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Abstract

I construct a no-arbitrage term structure model with endogenous regime

shifts and apply it to Japanese government bond (JGB) yields. This appli-

cation subjects the short-term interest rate to monetary regime shifts, such

as a zero interest rate policy (ZIRP) and normal regimes, which depend on

macroeconomic variables. The estimated results show that under a ZIRP, the

deflationary effect on bond yields increases on the longer end of yield curves;

on the other hand, the effect of output gaps on raising bond yields weakens for

all maturities.
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1 Introduction

The short-term interest rate or the policy rate is subject to monetary regime shifts, such

as a zero interest rate policy (ZIRP) and normal regimes, which depend on macroeconomic

state variables. To examine how state-dependent policy shifts affect government bond

yields, this paper constructs a no-arbitrage term structure model with discrete regime

shifts. In the model (i) the transition probabilities depend on the state variables that

appear in the monetary policy rule, for example, inflation and output gap, and (ii) the

state vector depends on the current monetary policy regime rather than on the previous

regime. This timing is not trivial because the data frequency of macroeconomic variables is

usually not very high. Condition (ii) is suitable particularly when the state vector includes

the policy rate to allow the dynamics of macroeconomic variables to depend on the lagged

policy rate.

This paper adds to the existing literature in two ways. First, it extends no-arbitrage

affine1 term structure models with discrete regime shifts by incorporating both conditions

(i) and (ii) above; to date, the literature has only adopted either (i) or (ii).2 For example,

Dai, Singleton, and Yang (2007), henceforth DSY, adopt condition (i) with state-dependent

transition probabilities under P, while their state vector depends on the previous regime.

1Alternatively, term structure models that lie outside of the affine family have been applied to the

Japanese zero rate environments. See Ichiue and Ueno (2012) for an application of Black’s (1995) model

to JGB yields and Singleton and Kim (2012) for a comparison between Cox, Ingersoll, and Ross (1985)

type affine model and non-affine models.

2Ang, Boivin, Dong, and Loo-Kung (2011) model monetary policy shifts with time-varying Taylor rule

coefficients. These coefficients are treated as latent factors in their term structure model. This paper

differs from their model as it focuses on discrete and observable monetary regime shifts.
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On the other hand, Bansal and Zhou (2002), Ang, Bekaert, and Wei (2008), Hamilton and

Wu (2011), and others adopt condition (ii) assuming a constant transition matrix. Via

formal propositions and proofs and discussion on the link between the P and Q measures,

this paper extends DSY’s work with Hamilton’s (1989) formulation, in which the current

state variables depend on the current (not previous) regime.3

Second, as an application of the model, I estimate how Japanese government bond

(JGB) yields respond to a ZIRP as well as macroeconomic conditions. The factor dynamics

used in bond pricing are similar to that of Hayashi and Koeda (2012). These authors

use a vector autoregression (VAR) model with endogenous monetary policy shifts that

incorporate the key aspects under a ZIRP, such as (a) the zero lower bound and (b) the

duration of the ZIRP committed to by the Bank of Japan, known as Jikan Jiku. This

paper’s model differs from Hayashi and Koeda’s mainly by including fewer variables in the

VAR system, and by not assuming any no a priori identification restrictions in the VAR

system. As a result, uncertainty about the current macroeconomic variables affects the

current regime determination.

I consider two regimes—the normal and ZIRP regimes—and two types of regime evolution,

one that incorporates condition (a) above and one that incorporates both conditions (a)

and (b). I first consider a simple evolution of the regime that depends solely on a Taylor-

rule based policy rate (Type I evolution). If the Taylor-rule based policy rate hits the

lower bound of interest rates, the policy rate is set at the bound under the ZIRP regime;

otherwise the policy rate is set by the Taylor rule under the normal regime. Type I

3Another key difference from DSY’s study is that this paper allows the factor coefficients in the short

rate equation to depend on the regime, as explained in the next section.
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evolution, however, does not take into account Jikan Jiku, a key feature of the ZIRP in

Japan (for a discussion on Jikan Jiku, see e.g., Ueda, 2012a and 2012b and Ugai’s survey,

2007). Thus I extend the Type I evolution by introducing a Jikan Jiku policy under which

the ZIRP is maintained unless some inflation condition is satisfied (Type II evolution).

The main results are presented in two steps. First, I compare the empirical results

of the two types of factor dynamics, that is, Type I (without policy duration) versus

Type II (with policy duration). A notable difference is that the state-dependent transition

probabilities are estimated to be more persistent under Type II evolution. Furthermore,

empirical evidence indicates that Type II evolution has notably better fits to the data

than Type I, whereas out-of-sample performance results are mixed. Second, I discuss the

estimated yield curves and term premia using the term structure model with Type II factor

dynamics as the benchmark model. The estimated yield curves indicate, under a ZIRP, the

effect of output gaps on raising bond yields weakens for all maturities, whereas deflationary

effect on JGB yields becomes stronger at the longer end of yield curves. Furthermore, the

estimated term premia indicate that a large bond yield decline in the early 1990s was driven

by expectation components, whereas that in the late 1990s was driven by both components.

The term premia also declined after the introduction of the quantitative easing monetary

policy (QEP) in March 2001.

This paper proceeds as follows. Section 2 describes a term structure model with endoge-

nous regime shifts. Section 3 describes the specific regime evolutions considered. Section

4 and 5 discuss the estimation strategy and results. Section 6 concludes the paper.
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2 The model

2.1 The P model

The state of the economy is assumed to follow a discrete time stationary Markov process

{yt, st} where yt is a vector of continuous variables and st is a scalar discrete variable also

called the regime. Both yt and st are observable. For notational convenience, the current

value is indicated with tilda, and the previous period’s value with no time subscript.

The joint density-distribution function of (ey, s̃) conditional on (y, s) is
p (ey, s̃|y, s) = f (ey|s̃,y, s) ρ (s̃|y, s) , (1)

where f (ey|s̃,y, s) is the conditional density of ỹ given (s̃,y, s) and ρ (s̃|y, s) is the transition
probability of the regime.

N period bond prices are functions of the state, Pn (y, s). In particular, the short rate

(r) is given by

r ≡ − log (P1 (y, s)) = 1st element of y.

The P model satisfies two assumptions. Assumption 1 follows Hamilton (1989) that

the conditional density of ỹ given (s̃,y, s) depends on s̃ but not on s. This formulation

differs from DSY, they instead assume that the conditional density of ey depends on s
but not on s̃. Thus, the P model can be interpreted as an extension of DSY with the

Hamilton (1989) formulation where f (ey|s̃,y, s) = f (ey|s̃,y). Hamilton’s (1989) formulation
is suitable particularly when the state vector includes the policy rate to allow the dynamics

of macroeconomic variables to depend on the lagged policy rate, in a spirit similar to Ang,

Piazzesi, and Wei (2006) and Hördahl, Tristani, and Vestin (2006).
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Assumption 1: f (ey|s̃,y, s) = f (ỹ|s̃,y), and ey|s̃,y ∼N ¡μ (s̃,y) ,Σ (s̃)Σ (s̃)0¢ under
P.

Assumption 2 follows DSY’s assumption on the Radon-Nikodym derivative or equiva-

lently that on the pricing kernel (M) that accommodates both regime shift and factor risks.

λ (s̃,y) and γ (s̃,y, s) are the prices-of-risk and regime-shift-risk coefficients, respectively.

Assumption 2: M (ey, s̃,y, s) = exp
⎡⎢⎢⎣ −r (y)− γ (s̃,y, s)− 1

2
λ (s̃,y)

0
λ (s̃,y)

−λ (s̃,y)0Σ (s̃)−1 (ỹ− μ (s̃,y))

⎤⎥⎥⎦.

No arbitrage requires that

Pn+1 (y, s) =
X
s̃

ρ (s̃|y, s)E [M (ey, s̃,y, s)Pn (ey, s̃) |s̃,y, s] . (2)

For n = 0, Since exp (−r (y)) = P1 (y, s) and P0 = 1, equation (2) becomes

exp [−r (y)] =
X
s̃

ρ (s̃|y, s)E [M (ey, s̃,y, s) |s̃,y, s] ,
=

X
s̃

ρ (s̃|y, s) exp [−r (y)− γ (s̃,y, s)] ,

where that the second equality holds since

E [M (ey, s̃,y, s) |s̃,y, s] = exp [−r (y)− γ (s̃,y, s)] . (3)

Thus, X
s̃

ρ (s̃|y, s) exp [−γ (s̃,y, s)] = 1. (4)

Two interesting choices for γ (s̃,y, s) may be (i) γ (s̃,y, s) = 0, i.e., the regime-shift risk is

not priced and (ii) ρ (s̃|y, s) exp [−γ (s̃,y, s)] does not depend on y and its sum over s̃ is 1,

i.e., the regime-shift risk is "fully priced."
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2.2 From P to Q

This subsection provides two propositions to link measures P to Q by finding a conditional

density fQ (ey|s̃,y, s) and a transition matrix ρQ (s̃|y, s), such that

exp [−r (y)] fQ (ey|s̃,y, s) ρQ (s̃|y, s)| {z }
=pQ(y,s̃|y,s)

=M (ey, s̃,y, s) f (ey|s̃,y) ρ (s̃|y, s)| {z }
=p(y,s̃|y,s)

, (5)

where the Radon-Nikodym derivative is given by 1/ [exp [r (y)]M (ey, s̃,y, s)] . For any ran-
dom variable X, define EQ (X|y, s) by

EQ (X|y, s) ≡
X
s̃

ρQ (s̃|y, s)EQ (X|s̃,y, s) , where EQ (X|s̃,y, s) ≡
Z
ỹ

XfQ (ỹ|s̃,y, s) dỹ.

Then EQ (exp [−r (y)]X|y, s) = E (MX|y, s) for fQ and ρQ satisfying equation (5). In

particular, the no-arbitrage condition (2) can be written as

Pn+1 (y, s) =
X
s̃

ρQ (s̃|y, s)EQ [exp [−r (y)]Pn (ey, s̃) |s̃,y, s] . (6)

Proposition 1 Under Assumptions 1 and 2, the transition probability ρQ (s̃|y, s) is given

by ρQ (s̃|y, s) = ρ (s̃|y, s) exp [−γ (s̃,y, s)] .

Proof. Pin down ρQ. Integrate both sides of (5) over ey.
LHS =

Z
y
exp [−r (y)] fQ (ey|s̃,y, s) ρQ (s̃|y, s) dey,

= exp [−r (y)] ρQ (s̃|y, s)
Z
ỹ

fQ (ỹ|s̃,y, s) dey,
= exp [−r (y)] ρQ (s̃|y, s) (since

Z
ỹ

fQ (ey|s̃,y, s) dey = 1).
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RHS =

Z
y
M (ey, s̃,y, s) f (ey|s̃,y) ρ (s̃|y, s) dey,

= ρ (s̃|y, s)
Z
ỹ

M (ey, s̃,y, s) f (ey|s̃,y) dey,
= ρ (s̃|y, s)E [M (ey, s̃,y, s) |s̃,y, s] ,
= ρ (s̃|y, s) exp [−r (y)− γ (s̃,y, s)] , (by equation (3))

= exp [−r (y)] ρ (s̃|y, s) exp [−γ (s̃,y, s)] .

Q.E.D.

Proposition 2 The conditional density fQ (ey|s̃,y, s) does not depend on s and is the
density of N

¡
μQ (s̃,y) ,Σ (s̃)Σ (s̃)

0¢
with μQ (s̃,y) ≡ μ (s̃,y)−Σ (s̃)λ (s̃,y) .

Proof. Pin down fQ. Divide both sides of equation (5) by the expression of ρQ in

Proposition 1 and use Assumption 2 to obtain

fQ (ey|s̃,y, s) = exp ∙−1
2
λ (s̃,y)

0
λ (s̃,y)− λ (s̃,y)0Σ (s̃)−1 (ey−μ (s̃,y))¸× f (ey|s̃,y) .

So the conditional moment-generating function of ỹ under Q can be written as

EQ [exp (ζ 0ey) |s̃,y, s] = Z
ỹ

exp (ζ 0ey) fQ (ey|s̃,y) dỹ =Z
ỹ

exp (X) f (ey|s̃,y) dey=E [exp (X) |s̃,y] ,
where X ≡ ζ 0ey−1

2
λ0λ− λ0Σ−1 (ey−μ) with μ here being μ (s̃,y), λ being λ (s̃,y), and Σ

being Σ (s̃). Since ey|s̃,y ∼N (μ,ΣΣ0) under P by Assumption 1, the conditional distrib-

ution of X is normal with

E (X|s̃,y) = ζ 0μ−1
2
λ0λ, V ar (X|s̃,y) = ¡ζ −Σ−10λ¢ΣΣ0 ¡ζ −Σ−10λ

¢
.
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Thus

E [exp (X) |s̃,y] = exp
∙
E (X|s̃,y) + 1

2
(X|s̃,y)

¸
= exp

∙
ζ 0 (μ−Σλ) + 1

2
ζΣΣ0ζ

¸
,

which is the moment-generating function of a normal random variable with mean μ− Σλ

and variance ΣΣ0. Q.E.D.

2.3 Pricing under Q

The no-arbitrage condition under Q can be rewritten as

1 =
X
s̃

ρQ (s̃|y, s)EQ
n
exp

³
h̃t+1

´
|s̃,y, s

o
, (7)

where

h̃t+1 ≡ pn (ey, s̃)− pn+1 (y, s)− r (y) ,
pn ≡ log (Pn) .

The term h̃t+1 is the log excess one-period return on n+ 1 period bonds.

If h̃t+1 is conditionally normally distributed given (s̃,y, s) under Q, then equation (7)

becomes

1 =
X
s̃

ρQ (s̃|y, s) exp
∙
EQ

³
h̃t+1|s̃,y, s

´
+
1

2
V arQ

³
h̃t+1|s̃,y, s

´¸
. (8)

Furthermore, by applying the approximation used by Bansal and Zhou (2002) and Hamilton

and Wu (2012) (i.e., exp (x) ≈ 1 + x), equation (8) becomes

0 ≈
X
s̃

ρQ (s̃|y, s)
∙
EQ

³
h̃t+1|s̃,y, s

´
+
1

2
V arQ

³
h̃t+1|s̃,y, s

´¸
. (9)
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In order to solve bond prices, I assume two additional assumptions that are commonly

assumed in the existing literature. Assumption 3 assumes that the factors that explain the

yield curves follow VAR(1) under Q.

Assumption 3:

EQ (ey|s̃,y, s) ≡ μQ (s̃,y) = cQ (s̃) +ΦQ (s̃)y.

Assumption 4 assumes that the transition probabilities under Q are constant, i.e.,

ρ (s̃|y, s) exp [−γ (s̃,y, s)] in equation (4) does not depend on y and its sum over s̃ is

1, so that the regime-shift risk is "fully priced." I discuss the case without Assumption 4

in Appendix A.

Assumption 4:

ρQ (s̃|y, s) = ρQ (s̃|s) .

To solve bond prices, I first conjecture that

pn (ey, s̃) = −an (s̃)− bn (s̃) ỹ.
Since ey|s̃,y, s ∼ N ¡μ (s̃,y) ,Σ (s̃)Σ (s̃)0¢ under Q, the log excess return h̃t+1 is condition-
ally normal, as required above, with

EQ
³
h̃t+1|s̃,y, s

´
= −an (s̃)− bn (s̃)

£
cQ (s̃) +ΦQ (s̃)y

¤
+ an+1 (s) + bn+1 (s)y−r (y) ,

V arQ
³
h̃t+1|s̃,y, s

´
= bn (s̃)Σ (s̃)Σ (s̃)

0
n b (s̃)

0
.

Substituting these equations into (9) yields

0 ≈ −
"X

s̃

ρQ (s̃|s)
µ
an (s̃) + bn (s̃) c

Q (s̃)− 1
2
bn (s̃)Σ (s̃)Σ (s̃)

0
bn (s̃)

0
¶
− an+1 (s)

#
−
X
s̃

ρQ (s̃|s) £bn (s̃)ΦQ (s̃) + e01 − bn+1 (s)
¤
y,
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where e1 is a vector of zeros with 1st element being one (thus r (y) = e
0
1y). Since this has

to hold for any y, I obtain the recursion

an+1 (s) =
X
s̃

ρQ (s̃|s)
µ
an (s̃) + bn (s̃) c

Q (s̃)− 1
2
bn (s̃)Σ (s̃)Σ (s̃)

0
n b (s̃)

0
¶
,

bn+1 (s) =
X
s̃

ρQ (s̃|s) ¡bn (s̃)ΦQ (s̃) + e01
¢
.

The initial condition is a0 (s) = 0 and b0 (s) = 0 for all s.

If I assume, as in DSY thatΦQ does not depend on the regime s, then it is not necessary

to invoke the "exp (x) ≈ 1 + x" approximation. In this case, bn does not depend on the

regime and the recursion becomes

an+1 (s) = log

"X
s̃

ρQ (s̃|s)
µ
an (s̃) + bn (s̃) c

Q (s̃)− 1
2
bn (s̃)Σ (s̃)Σ (s̃)

0
n b (s̃)

0
¶#
,

bn+1 = bnΦ
Q + e01.

If I assume VAR(1) under P, i.e., μ (s̃,y) = c (s̃) + Φ (s̃)y) and the prices of risk is

affine in y, i.e., λ (s̃,y) = λ0 (s̃)+Λ1 (s̃)y, by Proposition 2 and Assumption 3, c
Q (s̃) and

ΦQ (s̃) can be expressed with the prices of risk coefficients

cQ (s̃) = c (s̃)−Σ (s̃)λ0 (s̃) , ΦQ (s̃) = Φ (s̃)−Σ (s̃)Λ1 (s̃) . (10)

3 An application to JGB yields

In this section, I specify factor dynamics that correspond to f (ỹ|s̃,y) in the P model

and then endogenously derive the corresponding state-dependent transition probabilities

ρ (s̃|y, s). The specified factor dynamics are similar to those in Hayashi and Koeda’s (2012)

VAR model. This study’s VAR(1) model comprises three variables (i) the policy interest
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rate, (ii) inflation, and (iii) output gaps, with endogenous monetary policy regime shifts.

Its main difference from Hayashi and Koeda’s model is that it includes fewer variables in

the VAR system, and it does not assume any a priori identification restrictions in the VAR

system. As a result, uncertainty about current macroeconomic variables affects the current

regime determination. The VAR explicitly models the key features of recent monetary

policies in Japan, such as the zero lower bound of the policy interest rate and the duration

of the zero interest rate policy (ZIRP).

3.1 Factor dynamics

The monetary policy regime (s) can be either normal (P ) or a ZIRP (Z). I partition yt as

yt
3×1

=

⎡⎢⎢⎣ rt

y2t
2×1

⎤⎥⎥⎦ ,
where r is the policy interest rate (short rate) and y2 is a vector of macroeconomic variables

(inflation and output gap).

The policy interest rate follows a regime-dependent Taylor rule

rt = αst
(1×1)

+ βst0
(1×2)

y2t + δst
(1×1)

rt−1 + σstr
(1×1)

ur,t, ur,t ∼ N (0, 1) , (11)

where the ZIRP regime can be represented as

αZ ≈ 0, βZ = 0, δZ = 0, σZr ≈ 0.

The rest of system is also regime dependent

y2,t = cst2
(2×1)

+ Φst
2

(2×3)
yt−1 + Σst

22
(2×2)

u2t, u2t ∼ N (0, I) . (12)
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All shocks are jointly standard normal and independent to each other and over time.

Substituting (12) in the short rate equation yields

rt = αst + βst0cst2 + [β
st0Φst

2 + [δ
st, 0, 0, 0]]yt−1 + β

st0Σst
22u2t + σstr ur,t.

Stacking the above equation over (12) results in the VAR

yt = cst
(3×1)

+ Φst

(3×3)
yt−1 + Σst

(3×3)
ut, ut ∼ N (0, I) , (13)

where

cst
(3×1)

=

⎡⎢⎢⎢⎣
αst + βst0cst2

cst2
(2×1)

⎤⎥⎥⎥⎦ , Φst

(3×3)
=

⎡⎢⎢⎢⎣
βst0Φst

2 + [δ
st, 0, 0, 0]

Φst
2

(2×3)

⎤⎥⎥⎥⎦ , Σst

(3×3)
=

⎡⎢⎢⎣ σstr βst0Σst
22

0 Σst
22

⎤⎥⎥⎦ .
Equation (13) is a restricted VAR because the first row of ΦZ is a vector of zeros and the

six elements of ΣZ are a function of four parameters.

3.2 Regime determination

I first consider a simple regime evolution that depends solely on the level of the Taylor-

rule-based (TRB) policy rate (Type I evolution). If the Taylor-rule based policy hits the

lower bound of interest rate (ZLB), the policy rate is set at the bound under the ZIRP

regime (s = Z), otherwise the policy rate is set by the Taylor rule under the normal regime

(s = P ).

Type I evolution, however, does not take into account a key feature of the ZIRP in

Japan: Jikan Jiku, the duration of the ZIRP, committed to by the Bank of Japan. Thus

I extend the Type I evolution by introducing a Jikan Jiku policy under which the ZIRP

regime is maintained unless the expected year-on-year core inflation exceeds a certain level

13



(Type II evolution). Such a level can be interpreted as the exit condition based on core

inflation rate (π̄), a parameter that must be estimated since the Bank of Japan did not

commit a specific rate during the investigated period.

For notational convenience,

re (yt−1) ≡ αP + βP 0
£
cP2 +ΦP

2 yt−1
¤
+ δP rt−1,

πe (yt−1) ≡ [1, 0]
£
cP2 +ΦP

2 yt−1
¤
.

3.2.1 Evolution with the zero rate bound: Type I evolution

Under Type I evolution, the regime is a ZIRP if and only if the TRB rate hits the ZLB;

otherwise it is normal. The corresponding transition probabilities are

Pr (st = P |yt−1, st−1) = Pr

⎛⎝αP + βP 0y2,t + δP rt−1 + σPr ur,t| {z }
TRB ratet

> αZ + σZr ur,t| {z }
ZLBt

¯̄̄̄
¯̄yt−1, st−1

⎞⎠ ,
= Pr

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

αP + βP 0
¡
cP2 +ΦP

2 yt−1 +ΣP
22u2t

¢
+δP rt−1 + σPr ur,t

⎫⎪⎪⎬⎪⎪⎭ > αZ + σZr ur,t

⎞⎟⎟⎠ ,
= Pr

¡
re (yt−1) > αZ − ξt

¢
,

Pr (st = Z|yt−1, st−1) = Pr
¡
re (yt−1) 5 αZ − ξt

¢
,

where ξt ≡ βP 0ΣP
22u2t +

£
σPr − σZr

¤
ur,t. Since ut and u2t are normal and independent

ξt|yt−1, st−1 ∼ N
¡
0,σ2ξ

¢
, σ2ξ ≡

£
σPr − σZr

¤2
+ βP 0ΣP

22Σ
P 0
22β

P .

The Type I transition probabilities can be rewritten as

Pr (st = P |yt−1, st−1) = Pr (st = P |yt−1) = F
µ
re (yt−1)− αZ

σξ

¶
, (14)

Pr (st = Z|yt−1, st−1) = Pr (st = Z|yt−1) = 1− F
µ
re (yt−1)− αZ

σξ

¶
, (15)
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where F (.) is the cumulative distribution function of N (0, 1). These transition probabili-

ties do not depend on st−1.

3.2.2 Policy duration: Type II evolution

How does the regime evolution change when the Jikan Jiku policy is introduced? Now, the

determination of the regime depends on the inflation rate relative to π̄, in addition to the

TRB policy rate.

If the previous regime is normal, then the transition probabilities are unchanged (i.e.,

equations (14) and (15)). On the other hand, if the previous regime is a ZIRP, the proba-

bility of it returning to normal is

Pr (st = P |yt−1, st−1 = Z)

= Pr

⎛⎝αP + βP 0y2,t + δP rt−1 + σPr ur,t| {z }
TRB ratet

> αZ + σZr ur,t| {z }
ZLBt

,πt > π̄

¯̄̄̄
¯̄yt−1, st−1 = Z

⎞⎠ ,
= Pr

¡
re (yt−1) > αZ − ξt,π

e (yt−1) > π̄ − σπuπ,t
¢
. (16)

where uπ,t and σπ are the shock and volatility parameters, respectively, calculated in the

inflation equation as uπ,t = [1, 0]u2t and σπ = [1, 0]Σ
P
22Σ

P 0
22 [1, 0]

0
.

The Type II transition probabilities can be rewritten as

Pr (st = P |yt−1, st−1 = Z) = B
¡
re (yt−1)− αZ ,πe (yt−1)− π̄;W

¢
, (17)

Pr (st = Z|yt−1, st−1 = Z) = 1−B ¡re (yt−1)− αZ ,πe (yt−1)− π̄;W
¢
, (18)

Pr (st = P |yt−1, st−1 = P ) = F

µ
re (yt−1)− αZ

σξ

¶
, (19)

Pr (st = Z|yt−1, st−1 = P ) = 1− F
µ
re (yt−1)− αZ

σξ

¶
, (20)

where B (a, b;W) is the cumulative distribution function of the bivariate normal distribu-

15



tion with mean zero and the variance covariance matrix of (ξt, uπ,t). The variance covari-

ance matrix, which is denoted asW, is a known function of
¡
σPr ,σ

Z
r ,β

P ,ΣP
22

¢

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2ξ βP 0ΣP
22Σ

P 0
22

⎡⎢⎢⎣ 1
0

⎤⎥⎥⎦
βP 0ΣP

22Σ
P 0
22

⎡⎢⎢⎣ 1
0

⎤⎥⎥⎦ ∙
1 0

¸
ΣP
22Σ

P 0
22

⎡⎢⎢⎣ 1
0

⎤⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

4 Estimating JGB yield curves

4.1 Data

I use quarterly data on interest rates and the macro variables of inflation and output

gap from 1985Q1 to 2008Q2. I use quarterly data because it may reflect Japan’s overall

economic activity more precisely than readily available monthly real activity measures,

such as, industrial production, unemployment, and machinery orders. The sample period

starts in 1985Q1 because reliable zero coupon bond yield data are available from that

quarter; it ends in 2008Q2, the period prior to the Lehman shock.

The uncollaterized overnight call rate4 is used for the short-term interest rate. Zero

coupon bond yields of 4, 12, 20, and 40 quarter maturities are used for longer maturities.

These bond yields are obtained from Wright’s (2011) dataset and are the end of period

rates expressed at annualized rates in percent.

Regarding the macro variables, inflation is measured by the percentage change in the

Consumer Price Index, excluding fresh food, from the same quarter in the previous, ob-

4I use the average rate of the last month in each quarter to remove end-of-month fluctuations in the

call rate.
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tained from the Ministry of Internal Affairs and Communications5; real activity is measured

by output gaps estimated by applying the Hodrick-Prescott filter to the logs of the sea-

sonally adjusted GDP at 2000 prices, obtained from the Japanese Cabinet Office. Output

gaps are expressed in percentage points.

The regime series is constructed based on public statements by the end of each quarter.

One issue is how to differentiate the normal from the ZIRP regime; the regime can be

normal even if the short rate is almost zero if the Taylor-rule-based interest rate indicates

it. I thus identify the ZIRP regime with the Jikan Jiku policy within Bank of Japan’s public

statements. This implies that the period from March to June 2006, when the targeted rate

was zero in the absence of a Jikan Jiku policy, was under the "normal" regime.

4.2 Estimation strategy

The model consists of macro dynamics and static yield equations. The macro dynamics

are summarized by equation (13) and the static yield equations are

zt
4×1

= Ast
4×1

+Bst
4×3
yt + vt

4×1
,

where zt = [r4t , r
12
t , r

20
t , r

40
t ]

0
is a 4 × 1 vector of bond yields with maturities correspond-

ing to the superscript numbers (in quarters). The yield equations are an affine function

of the state variables with 4 × 1 coefficient vectors A and a 4 × 3 coefficient matrix B

corresponding to (i) a constant, (ii) the short-term interest rate, and (iii) the macro vari-

ables, respectively. The subscript numbers in A and B correspond to maturities, that is,

5I use the 2000-base CPI up to mid-2006 since policy decisions were not made based on the 2005-base

CPI up to that point.
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Ast =
h
a4(st)

4
,
a12(st)

12
,
a20(st)

20
,
a40(st)

40

i0
, Bst =

h
b4(st)

4
,
b12(st)

12
,
b20(st)

20
,
b40(st)

40

i0
.6 The elements in

A andB are derived from the recursive equations with the subscript numbers corresponding

to maturities. Measurement errors v are assumed to have constant variance.

The system of equations to be estimated can be summarized as

yt = cst +Φstyt−1 + ut, (21)

st = h (st−1,yt−1,u2t, ur,t) , (22)

zt = Ast +Bstyt + vt,

ut ∼ N (0,ΣstΣst0) , vt ∼ N (0,V) .

where (22) is defined by (14) and (15) for Type I factor dynamics and by (17) to (20)

for Type II factor dynamics. All the shocks are iid and ut and vs are independent for

all (t, s). Thus, the observation equation linking zt to the state (yt) is appended to the

VAR equations describing the state dynamics. I apply a two step procedure to estimate

the model (e.g., Ang, Piazzesi, and Wei, 2006). Appendix B shows the derivation of the

likelihood functions.

4.3 Estimated results

I present the estimated results in two steps. First, I compare the estimated factor dynamics

with (Type II) and without (Type I) the Jikan Jiku effect. Second, I discuss the estimated

yield curves and term premium dynamics using the term structure model with Type II

factor dynamics as the benchmark model. The estimated results using the term structure

6According to the basic relation between bond price and yield, the n-period bond yield is given by

an
n
+ bn

b
y.

18



model with Type I factor dynamics are available upon request.

4.3.1 Factor dynamics: Type II versus Type I

How do the Type I and Type II factor dynamics differ from each other? Figure 1 shows

the estimated state-dependent transition probabilities under each type of evolution. Under

both types, Pr (st = P |yt−1, st−1 = P ), that is, the estimated probability that the normal

regime continues into the next period, is one until mid-1995. This is a reasonable result,

since nobody would have imagined a ZIRP up to that point. A notable difference between

the Type I and Type II transition probabilities is that the latter are more persistent. For

example, Figure 1 shows that during the quantitative easing monetary policy (QEP) of

March 2001 to February 2006, Pr (st = Z|yt−1, st−1 = Z) is estimated to be much higher

under the Type II regime than under the Type I regime. This may reflect market pessimism

over the recovery from deflation with the Bank of Japan’s commitment that it would

maintain the zero rate until some inflationary condition was satisfied.

The Taylor rule coefficients under the two types of factor dynamics are reported in Table

1. Under both types of regime evolution, the estimated coefficients have the right signs

in terms of economic interpretation, and the long-run response of the short-term interest

rate to a unit increase in inflation well exceeds one (3.6 and 2.2 under Types I and II,

respectively). The Taylor rule coefficient with respect to inflation (i.e., the first element of

βP ) under Type I is higher than that under Type II (0.34 versus 0.22 respectively), possibly

reflecting the omission of the inflation variable in the regime evolution under Type I (see

equations (23) and (24)). The estimated cZ2 ,Φ
Z
2 ,and Σ

Z
22 are the same under Type I and
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II since they can be estimated separately (see Appendix B for details).

Figure 1 and Table 1 here

Which type of factor dynamics is more appropriate? I compare the empirical perfor-

mances of the two types of models, with Type I and Type II factor dynamics, using two

different approaches, and find that Type II has notably better fits to the data, though

out-of-sample performance results are mixed. The first approach is the likelihood-ratio

test. Setting Type 1 as the null and Type 2 as the alternative, a large positive test statistic

(14.1) rejects the null. The second approach is one-period-ahead out-of-sample forecasting

on the state variables (i.e., the short rate, inflation, and output gaps) to check these models’

predictive accuracy. This exercise involves a rolling forecast covering the last three years of

the QEP period. I evaluate the predictive accuracy by the following two measures: (i) the

root mean square error ratios (Type I relative to Type II) and (ii) the modified Diebold-

Mariano test statistics7 proposed by Harvey et al (1998) with differential loss based on the

mean-squared errors. The results are summarized in Table 2. Type 2 weakly outperforms

Type 1 for the policy rate and output gap forecasts, whereas it underperforms Type I for

the inflation forecasts. Type 2’s poor forecasting performance for inflation forecasts may

be due to the imprecise estimate of π̄.

Table 2 here

7Type II does not nest Type I factor dynamics. One may wonder whether Type II reduces to Type I

when π̄ is sufficiently negative (so that the inflation condition is always satisfied); however, this is not true

since uπ ∼ N (0, 1) and uπ can be −∞.
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4.3.2 The yield curves and term premia

I now discuss the estimated yield curves and term premia under the benchmark model.

The estimated prices-of-risk coefficients and transition probabilities under Q are reported

in Table 3. The estimated prices-of-risk level coefficients (λ0 (P ), λ0 (Z)) differ for the

two regimes, particularly those corresponding to inflation (the second element of each λ0)

which increase notably under the ZIRP, from a negative value under the normal regime

to a positive value under the the ZIRP regime. In the benchmark estimation, given large

standard errors with limited sample size, the remaining prices of risk coefficients are set

equal to zero except for the (1,1) element of Λ1 (P ), that is, under the normal regime the

prices of risk are allowed to change with short rate fluctuations.

Table 3 and Figure 2 here

Figure 2 shows how the yield-equation coefficients, that is the constant, short-rate,

inflation, and output-gap coefficients in the yield equation, change against maturity (in

quarters) under the normal regime (dashed black lines) and the ZIRP regime (red solid

lines). The model-implied yields are expressed as the annualized rate in percent. The

upward slopes of the constant coefficients represent the shapes of the average yield curves

under the normal and ZIRP regimes. They imply that yield curves flatten on average

under the ZIRP regime. The downward slopes of the short-rate coefficients imply that an

increase in the short rate has a more positive impact on the shorter end of yield curves.

The bottom two charts in Figure 2 demonstrate how differently deflation and low growth

contribute to lowering longer-term JGB yields between the normal and ZIRP regimes; the

shapes of the inflation coefficients imply that the inflationary effect on the longer end of
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yield curves increases under the ZIRP; the shapes of the output-gap coefficients imply that

growth effects on JGB yields weaken under the ZIRP. Quantitatively, the estimated results

indicate that under the normal regime, 1-percent deflation lowers 10-year JGB yields by 14

basis points, and 1-percent output gap increase raises 10-year JGB yields by 7 basis points.

On the other hand, under the ZIRP regime, 1-percent deflation lowers 10-year JGB yields

by 23 basis points, and 1-percent output gap increase raises 10-year JGB yields by 2 basis

points. A closer look at the recursive equations for bstn indicates that the shapes of inflation

and output-gap coefficients are generated largely by the differences between macroeconomic

factor coefficients (i.e., Φst and Σst22) across regimes with persistent transition probabilities

under Q.

Lastly, I decompose the long term bond yields into the expectations and term premium

components. Following the typical definition in the literature, the term premium of an n-

period bond yield is defined as the actual n-period bond yield minus the average expected

future short-term interest rates (i.e., 1
n
Et

nPn−1
j=0 r1,t+j

o
). To calculate the expectations

components, I first obtain 1, 2, ..., n period forecasts of the future short-term interest rates

at each quarter via two-regime three-variable VAR forecasting, I then use these forecasts

to calculate the average expected future short-term interest rates. Figure 4 reports the

model implied term premia of 10-year bonds, the corresponding averages of expected fu-

ture short-term interest rates, and the actual yields. It indicates that term premia declined

after the second ZIRP introduction (i.e., the QEP started in March 2001). It also indicates

that the large bond yield decline in the early 1990s was driven by the expectations compo-

nents, whereas that in the late 1990s was driven by both expectations and term premium
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components.

Figure 3 here

5 Conclusion

This paper constructs a no-arbitrage affine term structure model with state-dependent

regime shifts in which the state vector depends on the current policy regime. As an

application of the model, it examines how the JGB yields fluctuate with macroeconomic

variables with endogenous monetary policy shifts that incorporate the key ZIRP features,

such as the zero lower bound of the policy rate and the Jikan Jiku policy. The estimated

results indicate that under the ZIRP, deflation plays a growing role in lowering JGB yields,

especially at the longer end of yield curves. On the other hand, the effect of output gap

fluctuations on bond yields weakens. Furthermore, term premium components contributed

to bond yield declined in the late 1990s and after the introduction of the quantitative easing

policy.

Looking forward, when Japan finally emerges from a zero rate environment, it is im-

portant to understand not only "normal" bond yield responses to moderate inflation and

economic growth, but also the channels that can steeply raise macroeconomic variables and

thus jeopardizing the JGB markets.

23



References

[1] Ang, A, Bekaert, B, Wei, M., 2008. The Term Structure of Real Rates and Expected

Inflation. Journal of Finance, American Finance Association, vol. 63(2), pages 797-

849, 04.

[2] Ang, A., Boivin, G., Dong, S., Loo-Kung, R, 2011. Monetary Policy Shifts and Term

Structure. Review of Economic Studies, 78, 429-457.

[3] Ang, A., Piazzesi, M., Wei, M., 2006. What does the yield curve tell us about GDP

growth? Journal of Econometrics, 131, 359-403.

[4] Bansal, R. and H. Zhou, 2002. Term Structure of Interest Rates with Regime Shifts.

Journal of Finance, American Finance Association, vol. 57(5), pp. 1997-2043, October.

[5] Dai, Q., K. Singleton, andW. Yang, 2007. Regime Shifts in a Dynamic Term Structure

Model of U.S. Treasury Bond Yields. Review of Financial Studies, Vol. 20, pp.1669-

1706

[6] Hamilton, J. D., 1989. A New Approach to the Economic Analysis of Nonstationary

Time Series and the Business Cycle. Econometrica, Econometric Society, vol. 57(2),

pages 357-84, March.

[7] Hamilton, J. D. and J. C. Wu, 2012. The Effectiveness of Alternative Monetary Policy

Tools in a Zero Lower Bound Environment. Journal of Money, Credit and Banking,

Blackwell Publishing, vol. 44, pages 3-46, 02.

24



[8] Harvey, D.I., Leybourne, S.J., Newbold, P., 1998. Tests for forecast encompassing.

Journal of Business and Economic Statistics 16, 254—259.

[9] Hayashi, F., 2000. Econometrics, Princeton University Press December.

[10] Hayashi, F. and J. Koeda, 2012. An SVAR Analysis of Japan’s Monetary Policy with

Endogenous Zero Interest Rate Policy Shifts. mimeo.

[11] Hördahl, P, O. Tristani, and D. Vestin, 2006. A Joint Econometric Model of Macro-

economic and Term Structure Dynamics. Journal of Econometrics 131, 405-444.

[12] Ichiue, H. and Ueno, Y. 2012. Monetary policy and the yield curve at zero interest.

mimeo.

[13] Kim, D. H. and K. Singleton, 2012. Term structure models and the zero bound: An

empirical investigation of Japanese yields. Journal of Econometrics. 170, 32—49.

[14] Ueda, K., 2012a. The Effectiveness of Non-Traditional Monetary Policy Measures:

The Case of The Bank of Japan. The Japanese Economic Review, Japanese Economic

Association, vol. 63(1), pages 1-22, 03.

[15] Ueda, K., 2012b. Japan’s Deflation and the Bank of Japan’s Experience with Nontradi-

tional Monetary Policy. Journal of Money, Credit and Banking, Blackwell Publishing,

vol. 44, pages 175-190, 02.

[16] Ugai, H., 2007. Effects of the Quantitative Easing Policy: A Survey of Empirical

Analysis. Monetary and Economic Studies, Vol. 25, No. 1, Bank of Japan, pp. 1—47.

25



[17] Wright, J., 2011. Term Premia and Inflation Uncertainty: Empirical Evidence from

an International Panel Dataset. American Economic Review, 101 June.

A A non-ATSM without Assumption 4

One may want to do away with Assumption 4 of fully priced regime risk. Under Assump-

tions 1-3, p1 (ỹ, s̃) = −r (ỹ) is conditionally normally distributed under Q. So, (8) holds

for n = 1. It can be rewritten as

exp [p2 (ỹ, s̃)] =
X
s̃

ρQ (s̃|y, s) exp
∙
EQ (p1 (ỹ) |s̃,y, s) + 1

2
V arQ (p1 (ỹ) |s̃,y, s)− r (y)

¸
.

The term in the brackets can be rewritten as

−EQ (r (ỹ) |s̃,y, s) + 1
2
V arQ (p1 (ỹ) |s̃,y, s)− r (y) ,

= −e01EQ (ỹ|s̃,y, s) +
1

2
e01V ar

Q (p1 (ỹ) |s̃,y, s) e1 − e01y,

= −e01
¡
cQ (s̃) +ΦQ (s̃)y

¢
+
1

2
e01Σ (s̃)Σ (s̃)

0
e1 − e01y,

that is,

p2 (ỹ, s̃) = log

ÃX
s̃

ρQ (s̃|y, s) exp
∙
−e01

¡
cQ (s̃) +ΦQ (s̃)y

¢
+
1

2
e01Σ (s̃)Σ (s̃)

0
e1 − e01y

¸!
.

The whole term structure can be generated by the no-arbitrage condition for n = 2, 3, ...,

once the model parameters are estimated by using only p1 and p2.
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B The likelihood function

B.1 Separating yield information from factor dynamics

The goal is to derive the likelihood of the data, i.e.,

L ≡ p (z0, ..., zT ,y1, ...,yT , s1, ..., sT |y0, s0) ,

which can be decomposed as

L ≡ f (z0, ..., zT |y0, ...,yT , s0, ..., sT )| {z }
L1

p (y1, ...,yT , s0, ..., sT |y0, s0)| {z }
L2

.

B.2 Likelihood for yields (L1)

The model-implied static yield equation

zt = A
st +Bstyt + vt,

where

Ast ≡

⎡⎢⎢⎢⎢⎢⎢⎣
ast1

...

ast40/40

⎤⎥⎥⎥⎥⎥⎥⎦ , B
st ≡

⎡⎢⎢⎢⎢⎢⎢⎣
b1 (st)

...

b40 (st) /40

⎤⎥⎥⎥⎥⎥⎥⎦ .
The usual assumption that the error is iid normal can be stated precisely as⎡⎢⎢⎢⎢⎢⎢⎣

v1

...

vT

⎤⎥⎥⎥⎥⎥⎥⎦

¯̄̄̄
¯̄̄̄
¯̄̄̄ (y0, ...,yT , s0, ..., sT ) ∼ N (0, IT ⊗V) , V ≡ V ar (vt) .

27



So

L1 ≡ f (y0, ...,yT , s0, ..., sT ) =
Y
g1 (zt −Ast −Bstyt;V) ,

Or L1 ≡ log (L1) =
X

log [g1 (zt −Ast −Bstyt;V)] ,

where g1 is the density of N (0,V). Furthermore, the log likelihood can be concnetreated

(Hayashi (2000), eq. (8.5.23)) as follows

L1 = const.− 1
2
log

¯̄̄̄
¯ 1

T + 1

TX
t=1

(zt −Ast −Bstyt) (zt −Ast −Bstyt)0
¯̄̄̄
¯ .

B.3 Likelihood for factor dynamics (L2)

Since {y, s} is Markov, the usual sequantial factorization argument yields

L2 ≡ p (y1, ...,yT , s1, ...sT |y0, s0) =
TY
t=1

p (yt, st|yt−1, st−1) .

As mentioned in the text, p (yt, st|yt−1, st−1) = f (yt|st,yt−1, st−1) ρ (st|yt−1, st−1). The

component f (yt|st,yt−1, st−1) can be decomposed as

f (yt|st,yt−1, st−1) = f (rt|y2,t,st,yt−1, st−1)× f (y2,t|st,yt−1, st−1) ,

f (rt|y2,t,st,yt−1, st−1) = g2
¡
rt − αst − δstrt−1 − βst0y2,t; (σstr )2

¢
,

f (y2,t|st,yt, st) = g3 (y2,t − cst2 −Φst
2 yt−1;Σ

st
22Σ

st0
22 ) ,

where g2 is the density of N
¡
0, (σstr )

2
¢
and g3 is the density of N (0,Σ

stΣst0). The other

component in (1) ρ (st|yt−1, st−1) was derived in the text. Putting all pieces about L2
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together, L2 ≡ log (L2) can be written as

Type I: L2 =

TX
t=1

log
£
g2
¡
rt − αst − δstrt−1 − βst0y2,t; (σstr )2

¢¤
(23)

+

TX
t=1

log [g3 (y2,t − cst2 −Φst
2 yt−1;Σ

st
22Σ

st0
22 )]

+

TX
t=1

½
st log

∙
F

µ
re (yt−1)− αZ

σξ

¶¸
+ (1− st) log

∙
1− F

µ
re (yt−1)− αZ

σξ

¶¸¾
.

Type II: L2 =

TX
t=1

log
£
g2
¡
rt − αst − δstrt−1 − βst0y2,t; (σstr )2

¢¤
(24)

+

TX
t=1

log [g3 (y2,t − cst2 −Φst
2 yt−1;Σ

st
22Σ

st0
22 )]

+

TX
t=1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
st−1st log

h
F
³
re(yt−1)−αZ

σξ

´i
+ st−1 (1− st) log

h
1− F

³
re(yt−1)−αZ

σξ

´i
+(1− st−1) st log

£
B
¡
re (yt−1)− αZ ,πe (yt−1)− π̄;W

¢¤
+(1− st−1) (1− st) log

£
1−B ¡re (yt−1)− αZ ,πe (yt−1)− π̄;W

¢¤

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

Maximization of L2 can be simplified because c
Z
2 ,Φ

Z
2 ,and ΣZ

22 appear only in the g3

component of the second summation in L2.

B.4 Choices of parameters

The model parameters are

θ ≡ (θ1,θ2) ,

θ1 ≡
¡
ρQ (P |P ) , ρQ (Z|Z) ,λ0 (P ) ,λ0 (Z) ,Λ1 (P ) ,Λ1 (Z)

¢
,

Type I: θ2 ≡

⎛⎜⎜⎝ αP ,αZ ,βP , δP ,σPr ,σ
Z
r ,

cP2 , c
Z
2 ,Φ

P
2 ,Φ

Z
2 ,Σ

P
22,Σ

Z
22

⎞⎟⎟⎠ ,

Type II: θ2 ≡

⎛⎜⎜⎝ αP ,αZ ,βP , δP ,σPr ,σ
Z
r ,

cP2 , c
Z
2 ,Φ

P
2 ,Φ

Z
2 ,Σ

P
22,Σ

Z
22, π̄

⎞⎟⎟⎠ .
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Table 1. The factor dynamics coefficients. This table reports the estimated coefficients of  Type I (left panel) and Type II 
(right panel) factor dynamics.  
 
 
 



  
 
 
 

 

 
 
Table 2. (Pseudo) out of  sample performance. The second column reports the root mean square error (RMSE) ratios of  the 
Type I factor dynamics relative to the Type II factor dynamics. The third column reports modified Diebold-Mariano test 
statistics. Significantly negative statistics indicate that the Type II specification outperforms the Type I specification. The 
out-of-sample period consists of  the last three years of  the QEP period. The superscript ** indicate significance at the 1% 
level. 
 
 
 
 
 
 
 
 
 
 
 
 

RMSE ratios DM test
r 1.30 -1.33

0.77 2.89**

1.43 -1.52
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Table 3. Yield curve coefficients. This table reports the coefficients of  the prices of  risk and 
transition probabilities under Q estimated for the benchmark model. 
 
 



 

  
Figure 1. State-dependent transition probabilities. The left column reports the probability that the regime is normal (top) or a ZIRP 
(bottom) given that the previous regime is normal. The right column reports the probability that the regime is normal (top) or a ZIRP (bottom) 
given that the previous regime is ZIRP. The blue lines are transition probabilities under Type I evolution and red lines are those under Type II 
evolution. The periods that the current regime is not normal (left column) or a ZIRP (right column) are shaded in gray.    
 



 
 
 

 
Figure 2. Factor weights against maturity. This figure plots the coefficients of  the yield equation against maturity (in 
quarters) estimated for the benchmark model. The coefficients correspond to the constant, short-rate, inflation, and 
output-gap terms in the yield equation under the normal regime (dashed black lines) and the ZIRP regime (red solid lines). 
The model-implied yields are expressed as the annualized rate in percent. 



 
 
 

 

Figure 3. Estimation of expectations and term premium components of 10-year bond yields 
(annualized rates in percent). This figure plots the actual 10-year bond yields, the average expected 
future short-term interest rates over the life of the bond, and its difference from the actual yields (i.e., 
term premium) obtained via two-regime three-variable VAR forecasting for the benchmark model. 
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