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Abstract

This paper proposes a new method to a bond portfolio problem
in a multi-period setting. In particular, we apply a factor alloca-
tion approach to constructing the optimal bond portfolio in a class of
multi-factor Gaussian yield curve models. In other words, we consider
a bond portfolio problem in terms of a factors’ allocation problem.
Thus, we can obtain clear interpretation about the relation between
the change in the shape of a yield curve and dynamic optimal strategy,
which is usually hard to be obtained due to high correlations among
individual bonds.

We first present a closed form solution of the optimal bond portfo-
lio in a class of the multi-factor Gaussian term structure model. Then,
we investigate the effects of various changes in the term structure on
the optimal portfolio strategy through series of comparative statics.



1 Introduction

In recent years, the fixed income security market has grown rapidly and re-

search for the trading strategies are getting sophisticated. However, there

are few researches on dynamic optimal portfolio with term structure models.

In particular, the changes in a yield curve shape are rarely reflected in the

optimal portfolio strategy. Moreover, the optimal strategies for bond portfo-

lio problems are usually hard to be interpreted because of high correlations

among individual bonds. As is often reported in principal component anal-

ysis (PCA) for the change in term structure, most of the variations of spot

yields with different maturities can be explained by three common factors.

Thus, to avoid high correlations, it seems better to consider portfolio

problems not in terms of bonds but in terms of common factors. There are

various term structure models to evaluate bonds and interest rate derivatives.

By combining these models with portfolio optimization, especially, applying

multi-factor yield curve models to optimal bond portfolio problems, we can

analyze bond portfolio in terms of factors, which enables us to interpret opti-

mal strategies intuitively. For example, because spot rates can be expressed

as a linear combination of factors in a multi-factor Gaussian model, we can

easily obtain factors exposures in a bond optimal portfolio.

Hence, we introduce a factor allocation approach. First, we decompose

each bond’s return into several factors’ return and then the allocation of

bonds can be converted into that of factors. Using this idea, we can easily
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analyze the effects of the parameter changes in a yield curve on the optimal

portfolio.

In this paper, we use a multi-factor Gaussian term structure model with

stochastic mean and power utility function for terminal wealth. Then, we

derive a closed form solution of the optimal strategy for a dynamic bond port-

folio problem using a result of Takahashi and Yoshida [2004]: they presented

an explicit expression of optimal portfolio in a general Markovian setting

based on Ocone and Karatzas [1991].

There are several previous works related to this theme. Sørensen [1999]

and Brennan and Xia [2000] consider the dynamic portfolio optimization

problem in a structure with a power utility, single/two-factor stochastic in-

terest rate model and a constant market price of risk in the complete mar-

ket. Sørensen [1999] uses a Vasicek one-factor model for discrete time opti-

mal portfolio allocation utilizing the quasi-dynamic programming approach.

Brennan and Xia [2000] investigates the optimal stock-bond mix along with

a two-factor interest rate model and derive comparative statics with respect

to the risk aversion. Liu [2006] solves the dynamic portfolio problem us-

ing a single factor model of interest rates in a general structure such as a

stochastic interest rate, a stochastic market price of risk and a stochastic

volatility. Most studies, however, have not focused on the term structure

and the optimal bond portfolio.

Kobayashi, Takahashi and Tokioka [2005] mainly uses a general single-

factor HJM model, stochastic market price of risk, stochastic volatility and
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the power utility. They first formulate a dynamic optimal bond portfolio

problem based on the general setting utilizing the asymptotic expansion

scheme and investigate the effect of the change in the market price of risk.

Korn and Koziol [2006] uses multi-factor term structure models of the Vasicek

type to analyze bond portfolio optimization with the static Mean-Variance

approach.

We consider the dynamic bond portfolio problem and present a closed-

form optimal strategy with a model including Sørensen [1999], Brennan and

Xia [2000] and Korn and Koziol [2006] as special cases and our result includes

the solution of Brennan and Xia [2000] in the case in which all securities con-

sist of bonds. Furthermore utilizing the term structure model effectively, we

propose the idea of a factor allocation: the bond portfolio problem is reinter-

preted as the factor allocation problem, which enables us to investigate the

relation between the term structure and the optimal bond portfolio clearly.

In particular, we implement comparative statics in detail with respect to

parameters which affect the shape of the term structure.

The organization of this paper is as follows. In Section 2, after we briefly

introduce a dynamic optimization problem for bond portfolio in a class of

Gaussian term structure models, we derive a closed form solution of optimal

strategy. In Section 3, we implement series of comparative statics to investi-

gate the effects of changes in the yield curve shape on the optimal portfolio

strategy. Finally, Section 4 states conclusion.
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2 DYNAMIC FACTOR ALLOCATION PROBLEM

In this section, we discuss the dynamic portfolio optimization under a multi-

factor Gaussian term structure model with stochastic mean. First, we de-

scribe the dynamic portfolio problem combined with a multi-factor Gaussian

model by employing the result from Takahashi and Yoshida [2004]. By spec-

ifying the processes of the state variable, the market price of risk and the

instantaneous interest rate r(t), we derive a closed form solution for optimal

bond portfolio strategy under the general version of the multi-factor Gaus-

sian term structure model with stochastic mean, which is one of our main

contributions in this paper.

2.1 Dynamic Portfolio Problem in a General Marko-

vian Setting

2.1.1 Description of the financial market

First, we describe the financial market. Assume the market is complete. Let

(Ω, F , {Ft}0≤t≤T<∞, P) denote a probability space with a filtration and

assume it satisfies usual conditions. T (< ∞) denotes a fixed time horizon

of the economy.

We suppose the instantaneous spot rate r(t) to be r(t) = r(Xt), that is,

it can be represented as some function of the m-dimensional state variable
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Xt := (X1,t, . . . , Xm,t)
′, whose variation is governed by:

dXt = V0(Xt) dt +
m∑

j=1

Vj(Xt) dŴj,t X0 = x, (2.1)

here we use the notation of x′ as the transpose of x. Vj(·), j = 0, 1, . . . , m

are (m × 1) column vectors respectively and set a m × m matrix as V (·) :=

(V1(·), . . . , Vm(·)). Vj(·), j = 0, 1, . . . , m are some functions of Xt and satisfy

the regularity conditions. Ŵt := (Ŵ1,t, Ŵ2,t, . . . , Ŵm,t)
′, 0 ≤ t ≤ T is a

Rm-valued Brownian motion whose components are independent Brownian

motions defined on (Ω, F , {Ft}0≤t≤T<∞, P). Let P (t, Ti), i = 1, 2 . . . ,m

and P0(t) denote the prices at time t ∈ [0, T ] of zero coupon bonds with

the maturity Ti and that of money market account, respectively. Here we

suppose the stochastic differential equation governing the movement of zero

coupon bond’s price, P (t, Ti), and that of money market account as

dP (t, Ti) = P (t, Ti)[βi(t,Xt) dt + σ̂i(t) dŴt], P (0, Ti) = pi, i = 1, 2 . . . , m

dP0(t) = r(Xt)P0(t) dt, P0(0) = 1

(2.2)

where σ̂i(t) := (σ̂i,1(t), . . . , σ̂i,m(t)) .

As we assume the financial market is complete, there uniquely exists a

stochastic process, θ̂(t,Xt), which is given as the solution of the equation

below:

β(t,Xt) − r(Xt)1 = σ̂(t)θ̂(t,Xt) (2.3)
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where β(t,Xt) is a (m × 1) vector whose ith element is βi(t,Xt), σ̂(t) is a

(m × m) matrix whose ith row is σ̂i(t) and 1 is a (m × 1) unit vector. This

variable, θ̂(t,Xt), is often referred as the market price of risk.

Thus we can rewrite (2.2) as:

dP (t, Ti) = P (t, Ti)[(r(Xt) + σ̂i(t)θ̂(t,Xt)) dt + σ̂i(t) dŴt]

P (0, Ti) = pi, i = 1, 2 . . . , m

(2.4)

Given the opportunity set described in (2.2), investors will allocate their

wealth among these (m + 1) assets. Let ϕi(t) denotes the number of units of

asset i held at time t. From the budget constraint, the stochastic differential

equation below should hold 1:

dX (t) = ϕ(t)′ dP (t) + (1 − ϕ(t)′1) dP0(t) − c(t)dt, X (0) = x > 0 (2.5)

where X (t) and c(t) denote investors’ total wealth and their non-negative

consumption rate respectively, ϕ(t) is a (m× 1) vector whose ith element is

ϕi(t), 1 is a (m × 1) vector defined as 1 := (1, 1, . . . , 1)′, and P is a (m × 1)

vector whose ith element is P (t, Ti).

It is useful to replace ϕ(t) from (2.5) by a new variable, π(t), a (m ×

1) vector whose ith element is πi(t), which denotes the amount of money

invested for ith asset at time t. Substituting for dP (t, Ti)/P (t, Ti) from (2.4),

1For a detailed explanation of this budget constraint, see Merton [1971]
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we can rewrite (2.5) as

dX (t) = [r(Xt)X (t) − c(t)] dt + π(t)′[σ̂(t)θ̂(t,Xt) dt + σ̂(t) dŴt],

X (0) = x > 0,

(2.6)

which is often referred as the budget-constraint dynamics.

Finally, we define A (x) as the set of stochastic processes (π, c) such that

given X (0) = x > 0, for all t ∈ [0, T ], X (t) ≥ 0 (a.s.).

2.1.2 Optimal portfolio problem

Here we analyze optimal portfolio selection. First, we specify optimal port-

folio problem for investors:

Assumption 1 We assume investors seek to maximize an objective function

as below:

sup
(π,c)∈A (x)

EP [U(X (T ))], (2.7)

subject to the budget-constraint dynamics, (2.6), here EP [·] denotes the ex-

pectation operator under P and U denotes a utility function.

Note that, with the objective function above, optimal consumption rule turn

out to be c(t) = 0.

Furthermore, as assumed in Sørensen [1999], Brennan and Xia [2000],

Kobayashi, Takahashi and Tokioka [2005], Liu [2006], We assume a utility

function in (2.7) is specified as so-called power utility, that is:
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Assumption 2 We assume investors have a utility function as follows: for

δ < 1, δ ̸= 0,

U(x) :=
xδ

δ
.

In this Markovian setting, Takahashi and Yoshida [2004] provides the

following result based on Ocone and Karatzas [1991].

Theorem 2.1 Under the same conditions as in Section 4 in Takahashi and

Yoshida [2004], the optimal proportion of zero coupon bonds in wealth denoted

by π(t)′/X (t) are given as follows:

π(t)′

X (t)
=

1

1 − δ
θ̂(t,Xt)

′σ̂(t)−1 +
δ

1 − δ

1

EP
t [(Ht,T )−δ/(1−δ)]

×

× EP
t

[
(Ht,T )−δ/(1−δ)

(∫ T

t

∂r(Xu)Yu V (Xt) du+

+
m∑

j=1

∫ T

t

∂θ̂j(t,Xu)Yu V (Xt) dŴju+

+
m∑

j=1

∫ T

t

θ̂j(t,Xu) ∂θ̂j(t,Xu)Yu V (Xt) du

)]
σ̂(t)−1

(2.8)

where EP
t [·] denotes the conditional expectation at time t, Ht,T is defined by:

Ht,T := exp

(
−

∫ T

t

θ̂(t,Xu)
′ dŴu −

1

2

∫ T

t

|θ̂(t,Xu)|2 du −
∫ T

t

r(Xu) du

)
,
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and

∂r(Xu) =

(
∂r

∂X1

, . . . ,
∂r

∂Xm

)
∂θ̂j(t,Xu) =

(
∂θ̂j

∂X1

, . . . ,
∂θ̂j

∂Xm

)
,

and Yu follows the (m × m) matrix valued stochastic differential equation:

for u ∈ [t, T ],

dYu = ∂V0(Xu)Yu du +
m∑

j=1

∂Vj(Xu)Yu dŴj,u Yt = I (2.9)

where ∂Vk(Xu) is a (m×m) matrix such that ∂Vk(Xu) = (∂V i
k/∂Xj,u)1≤i,j≤m,

V i
k denotes the ith element of Vk, k = 0, . . . ,m which appeared in (2.1) and

I denotes (m × m) identity matrix.

Proof. See Section 4.1 in Takahashi and Yoshida [2004].

In the next subsection, we will obtain a closed form solution of the optimal

portfolio by specifying Xt, θ̂(t,Xt) and r(Xt).

2.2 Optimal Portfolio in Multi-factor Gaussian model

In this subsection, we first specify the process of Xt.
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Assumption 3 We assume the state variable Xt follows the process:

dX1,t = α1(X2,t + X3,t + · · · + Xm,t − X1,t) dt + σ1 dW1,t

dXi,t = αi(X̄i − Xi,t) dt + σi dWi,t, (i = 2, 3, . . .m)

(2.10)

where, α1 > 0, αi ≥ 0, X̄i ≥ 0, i = 2, 3, . . . m, σi ≥ 0, i = 1, 2, . . .m

are all constants and Wt := (W1,t,W2,t, . . . ,Wm,t)
′, 0 ≤ t ≤ T is a Rm-

valued correlated Brownian motion defined on (Ω, F , {Ft}0≤t≤T<∞, P)

with dWi dWj = ρijdt (if i = j, ρij ≡ 1). The correlated Brownian mo-

tion Wt can be expressed by using an independent Brownian motion Ŵt as

Wt = CŴt, where C is some lower triangular matrix obtained by Cholesky

decomposition.

Under this setting, (2.1) is reduced to

dXt = α(X̄ − Xt) dt + V dŴt X0 = x, (2.11)

where α is a (m × m) diagonal matrix whose ith element is αi, X̄ :=

(X̄1, X̄2, . . . , X̄m)′, X̄1 := X2,t + X3,t + · · · + Xm,t, V := σC and σ is a

(m × m) diagonal matrix whose ith element is σi.

Next, we put assumptions on θ̂(t,Xt) and r(Xt) as follows:

Assumption 4 (1)We assume the market price of risk θ̂(t,Xt) is given by:

θ̂(t,Xt) := θ̂ = (θ̂1, . . . , θ̂m)′,
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where θ̂i, i = 1, 2, . . . , m are all constants.

(2) We also assume the instantaneous spot rate r(t) is expressed as r(t) =

r(Xt) := X1,t.

Then, the dynamics of Xt under a risk neutral measure Q is given by:

dXt =
[
α(X̄ − Xt) − V θ̂

]
dt + V dŴ∗

t X0 = x, (2.12)

where Ŵ∗
t denotes a Rm-valued independent Brownian motion under Q as

follows:

Ŵ∗
t = Ŵt + θ̂t.

Furthermore, with a correlated Brownian motion, (2.12) can be rewritten

as:

dXt =
[
α(X̄ − Xt) − σθ

]
dt + σ dW∗

t X0 = x, (2.13)

where θ is the market price of risk with respect to Wt, and W∗
t represents a

Rm-valued correlated Brownian motion under Q given by:

W∗
t = Wt + θt.

Note that θ is obtained by θ := Cθ̂ as Wt = CŴt. In the following

discussion, we mainly use the independent Brownian motion Ŵ∗
t except in
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the pricing of zero coupon bonds.

The model described in (2.13) belongs to the class of the multi-factor

affine model and the general version of stochastic mean model including

Vasicek[1977], Hull and White [1990], Balduzzi et al. [2000], He [2001] and

Takahashi and Sato [2001] as special cases.

From Assumption 4 and (2.13), r(u) is expressed by using a correlated

Brownian motion under Q:

r(u) = e−α1(u−t)X1,t +
m∑

i=2

(
α1

∫ u

t

e−αi(s−t)−α1(u−s) ds

)
Xi,t

− σ1θ1

α1

(1 − e−α1(u−t))

+
m∑

i=2

(
α1

∫ u

t

∫ s

t

e−αi(s−τ)−α1(u−s)dτ ds

)
(αiX̄i − σiθi)

+ σ1

∫ u

t

e−α1(u−τ) dW ∗
1,τ

+
m∑

i=2

σiα1

∫ u

t

∫ u

τ

e−αi(s−τ)−α1(u−s) ds dW ∗
i,τ

(2.14)

Under the no-arbitrage condition, the zero coupon price at time t with

the maturity Ti, P (t, Ti) is obtained by:

P (t, Ti) = EQ
t

[
exp

(
−

∫ Ti

t

r(u) du

)]

where EQ
t [·] is the conditional expectation operator under Q given informa-

tion at time t. Then the bond price at time t with the maturity Ti is given
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by:

P (Xt, Ti) := P (t, Ti) = exp

(
ai,0(τi) +

m∑
j=1

ai,j(τi)Xj,t

)

where ai,0(τi) is some deterministic function with respect to τi := Ti − t and

ai,j(τi) is given by:

ai,1(τi) := −1 − e−α1τi

α1

, ai,j(τi) := −α1

∫ T

t

∫ u

t

e−αi(s−t)−α1(u−s)ds du.

From Itô ′s formula, we obtain:

dP (Xt, Ti)

P (Xt, Ti)
=

m∑
j=1

ai,j(τi) dXj,t +
∂P (Xt, Ti)

∂t
/P (Xt, Ti) dt

+
1

2

m∑
k,j=1

ai,k(τi)ai,j(τi)ρkjσkσj dt.

(2.15)

From the right hand side in (2.15), we can see that the return of each zero

coupon bond can be decomposed into 3 terms: factor variation, carry and

factor convexity. Especially, from the first term, we obtain factor exposure of

the ith bond for each factor j = 1, . . . , m as ai,j(τi). Here we define a (m×1)

vector, ai(τi), by ai(τi) := (ai,1(τi), ai,2(τi), . . . , ai,m(τi))
′ and then the first

term in (2.15) can be rewritten as ai(τi)
′dXt. Therefore, with (2.11), σ̂i(t)

in (2.2) can be rewritten as σ̂i(t) = ai(τi)
′V . Finally, set factor exposure

matrix A as A := (ai,j(τi))1≤i,j≤m then σ̂ appeared in (2.6) and (2.8) can be
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rewritten as

σ̂ = AV . (2.16)

Then, by adding Assumption 3 and 4, the optimal portfolio strategy in The-

orem 2.1 reduces to the following proposition:

Proposition 2.1 Under the same conditions as in Theorem 2.1 and As-

sumption 3-4, the optimal proportion of zero coupon bonds are given as fol-

lows:

π(t)′

X (t)
=

1

1 − δ
θ̂
′
σ̂−1 +

δ

1 − δ
Y ′ V σ̂−1 (2.17)

where Y is defined as below:

Y :=



1−e−α1(T−t)

α1

α1
∫ T

t

∫ u

t e−α2(s−t)−α1(u−s) ds du
...

α1
∫ T

t

∫ u

t e−αm(s−t)−α1(u−s) ds du


(2.18)

Proof. ∂θ̂j(Xu) ≡ 0, j = 1, . . . , m follows from Assumption 4(1). As

∂r(Xu) = (1, 0, . . . , 0) from Assumption 4(2), ∂r(Xu)Yu reduces to the first

row of Yu, which is obtained by:

(
e−α1(u−t), α1

∫ u

t

e−α2(s−t)−α1(u−s) ds, . . . , α1

∫ u

t

e−αm(s−t)−α1(u−s) ds

)
.
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Finally using V (Xt) = V and
∫ T

t
∂r(Xu)Yu du = Y ′, (2.8) turns out to be:

π(t)′

X (t)
=

1

1 − δ
θ̂
′
σ̂−1 +

δ

1 − δ

1

EP
t [(Ht,T )−δ/(1−δ)]

×

× EP
t

[
(Ht,T )−δ/(1−δ)

(∫ T

t

∂r(Xu)Yu V du

)]
σ̂−1

=
1

1 − δ
θ̂
′
σ̂−1 +

δ

1 − δ

1

EP
t [(Ht,T )−δ/(1−δ)]

×

× EP
t [(Ht,T )−δ/(1−δ) ]

(∫ T

t

∂r(Xu)Yu du

)
V σ̂−1

=
1

1 − δ
θ̂
′
σ̂−1 +

δ

1 − δ
Y ′ V σ̂−1.

The first term on the right hand side of (2.17) represents mean-variance

portfolio in a continuous-time setting: hence we call it MV term. The second

term is specific to a multi-period setting and represents the intertemporal

hedging demand defined by Merton [1971]: we call it IR-hedging term.

As observed in (2.15), the dynamics of a single bond’s return can be

decomposed into exposures to several factors’ return. Thus the allocation

to bonds is converted into the allocation to factors. While it is difficult to

interpret the optimal portfolio in terms of bonds because of high correlation

among them, we can interpret the optimal portfolio easier in terms of factors.

Therefore we consider factor exposure of the optimal strategy in Propo-

sition 2.1. The process of the instantaneous return of the optimal bonds’
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portfolio can be described as follows:

dX (t)

X (t)
=

(
1 −

m∑
i=1

πi(t)

X (t)

)
r(Xt)dt +

m∑
i=1

πi(t)

X (t)

dP (Xt, Ti)

P (Xt, Ti)

=

(
1 −

m∑
i=1

πi(t)

X (t)

)
r(Xt)dt +

m∑
j=1

( m∑
i=1

πi(t)

X (t)
ai,j(τi)

)
dXj,t

+
m∑

i=1

πi(t)

X (t)

∂P (Xt, Ti)

∂t
/P (Xt, Ti) dt +

1

2

m∑
k,j=1

m∑
i=1

πi(t)

X (t)
ai,k(τi)ai,j(τi)ρkjσkσj dt.

(2.19)

The factor exposure to Xj,t is given by the coefficient of dXj,t in the second

term on the right hand side of (2.19). Then, we obtain the following corollary.

Corollary 2.1 Factor exposure of the optimal portfolio strategy in Proposi-

tion 2.1 can be obtained as follows:

π(t)′A

X (t)
=

1

1 − δ
θ̂
′
V −1 +

δ

1 − δ
Y ′. (2.20)

Proof. Using (2.16) and the result of Proposition 2.1, we can calculate as

follows:

π(t)′A

X (t)
=

1

1 − δ
θ̂
′
σ̂−1A +

δ

1 − δ
Y ′ V σ̂−1A

=
1

1 − δ
θ̂
′
V −1A−1A +

δ

1 − δ
Y ′ V V −1A−1A

=
1

1 − δ
θ̂
′
V −1 +

δ

1 − δ
Y ′.
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Thus using this corollary, we can convert the optimal portfolio into its

factor exposure and we can reinterpret the bond allocation as the factor

allocation. This idea is useful for investigating the relationship between the

change in term structure and that in the factor exposure of the optimal

portfolio strategy.

In concluding this section, one final remark on Corollary 2.1 deserves

mention. In this multi-factor model, the optimal allocation to each factor

does not depend on the components of portfolio. That is, being current

term structure equal, the factor allocation is also invariant even though the

optimal bond allocation varies as we change component of the bond portfolio.

Thus we can say that the essence of the portfolio problem lies in the factor

allocation rather than the bond allocation. Once we obtain the optimal factor

allocation from Corollary 2.1, then we can also get the optimal allocation for

any bond portfolio through its factor exposure matrix. Therefore, we can

see that the optimal allocation of bonds is essentially obtained by that of

factors. When the term structure varies, the change will be reflected by the

factor allocation directly and the bond portfolio will also change through

the change of factor allocation. Therefore the effect of the term structure

variation on the bond portfolio is indirect and thus it is easier to analyze

factor allocation directly.

The factor allocation depends on parameters such as speed parameters of

mean-reversion ki, i = 1, . . . , m which are strongly related with the shape of

the yield curve. One of our objectives is to analyze how the changes in the
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shape of yield curve affect the IR-hedging term and hence the whole portfolio

strategy. To investigate this issue, we introduce a concrete 3-factor model in

the next section and implement series of comparative statics.

3 Numerical Analysis

So far, we have outlined the dynamic portfolio problem with multi-factor

model. In this section, we introduce a 3-factor model as an example of the

multi-factor stochastic mean model in (2.12) and we implement series of com-

parative statics based upon the model. The result brings clear interpretation

of the optimal portfolio, which is also one of our main contributions in this

paper.

3.1 3-factor Model

In this subsection, we concentrate on the case where the risk-neutral dynam-

ics of X1, X2 and X3 are given by:

dX1 = [α1(X2 + X3 − X1) − θ1σ1] dt + σ1 dW ∗
1

dX2 = [α2(X̄2 − X2) − θ2σ2] dt + σ2 dW ∗
2

dX3 = [α3(X̄3 − X3) − θ3σ3] dt + σ3 dW ∗
3 .

Here, we assume α1 > αi, i = 2, 3, α2 > 0, α3 ≥ 0, θi ≤ 0, i = 1, 2, 3 and the

other conditions are the same in the previous section.
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Then r(u), V and Y in this model are expressed by using a correlated

Brownian motion under Q:

r(u) = e−α1(u−t)X1,t +
α1

α1 − α2

(e−α2(u−t) − e−α1(u−t))X2,t

+
α1

α1 − α3

(e−α3(u−t) − e−α1(u−t))X3,t

− (1 − e−α1(u−t))
σ1θ1

α1

+

{
(1 − e−α1(u−t)) − α1

α1 − α2

(e−α2(u−t) − e−α1(u−t))

}
(X̄2 −

σ2θ2

α2

)

+

{
(1 − e−α1(u−t)) − α1

α1 − α3

(e−α3(u−t) − e−α1(u−t))

}
(X̄3 −

σ3θ3

α3

)

+ σ1

∫ u

t

e−α1(u−s) dW ∗
1,s

+ σ2
α1

α1 − α2

∫ u

t

(
e−α2(u−s) − e−α1(u−s)

)
dW ∗

2,s

+ σ3
α1

α1 − α3

∫ u

t

(
e−α3(u−s) − e−α1(u−s)

)
dW ∗

3,s

(when α3 ̸= 0) (3.1)
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r(u) = e−α1(u−t)X1,t +
α1

α1 − α2

(e−α2(u−t) − e−α1(u−t))X2,t + (1 − e−α1(u−t))X3,t

− (1 − e−α1(u−t))
σ1θ1

α1

+

{
(1 − e−α1(u−t)) − α1

α1 − α2

(e−α2(u−t) − e−α1(u−t))

}
(X̄2 −

σ2θ2

α2

)

−
{

(u − t) − 1 − e−α1(u−t)

α1

}
σ3θ3

+ σ1

∫ u

t

e−α1(u−s) dW ∗
1,s

+ σ2
α1

α1 − α2

∫ u

t

(
e−α2(u−s) − e−α1(u−s)

)
dW ∗

2,s

+ σ3

∫ u

t

(
1 − e−α1(u−s)

)
dW ∗

3,s

(when α3=0) (3.2)

V =


σ1 0

σ2

0 σ3




1

ρ12

√
1 − ρ2

12

ρ13 x y


where

x :=
ρ23 − ρ12ρ13√

1 − ρ2
12

y :=

√
1 − (ρ2

12 + ρ2
23 + ρ2

13) + 2ρ12ρ23ρ13

1 − ρ2
12

.
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Y :=



1−e−α1(T−t)

α1

α1
α1−α2

[1−e−α2(T−t)

α2
− 1−e−α1(T−t)

α1
]

α1
α1−α3

[1−e−α3(T−t)

α3
− 1−e−α1(T−t)

α1
]


(when α3 ̸= 0)(3.3)

Y :=



1−e−α1(T−t)

α1

α1
α1−α2

[1−e−α2(T−t)

α2
− 1−e−α1(T−t)

α1
]

(T − t) − 1−e−α1(T−t)

α1


(when α3 = 0)(3.4)

3.2 Properties of the 3-factor model

In this subsection, we briefly review properties of the 3-factor model intro-

duced above. First, we check the characteristics of factors and parameters

such as αi and θi. Here we present the comparative statics of the 3-factor

model with θ1 = θ2 = α3 = 0 which will be used for the analysis in the next

subsection.

As explained by He [2001], X1 captures the short rate controlled by the

central bank, X2 represents the movements of the yield curve slope and X3

tracts the movements of the long-term interest rate. We investigate how the
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change of each factor affects the term structure. In Figure 1 − 3, the hori-

zontal axis and the vertical axis represent spot rate maturities and changes

in spot rates when each factor Xi increases by 20 basis points (bps) respec-

tively. From Figure 1 − 3, we can confirm X1 affects mainly the short sector

in the term structure and X2 and X3 affect mainly the middle and the long

term sectors respectively.

The positive constants α1 and α2 control the speed of mean-reversion

of X1 and X2 respectively. The faster (slower) the reversion is, the shorter

(longer) the shock to the economic system (or new information) stays in the

market, and therefore the steeper (flatter) the yield curve becomes. Thus,

α1 and α2 affect the slope of the short - middle term sector and that of the

middle - long term sector respectively. We investigate how the changes of

parameters in the model affect the term structure in Figure 4 − 7 where

the horizontal axis and the vertical axis represent spot rate maturities and

changes in spot rates respectively. We can confirm above from Figure 4,

Figure 5 and Figure 6 which show the effects of each parameter’s change.

Figure 7 shows the increase of the market price of risk pushes up the spot

rates of the long term sector.

3.3 Comparative Statics

Next we show the results from series of comparative statics based on this

model. From Corollary 2.1, we can see how the changes in the shape of

yield curve, investor’s preference and so on affect the portfolio strategy. The
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relative risk aversion (RRA given by 1 − δ) affects both. The MPR θi, the

volatility σi and the correlation ρij affect only the MV term. Investment

Horizon T and the speed of mean-reversion αi affect only the IR-hedging

term.

From Corollary 2.1, we can also see the hedging demand for X1 and X2

will converge to 0 as α1, α2 → ∞. It is well-known that when the state

variables are deterministic, the dynamic parts will disappear. As α1, α2

→ ∞, X1 and X2 become almost deterministic because these two factors

follow mean-reverting processes. Therefore the hedge demand for X1 and

X2 will disappear. We can observe the same result for X3 in (3.3) as α1,

α3 → ∞. On the other hand, the hedging demand for X3 in (3.4) is the

increasing function of investment horizon T because when α3 = 0, X3 does

not have a mean-reversion property.

Based upon these analysis, we implement series of comparative statics.

First, the initial parameters are reported in Table 1. We use estimates of

these parameters from He [2001] and set the components of the portfolio,

the investment horizon and the RRA as in Table 2. The optimal portfolio

strategy and its factor allocation in this setting are given in Table 3.

Two points deserve mention. First, the IR-hedging term is not negligible

and affects the whole strategy. Second, although the allocation to the long-

term bond (30-year bond) is quite small in the MV term because of its high

volatility, its allocation in the IR-hedging term is not small because it is

necessary to hedge mainly against X3. This is important because if we use
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Mean-Variance scheme only, the position will be a simple spread strategy

without 30-year bond which cannot hedge against yield curve risks other

than the spread risk. Thus our approach is more preferable and practical

because we can hedge against several yield curve risks.

Next, we shift several parameters to investigate further details of prop-

erties of this model. The results are shown in Figure 8 - 17 where we take

the values of each parameter in a horizontal axis and the portfolio weight

for each bond or the allocation to each factor in a vertical axis, respectively.

First, we see the effect of the variation of α1. The results are shown in Fig-

ure 8 and Figure 9. From these results, we can see several points. First, as

mentioned before, the effects on each bond’s allocation are very complicated

and unclear because of high correlations among bonds: from Figure 8, it is

difficult to see how the change of α1 affects. In contrast, Figure 9 shows a

clear message: there is no change in the MV term of factor allocation and

thus only the IR-hedging term can reflect the steepening and flattening. As

α1 becomes larger, the allocation to X1 in the IR-hedging term decreases.

This is because the larger α1 becomes, the faster X1 reverts and hence X1

becomes less uncertain. Therefore, the steepening (flattening) in the short

term sector makes investors reduce (increase) the hedging position to X1,

and increase (reduce) hedging positions against X2 and X3 because these

factors become riskier than X1.

From Figure 11 we can see the same is true for α2: the increase of α2

decreases the exposure to X2. Moreover, this case shows the advantage of
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the factor allocation approach. It is difficult to interpret how α2 affects each

bond from Figure 10. On the other hand, from Figure 11, we can interpret

the effect intuitively as follows: steepening (flattening) in the middle term

sector makes investors reduce (increase) only their hedge exposures to X2

while exposures to X1 and X3 stay constant.

Next we consider the effect of the change of θ3. In Figure 12, the factor

allocation in the IR-hedging term unchanges while the exposures to X2 and

X3 in the MV term change. The decrease of θ3 makes the instantaneous

expected return of X3 increase and therefore X3 becomes more attractive

in Mean-Variance basis. Thus the exposure to X3 increase as θ3 decreases.

Moreover, because the correlation between X2 and X3 is set to be negative,

investors can increase the exposure to X3 further by using the exposure to X2

for hedging. As a result, the exposure to X2 also increases. We can confirm

this from Table 4. The exposure to X3 with ρ23 ̸= 0 is larger than that with

ρ23 = 0.

From Corollary 2.1, we can confirm σi, i = 1, 2, 3 affect only the MV term.

We can see this from Figure 13 and Figure 14. The increase of σi will reduce

only the allocation to Xi and others stay constant.

Next we can refer to Figure 15 and Figure 16 to see the effect of the

investment horizontal. Two points deserve mention. First, the MV term has

no horizontal effect and this effect is specific to the dynamic term. Second,

from Figure 15 the effect on the allocation to bonds is not monotone. The

increase of the investment horizon increases the uncertainty in the future but
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at the same time it also reduces the duration of each bond and that makes

uncertainty decrease. Which of them is dominant depends on circumstances.

On the other hand, the effect on the factor allocation is monotone increasing

from Figure 16. This is simply because uncertainty becomes larger as the

investment horizon increases.

Finally, we consider the effect of the variation of the RRA. The results

are given in Figure 17. When the RRA= 1, the investor has a log utility

and the optimal strategy is the same with that of Mean-Variance approach.

From Figure 17 we can see several points. First, as for X1 the MV term

has no exposure to X1 therefore the IR-hedging term is dominant. If the

RRA < 1, the investor is less risk averse and takes an aggressive position,

which corresponds to positive exposures in the IR-hedging term. If the RRA

> 1, on the other hand, the investor is more risk averse and takes a cautious

position: the opposite position with the MV term.

We summarize the results of the comparative statics in Table 5.

4 Conclusion

In this paper, we analyzed the dynamic fixed-income portfolio optimization

with a multi-factor Gaussian yield curve model. The main results obtained

in this paper are summarized as follows.

First, we combined the dynamic portfolio optimization and a multi-factor

Gaussian term structure model to obtain an analytical expression of the
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optimal bond allocation: it enables us to examine the model parameters’

effects efficiently.

Second, by introducing the idea of factor allocation, we can easily inter-

pret optimal portfolio which is usually hard to be understood by considering

the portfolio in terms of bonds.

Third, we investigate how the change in the term structure affects the

optimal portfolio through series of comparative statics.
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Figure 1: X1 effect:+20 bps

Figure 2: X2 effect:+20 bps

Figure 3: X3 effect:+20 bps

Figure 4: α1 effect: +0.5

Figure 5: α2 effect:+0.5, X2(0) < 0

Figure 6: α2 effect:+0.5, X2(0) > 0

Figure 7: θ3 effect:−0.7
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Table 1: Model Parameter Set

α1 1.50 σ1 0.50%
α2 0.50 σ2 1.50%
α3 0 σ3 1.25%
θ1 0 ρ12 0
θ2 0 ρ13 0
θ3 −0.125 ρ23 −0.3

Table 2: Portfolio Parameter Set

Investment Horizon 1
RRA 4

2
Zero Coupon Bonds 7

30

Table 3: Initial Result

MV IR Hedge Total
2 0.882 0.937 2 1.820
7 −0.836 + −0.353 = 7 −1.189

30 −0.002 0.045 30 0.043
Cash 0.673
Total 1

factor allocation

MV IR Hedge Total
X1 0.0000 −0.3884 −0.3884
X2 0.7661 −0.3027 0.4635
X3 4.1570 −0.3616 3.7954
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Figure 8: The effect of α1 variation:
bonds

Figure 9: The effect of α1 variation:
factor allocation
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Figure 10: The effect of α2 variation:
bonds

Figure 11: The effect of α2 variation:
exposure to X2
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Figure 12: The effect of θ3 variation:
factor allocation

Figure 13: The effect of σ2 variation:
X2

Figure 14: The effect of σ3 variation:
X3
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Table 4: θ3 and ρ23

θ3 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Factor Allocation

MV term

X2 (ρ23 = −0.38) 1.1103 1.6655 2.2207 2.7758 3.3310 3.8862 4.4413
X3 (ρ23 = −0.38) 6.0246 9.0369 12.0492 15.0615 18.0738 21.0861 24.0984

X2 (ρ23 = 0) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
X3 (ρ23 = 0) 5.1546 7.7320 10.3093 12.8866 15.4639 18.0412 20.6186

X2 (ρ23 = 0.38) −1.1103 −1.6655 −2.2207 −2.7758 −3.3310 −3.8862 −4.4413
X3 (ρ23 = 0.38) 6.0246 9.0369 12.0492 15.0615 18.0738 21.0861 24.0984
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Figure 15: The effect of Investment
Horizon variation: bonds

Figure 16: The effect of Investment
Horizon variation: factor allocation
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Figure 17: The effect of RRA variation: factor allocation
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Table 5: The summary of effects

Parameter
The effect on the portfolio strategy (the factor allocation)

MV term IR Hedge term

Term Structure

α1 ——– α1 ↑ ⇒ X1 ↓, X2 & X3 ↑
α2 ——– α2 ↑ ⇒ X2 ↓

θ3
θ3 ↑ ⇒ X3 ↑ ——–

ρ23 < 0 ⇒ X3 ↑↑, X2 ↑

σ1 ——– ——–
σ2 σ2 ↑ ⇒ X2 ↓ ——–
σ3 σ3 ↑ ⇒ X3 ↓ ——–

Investment strategy

T
——– T ↑ ⇒ X1, X2, X3 ↑(Investment Horizon)

RRA
RRA > 1, RRA ↑ ⇒ X2 & X3 ↓ RRA > 1, RRA ↑ ⇒ X1, X2, X3 ↑(Risk Preference)
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