k

∣∣∣. If H0 is not rejected, set m̂= 2;

Step 4 Repeat the step until H0 is not rejected, so that m̂ satisfies∣∣∣Dj,K\∪m̂
l=1K̂l

∣∣∣≤Cγ

where

K̂l ≡
{
k : k̂l − k ∈ supp(ψ)

}
with k̂l ≡ arg supk∈K\∪l−1

l=1K̂l

∣∣∣WY
j,k

∣∣∣ with l= 1, · · · , m̂.
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Following the above procedure, we can show that both the estimated number of jumps and
the locations are consistent in the following theorem.

THEOREM 3.2. Suppose Assumptions 1,2 and 3 hold and γ→ 0. Then

Pr (m̂=m0)→ 1,

m̂0∑
l=1

(
λ̂l − λl

)2
= Op

(
2−2j

)
where

λ̂l ≡
k̂l
2j
.

The first part of Theorem 2 shows that the number of jumps m0 can consistently be es-
timated by letting γ → 0 as n→ ∞. The second part of Theorem 2 shows that our proce-
dure yields a consistent estimation of jump locations with the convergence rate 2j . When
the number of jumps m0 is unknown, we can estimate jump locations with a convergence
rate up to n

2H−2

2H−5/2 / (logn)κ with κ > 0. When H = 0.5, we have a faster convergence rate
n2/3/ (logn)κ with κ > 0 than the case where H ∈ (0.5,1).

3.3. Feasible Test Statistic. We now consider the estimation of ω in the denominator of
Dj,K to obtain the feasible test statistic. Let us define

Ûk ≡
(
Ûk1

Ûk2

)
where

Ûk1 ≡ (WY
j,k)

2 · I
{∣∣WY

j,k

∣∣≤ Q̂|WY
j | (1− ϵ)

}
− σ̃2j,K and

Ûk2 ≡
−1.4826 · σ̃2j,K
φ (0.6745)

[
I

{
WY

j,k

σ̃j,K
≤ 0.6745

}
− I

{
WY

j,k

σ̃j,K
≤−0.6745

}
− 0.5

]

×I
{∣∣WY

j,k

∣∣≤ Q̂|WY
j | (1− ϵ)

}
with Q̂WY

j
(1− ϵ) being the empirical quantile of

∣∣∣WY
j,k

∣∣∣ at (1− ϵ), and φ (·) being the den-
sity of the standard normal distribution.

Then our proposed estimator of ω is given by

ω̂ ≡ (1,−1) Ω̂

(
1

−1

)
where

Ω̂≡
h∑

l=−h

(
1− |l|

h+ 1

)
Γ̂ (l)

Γ̂ (l)≡ 1

2j · (1− ϵ)

∑
1≤k−l≤2j ·(1−ϵ)

Ûk−lÛ
′

k.
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Our proposed estimator of ω can be understood in three steps. In the first step, we rewrite
the estimation errors of σ̂2j,K and σ̃2j,K in terms of sample averages, which are

σ̂2j,K − σ2j =

∑
k∈K(WY

j,k)
2

2j
−

2jσ2j
2j

=

∑
k∈K

[
(WY

j,k)
2 − σ2j

]
2j

(2)

σ̃2j,K − σ2j =
−1.4826 · σ2j
φ (0.6745) · 2j

∑
k∈K

[
I

{
WY

j,k

σj
≤ 0.6745

}
− I

{
WY

j,k

σj
≤−0.6745

}
− 0.5

]
+op (1) .(3)

Note that we used the asymptotic expansion result for σ̃2j,K in Proposition 1 of Kouamo et al.
(2013) to derive (3). In the second step, since the definition of ω is based on WBH

j,k instead of

WY
j,k, we truncate the 100× (1− ϵ) percent of the largest

∣∣∣WY
j,k

∣∣∣ to construct the truncated

version of (2) for σ̂2j,K, which is

(4)
∑
k∈K

(WY
j,k)

2 · I
{∣∣∣WY

j,k

∣∣∣≤ Q̂|WY
j | (1− ϵ)

}
− σ2j

2j · (1− ϵ)
;

and the truncated version of (3) for σ̃2j,K is

∑
k∈K

[
I

{
WY

j,k

σj
≤ 0.6745

}
− I

{
WY

j,k

σj
≤−0.6745

}
− 0.5

]
· I
{∣∣WY

j,k

∣∣≤ Q̂|WY
j | (1− ϵ)

}

×
−1.4826 · σ2j

φ (0.6745) · 2j · (1− ϵ)
.(5)

In the third step, we substitute σ2j with σ̃2j,K in (4) and (5) to obtain

1

2j · (1− ϵ)

∑
k∈K

Ûk1

1

2j · (1− ϵ)

∑
k∈K

Ûk2.

Recall that ω ≡ V ar

(∑2j

k=1(W
BH
j,k )

2

2j −
[
medk∈{1,··· ,2j}

∣∣∣∣ WBH
j,k

0.6745

∣∣∣∣]2
)

is defined according to

WBH

j,k . Because the truncation is designed to remove the components of WY
j,k that are re-

lated to jumps from asymptotic expansions, the remaining terms of WY
j,k are asymptotically

equivalent to WBH

j,k . Therefore, both Ûk1 and Ûk2 are not affected by the presence of jumps:

Ûk1 is asymptotically equivalent to (WBH

j,k )2 − σ2j under both H0 and H1, and Ûk2 is asymp-

totically equivalent to −1.4826·σ2
j

φ(0.6745)

[
I

{
WBH

j,k

σj
≤ 0.6745

}
− I

{
WBH

j,k

σj
≤−0.6745

}
− 0.5

]
un-

der both H0 and H1. In order to prove the consistency of ω̂ under both H0 and H1, we
introduce an additional assumption as follows.

Assumption 4: (i) ϵ≥ 2−j (Tmmax + 4); (ii) as n→∞, h→∞ and h3/2j =O (1).
With Assumption 4(i), we need to choose ϵ such that ϵ≥ 2−j (Tmmax + 4) where T is the

length of the support of ψ and mmax is the maximum number of jumps. The reason for this
lower bound of ϵ is that the number of truncated observations should be larger than the total
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number of wavelet coefficients affected by either jumps or boundaries near 0 or 1 (Percival
and Walden, 2000); otherwise, our estimate ω̂ will be affected by atypical observations in the
wavelet domain. In addition, by removing these outliers, the automatic bandwidth selection
of Andrews (1991) is valid. In practice, we prefer to choose ϵ→ 0 as n→∞ so that we can
have a precise ω̂ by using as many wavelet as possible that are not affected by jumps.

Assumption 4(ii) requires that the bandwidth (or lag truncation number) h grows at a rate
no faster than 2j/3. In what follows, we use the automatic bandwidth selection procedure of
Andrews (1991) with the Bartlett kernel to choose h, which satisfies Assumption 4(ii).

Suppose Assumptions 1, 2, 3 and 4 hold. Then under both H0 and H1,

2(4H−1)j

n4H−4
(ω̂− ω) = op (1) .

The proposition implies that 2(4H−1)j

n4H−4 · ω̂ is a consistent estimator of ω∗ ≡ limn→∞
2(4H−1)j

n4H−4 ·
ω. Because of Proposition 3, our Theorem 3.1 still holds by Slutsky’s theorem if 2(4H−1)j

n4H−4 · ω
in

Dj,K ≡
σ̂2j,K − σ̃2j,K√

ω

=

2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ̃2j,K

)
√

2(4H−1)j

n4H−4 ω

is replaced by 2(4H−1)j

n4H−4 · ω̂.4 Then our feasible test statistic is given by

D̂j,K ≡
σ̂2j,K − σ̃2j,K√

ω̂
,

which replaces Dj,K in both the testing in Section 3.1 and the estimation of m0 and λl in
Sections 3.2.

Notice that it is important to truncate the 100× (1− ϵ) percent of the largest
∣∣∣WY

j,k

∣∣∣ from

the asymptotic expansions of σ̂2j,K and σ̃2j,K (Equations 2 and 3); otherwise, the sample au-
tocovariance will be influenced by outliers in the presence of jumps.5 Such outliers will lead

4In the simulation (which is not reported), we also apply the resampling method of Carlstein (1986) to estimate
ω with a robustified variance estimator developed by Rousseeuw and Croux (1993). More specifically, divide{
WY

j,k

}2j
k=1

into adjacent nonoverlapping subseries of length m ≡mj with mj → ∞ and mj/2
j → 0, and

compute
{(

σ̂2j,K − σ̃2j,K

)l
m

}⌊
2j//m

⌋
l=1

, where
(
σ̂2j,K − σ̃2j,K

)
m

is the estimate of σ̂2j,K − σ̃2j,K computed

from the subseries values of
(
WY

j,k+1, . . . ,W
Y
j,k+m

)
. To ensure that the resampling estimated variance is robust

to outliers, we propose

ω̃

≡

(
2.219

{∣∣∣∣(σ̂2j,K − σ̃2j,K

)l
m

−
(
σ̂2j,K − σ̃2j,K

)l′
m

∣∣∣∣ ; l < l′
}
(s)

)2

/
⌊
2j//m

⌋

where s=
(⌊2j//m⌋

2

)
/4 and {·}(s) is the s-th order statistic of

(⌊2j//m⌋
2

)
interpoint distances. For the choice

of m (length of subseries), we follow Carlstein’s (1986) optimal length computation based on an autoregressive
AR(1) model with iid Gaussian innovations; see Section 5 of Carlstein (1986) for details. However, from our
simulation, this resampling alternative ω̃ has a larger size distortion than ω̂.

5See Section 3.1 from Qu and Perron (2010) for an example of the impacts of mean shifts on sample autoco-
variance.
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to an upward bias in the estimation of an autocovariances of
{

2(2H−1/2)j

n2H−2

(
WBH

j,k

)2}2j

k=1

, so

that 2(4H−1)j

n4H−4 · ω̂ with ϵ= 0 will be an inconsistent estimator of ω∗.

4. Revisiting Wang’s Test. Our inference of jumps is based on D̂j,K, in which the lim-
iting distribution is normal under H0. Recall that 2j is the number of wavelet coefficients at
scale j, such that 2j/n→ 0, and that then the empirical process theory suggests that the rate
of convergence for D̂j,K to asymptotic normal distribution is

(
2j/ log log 2j

)1/2 (Van der

Vaart, 2000, page 268). In contrast, the rate of convergence for supk∈K
∣∣∣WY

j,k

∣∣∣ is extremely
slow and very large values of n are needed for the approximation to be reasonably accurate.
When we apply the generic results of Hall (1979) and Rootzén (1983), we see that when
H = 0.5, the rate convergence of supk∈K

∣∣∣WY
j,k

∣∣∣ is log 2j ; while for H ∈ (0.5,1), the rate

is proportional to log 2j/
(
log log 2j

)2. Therefore, our inferential procedure has better size
control than Wang’s (1995, 1999) procedure, due to the convergence rate of D̂j,K (to the

asymptotic normal distribution), which is faster than the convergence rate of supk∈K
∣∣∣WY

j,k

∣∣∣
(to the asymptotic extreme-value type distribution). Our simulation in the next section con-
firms that supk∈K

∣∣∣WY
j,k

∣∣∣ tends to have a larger Type I error than the nominal size under H0,

and such a size distortion in supk∈K

∣∣∣WY
j,k

∣∣∣ is much larger than that in D̂j,K.6

We first revisit the asymptotic property of Wang’s (1995, 1999) test statistic supk∈K
∣∣∣WY

j,k

∣∣∣
under H0. Under some regularity conditions,

lim
n→∞

Pr

[
sup
k∈K

∣∣WY
j,k

∣∣≥C∗
γ

]
= γ

where C∗
γ is the estimated critical value from the extreme-value distribution. In particular, the

critical value is given by
(6)
C∗
γ ≡ σ̃j,K ·

({
2
∣∣log (2−j

)∣∣}1/2 − {2 ∣∣log (2−j
)∣∣}−1/2

log
{
−21/2π · σ̃j,K · δ̃j,K · log (1− γ)

})
where

δ̃j,K ≡

medk∈K
∣∣∣∣∣∣W

(1)Y
j,k

0.6745

∣∣∣∣∣∣
2

,

and

W(1)Y
j,k ≡ 1

n

n∑
i=1

ψ
(1)
j,k

(
i

n

)
Yi

and ψ(1) is the first derivative of ψ. In Equation (6) σ̃j,K and δ̃j,K are empirical counterparts
of τ1 and τ2 in Theorem 1 of Wang (1999). It should be noted that using τ1 and τ2 requires the
knowledge of H and integral calculations that involve wavelet functions. Replacing τ1 and

6There are other simulation studies documenting the poor finite sample performance of test statistic, which
converges to the extreme-value distribution. For example, Wu and Chu (1993, Figure 4) show that the test statistic
based on the supremum of the absolute value of kernel estimates has a large Type I error relative to the nominal
size under H0.
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τ2 by σ̃j,K and δ̃j,K is convenient because the estimation of H is not needed. The above test
statistic unifies Wang (1995) and Wang (1999) to allow for both independent and fractional
Gaussian noises.7

In what follows, we describe the sequential procedure to estimate the number of jumps
and their locations based on Wang’s test statistic. Such a description helps us clarify the
similarities and differences between our and Wang’s procedure.

Step 1 Conduct a test for H0 : m0 = 0 (no jump) against H1 : m0 > 0 (at least one jump).
Reject H0 if

sup
k∈K

∣∣WY
j,k

∣∣>C∗
γ .

If H0 is not rejected, set m̂∗ = 0;
Step 2 IfH0 :m0 = 0 is rejected in Step 1, conduct a test forH0 :m0 = 1 (one jump) against
H1 : m0 > 1 (at least two jumps). Reject H0 if

sup
k∈K\K̂∗

1

∣∣WY
j,k

∣∣>C∗
γ

where

K̂∗
1 ≡

{
k : k̂∗1 − k ∈ supp(ψ)

}
with k̂∗1 ≡ arg supk∈K

∣∣∣WY
j,k

∣∣∣. If H0 is not rejected, set m̂∗ = 1;

Step 3 If H0 : m0 = 1 is rejected, conduct a test for H0 : m0 = 2 (two jumps) against H1 :
m0 > 2 (at least three jumps). Reject H0 if

sup
k∈K\(K̂∗

1∪K̂∗
2)

∣∣WY
j,k

∣∣>C∗
γ

where

K̂∗
2 ≡

{
k : k̂∗2 − k ∈ supp(ψ)

}
with k̂∗2 ≡ arg supk∈K\K̂∗

1

∣∣∣WY
j,k

∣∣∣. If H0 is not rejected, set m̂∗ = 2;

Step 4 Repeat the step until H0 is not rejected, so that m̂∗ satisfies

sup
k∈K\∪m̂∗

l=1K̂
∗
l

∣∣WY
j,k

∣∣≤C∗
γ

where

K̂l ≡
{
k : k̂∗l − k ∈ supp(ψ)

}
with k̂∗l ≡ arg supk∈K\∪l−1

l=1K̂
∗
l

∣∣∣WY
j,k

∣∣∣ with l= 1, · · · , m̂∗.

While the expressions of k̂l ≡ arg supk∈K\∪l−1
l=1K̂l

∣∣∣WY
j,k

∣∣∣ and k̂∗l ≡ arg supk∈K\∪l−1
l=1K̂

∗
l

∣∣∣WY
j,k

∣∣∣
are the same between the two sequential procedures, there are two potential sources of the

7Although both ours and Wang’s (1995, 1999) are consistent under H1, their local alternatives are different.
When the jump size dl = O

(
n−1/4

)
, the power of our test goes to 1. In contrast, the power of Wang (1995,

1999) goes to 1 when the jump size dl = O

(
n

1−H
H−2

)
. Thus, if H ∈ [0.5,2/3] and the jump sizes are small,

Wang’s test is more powerful than ours in terms of the local alternative.
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difference in results between
{
k̂l

}m̂

l=1
and

{
k̂∗l

}m̂∗

l=1
. First, m̂ and m̂∗ can be different be-

cause our test, which is based on Dj,K′ , and Wang’s test supk∈K′

∣∣∣WY
j,k

∣∣∣ can yield different
results regarding the rejection of the null hypothesis of no additional jumps. Second, even
when m̂ and m̂∗ are the same, k̂l and k̂∗l can be different if the choice 2j differs between the
two procedures. In fact, the required conditions on 2j differs between the two procedures. In
particular, Assumption 3 can be relaxed in Wang’s procedure as follows:

Assumption 3*: As n→∞, we have (i) n(H−1)/(H−2)

2j → 0; (ii) n/ logn
2j →∞.

For example, when H = 0.5 (the i.i.d. Gaussian error), Assumption 3* simplifies to
n1/3/2j → 0 and n (logn)−1 /2j → ∞, that is, 2j ≍ ζn with ζn ∈

(
n1/3, n/ logn

)
. Note

that unlike Assumption 3, the upper bound of 2j in Assumption 3* (ii) does not depend on
H .

(Wang 1995 and 1999) Suppose Assumptions 1,2 and 3* hold and γ→ 0. Then

Pr (m̂∗ =m0)→ 1,

m̂∗∑
l=1

(
λ̂∗l − λl

)2
= Op

(
2−2j

)
where

λ̂∗l ≡
k̂∗l
2j
.

The first part of the proposition shows that m̂∗ is consistent for the number of jumps m0.
This property is common between m̂∗ and m̂. However, the finite sample property of m̂∗

is not expected to be as good as m̂ because of the following reasons. Recall that the rate
of convergence for supk∈K

∣∣∣WY
j,k

∣∣∣ is extremely slow and a very large sample size is needed
for the approximation to be reasonably accurate. While a poor approximation in the finite
sample can result in size distortion in either direction, Wu and Chu (1993) have documented
that similar test statistic based on the supremum of kernel estimates of potential jump sizes
had larger type I error than the nominal level. From the simulation in the next section, we
also find that over-rejection of Wang’s test in the finite sample.

In contrast, our test statistic D̂j,K converges to the normal distribution with a rate faster

than supk∈K

∣∣∣WY
j,k

∣∣∣. In the following simulation section, we show that the Type I error of our
test is quite close to the nominal level under the null hypothesis. Since the larger Type I error
of Wang’s test implies that the null hypothesis would be rejected more often than in our test,
m̂∗ leads to a positive bias compared to m̂. The following simulation section confirms this
advantage of m̂ over m̂∗.

The second part of the proposition shows that Wang’s procedure yields a consistent esti-
mation of jump locations with the convergence rate 2j , which is exactly the same as in our
procedure, which is shown in Theorem 2. However, it should be noted that allowable ranges
of the divergence rate of 2j differ between Theorem 2 and Proposition 4. For the conver-
gence rates of two jump location estimators λ̂l and λ̂∗l , we can compare their fastest rates
by choosing 2j , which satisfies Assumption 3 and 3*, respectively. For example, if we set
2j ≍ n

2H−2

2H−5/2 / (logn)κ which is allowed in Assumption 3, our jump location estimator λ̂l
converges at a rate of n

2H−2

2H−5/2 / (logn)κ with κ > 0. In contrast, if we set 2j ≍ n/ (logn)η

where η > 1, which is the fastest rate allowed in Assumption 3*, λ̂∗l converges at a rate of
n/ (logn)η , which is independent of H . For this reason, if we aim only for the convergence
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rate of the jump location, λ̂∗l . dominates λ̂l.8 However, choosing the largest 2j has potential
drawbacks. For example, if εi is non-Gaussian, our assumption on the Gaussianity of WY

j,k

needs to be replaced by an approximation that crucially depends on the sample size n/2j ,
which would be small when 2j is too large. Furthermore, if we are interested in constructing
confidence bands of the estimated smooth function, the optimal choice of 2j would be then
based on the mean-squared error.

In the following simulation section, we examine the relative performance of m̂ and m̂∗

based on the common scale and the different scale. While deriving the optimal rate is beyond
the scope of this paper, we provide some guidance on choosing the scale in practice, based on
the simulations. Because γ → 0 is a condition in Proposition 4, Wang (1995, 1999) recom-
mended the use of limγ→0C

∗
γ =

(
2 log 2j

)1/2
σ̃j,K for the critical value. In the simulation,

we also employ the critical values Cγ and C∗
γ by setting γ = 0.05 and 0.01, which could be

more or less reasonable in the finite sample, and compare the performance of m̂ and m̂∗.

5. Simulation Study. In this section, we conduct a simulation experiment to evaluate
the finite sample performance of our proposed method in Section 3 in comparison with that
of Wang’s procedure in Section 4. We choose either the smooth trend function fC(x) = 1
(Wang, 1995) or fC(x) = 2 [sin (4πx) + sin (8πx)] (Perron, Shintani and Yabu, 2020), and
the jump part fJ(x) =

∑m0

l=1 dlI{x > λl} with either m0 = 0 or m0 = 3. Therefore, we have
four DGPs for the trend function f(x):

DGP1 No jumps: m0 = 0 and the smooth trend function fC(x) = 1;
DGP2 No jumps: m0 = 0 and the smooth trend function fC(x) = 2 [sin (4πx) + sin (8πx)] ;
DGP3 Three jumps: m0 = 3 with d1 = 2 and λ1 = 0.25, d2 =−2 and λ2 = 0.50, d3 = 2 and
λ3 = 0.75, and the smooth trend function fC(x) = 1;

DGP4 Three jumps: m0 = 3 with d1 = 2 and λ1 = 0.25, d2 =−2 and λ2 = 0.50, d3 = 2 and
λ3 = 0.75, and the smooth trend function fC(x) = 2 [sin (4πx) + sin (8πx)] .

We set n= 512 and we consider the process of εi with Hurst parameter H = 0.5 or H =
0.9 and V ar (εi) = 0.1. In Figures 1 and 2, we show the plots of Yi based on four different
trend function and two different Hurst parameters.

In Tables 1-4, we report the estimated number of jumps by our proposed m̂ along with
Wang’s (1995, 1999) m̂∗. Tables 1 and 2 respectively show the results for DGP1 and DGP2
under m0 = 0. Tables 3 and 4 respectively show the results for DGP3 and 4 under m0 = 3.9

There are three practical issues to be considered in the computations of m̂ and m̂∗. The
first issue concerns the choice of the wavelet function ψ(t) and vanishing moments M . We
find that our simulation results are quite robust to different wavelet functions (Daubechies
and Coiflets classes) as long as Assumption 1 holds. Thus, we report only results using the
Daubechies wavelet with M = 4. With this choice of wavelet function, support is given by
T = 7, so that Assumption 2 requires the distance between any two break fractions to be
greater than 7/2j . In DGP3 and DGP4, since the distance between the two break fractions is
0.25, Assumption 2 is satisfied when j = 6,7,8 are used.

8In respect to the convergence rate of the jump location estimator with the known m0, our method reduces to
Wang’s (1995, 1999) because there is no need to conduct a test. Thus, λ̂l has the convergence rate of n/ (logn)η

where η > 1 (rate does not depend on H) when 2j ≍ n/ (logn)η . Raimondo (1998, Proposition 3.1) provides a
modified procedure with the optimal convergence rate n (without logarithm term) for iid data.

9In Tables 1 and 3 (the last two rows), we also report the results from the Wild Binary Segmentation (WBS)
and the Tail-Greedy Unbalanced Haar (TGUH) of Fryzlewicz (2014, 2018), based on the R package breakfast. In
general, both WBS and TGUH methods are designed for a piecewise-constant trend function with short memory
noise (H = 0.5), so that they offer only reasonable peformances on fC (x) = 1 and H = 1/2; otherwise, their
performances under other model misspecifications can lead to the severe overestimation of m0.
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The second issue concerns the choice of scale j. In our experiment, we consider different
cases regarding the choice of scale j. Because n = 29 (= 512), we can interpret the choice
of j = 6,7,8 corresponding to 2j = cnβ with β = 5/9,6/9,7/9 in case of c = 2, or with
β = 4/9,5/9,6/9 in case of c= 22. Recall that the range of 2j specified in Assumption 3*
nests 2j ≍ nβ with β ∈ (1/2,2/3) in Assumption 3, so that at least one j’s is within the suit-
able range for computing m̂ and m̂∗. Let us denote m̂ based on the scale j by m̂j . In addition
to reporting the results of m̂j for each j = 6,7,8, we also evaluate the performance of the
ensemble estimators given by max{m̂7, m̂8}, max{m̂6, m̂7}, and max{m̂6, m̂7, m̂8}. Like-
wise, in addition to m̂∗

j for each j = 6,7,8, we also compute max{m̂∗
7, m̂

∗
8} ,max{m̂∗

6, m̂
∗
7},

and max{m̂∗
6, m̂

∗
7, m̂

∗
8}. The choice of single and ensemble estimators is indicated in the first

column of Tables 1 to 4.
The third issue concerns on the choice of the nominal size γ used in the sequential testing

procedure. The nominal size γ should approach zero as the sample size n increases to estab-
lish the consistency of the estimated number of jumps in Theorem 3.2 and Proposition 4. In
this experiment with the finite sample, we set γ at 0.05 and 0.01 to compute critical values for
m̂ and m̂∗. Note that the critical values for m̂ are C0.05 and C0.01 from the standard normal
distribution, while the critical values C∗

0.05 and C∗
0.01 for m̂∗ are obtained from the extreme-

value distribution given in Equation (6). In addition, following the recommendation by Wang
(1995, 1999), we also employ the critical value limγ→0C

∗
γ =

(
2 log 2j

)1/2
σ̃j,K for m̂∗. The

second columns of Tables 1 to 4 reflect the choice of γ for m̂ and m̂∗. Finally, to enhance the
numerical performance, we also compute a translation-invariant vaguelette transformation by
cycle-spinning DWT of Yi (Coifman and Donoho, 1995, Nason and Silverman, 1995). For
various combinations of j and γ, we generate 10,000 realizations of m̂ and m̂∗.

For m0 = 0, the relative frequencies of m̂ (or m̂∗) =m0 and m̂ (or m̂∗) >m0 in 10,000
replications are reported in Tables 1 and 2 for DGP1 and DGP2, respectively. For each table,
Columns 3 and 4 show the results forH = 0.5, and Columns 6 and 7 show the results forH =
0.9. In addition to the relative frequencies, Column 5 of Tables 1 and 2 show the averages
of estimation errors for H = 0.5, which corresponds to the bias (namely Em̂ − m0 and
Em̂∗ −m0). Similarly, Column 8 of Tables 1 and 2 show the bias for H = 0.9.

For m0 = 3, the relative frequencies of m̂ (or m̂∗) <m0, m̂ (or m̂∗) =m0 and m̂ (or m̂∗)
>m0 in 10,000 replications are reported in Tables 3 and 4 for DGP3 and DGP4, respectively.
For each table, Columns 3 to 5 show the results for H = 0.5, and Columns 7 to 9 show the
results for H = 0.9. In addition, Column 6 shows the bias under H = 0.5, while Column 10
shows the bias for H = 0.9.

Overall, the results are very encouraging regarding the performance of our proposed es-
timator m̂ in comparison with that of Wang’s estimator m̂∗. First, the relative frequency of
m̂=m0 is close to 0.95 when γ = 0.05, and 0.99 when γ = 0.01 for almost all cases from
Table 1 to Table 4. For DGP3 and DGP4, when m0 = 3, the relative frequencies of m̂=m0

are approaching 1− γ, and the relative frequencies of m̂ > m0 are approaching γ. In con-
trast, the relative frequency of m̂∗ =m0 is much lower than 1 − γ from Table 1 to Table
4. As explained in the previous section, this result is caused by the slow convergence rate
of the test statistic supk∈K

∣∣∣WY
j,k

∣∣∣, which results in the Type I error being larger than the
nominal level γ in the finite sample when the critical values C∗

0.05, C∗
0.01 and limγ→0C

∗
γ are

used. Notice that the performances of m̂ and m̂∗ are not very sensitive to the specifications
of the smooth trend function fC (x) (= 1 or 2 [sin (4πx) + sin (8πx)]) and changes in the
Hurst parameter H (= 0.5 or 0.9). Second, when the bias of m̂ and m̂∗ are evaluated by the
average of estimation errors in 10,000 replications, the bias of m̂ tends to be much smaller
than that of m̂∗ in all cases. For DGP1 and DGP2 with m0 = 0, the medians of the bias of
m̂ shown in Tables 1 and 2 are around 0.100, while those of m̂∗ are around 0.701. Similarly,
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for DGP3 and DGP4 with m0 = 3, the medians of the bias of m̂ shown in Tables 3 and 4
are around 0.151, while those of m̂∗ are around 0.751. Third, from Table 1 to Table 4 we
find that choosing a smaller nominal size γ is preferred for m̂ in terms of both the relative
frequency of m̂ =m0 and the bias. Fourth, in terms of the relative frequency of m̂ =m0,
we find that the performance of single scale estimators is better than the performance of the
ensemble estimators of m̂. When m0 = 0, Tables 1 and 2 show that using the single estima-
tors of m̂ makes the relative frequency of m̂=m0 closer to 1− γ than using the ensemble
estimators. Moreover, when m0 = 3, Tables 3 and 4 show that the single scale estimators of
m̂ are also preferred because the ensemble estimators tend to have a higher relative frequency
of over-estimating the number of jumps (m̂ > m0).10 In contrast, regardless of jump sizes,
Wang’s ensemble estimators m̂∗ always have higher relative frequencies of overestimating
the number of jumps (m̂∗ >m0) than Wang’s single scale estimators.

6. Applications. In what follows, we estimate the number of jumps and jump locations
in two groups of time series data, the stock price index and Nile river data. For our proposed

estimator of the number of jumps m̂ and jump locations
{
λ̂l

}m̂

l=1
, the critical values from

either C0.05 or C0.01 based on the quantile function of the standard Gaussian variable are

used. For Wang’s (1995, 1999) estimator of the number of jumps m̂∗ and locations
{
λ̂∗l

}m̂∗

l=1
,

C∗
0.05, C∗

0.01 and limγ→0C
∗
γ =

(
2 log 2j

)1/2
σ̃j,K are used as critical values. The scale j is to

chosen to be 7 for both the stock price and the Nile River cases where the sample size n=
512. Recall that with the choice of j = 7 and the Daubechies wavelet function with M = 4,
we are assuming that distances between break fractions are at least greater than 7/128 (=
T/2j). The translation-invariant vaguelette transformation is also applied to compute WY

j,k.
When jumps are detected, we further estimate the nonlinear trend functions for each interval
between the estimated jump locations by the local quadratic regression estimator available in
the locpoly function of the R package KernSmooth. Moreover, for each interval segmented

by
{
λ̂l

}m̂7

l=1
, we estimate the Hurst parameterH by the wavelet regression estimator available

in the WVLM function of the R package WaveLetLongMemory.

6.1. Daily Dow-Jones Industrial Average. For the first application, we estimate the jump
in the US stock price index using the logarithm daily series of the Dow-Jones Industrial
Average at market close from 2019-08-22 to 2021-09-01 where the sample size n is 512. The
data is obtained from the FRED database compiled by the Federal Reserve Bank of St. Louis
(https://fred.stlouisfed.org/series/DJIA).

In Table 5 we demonstrate how sequential procedures are employed to estimate the num-
ber of jumps. In what follows, we use C0.01 for the critical value of D̂7,K and limγ→0C

∗
γ for

the critical value of supk∈K
∣∣∣WY

7,k

∣∣∣ because the simulations provided in the previous section
suggested that the use of C0.01 and limγ→0C

∗
γ provided better performances in selecting of

the true number of jumps, in comparison with other choices of critical values. For the se-
quential procedure based on D̂7,K: we reject the first two null hypotheses of H0 :m0 = 0

and H0 :m0 = 1 because the corresponding values D̂7,K = 4.1204 and 3.8619 are greater
than the critical value C0.01 = 2.5788 (or C0.05 = 1.9600). However, we fail to reject the
null hypothesis H0 :m0 = 2 because the corresponding test statistic D̂7,K = 2.2824 is less

10However, exceptions are that ensemble estimators max{m̂7, m̂8} and max{m̂6, m̂7, m̂8} under DGP3
and DGP4 are better than the single scale estimator m̂8.
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than C0.01 = 2.5788, and thus m̂7 = 2 is obtained. In contrast, for Wang’s (1995,1999) se-
quential procedure, we reject the null hypothesis H0 : m0 = 2 but fail to reject the null
hypothesis H0 : m0 = 3. From the table, the test statistic supk∈K

∣∣∣WY
7,k

∣∣∣ = 0.002688 for
H0 :m0 = 2 is greater than the critical value limγ→0C

∗
γ = 0.001308, while the test statis-

tic supk∈K

∣∣∣WY
7,k

∣∣∣ = 0.000940 for H0 :m0 = 3 is less than the critical value limγ→0C
∗
γ =

0.001308. Therefore, m̂∗
7 = 3 is obtained. The fact that the sequential procedure based on

D̂7,K detected fewer jumps compared to that of Wang’s (1995,1999) sequential procedure,

which is based on supk∈K

∣∣∣WY
7,k

∣∣∣, is consistent with the discussion in Sections 4 and the
simulation study of Section 5. From Table 5 we also observe that if we increase the nominal
size γ (the corresponding critical values become smaller), both m̂7 and m̂∗

7 become larger.
This result occurs because, when the corresponding critical values become smaller, rejecting
the null hypothesis becomes easier.

Panel (a) of Figure 3 shows that estimated jump locations based on our procedure are 2020-
03-20 and 2020-06-10 (m̂7 = 2). Panel (b) of Figure 3 shows that estimated jump locations
based on Wang’s procedure are 2020-03-20, 2020-05-12 and 2020-06-10 (m̂∗

7 = 3). Notice
that 2020-03-20 corresponded to the date of the World Health Organization issuing the Covid-
19 health alert, and 2020-06-10 was the date when the number of confirmed cases of COVID-
19 in the United States hit two million. We also estimate the Hurst parameter H for each

segment in which the segment is based on
{
λ̂l

}m̂7

l=1
where m̂7 = 2. Our estimates of the

Hurst parameter H from the first to the third segment are 0.56, 0.63 and 0.77, respectively.
Since all the estimates are greater than 0.5, our findings have highlighted the US stock market
has a long memory feature even though we took into account of jumps in the trend function.

6.2. The Nile River. For the second application, we estimate jumps in the minimum
yearly water level of the Nile River. The data is available from years 662 to 1284 in Page
237 of Beran (1994), and we use the observations from years 773 to 1284 so that the sample
size n is 512.11

Table 6 presents the sequential procedures in estimating the number of jumps that are
similar to the application of the Dow-Jones Industrial Average data. For the sequential pro-
cedure based on D̂7,K, we reject the first three null hypotheses of H0 :m0 = 0, H0 :m0 = 1

and H0 :m0 = 2 because the corresponding values D̂7,K = 4.4520, 3.6423 and 2.9267 are
greater than the critical value C0.01 = 2.5788 (or C0.05 = 1.9600). However, we fail to reject
the null hypothesis H0 :m0 = 3 because the corresponding test statistic D̂7,K = 2.3435 is
less than C0.01 = 2.5788, and thus m̂7 = 3 is obtained. In contrast, for Wang’s (1995,1999)
sequential procedure, we reject the null hypothesis H0 : m0 = 3 but fail to reject the null
hypothesis H0 : m0 = 4. From the table, the test statistic supk∈K

∣∣∣WY
7,k

∣∣∣ = 9.6761 for
H0 :m0 = 3 is greater than the critical value limγ→0C

∗
γ = 7.2975, while the test statistic

supk∈K

∣∣∣WY
7,k

∣∣∣= 7.1524 for H0 :m0 = 4 is less than the critical value limγ→0C
∗
γ = 7.2975.

Therefore, m̂∗
7 = 4 is obtained. Notice that again the selected number of jumps based on our

procedure tends to be less than that based on Wang’s, which can be explained by the same
reason as that used in the stock price application.

Panel (a) of Figure 4 shows that the estimated jump locations based on our procedure are
years 780, 962 and 1032 (m̂7 = 3). Panel (b) of Figure 4 shows that estimated jump locations

11We can easily adapt our procedure to work with time series that are not multiples of the power of two by
padding as suggested in Chapter 4.11 of Percival and Walden (2000), as is true here (n= 663).
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based on Wang’s procedure are years 780, 884, 962 and 1032 (m̂∗
7 = 4). We estimate the

Hurst parameter H for each segment of Panel (a) in which the segment is based on
{
λ̂l

}m̂7

l=1
where m̂7 = 3. The estimated Hurst parameters H for the second, third and fourth segments
are 0.69, 0.77 and 0.55, respectively, which indicate the long memory feature of the Nile
River data. In contrast, these Hurst parameter estimates are less than the estimated value
0.95 obtained by Percival and Walden (2000). This difference may come from the fact that
Percival and Walden (2000) did not consider the possibility of potential jumps in the trend
function.12

7. Conclusion. In this paper, we propose a new inference procedure to estimate the num-
ber of jumps and their locations. One notable feature of our proposed procedure is that the
construction of the test statistic is based on the wavelet variance instead of the supremum
of wavelet coefficients as in Wang (1995, 1999). As a result, our test statistic, converges to
the normal distribution, compared to Wang’s sup-type test statistic converging very slowly to
an extreme-value distribution. In simulation experiments, we demonstrate that our procedure
works better than Wang’s procedure in a finite sample.

Although the current paper focuses on the noise εi belonging to the so-called fraction-
ally integrated white noise process, ARFIMA(0,H,0) (independent or fractional Gaussian
error), it is possible to extend εi to the general ARFIMA(p,H, q) process. In particular, our
procedure would still apply under this general setup. However, it would be difficult to apply
Wang’s procedure because the analytical critical value of the extreme-value distribution un-
der the general dependence is not covered under Wang (1995, 1999), and its critical value
depends on the knowledge of p and q, which need to be estimated separately (Leadbetter,
Lindgren and Rootzén, 1983).13 In contrast, our test statistic converges to the standard nor-
mal distribution without the needing of estimating p and q.
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12Note that our focus is on testing the existence of jumps, rather than testing the long-memory versus a
spurious one. For the latter, see Diebold and Inoue (2001), Shimotsu (2006), Perron and Qu (2010), Iacone (2010),
Baek and Pipiras (2012), McCloskey and Perron (2013) and Hou and Perron (2014). The above mentioned papers
differentiate between a long-range dependent time series and a weakly dependent time series with a change-point
in the mean. However, our target is to detect jumps in which a genuine long-memory error could exist for both
the null and alternative hypotheses.

13By taking advantage of the strong invariance principle for the short-memory noise with H = 0.5, Wu and
Zhao (2007) provide a simulation method to obtain the critical value of the extreme-value distribution under
ARFIMA(p,H, q) where H = 0.5 or ARMA(p, q). However, Wu and Zhao’s (2007) approach is not applicable
to the long memory case when H > 0.5.
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FIG 1. DGP1 refers tom0 = 0 and the smooth trend function fC(x) = 1. DGP2 refers tom0 = 0 and the smooth
trend function fC(x) = 2 [sin (4πx) + sin (8πx)]. H is the Hurst parameter.
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TABLE 1
Relative frequency of estimates of the number of jumps under the smooth trend function fC (x) = 1 and no jump

m0 = 0

H = 0.5 H = 0.9

Relative frequency Bias Relative frequency Bias
=m0 >m0 =m0 >m0

(1) Sequential procedure based on D̂j,K

m̂8 γ = 0.05 0.958 0.042 0.178 0.961 0.039 0.164
γ = 0.01 0.987 0.013 0.048 0.987 0.013 0.044

m̂7 γ = 0.05 0.953 0.047 0.162 0.952 0.048 0.166
γ = 0.01 0.983 0.017 0.052 0.985 0.015 0.046

m̂6 γ = 0.05 0.948 0.052 0.140 0.947 0.053 0.168
γ = 0.01 0.982 0.018 0.046 0.979 0.021 0.055

max{m̂7, m̂8} γ = 0.05 0.913 0.087 0.336 0.914 0.086 0.328
γ = 0.01 0.970 0.030 0.100 0.973 0.027 0.090

max{m̂6, m̂7} γ = 0.05 0.904 0.096 0.297 0.901 0.099 0.330
γ = 0.01 0.965 0.035 0.098 0.965 0.035 0.101

max{m̂6, m̂7, m̂8} γ = 0.05 0.865 0.135 0.470 0.865 0.135 0.486
γ = 0.01 0.952 0.048 0.146 0.952 0.048 0.144

(2) Wang’s (1995,1999) sequential procedure based on supk∈K
∣∣∣WY

j,k

∣∣∣
m̂∗

8 γ = 0.05 0.715 0.285 0.347 0.752 0.248 0.295
γ = 0.01 0.728 0.272 0.328 0.763 0.237 0.278
γ→ 0 0.782 0.218 0.253 0.820 0.180 0.204

m̂∗
7 γ = 0.05 0.627 0.373 0.508 0.600 0.400 0.556

γ = 0.01 0.642 0.358 0.479 0.618 0.382 0.522
γ→ 0 0.854 0.146 0.164 0.859 0.142 0.158

m̂∗
6 γ = 0.05 0.343 0.657 1.269 0.304 0.696 1.427

γ = 0.01 0.363 0.637 1.205 0.320 0.680 1.361
γ→ 0 0.831 0.169 0.203 0.828 0.171 0.205

max
{
m̂∗

7, m̂
∗
8

}
γ = 0.05 0.452 0.548 0.740 0.454 0.546 0.743
γ = 0.01 0.471 0.529 0.701 0.474 0.526 0.703
γ→ 0 0.669 0.331 0.383 0.704 0.296 0.336

max
{
m̂∗

6, m̂
∗
7

}
γ = 0.05 0.218 0.782 1.492 0.183 0.817 1.653
γ = 0.01 0.235 0.765 1.423 0.198 0.802 1.579
γ→ 0 0.711 0.289 0.341 0.713 0.287 0.337

max
{
m̂∗

6, m̂
∗
7, m̂

∗
8

}
γ = 0.05 0.158 0.842 1.591 0.138 0.862 1.726
γ = 0.01 0.173 0.827 1.522 0.151 0.849 1.652
γ→ 0 0.558 0.442 0.527 0.584 0.416 0.489

(3) Fryzlewicz’s (2014) based on Wild Binary Segmentation (WBS) and
Fryzlewicz’s (2018) based on Tail-Greedy Unbalanced Haar (TGUH)

WBS 0.876 0.124 0.290 − − −
TGUH 0.875 0.125 0.290 − − −

[34] Ma, Y., & Genton, M. G. (2000). Highly robust estimation of the autocovariance function. Journal of Time
Series Analysis, 21(6), 663-684.

[35] McCloskey, A., & Perron, P. (2013). Memory parameter estimation in the presence of level shifts and deter-
ministic trends. Econometric Theory, 29(06), 1196-1237.
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TABLE 2
Relative frequency of estimates of the number of jumps under the smooth trend function

fC (x)≡ 2 [sin (4πx) + sin (8πx)] and no jump m0 = 0

H = 0.5 H = 0.9

Relative frequency Bias Relative frequency Bias
=m0 >m0 =m0 >m0

(1) Sequential procedure based on D̂j,K

m̂8 γ = 0.05 0.957 0.043 0.157 0.959 0.041 0.139
γ = 0.01 0.984 0.016 0.044 0.986 0.014 0.041

m̂7 γ = 0.05 0.946 0.064 0.157 0.950 0.050 0.161
γ = 0.01 0.981 0.019 0.047 0.979 0.021 0.056

m̂6 γ = 0.05 0.942 0.058 0.148 0.947 0.053 0.125
γ = 0.01 0.974 0.026 0.058 0.980 0.020 0.044

max{m̂7, m̂8} γ = 0.05 0.905 0.095 0.312 0.911 0.089 0.297
γ = 0.01 0.966 0.034 0.091 0.966 0.034 0.097

max{m̂6, m̂7} γ = 0.05 0.892 0.108 0.299 0.900 0.100 0.281
γ = 0.01 0.956 0.044 0.104 0.960 0.040 0.099

max{m̂6, m̂7, m̂8} γ = 0.05 0.853 0.147 0.448 0.864 0.136 0.412
γ = 0.01 0.941 0.059 0.147 0.947 0.053 0.139

(2) Wang’s (1995,1999) sequential procedure based on supk∈K
∣∣∣WY

j,k

∣∣∣
m̂∗

8 γ = 0.05 0.708 0.292 0.364 0.737 0.263 0.318
γ = 0.01 0.720 0.280 0.345 0.750 0.250 0.299
γ→ 0 0.775 0.225 0.268 0.811 0.189 0.217

m̂∗
7 γ = 0.05 0.607 0.393 0.560 0.590 0.410 0.598

γ = 0.01 0.624 0.376 0.525 0.606 0.394 0.567
γ→ 0 0.840 0.160 0.192 0.836 0.164 0.194

m̂∗
6 γ = 0.05 0.375 0.625 1.181 0.333 0.667 1.312

γ = 0.01 0.392 0.608 1.130 0.348 0.652 1.259
γ→ 0 0.825 0.175 0.226 0.826 0.174 0.223

max
{
m̂∗

7, m̂
∗
8

}
γ = 0.05 0.430 0.570 0.800 0.436 0.564 0.800
γ = 0.01 0.451 0.549 0.757 0.457 0.543 0.758
γ→ 0 0.652 0.348 0.423 0.678 0.322 0.379

max
{
m̂∗

6, m̂
∗
7

}
γ = 0.05 0.230 0.770 1.447 0.196 0.804 1.581
γ = 0.01 0.248 0.752 1.385 0.211 0.789 1.520
γ→ 0 0.693 0.307 0.389 0.692 0.308 0.386

max
{
m̂∗

6, m̂
∗
7, m̂

∗
8

}
γ = 0.05 0.163 0.837 1.561 0.146 0.854 1.663
γ = 0.01 0.179 0.821 1.497 0.160 0.840 1.598
γ→ 0 0.537 0.463 0.586 0.560 0.440 0.544

[36] Mémin, J., Mishura, Y., & Valkeila, E. (2001). Inequalities for the moments of Wiener integrals with respect
to a fractional Brownian motion. Statistics & Probability Letters, 51(2), 197-206.

[37] Müller, H. G. (1992). Change-points in nonparametric regression analysis. The Annals of Statistics, 737-
761.

[38] Müller, H. G., & Stadtmüller, U. (1999). Discontinuous versus smooth regression. The Annals of Statistics,
27(1), 299-337.

[39] Nason, G. P., & Silverman, B. W. (1995). The stationary wavelet transform and some statistical applications.
In Wavelets and Statistics, 281-299. Springer, New York, NY.
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TABLE 3
Relative frequency of estimates of the number of jumps under the smooth trend function fC (x) = 1 and three

jumps m0 = 3 with d1 = 2, d2 =−2, and d3 = 2

H = 0.5 H = 0.9

Relative frequency Bias Relative frequency Bias
<m0 =m0 >m0 <m0 =m0 >m0

(1) Sequential procedure based on D̂j,K

m̂8 γ = 0.05 0.266 0.691 0.043 -0.087 0.036 0.925 0.039 0.124
γ = 0.01 0.449 0.539 0.012 -0.412 0.098 0.889 0.013 -0.050

m̂7 γ = 0.05 0.000 0.953 0.047 0.163 0.000 0.953 0.047 0.166
γ = 0.01 0.001 0.983 0.016 0.052 0.001 0.984 0.015 0.05

m̂6 γ = 0.05 0.001 0.947 0.052 0.145 0.001 0.945 0.054 0.161
γ = 0.01 0.001 0.978 0.021 0.050 0.001 0.980 0.019 0.052

max{m̂7, m̂8} γ = 0.05 0.000 0.913 0.087 0.340 0.000 0.916 0.084 0.322
γ = 0.01 0.001 0.971 0.028 0.099 0.000 0.972 0.028 0.098

max{m̂6, m̂7} γ = 0.05 0.000 0.903 0.097 0.307 0.000 0.901 0.099 0.323
γ = 0.01 0.000 0.964 0.036 0.105 0.000 0.966 0.034 0.103

max{m̂6, m̂7, m̂8} γ = 0.05 0.000 0.864 0.136 0.482 0.000 0.866 0.134 0.475
γ = 0.01 0.000 0.950 0.050 0.151 0.000 0.953 0.047 0.149

(2) Wang’s (1995,1999) sequential procedure based on supk∈K
∣∣∣WY

j,k

∣∣∣
m̂∗

8 γ = 0.05 0.000 0.737 0.263 0.314 0.000 0.773 0.227 0.264
γ = 0.01 0.000 0.749 0.251 0.297 0.000 0.786 0.214 0.247
γ→ 0 0.000 0.799 0.201 0.230 0.000 0.835 0.165 0.184

m̂∗
7 γ = 0.05 0.000 0.695 0.305 0.389 0.000 0.673 0.327 0.427

γ = 0.01 0.000 0.710 0.290 0.366 0.000 0.688 0.312 0.401
γ→ 0 0.000 0.887 0.113 0.125 0.000 0.889 0.111 0.121

m̂∗
6 γ = 0.05 0.000 0.515 0.485 0.761 0.000 0.471 0.529 0.872

γ = 0.01 0.000 0.535 0.465 0.719 0.000 0.486 0.514 0.830
γ→ 0 0.000 0.900 0.100 0.113 0.000 0.898 0.102 0.115

max
{
m̂∗

7, m̂
∗
8

}
γ = 0.05 0.000 0.515 0.485 0.617 0.000 0.521 0.479 0.613
γ = 0.01 0.000 0.535 0.465 0.585 0.000 0.542 0.458 0.579
γ→ 0 0.000 0.711 0.289 0.329 0.000 0.743 0.257 0.286

max
{
m̂∗

6, m̂
∗
7

}
γ = 0.05 0.000 0.356 0.645 0.991 0.000 0.316 0.684 1.108
γ = 0.01 0.000 0.378 0.622 0.940 0.000 0.335 0.665 1.055
γ→ 0 0.000 0.798 0.202 0.226 0.000 0.799 0.201 0.224

max
{
m̂∗

6, m̂
∗
7, m̂

∗
8

}
γ = 0.05 0.000 0.262 0.738 1.124 0.000 0.244 0.756 1.208
γ = 0.01 0.000 0.283 0.717 1.072 0.000 0.261 0.739 1.153
γ→ 0 0.000 0.642 0.358 0.411 0.000 0.668 0.332 0.374

(3) Fryzlewicz’s (2014) based on Wild Binary Segmentation (WBS) and
Fryzlewicz’s (2018) based on Tail-Greedy Unbalanced Haar (TGUH)

WBS 0.000 0.819 0.181 0.386 − − − −
TGUH 0.000 0.815 0.185 0.394 − − − −

[40] Papoulis, A. (1984). Probability, Random Variables and Stochastic Processes (2nd ed.), New York: McGraw-
Hill.

[41] Percival, D. P. (1995). On estimation of the wavelet variance. Biometrika, 82(3), 619-631.
[42] Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis (Vol. 4). Cambridge

University Press.
[43] Perron, P., & Qu, Z. (2010). Long-memory and level shifts in the volatility of stock market return indices.

Journal of Business & Economic Statistics, 28(2), 275-290.
[44] Perron, P., Shintani, M., & Yabu, T. (2020). Trigonometric trend regressions of unknown frequencies with

stationary or integrated noise (No. WP2020-012). -Department of Economics, Boston University.
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TABLE 4
Relative frequency of estimates of the number of jumps under the smooth trend function

fC (x)≡ 2 [sin (4πx) + sin (8πx)] and three jumps m0 = 3 with with d1 = 2, d2 =−2, and d3 = 2

H = 0.5 H = 0.9

Relative frequency Bias Relative frequency Bias
<m0 =m0 >m0 <m0 =m0 >m0

(1) Sequential procedure based on D̂j,K

m̂8 γ = 0.05 0.080 0.877 0.043 0.077 0.003 0.956 0.041 0.133
γ = 0.01 0.178 0.807 0.015 -0.136 0.010 0.976 0.014 0.031

m̂7 γ = 0.05 0.001 0.943 0.056 0.159 0.001 0.950 0.049 0.150
γ = 0.01 0.001 0.979 0.020 0.050 0.001 0.979 0.020 0.055

m̂6 γ = 0.05 0.004 0.953 0.043 0.103 0.008 0.952 0.040 0.077
γ = 0.01 0.334 0.657 0.009 -0.650 0.336 0.655 0.009 -0.653

max{m̂7, m̂8} γ = 0.05 0.000 0.903 0.097 0.313 0.000 0.910 0.090 0.285
γ = 0.01 0.000 0.965 0.035 0.093 0.000 0.967 0.033 0.098

max{m̂6, m̂7} γ = 0.05 0.000 0.903 0.097 0.265 0.000 0.913 0.087 0.240
γ = 0.01 0.000 0.971 0.029 0.068 0.000 0.971 0.029 0.075

max{m̂6, m̂7, m̂8} γ = 0.05 0.000 0.863 0.137 0.416 0.000 0.875 0.125 0.370
γ = 0.01 0.000 0.956 0.044 0.110 0.000 0.958 0.042 0.116

(2) Wang’s (1995,1999) sequential procedure based on supk∈K
∣∣∣WY

j,k

∣∣∣
m̂∗

8 γ = 0.05 0.000 0.750 0.250 0.301 0.000 0.780 0.220 0.255
γ = 0.01 0.000 0.764 0.236 0.283 0.000 0.792 0.208 0.240
γ→ 0 0.000 0.810 0.190 0.222 0.000 0.839 0.161 0.180

m̂∗
7 γ = 0.05 0.000 0.730 0.270 0.341 0.000 0.713 0.287 0.367

γ = 0.01 0.000 0.743 0.257 0.322 0.000 0.724 0.276 0.347
γ→ 0 0.000 0.894 0.106 0.118 0.000 0.897 0.103 0.114

m̂∗
6 γ = 0.05 0.000 0.675 0.325 0.432 0.000 0.639 0.361 0.493

γ = 0.01 0.000 0.688 0.312 0.410 0.000 0.656 0.344 0.466
γ→ 0 0.000 0.937 0.063 0.069 0.000 0.936 0.064 0.072

max
{
m̂∗

7, m̂
∗
8

}
γ = 0.05 0.000 0.548 0.452 0.571 0.000 0.557 0.443 0.556
γ = 0.01 0.000 0.568 0.432 0.540 0.000 0.574 0.426 0.528
γ→ 0 0.000 0.724 0.276 0.319 0.000 0.753 0.247 0.278

max
{
m̂∗

6, m̂
∗
7

}
γ = 0.05 0.000 0.496 0.504 0.676 0.000 0.459 0.541 0.745
γ = 0.01 0.000 0.513 0.487 0.645 0.000 0.476 0.524 0.711
γ→ 0 0.000 0.838 0.162 0.179 0.000 0.841 0.159 0.178

max
{
m̂∗

6, m̂
∗
7, m̂

∗
8

}
γ = 0.05 0.000 0.372 0.628 0.846 0.000 0.358 0.642 0.876
γ = 0.01 0.000 0.391 0.609 0.809 0.000 0.376 0.624 0.838
γ→ 0 0.000 0.678 0.322 0.370 0.000 0.704 0.296 0.334

[45] Porter, J., & Yu, P. (2015). Regression discontinuity designs with unknown discontinuity points: Testing and
estimation. Journal of Econometrics, 189(1), 132-147.
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Applied Probability, 54-80.
[49] Rousseeuw, P. J., & Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the American

Statistical association, 88(424), 1273-1283.
[50] Serroukh, A., Walden, A. T., & Percival, D. B. (2000). Statistical properties and uses of the wavelet variance

estimator for the scale analysis of time series. Journal of the American Statistical Association, 95(449),
184-196.

[51] Shimotsu, K. (2006). Simple (but effective) tests of long memory versus structural breaks. Queen’s Eco-
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TABLE 5
Sequential procedures to estimate the number of jumps for the Dow-Jones Industrial Average

H0 H1 Test statistic
Test based on sequential procedure for m̂7

D̂7,K

m0 = 0 m0 > 0 4.1204
m0 = 1 m0 > 1 3.8619
m0 = 2 m0 > 2 2.2824

Critical value C0.05 =1.9600
C0.01 =2.5758

Test based on Wang’s (1995,1999) sequential procedure for m̂∗
7

supk∈K
∣∣∣WY

7,k

∣∣∣
m0 = 0 m0 > 0 0.003481
m0 = 1 m0 > 1 0.002688
m0 = 2 m0 > 2 0.001695
m0 = 3 m0 > 3 0.000940

Critical value C∗
0.05 =0.001174

C∗
0.01 =0.001181

limγ→0C
∗
γ =0.001308

TABLE 6
Sequential procedures to estimate the number of jumps for the water level of the Nile River

H0 H1 Test statistic
Test based on sequential procedure for m̂7

D̂7,K

m0 = 0 m0 > 0 4.4520
m0 = 1 m0 > 1 3.6423
m0 = 2 m0 > 2 2.9267
m0 = 3 m0 > 3 2.3435

Critical value C0.05 =1.9600
C0.01 =2.5758

Test based on Wang’s (1995,1999) sequential procedure for m̂∗
7

supk∈K
∣∣∣WY

7,k

∣∣∣
m0 = 0 m0 > 0 11.7006
m0 = 1 m0 > 1 11.0840
m0 = 2 m0 > 2 10.2247
m0 = 3 m0 > 3 9.6761
m0 = 4 m0 > 4 7.1524

Critical value C∗
0.05 =7.0303

C∗
0.01 =7.0656

limγ→0C
∗
γ =7.2975

[52] Spokoiny, V. G. (1998). Estimation of a function with discontinuities via local polynomial fit with an adap-
tive window choice. The Annals of Statistics, 26(4), 1356-1378.

[53] Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3). Cambridge University Press.
[54] Wang, Y. (1995). Jump and sharp cusp detection by wavelets. Biometrika 82, 385-397.
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24(2), 466-484.
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The Annals of Statistics, 21, 1545-1566.
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SUPPLEMENTARY MATERIAL

The supplementary materials include the following sections on: (S1) Two types of discrete
wavelet transformation; (S2) Proof of Theorem 1; (S3): Proof of Theorem 2; (S4) Proof of
Proposition 3; and (S5) Lemmas and their proofs.

S1: Two types of DWTs
Define two types of Discrete Wavelet Transformation (DWT) at scale j ∈ Z and location
k ∈ Z for either discrete time series {Xt, t ∈ Z} or process {X (t)}t∈R as

WY
j,k ≡

1

n

n∑
i=1

ψj,k

(
i

n

)
Yi,

WY
j,k ≡

∫ 1

0
ψj,k (x)Y (dx)

and

WC
j,k ≡

1

n

n∑
i=1

ψj,k

(
i

n

)
fC

(
i

n

)
,

WC
j,k ≡

∫ 1

0
ψj,k (x)fC (dx)

and

WJ
j,k ≡

1

n

n∑
i=1

ψj,k

(
i

n

)
fJ

(
i

n

)

=

m0∑
l=1

dlWIl
j,k,

W J
j,k ≡

∫ 1

0
ψj,k (x)fJ (dx)

=

m0∑
l=1

dlW
Il
j,k

and

WBH

j,k ≡ 1

n

n∑
i=1

ψj,k

(
i

n

)
εi,

WBH

j,k ≡
∫ 1

0
ψj,k (x)BH (dx)

where

ψj,k (x)≡ 2j/2ψ
(
k− 2jx

)
,

WIl
j,k ≡

1

n

n∑
i=1

ψj,k

(
i

n

)
I{ i
n
> λl},

W Il
j,k ≡

∫ 1

0
ψj,k (x) I{x > λl}dx.
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Here, when H = 0.5, BH is the standard Brownian motion B. When 0.5 < H < 1, BH is
a fractional Gaussian noise that is the formal derivative of a standard fractional Brownian
motion given by

BH (x)≡ 1

Γ(H + 1/2)

∫ x

0
(x− u)H−1/2B(du).

Recall the support of wavelet function ψ(t) is [0, T ] with T <∞, then (i) The role of scale
j: The support of ψj,k(t) is given by [2−jk,2−j(k + T )] so that the finer scale, namely
increasing the scale j, shrinks the support of ψj,k(t). (ii) The role of location k: Increasing the
location index k to k′ shifts the support of ψj,k(t) from [2−jk,2−j(k+T )] to [2−jk′,2−j(k′+
T )].

S2: Proof of Theorem 1

PROOF. (i) Under H0, from Lemma (7.2) and (7.4), we have

σ̂2j,K ≡
∑2j

k=1(WY
j,k)

2

2j

=

∑2j

k=1(WC
j,k +WBH

j,k )2

2j

=

∑2j

k=1(W
C
j,k + nH−1WBH

j,k +O
(
2j/2

n

)
+Op

[√
logn

(
2j

n

)1−H
n−1/2

]
)2

2j

=

∑2j

k=1(W
C
j,k + nH−1WBH

j,k +Op

[√
logn

(
2j

n

)1−H
n−1/2

]
)2

2j

=

∑2j

k=1

[
WC

j,k + nH−1WBH

j,k + op

(
nH−1WBH

j,k

)]2
2j

where the third equality is due to H ∈ [0.5,1) and

√
logn

(
2j

n

)1−H
n−1/2

2j/2

n

=
√

logn

(
2j

n

)1/2−H

→∞;

while the fourth equality is because

nH−1WBH

j,k
√
logn

(
2j

n

)1−H
n−1/2

=
1√
logn

( n
2j

)1/2
→∞.

And we have

σ̃2j,K ≡

[
medk∈{1,··· ,2j}

∣∣∣∣∣ WY
j,k

0.6745

∣∣∣∣∣
]2

=

medk∈{1,··· ,2j}

∣∣∣∣∣∣∣∣
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[√
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(
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
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=

medk∈{1,··· ,2j}

∣∣∣∣∣∣
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j,k + nH−1WBH

j,k + op
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nH−1WBH
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0.6745
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2

.

Since
{
WBH

j,k

}2j

k=1
is short-range dependent according to Wang (1996), we could show that
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j,1 (Papoulis 1984, p. 233). Similarly, V ar
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Thus, under Assumption 3(i) where n(H−1)/(H−3/2)

2j → 0, we have∑2j
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k=1

(
nH−1WBH

j,k

)2
∑2j

k=1

(
WC

j,k

)2 =Op

[
n2H−2

2(2H−1)j2−3j

]

=Op

[
nH−1

2(H−2)j

]2
→∞,

sup
k∈K

(
nH−1WBH

j,k

WC
j,k

)
=Op

[
nH−1

2(H−2)j

]
→∞.

Notice that under Assumption 3(i),

2(2H−1/2)j

n2H−2

∑2j

k=1

(
WC

j,k

)2
2j

=O

[
2(2H−7/2)j

n2H−2

]
→ 0

and

2(2H−1/2)j

n2H−2

∑2j

k=1W
C
j,kn

H−1WBH

j,k

2j
=Op

[
2(2H−1/2)j

n2H−2

nH−1

2(H+3/2)j

]
=Op

[
2(H−2)j

nH−1

]
→ 0.

Hence, both terms
∑2j

k=1(WC
j,k)

2

2j and
∑2j

k=1 W
C
j,kn

H−1W
BH
j,k

2j do not introduce the bias into the lim-
iting distribution of σ̂2j,K. According to Kouamo et al. (2013), where they provide asymptotic
expansions for σ̂2j,K and σ̃2j,K, we can derive the following multivariate central limit theorem

2(2H−1/2)j

n2H−2
[]σ̂2j,K − σ2j σ̃

2
j,K − σ2j

d→N

[
0,

(
v∗1 v

∗
12

v∗12 v
∗
2

)]
where

v∗1 ≡ lim
n→∞

2(4H−1)j

n4H−4
V ar


∑2j

k=1

(
WBH

j,k

)2
2j


v∗2 = lim

n→∞

2(4H−1)j

n4H−4
V ar


[
medk∈{1,··· ,2j}

∣∣∣∣∣ W
BH

j,k

0.6745

∣∣∣∣∣
]2

v∗12 ≡ lim
n→∞

2(4H−1)j

n4H−4
Cov


∑2j

k=1

(
WBH

j,k

)2
2j

,

[
medk∈{1,··· ,2j}

∣∣∣∣∣ W
BH

j,k

0.6745

∣∣∣∣∣
]2
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and

(
v∗1 v

∗
12

v∗12 v
∗
2

)
is a 2 × 2 positive definite matrix. Notice that the asymptotic covariance

matrix

(
v∗1 v

∗
12

v∗12 v
∗
2

)
can be further derived according to the influence functions of σ̂2j,K and

σ̃2j,K from Proposition 1 of Kouamo et al. (2013).14 Therefore, we have

2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ̃2j,K

) d→N

[
0, (1,−1)

(
v∗1 v

∗
12

v∗12 v
∗
2

)(
1

−1

)]
.

(ii) Under H1, from Lemma (7.2), (7.3) and (7.4), we have

σ̂2j,K ≡
∑2j

k=1(WY
j,k)

2

2j

=

∑2j

k=1(WC
j,k +WJ

j,k +WBH

j,k )2

2j

=

∑2j

k=1

[
WC

j,k +W J
j,k + nH−1WBH

j,k + op

(
nH−1WBH

j,k

)]2
2j

=

∑2j

k=1

[
WC

j,k +
∑m0

l=1 dlW
Il
j,k + nH−1WBH

j,k + op

(
nH−1WBH

j,k

)]2
2j

=

∑2j

k=1

[
WC

j,k + nH−1WBH

j,k + op

(
nH−1WBH

j,k

)]2
2j

+

∑2j

k=1

[∑m0

l=1 dlW
Il
j,k + op

(
nH−1WBH

j,k

)]2
2j

+
2
∑2j

k=1

{[
WC

j,k + nH−1WBH

j,k + op

(
nH−1WBH

j,k

)][∑m0

l=1 dlW
Il
j,k + op

(
nH−1WBH

j,k

)]}
2j

and

σ̃2j,K ≡

[
medk∈{1,··· ,2j}

∣∣∣∣∣ WY
j,k

0.6745

∣∣∣∣∣
]2

=

medk∈{1,··· ,2j}

∣∣∣∣∣∣
WC

j,k +
∑m0

l=1 dlW
Il
j,k + nH−1WBH

j,k + op

(
nH−1WBH

j,k

)
0.6745

∣∣∣∣∣∣
2

.

Because the number of non-zero terms in
∑2j

k=1

∑m0

l=1

(
W Il

j,k

)2
is finite and

(
W Il

j,k

)2
=

Op

(
2−j
)

from Lemma (7.3), we have

m0∑
l=1

[
d2l

2j∑
k=1

(
W Il

j,k

)2]

14Here we omit this further expression, and interested readers can derive it based on Lévy-Leduc et al. (2011).
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=

2j∑
k=1

(
W Il

j,k

)2
·
m0∑
l=1

d2l

=O
(
2−j
)
,

thus ∑2j

k=1

[∑m0

l=1 dlW
Il
j,k

]2
2j

=O
(
2−2j

)
.

Similarly, since the number of non-zero terms in
∑m0

l=1 dlW
Il
j,k is finite and W Il

j,k =

Op

(
2−j/2

)
from Lemma (7.3), then we have∑2j

k=1

(
nH−1WBH

j,k

∑m0

l=1 dlW
Il
j,k

)
2j

=Op

(
nH−1WBH

j,k W
Il
j,k

2j

)

=Op


√√√√V ar

(
nH−1WBH

j,k W
Il
j,k

2j

)
=Op

[
nH−1

2(H+1)j

]
.

Notice that ∑2j

k=1

[∑m0

l=1 dlW
Il
j,k

]2
∑2j

k=1

(
nH−1WBH

j,k

∑m0

l=1 dlW
Il
j,k

) =Op

(
2−2j2(H+1)j

nH−1

)

=Op

(
2(H−1)j

nH−1

)
→∞.

Therefore

σ̂2j,K =

∑2j

k=1 n
2H−2

(
WBH

j,k

)2
2j

+
2
∑2j

k=1

(
nH−1WBH

j,k

∑m0

l=1 dlW
Il
j,k

)
2j

+

∑2j

k=1

[∑m0

l=1 dlW
Il
j,k

]2
2j

+op

2∑2j

k=1

(
nH−1WBH

j,k

∑m0

l=1 dlW
Il
j,k

)
2j

 .
Notice that the second and third terms are introduced because of the presence of jumps under
H1. Thus under H1

2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ2j

)
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=
2(2H−1/2)j

n2H−2


∑2j

k=1 n
2H−2(WBH

j,k )
2

2j − σ2j

+
2
∑2j

k=1(nH−1W
BH
j,k

∑m0
l=1 dlW

Il
j,k)

2j +
∑2j

k=1[
∑m0

l=1 dlW
Il
j,k]

2

2j

+op

[
2
∑2j

k=1(nH−1W
BH
j,k

∑m0
l=1 dlW

Il
j,k)

2j

]


=N (0, v∗1)

+
2(2H−1/2)j

n2H−2

2
∑2j

k=1

(
nH−1WBH

j,k

∑m0

l=1 dlW
Il
j,k

)
2j

+
2(2H−1/2)j

n2H−2

∑2j

k=1

[∑m0

l=1 dlW
Il
j,k

]2
2j

+op

2(2H−1/2)j

n2H−2

2
∑2j

k=1

(
nH−1WBH

j,k

∑m0

l=1 dlW
Il
j,k

)
2j

 .
On the other hand,

2(2H−1/2)j

n2H−2

(
σ̃2j,K − σ2j

)
→N (0, v∗2)

regardless of being under H0 or H1. Recall

D̂j,K =
σ̂2j,K − σ̃2j,K√

ω̂

=

(
σ̂2j,K − σ2j

)
−
(
σ̃2j,K − σ2j

)
√
ω̂

=

2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ2j

)
− 2(2H−1/2)j

n2H−2

(
σ̃2j,K − σ2j

)
√

2(4H−1)j

n4H−4 ω

√
ω√
ω̂

=

2(2H−1/2)j

n2H−2

(
σ̂2j,K − σ2j

)
− 2(2H−1/2)j

n2H−2

(
σ̃2j,K − σ2j

)
√√√√(1,−1)

(
v∗1 v

∗
12

v∗12 v
∗
2

)(
1
−1

)
√
ω√
ω̂

where

2(4H−1)j

n4H−4
ω = (1,−1)

(
v∗1 v

∗
12

v∗12 v
∗
2

)(
1

−1

)
by construction. Since ω̂ is a consistent estimate of ω, we have

D̂j,K = Op

2(2H−1/2)j

n2H−2

2
∑2j

k=1

(
nH−1WBH

j,k

∑m0

l=1 dlW
Il
j,k

)
2j



+Op

2(2H−1/2)j

n2H−2

∑2j

k=1

(∑m0

l=1 dlW
Il
j,k

)2
2j


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+Op (1)

= Op

[
2(2H−1/2)j

n2H−2

nH−1

2(H+1)j

]
+O

[
2(2H−1/2)j

n2H−2
2−2j

]
+Op (1)

= Op

[
2(H−3/2)j

nH−1

]
+O

[
2(2H−5/2)j

n2H−2

]
+Op (1)

= op (1) +∞+Op (1)

→∞

where the fourth equality comes from Assumption 3 where n(H−1)/(H−3/2)

2j → 0, while
n(2H−2)/(2H−5/2)

2j →∞.

S3: Proof of Theorem 2

PROOF. Following Theorem 1, we can easily show that with probability 1− γ,

|Dj,K| ≥Φ−1
(
1− γ

2

)
,

when there are jumps at k/2j with k ∈
{
1, · · · ,2j

}
. From the definition of m̂ and

k̂1, · · · , k̂m̂0
, we can see that, with probability tending to 1− γ,

m̂=m0,

k̂l
2j

− λl =Op

(
2−j
)

for l= 1, · · · , m̂. Finally, the theorem is proved by letting γ→ 0.

S4: Proof of Proposition 3

PROOF. Under Assumption 4, it is straightforward to prove that 2(4H−1)j

n4H−4 (ω̂− ω) = op (1)
under H0 following Andrews (1991). And under H1, since the outliers from jumps are trun-
cated from ω̂, we still have 2(4H−1)j

n4H−4 (ω̂− ω) = op (1) based on Assumption 4.

S5: Lemmas and their proofs
The following lemmas provide both asymptotic decay rates and discretization bias between
W and W. Recall that W is DWT for the discrete time series {Xt, t ∈ Z}, while W is DWT
for the process {X (t)}t∈R. The reasons for proving the discretization bias betweenW and W
are: (i) most properties of wavelet transformation (e.g., decorrelation and spatial adaptivity)
are defined on W instead of on W; (ii) the convergence rate is easier to obtain from W than
from W.

LEMMA 7.1. Suppose that the first derivatives of g and ψ exist except for a small number
of points. Moreover, assume that g′ and ψ′ (where they exist) are piecewise, continuous and
bounded. Then for j ∈ Z and k ∈

{
1, · · · ,2j

}
=K, we have

Wg
j,k =W g

j,k +O(
2j/2

n
)
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where

Wg
j,k ≡

1

n

n∑
i=1

ψj,k

(
i

n

)
g

(
i

n

)

W g
j,k ≡

∫ 1

0
2j/2ψ

(
k− 2jx

)
g (dx) .

PROOF. Recall the rectangle rule, which is∫ d

c
ω(x)dx=

d− c

n

n−1∑
i=0

ω(c+ i
d− c

n
) +O

(
n−1∑
i=0

sup
x∈Ci

∣∣ω′(x)
∣∣ · (d− c)2

n2

)
with Ci =

[
c+ id−c

n , c+ (i+ 1) d−c
n

]
. Noting that the support of ψ

(
k− 2j i

n

)
(as a function

of i) is
[
kn2−j , (T+ k)n2−j

]
, we obtain

Wg
j,k = 2j/2

c2(k)∑
i=c1(k)

1

n
ψ

(
k− 2j

i

n

)
g

(
i

n

)
with

c1 (k)≡ kn2−j

c2 (k)≡ (T+ k)n2−j .

Thus, the number of non-zero terms in the sum is Tn2−j . This outcome, together with the
rectangle rule for ω(i/n)≡ ψ

(
k− 2j i

n

)
g
(
i
n

)
, implies that

Wg
j,k =W g

j,k +O(
2j/2

n
).

Note that here the factor 2j from the derivative of ψ
(
k− 2jx

)
is compensated for by the

fact that the number of non-zero terms in the sum is proportional to 2−j . Now, assume, more
generally, that g′ and ψ′ exist except for a few points. The result then follows by a piecewise
application of the rectangle rule.

Recall

WC
j,k ≡

1

n

n∑
i=1

ψj,k

(
i

n

)
fC

(
i

n

)
,

WC
j,k ≡

∫ 1

0
2j/2ψ

(
k− 2jx

)
fC (dx) .

LEMMA 7.2. For j ∈ Z and k ∈
{
1, · · · ,2j

}
=K, we have:

(i)

WC
j,k =O

(
2−3j/2

)
;

(ii)

WC
j,k −WC

j,k =O

(
2j/2

n

)
.
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PROOF. (i) According to Theorem 2.9.1 - 2.9.4 of Daubechies (1992), the asymptotic
decay of WC

j,k is the order O
(
2−3j/2

)
. (ii) It is from Lemma (7.1).

Recall

WJ
j,k ≡

1

n

n∑
i=1

ψj,k

(
i

n

)
fJ

(
i

n

)

=

m0∑
l=1

dl ·WIl
j,k,

W J
j,k ≡

∫ 1

0
2j/2ψ

(
k− 2jx

)
fJ (dx)

=

m0∑
l=1

dl ·W Il
j,k

where

WIl
j,k ≡

1

n

n∑
i=1

ψj,k

(
i

n

)
I{ i
n
> λl},

W Il
j,k ≡

∫ 1

0
2j/2ψ

(
k− 2jx

)
I{x > λl}dx.

with l ∈ {1, ..,m0}. Let the support of the wavelet function ψ(t) is [0, T ] with T <∞.

LEMMA 7.3. For j ∈ Z, k ∈
{
1, · · · ,2j

}
=K and l ∈ {1, ..,m0}, we have:

(i)

W Il
j,k = {.O

(
2−j/2

)
, for k ∈

[
2jλl,2

jλl + T
]
∩
{
1, · · · ,2j

}
0,otherwise;

(ii)

WIl
j,k −W Il

j,k =O

(
2j/2

n

)
.

PROOF. (i) Using the definition
∫ 1
0 2j/2ψ

(
k− 2jx

)
I{x > λl}dx and applying the change

of variable, we have

1

2j/2

∫ T

0
ψ (v) I{k− v > 2jλl}dv

= {.O
(
2−j/2

)
, for k ∈

[
2jλl,2

jλl + T
]
∩
{
1, · · · ,2j

}
0,otherwise.

(ii) This result follows from Lemma (7.1) or Lemma D.8 of Chen and Fan (2019).

Recall

WBH

j,k ≡ 1

n

n∑
i=1

ψj,k

(
i

n

)
εi,

WBH

j,k ≡
∫ 1

0
2j/2ψ

(
k− 2jx

)
BH (dx) .
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LEMMA 7.4. For j ∈ Z and k ∈
{
1, · · · ,2j

}
=K, we have:

(i)

WBH

j,k =OP

[
2−(H−1/2)j

]
sup
k∈K

WBH

j,k =OP

[
2−(H−1/2)j

∣∣log 2j∣∣1/2] ;
(ii)

max
k∈K

∣∣∣nH−1/2WBH

j,k − n1/2WBH

j,k

∣∣∣=Op

[√
logn

(
2j

n

)1−H
]
.

PROOF. (i) When H = 0.5, the asymptotic decay of WBH

j,k is the order of Op(1) and

supk∈KW
BH

j,k = Op

(∣∣log 2j∣∣1/2) based on Wang (1995). For 0.5 <H < 1, the results fol-
low Wang (1996). (ii) Our proof depends on whether or not H = 0.5. When H = 0.5, the
integration with respect to the Brownian motion B, so that we need to apply the Itô calculus
in the derivation. On the other hand, when 0.5<H < 1, BH , is not semimartingale, so that
the Itô calculus can’t be applied, and we refer to Mémin, Mishura and Valkeila (2001) to
bound the moments of Wiener integrals with respect to fractional Brownian motions.15

Case 1 of H = 0.5 where B =B1/2, then

WB
j,k =

∫ 2j

0
2j/2ψ

(
k− 2jx

)
dB
(
2jx
)
· 1

2j/2

=

∫ 2j

0
ψ (k− t)dB (t)

where the first equality comes from the scaling invariance of the Brownian motion. Recall

√
nWB

j,k =

∑n
i=1 2

j/2ψ
(
k− i

n2
j
)
εi√

n

=

∫ 2j

0
ψ

(
k−

⌊
1 + tn/2j

⌋
n/2j

)
dB (t)

where the second equality occurs because εi :=B (i)−B (i− 1) . Notice that both WB
j,k and√

nWB
j,k are stationary Gaussian processes. In order to show

max
k∈R

∣∣∣WB
j,k − n1/2WB

j,k

∣∣∣=Op

(√
logn

n/2j

)
,

we apply the chaining argument of Cranston et al. (2000). Notice that

E

[∫ 2j

0
ψ (k− t)dB (t)−

∫ 2j

0
ψ

(
k−

⌊
1 + tn/2j

⌋
n/2j

)
dB (t)

]2

≤E

[∫ 2j

0
sup

v,v′∈[k−t−n2−j ,k−t+n2−j ]

∣∣ψ (v)−ψ
(
v′
)∣∣dB (t)

]2

15It might be possible to integrate both cases of H = 1/2 and H > 1/2 by using the harmonizable represen-
tations of wavelet coefficients; see Ayache and Bertrand (2011) but their results are only pointwise.
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=

∫ 2j

0
sup

v,v′∈[k−t−2jn−1,k−t+2jn−1]

∣∣ψ (v)−ψ
(
v′
)∣∣2 dt

=
C

n/2j

where the first equality is due to the Itô’s Isometry. Similarly, if∣∣k− k′
∣∣≤ 1

2
,

we have

E
[
WB

j,k −WB
j,k′

]2 ≤ C
∣∣k− k′

∣∣
E
[
n1/2WB

j,k − n1/2WB
j,k′

]2
≤ C

∣∣k− k′
∣∣ ,

so that

E
[
WB

j,k − n1/2WB
j,k −

(
WB

j,k′ − n1/2WB
j,k′

)]2
≤ 4C

∣∣k− k′
∣∣ .

Let ϵ := 2−1, ϵl := (l+ 3)−2 , δl :=
(
2ln2

)−1 and Xl := {kδl, k ∈ Z} ∩ R, l ≥ 0. Then the
cardinality |Xl| ≤ 2j/δl and ϵ+

∑∞
l=0 ϵl < 1. Let λ = 8

√
C. By Lemma 4.1 in Cranston et

al. (2000), we have

Pr

(
max
k∈R

∣∣∣WB
j,k − n1/2WB

j,k

∣∣∣> λ

√
logn

n/2j

)

≤ Pr

{∣∣∣WB
j,k0

− n1/2WB
j,k0

∣∣∣> λϵ

√
logn

n/2j

}

+

∞∑
l=0

|Xl| sup
|k−k′|≤δl

Pr

{∣∣∣WB
j,k − n1/2WB

j,k −
(
WB

j,k′ − n1/2WB
j,k′

)∣∣∣> λϵl

√
logn

n/2j

}

≤ 2

[
1−Φ

(
λϵ

√
logn

n/2j

√
n/2j

C

)]
+

∞∑
l=0

2
2j

δl

[
1−Φ

(
λϵl

√
logn

n/2j

√
1

Cδl

)]
.

Since 1−Φ(t)∼ ϕ (t)/t as t→∞, we can show that

Pr

(
max
k∈R

∣∣∣WB
j,k − n1/2WB

j,k

∣∣∣> λ

√
logn

n/2j

)
=O

(
n−2

)
.

Then

max
k∈K

∣∣∣WB
j,k − n1/2WB

j,k

∣∣∣=Op

(√
logn

n/2j

)
.

Case 2 of 0.5<H < 1, then

WBH

j,k =

∫ 2j

0
2j/2ψ

(
k− 2ju

)
dBH

(
2ju
)
· 1

2Hj

=

∫ 2j

0
2(1/2−H)jψ (k− t)dBH (t)
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where the first equality comes from the scaling invariance of the fractional Brownian motion.
Recall

n1/2WBH

j,k =

∑n
i=1 2

j/2ψ
(
k− i

n2
j
)
εi√

n

=

∫ 2j

0

(
2j

n

)1/2−H

ψ

(
k−

⌊
1 + tn/2j

⌋
n/2j

)
dBH (t)

where the second equality occurs because εi ≡ BH (i) − BH (i− 1) and the scaling in-
variance of the fractional Brownian motion. Notice that both

∫ 2j

0 ψ (k− t)dBH (t) and∫ 2j

0 ψ
(
k− ⌊1+tn/2j⌋

n/2j

)
dBH (t) are stationary Gaussian processes. Now we have

E

[∫ 2j

0
ψ (k− t)dBH (t)−

∫ 2j

0
ψ

(
k−

⌊
1 + tn/2j

⌋
n/2j

)
dBH (t)

]2

≤E

[∫ 2j

0
sup

v,v′∈[k−t−n2−j ,k−t+n2−j ]

∣∣ψ (v)−ψ
(
v′
)∣∣dBH (t)

]2

≤ C

(∫ 2j

0
sup

v,v′∈[k−t−2jn−1,k−t+2jn−1]

∣∣ψ (v)−ψ
(
v′
)∣∣1/H dt)2H

=
C

n/2j

where the second inequality is due to Mémin et al. (2001). Analogously to the proof of Case
1 of H = 0.5 (or the chaining argument of Lemma 4.1 in Cranston et al., 2000) we have

max
k∈K

∣∣∣∣∣
∫ 2j

0
ψ (k− t)dBH (t)−

∫ 2j

0
ψ

(
k−

⌊
1 + tn/2j

⌋
n/2j

)
dBH (t)

∣∣∣∣∣=Op

(√
logn

n/2j

)
,

in which the right hand side is independent of H . In the end, since

n1/2WBH

j,k =

(
2j

n

)1/2−H ∫ 2j

0
ψ

(
k−

⌊
1 + tn/2j

⌋
n/2j

)
dBH (t)

and

WBH

j,k = 2(1/2−H)j

∫ 2j

0
ψ (k− t)dBH (t) ,

then we have

max
k∈K

∣∣∣nH−1/2WBH

j,k − n1/2WBH

j,k

∣∣∣=Op

[√
logn

(
2j

n

)1−H
]
.
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