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Abstract

This paper investigates the relationship between bubbles and government

bailouts. It shows that bailouts for bursting bubbles may positively influence

ex-ante production efficiency and relax the existence condition of stochastic

bubbles. The level of bailouts has a non-monotonic relationship with pro-

duction efficiency and not full bailouts but a “partial bailout” policy realizes

production efficiency. Moreover, it examines the welfare effects of bailout poli-

cies rigorously. The welfare of rescued entrepreneurs is an increasing function

of bailout level, but the welfare of taxpayers (workers) shows a non-monotonic

relation with bailout level. It shows that even non-risky bubbles may be un-

desirable for taxpayers.

Key words: Asset Bubbles, Anticipated Bailouts, Production Efficiency,

Boom-Bust Cycles, Welfare Effects of Anticipated Bailouts

JEL Classification Numbers: E32, E44, E61

2



1 Introduction

Many countries have experienced bubble-like dynamics, notably the recent U.S. ex-

periences after the global financial crisis of 2007—2009 as well as Japan’s experiences

in the 1990s. The bursting part of asset bubbles is generally followed by significant

contractions in real economic activity. To mitigate these contractions, the govern-

ment tends to provide various bailouts, such as by purchasing legacy assets at inflated

prices or proposing a capital injection policy. Although such bailout initiatives are

becoming more frequent, the effects of these policies have thus far been underexam-

ined in the theoretical literature, especially in full blown macroeconomic models. For

example, although bailouts may mitigate the adverse ex-post effects of the bubble

bursting, it remains unclear what happens if bailouts are anticipated ex-ante. Do

they affect boom-bust cycles? Do they change the emergence conditions of bub-

bles? More generally, to what extent are ex-post bailouts efficient from an ex-ante

perspective? Further, can we derive an optimal bailout policy? In this paper, we

theoretically investigate these questions by using a simple infinite horizon general

equilibrium model with financial imperfection and stochastic bubbles.

The first notable contribution of this paper is that we explore that bailouts in the

wake of bursting bubbles may positively influence ex-ante production efficiency. The

recent theoretical literature on bailout policies tends to investigate the moral hazard

consequences of bailouts (e.g., Diamond and Rajan, 2012; Farhi and Tirole, 2009,

2012), finding that moral hazard negatively affects ex-ante efficiency. This paper,

however, shows that the effects of bailouts provided after bursting bubbles are quite

the opposite. An intuitive reason for this finding comes from a crowd-in effect of

bubbles. If the financial market is imperfect, the existence of bubbles may be able

to crowd in investments, because the bubbles have a positive wealth effect and relax
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borrowing constraints. By contrast, ex-post bailouts make bubbles safer and more

profitable assets, and demand for bubbles subsequently rises. This higher demand

raises the price of bubbles and increases the crowd-in effect. Hence, bailouts posi-

tively influence ex-ante production efficiency. In order to explain this point clearly,

we extend the approach taken by Kiyotaki (1998) by developing a macroeconomic

model with heterogeneous investments, financial market imperfection, asset bubbles,

and bailouts.

As we show herein, anticipated bailouts induce low-productivity entrepreneurs

to buy risky bubble assets. By encouraging such risk-taking behavior, anticipated

bailouts also affect the existing conditions of asset bubbles. We show that bubbles

that have a high probability of bursting cannot occur in the absence of government

guarantees. However, if bailouts are guaranteed by the government, then even those

riskier bubbles can arise.

The second contribution of this paper is that it examines the possibility of partial

bailouts. In reality, the provision of bailouts is not comprehensive. For example, in

the recent global financial crisis, AIG was rescued, while Lehman Brothers was not.

In this paper, we consider such possibility. Financial safety net is provided by the

government following the collapse of bubbles. We focus on a bailout in which the

government guarantees bubble investments against losses derived from the collapse

of bubbles. The aim of bailouts is to recapitalize the net worth of entrepreneurs and

mitigate economic contractions. An important assumption in our model is that not

all entrepreneurs who suffer losses from bubble investments are necessarily rescued,

that is, some entrepreneurs are rescued while the others are not. The government

can choose the percentage of entrepreneurs rescued. This assumption captures the

possibility of partial bailouts, and we show that partial bailouts have a superior

aspect. In order to realize ex-ante production efficiency, not full bailouts but partial
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bailouts are desirable. This point comes from a crowd-out effect of bubbles. Although

bubbles have the crowd-in effect, it is well known in the literature on bubbles, for

example, Tirole (1985), that they also have the crowd-out effect on investments. In

this paper, we show that the crowd-out effect dominates the crowd-in effect if the

bubble becomes sufficiently large. In other words, too generous financial safety net

such as full bailouts creates too large bubbles and decreases investment.

The interesting point is that bailouts have non-monotonic impacts on ex-ante pro-

duction efficiency, which is the production level until the bubble bursts when bailout

policies are anticipated. We show that expansions in the government guarantees ini-

tially crowds in productive projects, thereby increasing production efficiency as long

as bubbles do not burst. Too generous guarantees, however, lead to strong crowd-out

effects, thereby decreasing ex-ante production efficiency. This non-monotonic impact

on ex-ante production efficiency suggests that there is a certain bailout level at which

ex-ante production efficiency is maximized.

Under the bailout policy, the output level in each period is increased by improving

production efficiency. This, however, implies that the economy experiences a sharp

drop in output when bubbles collapse. In other words, such a bailout policy may

increase boom-bust cycles and require large amounts of public funds following the

collapse of bubbles. This finding suggests a trade-off between economic stability and

efficient resource allocation, which leads onto our third contribution.

The third contribution of this paper is that we derive the effects of bailouts on

economic welfare rigorously. Since there are heterogeneous agents in this economy,

it is difficult to examine total welfare directly. Instead, we examine the welfare of

each type of agent and discuss that actual bailout policies may change depending on

various objectives of the government or conflicts of interest between taxpayers and

rescued entrepreneurs. For this consideration, the non-monotonic impact on produc-
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tion efficiency is important. Given the fact that wage rate is positively correlated

with production efficiency, the welfare of workers has a non-monotonic relation with

the broader provision of bailouts. Moreover, workers may have to pay tax to rescue

bubble holders. Hence, in the case of riskier bubbles, the optimal bailout level for

taxpayers is lower than the level at which production efficiency is maximized, which

has an important implication for boom-bust cycles. In order to maximize taxpayers’

welfare, the government must sacrifice some production efficiency in order to reduce

the size of bubbles and soften boom-bust cycles. However, a no-bailout policy is

not optimal, even for taxpayers. By contrast, an entrepreneur’s welfare monotoni-

cally increases with broader bailout provision, because entrepreneurs receive a higher

transfer from such an expansion and enjoy the wealth effect of consumption. Thus,

there are conflicts of interest between taxpayers and rescued entrepreneurs about a

desirable bailout level.

Finally, we discuss the welfare effects of bailout policies that make stochastic

bubbles non-stochastic ones (e.g., government debt as a bailout tool). We show that

stochastic bubbles can be better than non-stochastic ones from the perspective of

taxpayers’ welfare, suggesting that increasing the fragility of bubbles might actually

enhance the welfare of taxpayers.

The rest of this paper is organized as follows. In subsection 1.1, we discuss

the related works in the literature. In section 2, we present our basic model with

stochastic bubbles and government bailouts. In section 3 and 4, we examine dynamics

of rational bubbles and analyze how the government’s financial safety net affects the

existence conditions of rational bubbles. In section 5, we investigate how expansions

in government guarantees affect ex-ante production efficiency and boom-bust cycles.

In section 6, we conduct a welfare analysis of anticipated bailouts and show an

optimal bailout policy. In section 7, we analyze whether a bailout policy that makes
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stochastic bubbles non-stochastic ones is the best from a welfare perspective. In

section 8, we conclude our argument.

1.1 Related Literature

Recent examinations about rational bubbles have provided a theoretical framework

to analyze the macroeconomic effects of asset bubbles. In particular, seminal works,

such as Farhi and Tirole (2012), Martin and Ventura, (2012), and Woodford (1990),

have enriched the argument about the consequences of asset bubbles by showing

that they may have a crowd-in effect. Adding to these papers, a growing body of

literature is examining asset bubbles and macro dynamics (e.g., Aoki and Nikolov,

2011; Caballero and Krishnamurthy, 2006; Jovanovic, 2012; Kamihigashi, 2011, 2012;

Kocherlalota, 2009; Hellwig and Lorenzoni, 2009; Hirano and Yanagawa, 2010; Miao

and Wang, 2011). The present paper discusses the results of the above mentioned

papers in order to examine in depths both the crowd-in effect and the crowd-out

effect of bubbles. Specifically, the main original contribution of this paper is exploring

the effects of bailouts within a rational bubbles framework, and analyzing desirable

bailout policies from a welfare perspective.

In this vein, Uhlig (2010) models a systemic bank run in the light of the recent

financial crisis. His analysis supports for the argument that the outright purchase

of troubled assets by the government at above current market prices can both alle-

viate financial crises as well as provide taxpayers with returns above those for safe

securities. Similarly, Diamond and Rajan (2012) and Farhi and Tirole (2009, 2012)

examine the moral hazard consequences of bailouts and welfare analysis in order to

derive optimal regulations or bailout policies. Our paper lends support to Uhlig’s

(2010) results by developing a rigorous welfare analysis and builds on the findings of

the other three papers by proposing optimal bailout policies following the collapse
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of bubbles. Moreover, rather than using a three-period model with an endowment

economy, we examine the effects of bailouts in a full blown dynamic macroeconomic

model with a production economy.

Regarding previous works that have used dynamic macroeconomic models, Brun-

nermeier and Sannikov (2011), Gertler and Kiyotaki (2010), and Kiyotaki and Moore

(2008) examine government bailouts (i.e., credit market interventions) in a liquidity

crisis, while Gertler and Karadi (2011) and Roch and Uhlig (2012) adopt dynamic

macroeconomic models in order to analyze the welfare effects of bailouts. Roch and

Uhlig (2012), for example, provide a theoretical framework to analyze the dynam-

ics of a sovereign debt crisis and bailouts. Their paper, based on an endowment

economy, characterizes the minimal actuarially fair bailouts that restore the good

equilibrium. In contrast, our model is based on production economy. Hence, the

anticipated bailouts greatly affect welfare through the change in production. More-

over, Gertler and Karadi (2011) analyze whether government’s interventions in a

crisis (i.e., direct lending by the central banks) can improve post-crisis welfare. By

contrast, our paper takes into account the anticipated effects of government policy,

and computes welfare from an ex-ante perspective.

Gertler et al. (2011) examine the welfare effects of a government’s credit policy

in a crisis by considering the anticipated effects, and computing welfare from an ex-

ante perspective. In their model, the anticipated credit policy induces the ex-ante

risk-taking of intermediaries, while they also show that ex-ante regulations reduce

risk-taking and improve welfare. By contrast, the model presented herein suggests

that, anticipated bailouts induce risk-taking ex-ante and that, such risk-taking can

improve welfare; however, we also conclude that too much risk-taking reduces welfare

by creating large bubbles.
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2 The Model

2.1 Framework

Consider a discrete-time economy with one homogeneous good and a continuum of

entrepreneurs and workers. A typical entrepreneur and a representative worker have

the following expected discounted utility,

E0

[
∞∑
t=0

βt log cit

]
, (1)

where i is the index for each entrepreneur, and cit is the consumption of him/her at

date t. β ∈ (0, 1) is the subjective discount factor, and E0 [a] is the expected value

of a conditional on information at date 0.

Let us start with the entrepreneurs. At each date, each entrepreneur meets high

productive investment projects (hereinafter H-projects) with probability p, and low

productive ones (L-projects) with probability 1−p. The investment projects produce

capital. The investment technologies are as follows:

ki
t+1 = αi

tz
i
t, (2)

where zit(≥ 0) is the investment level at date t, and ki
t+1 is the capital at date t+ 1

produced by the investment. αi
t is the marginal productivity of investment at date

t. αi
t = αH if the entrepreneur has H-projects, and αi

t = αL if he/she has L-projects.

We assume αH > αL. For simplicity, we assume that capital fully depreciates in one

period.1 The probability p is exogenous, and independent across entrepreneurs and

over time. The entrepreneur knows his/her own type of date t, whether he/she has

1As in Kocherlakota (2009), we can consider a case where only a fraction η of capital depreciates,
and consumption goods can be converted one-for-one into capital, and vice-versa. In this setting,
we can also obtain the same results as in the present paper.
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H-projects or L-projects. Assuming that the initial population measure of each type

is p and 1 − p at date 0, the population measure of each type after date 1 is p and

1−p, respectively. Throughout this paper, we call the entrepreneurs with H-projects

“H-types” and the ones with L-projects “L-types”.

We assume that because of frictions in a financial market, the entrepreneur can

pledge at most a fraction θ of the future return from his/her investment to creditors.2

In such a situation, in order for debt contracts to be credible, debt repayment cannot

exceed the pledgeable value. That is, the borrowing constraint becomes:

rtb
i
t ≤ θqt+1α

i
tz

i
t, (3)

where qt+1 is the relative price of capital to consumption goods at date t+1.3 rt and

bit are the gross interest rate and the amount of borrowing at date t. The parameter

θ ∈ (0, 1], which is assumed to be exogenous, can be naturally taken to be the degree

of imperfection of the financial market.

In this economy, there are bubble assets denoted by x. The aggregate supply of

bubble assets is assumed to be constant over time X. As in Tirole (1985), we define

bubble assets as those assets that produce no real return, i.e., the fundamental value

of the assets is zero. However, under some conditions, the prices of bubble assets

become positive, which means that bubbles arise in equilibrium. Here, following

Weil (1987), we consider stochastic bubbles, in the sense that they may collapse.

In each period, bubble prices become zero (i.e., bubbles burst) at a probability of

1−π conditional on survival in the previous period. A lower π means riskier bubbles,

because the bursting probability is higher. In line with the literature in this regard,

2See Hart and Moore (1994) and Tirole (2006) for the foundations of this setting.
3On an equilibrium path, qt+1 is not affected by the collapse of bubbles. Hence, there is no

uncertainty with regard to qt+1.
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burst bubbles do not arise again unless agents change their expectations about their

formation through, for example, unexpected shocks. This implies that bubbles persist

with a probability π(< 1) and that their prices are positive until they switch to being

equal to zero. Let Pt be the per unit price of bubble assets at date t on survival in

terms of consumption goods.

The entrepreneur’s flow of funds constraint is given by

cit + zit + Ptx
i
t = qtα

i
t−1z

i
t−1 − rt−1b

i
t−1 + bit + Ptx

i
t−1 +mi

t. (4)

where xi
t be the level of bubble assets purchased by a type i entrepreneur at date

t. The left hand side of (4) is expenditure on consumption, investment, and the

purchase of bubble assets. The right hand side is the available funds at date t, which

is the return from investment in the previous period minus debts repayment, plus

new borrowing, the return from selling bubble assets, and bailout money, mi
t.

When bubbles collapse at the beginning of date t, all the wealth invested in

bubble assets is wiped out. This decreased wealth and the resulting net worth of

entrepreneurs lead to severe contractions during the bursting of bubbles. Although

the government bails out entrepreneurs in order to mitigate these contractions, not

all entrepreneurs are necessarily rescued. To formulate the possibility of so-called

“partial bailouts”, we assume that only a certain proportion λ ∈ [0, 1] of the en-

trepreneurs who suffer losses from bubble investments are rescued. λ = 0 means

that no-entrepreneurs are rescued, while λ = 1 means that all are rescued. A rise

in λ means expansions in the government’s financial safety net. This bailout scheme

suggests that from an ex-ante perspective, each entrepreneur anticipates government

bailouts with a probability λ. When entrepreneur i is rescued, we assume that the

government guarantees bubble investments against losses and that the bailout is
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proportional to the entrepreneur’s holdings of bubble assets:

mi
t = ditx

i
t−1. (5)

Here, we specifically consider those bailouts that fully guarantee bubble investments

against losses. Hence, dit = Pt > 0 if the agent i is rescued when bubbles collapse at

t. Otherwise mi
t = dit = 0.

In this paper, we examine this type of partial bailouts, but we may be able

to consider other types of partial bailouts. We can easily imagine, for example, a

bailout policy in which government guarantees only a part of bubble investments

against losses for all bubble holders. The main reason for our approach is analytical

tractability. In our setting, we can solve dynamics analytically and derive analytical

solutions explicitly. Even if we consider more general bailout policies, our qualitative

results which will be explained below remain unaffected. We will discuss about this

point more in section 7.

We define the net worth of the entrepreneur at date t as

eit ≡ qtα
i
t−1z

i
t−1 − rt−1b

i
t−1 + Ptx

i
t−1 +mi

t.

We also impose the short sale constraint on bubble assets:4

xi
t ≥ 0. (6)

Let us now turn to the maximization problem of workers. There are workers

with a unit measure.5 Each worker is endowed with one unit of labor endowment in

4Kocherlakota (1992) shows that the short sale constraint plays an important role for the emer-
gence of asset bubbles in an endowment economy with infinitely lived agents.

5Even if we consider workers with N measure, all the results in our paper hold.
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each period, which is supplied inelastically in labor markets, and earns wage rate,

wt. Workers do not have investment opportunities, and cannot borrow against their

future labor incomes. The flow of funds constraint, and short sale constraint for

them are given by

cut + Pt(x
u
t − xu

t−1) = wt − rt−1b
u
t−1 + but − T u

t , (7)

xu
t ≥ 0, (8)

where u represents workers. T u
t is a lump sum tax. When bubbles collapse, govern-

ment levies a lump sum tax on workers and transfers those funds to entrepreneurs

who suffer losses from bubble investments. This means that workers are taxpayers

and incur the direct costs of bubbles’ collapsing. Thus, T u
t > 0 only when bubbles

collapse, while T u
t = 0 if they survive. As in Farhi and Tirole (2012), the aim of

this transfer policy (i.e., bailout policy) is to boost the net worth of entrepreneurs.

In our model, this increased net worth can mitigate the adverse effects of bubbles’

collapsing.

Let us mention the main reason behind the transfer policy from workers to en-

trepreneurs. In our model, as long as the government transfers resources among

entrepreneurs, the aggregate wealth of entrepreneurs does not increase. As a result,

economic contractions following the collapse of bubbles are not mitigated. The trans-

fer policy from workers to entrepreneurs, however, increases the aggregate wealth of

entrepreneurs and mitigates such contractions. We explain this point more in depth

in a later section 7.

Lastly, we explain the production technology. There are competitive firms which

produce final consumption goods using capital and labor. The production function
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of each firm is

yt = kσ
t n

1−σ
t . (9)

Factors of production are paid their marginal product:

qt = σKσ−1
t and wt = (1− σ)Kσ

t , (10)

where K is the aggregate capital stock.

2.2 Equilibrium

Let us denote the aggregate consumption of H-and L-entrepreneurs and workers at

date t as
∑

i∈Ht
cit ≡ CH

t ,
∑

i∈Lt
cit ≡ CL

t , C
u
t , where Ht and Lt mean a family of

H-and L-entrepreneurs at date t. Similarly, let
∑

i∈Ht
zit ≡ ZH

t ,
∑

i∈Lt
zit ≡ ZL

t ,∑
i∈Ht

bit ≡ BH
t ,
∑

i∈Lt
bit ≡ BL

t , B
u
t , (

∑
i∈Ht∪Lt

xi
t + Xu

t ) ≡ Xt be the aggregate

investments of each type, the aggregate borrowing of each type, and the aggregate

demand for bubble assets. Then, the market clearing condition for goods, credit,

capital, labor, and bubble assets are

CH
t + CL

t + Cu
t + ZH

t + ZL
t = Yt, (11)

BH
t +BL

t +Bu
t = 0, (12)

Kt =
∑

i∈Ht∪Lt

ki
t, (13)

Nt = 1, (14)

Xt = X. (15)
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The competitive equilibrium is defined as a set of prices {rt, wt, Pt}∞t=0 and quantities{
CH

t , CL
t , C

u
t , B

H
t , BL

t , B
u
t , Z

H
t , ZL

t , Xt, Kt+1, Yt

}∞
t=0

, such that (i) the market clear-

ing conditions, (11)-(15), are satisfied in each period, and (ii) each entrepreneur

chooses consumption, borrowing, investment, and the amount of bubble assets,

{cit, bit, zit, xi
t}

∞
t=0 , to maximize his/her expected discounted utility (1) under the con-

straints (2)-(6), taking into consideration the bursting probability of bubbles and

the bailout probability. (iii) each worker chooses consumption, borrowing, and the

amount of bubble assets, {cut , but , xu
t }

∞
t=0 , to maximize his/her expected discounted

utility (1) under the constraints (7)-(8), taking the bursting probability into consid-

eration.

2.3 Optimal Behavior of Entrepreneurs and Workers

We now characterize the equilibrium behavior of entrepreneurs and workers. We

focus on the equilibrium where

qt+1α
L ≤ rt < qt+1α

H .

In equilibrium, interest rate must be at least as high as qt+1α
L, since nobody lends

to the projects if rt < qt+1α
L. Moreover, if the interest rate is higher than the rate

of return of H-projects, nobody borrows6. Hence, this assumption is not restrictive

at all.

Since the utility function is log-linear, each entrepreneur consumes a fraction

1 − β of the net worth in each period, that is, cit = (1 − β)eit.
7 For H-types at date

t, the borrowing constraint (3) is binding since rt < qt+1α
H and the investment in

6When rt = qt+1α
H , bubbles cannot exist as explored in the traditional literature about rational

bubbles. Hence, we exclude this case from our consideration.
7See, for example, chapter 1.7 of Sargent (1988).
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bubbles is not attractive, that is, (6) is also binding. We will verify this result in

the Technical Appendix. Then, by using (3), (4), and (6), the investment function

of H-types at date t can be written as

zit =
βeit

1− θqt+1α
H

rt

. (16)

This is a popular investment function under financial constraint problems8, except

for the fact that the presence of bubble assets and bailout money affect the net

worth. We see that the investment equals the leverage, 1/
[
1− (θqt+1α

H/rt)
]
, times

a fraction β of the net worth. From this investment function, we understand that

for the entrepreneurs who purchased bubble assets in the previous period, they are

able to sell those assets at the time they encounter H-projects. As a result, their net

worth increases, which boosts their investments. That is, bubbles generate balance

sheet effects. Moreover, the expansion level of the investment is more than the

direct increase of the net worth because of the leverage effect. In our model, the

entrepreneurs buy bubble assets when they have L-projects, and sell those assets

when they have opportunities to invest in H-projects.

For L-types at date t, since cit = (1− β)eit, the budget constraint (4) becomes

zit + Ptx
i
t − bit = βeit. (17)

Each L-type allocates his/her savings, βeit, into three assets, i.e., zit, Ptx
i
t, and (−bit).

Each L-type chooses optimal amounts of bit, x
i
t, and zit so that the expected marginal

utility from investing in three assets is equalized. By solving the utility maximization

problem explained in the Technical Appendix, we can derive the demand function

8See, for example, Bernanke and Gertler (1989), Bernanke et al. (1999), Holmstrom and Tirole
(1998), Kiyotaki and Moore (1997), and Matsuyama (2007, 2008).
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for bubble assets of a L-type:

Ptx
i
t =

δ(λ)Pt+1

Pt
− rt

Pt+1

Pt
− rt

βeit, (18)

where δ(λ) ≡ π+(1−π)λ. From (18), we learn that an entrepreneurs’s portfolio de-

cision depends on its perceptions of risk, which in turn depends on both the bursting

probability of bubbles (π) and expectations about government bailouts (λ). A rise

in λ encourages entrepreneur’s risk-taking to buy more bubble assets.

The remaining fraction of savings is split across zit and (−bit) :

zit + (−bit) =
[1− δ(λ)]Pt+1

Pt

Pt+1

Pt
− rt

βeit.

Since investing in L-projects (zit) and secured lending to other entrepreneurs (−bit)

are both safe assets, zit ≥ 0 if rt = qt+1α
L, and zit = 0 if rt > qt+1α

L. That is, the

following conditions must be satisfied:

(rt − qt+1α
L)zit = 0, zit ≥ 0, and rt − qt+1α

L ≥ 0.

Moreover, when rt = qt+1α
L, investing in L-projects and secured lending to other

entrepreneurs are indifferent for L-types, aggregate investment level of L-types, ZL
t ,

is determined from (11).

Next, we examine the optimal behavior of workers. Since the equilibrium interest

rate becomes relatively low because of the borrowing constraint, saving is not an

attractive behavior for workers. Thus, we can prove that they consume all the

wage income in each period unless there is no bailout policy. On the other hand,

workers might save to smooth their consumption if a government uses a bailout

policy. This is because if bubbles collapse, workers have to pay a lump sum tax
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to rescue entrepreneurs, which lowers their consumption, while if bubbles do not

collapse, they do not. So, consumption will be more volatile compared with the

case without a bailout policy. However, we can verify that under certain reasonable

parameter values, workers do not save even if there is a bailout policy. We will verify

this in the Technical Appendix. In this paper, we focus on the parameter ranges

where workers do not save. That is,

cut = wt − T u
t .

T u
t > 0 only when bubbles collapse.

2.4 Dynamics

From (16) and

ZH
t + ZL

t + PtX = βAt, (19)

we have the evolution of aggregate capital stock:

Kt+1 =


αH βpAt

1− θαH

αL

+ αL

(
βAt −

βpAt

1− θαH

αL

− PtX

)
if rt = qt+1α

L,

αH [βAt − PtX] if rt > qt+1α
L.

(20)

where At ≡ qtKt + PtX is the aggregate wealth of entrepreneurs at date t, and∑
i∈Ht

eit = pAt is the aggregate wealth of H-types at date t. (More details about

aggregation of each variable will be explained in the Technical Appendix). When

rt = qt+1α
L, both types of entrepreneurs may invest. The first term and the second

term of the first line represent the capital stock at date t + 1 produced by H-and

L-types, respectively. When rt > qt+1α
L, only H-types invest. From (19), we know
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ZH
t = βAt − PtX. (−PtX) in (20) captures a traditional crowd-out effect of bubbles

analyzed in Tirole (1985), i.e., the presence of bubble assets crowds savings away

from investments.

As long as rt > qt+1α
L, the interest rate is determined by the credit market

clearing condition (12), which can be written as

βpAt

1− θqt+1α
H

rt

+ PtX = βAt.

That is, the aggregate savings of entrepreneurs, βAt, flow to aggregate H-investments

and bubbles. By defining ϕt ≡ PtX/βAt as the size of bubbles (the share of the value

of bubbles), we can rewrite the above relation as

rt =
qt+1θα

H(1− ϕt)

1− p− ϕt

.

It follows that rt increases with ϕt, reflecting the tightness of the credit markets.

Thus, the equilibrium interest rate is determined as

rt = qt+1Max

[
αL,

θαH(1− ϕt)

1− p− ϕt

]
. (21)

In other words, rt = qt+1α
L and ZL

t ≥ 0 if ϕt ≤ ϕ∗ ≡ αL(1−p)−θαH

αL−θαH , and rt > qt+1α
L

and ZL
t = 0 if ϕt > ϕ∗.

Hence, by using ϕt, (20) can be written as

Kt+1 =



[
(1+ αH−αL

αL−θαH p)βα
L − αLβϕt

]
1− βϕt

σKσ
t if ϕt ≤ ϕ∗,

αHβ [1− ϕt]

1− βϕt

σKσ
t if ϕt > ϕ∗.

(22)
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The dynamical system of this economy is mainly characterized by this (22). As

described in Figure 1, the dynamics of Kt+1/K
σ
t = Kt+1/Yt is an increasing function

of ϕt as long as ϕt ≤ ϕ∗ and it becomes a decreasing function of ϕt if ϕt > ϕ∗. In

other words, ϕ∗ ≡ αL(1−p)−θαH

αL−θαH is the bubble size that maximizes the capital stock.

This non-linear relationship shows that small bubbles increase capital accumulation

but overly large bubbles are harmful for capital accumulation. An intuitive reason

for this finding is simple. As long as the bubble size is small, bubbles crowd in

H-projects according to the balance sheet effect, whereas they crowd out L-projects.

Thus, bubbles increase Kt+1/Yt. If bubbles become larger, however, all L-projects

are crowded out, and even some H-projects are crowded out by overinvestment in

bubbles, meaning Kt+1/Yt decreases.

Thus far, the price of bubbles, Pt, has been exogenously given and we have not

assumed rationality about bubble prices. Hence, the dynamics of the capital stock,

(22), are satisfied even if bubbles are not rational. Even when bubbles exist for an

irrational reason, the dynamics are characterized by (22).

3 Dynamics of Rational Bubbles

Next, we examine the dynamics of rational bubbles. Since we assume that rational

bubbles are stochastic, that is, bubbles persist with probability π(< 1), here, we

focus on the dynamics of bubbles until bubbles collapse.

From the definition of ϕt ≡ PtX/βAt, ϕt evolves over time as

ϕt+1 =

Pt+1

Pt

At+1

At

ϕt. (23)

The evolution of the size of bubbles depends on the relation between the growth rate
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of wealth and the growth rate of bubbles. When we aggregate (18), and solve for

Pt+1/Pt, then we obtain the required rate of return on bubble assets:

Pt+1

Pt

=
rt(1− p− ϕt)

δ(λ)(1− p)− ϕt

. (24)

(1− p−ϕt)/[δ(λ)(1− p)−ϕt] captures the risk premium on bubble assets. It follows

that if other things being equal, the risk premium is a decreasing function of λ.

Using (21), (24), and the definition of aggregate wealth of entrepreneurs, (23) can

be written as

ϕt+1 =



(1− p− ϕt)

δ(λ)(1− p)− ϕt(
1 +

αH − αL

αL − θαH
p

)
β +

[1− δ(λ)](1− p)

δ(λ)(1− p)− ϕt

βϕt

ϕt if ϕt ≤ ϕ∗,

θ

β

1

δ(λ)(1− p)− (1− θ)ϕt

ϕt if ϕt > ϕ∗.

(25)

Using this (25), we examine the sustainable dynamics of ϕt. In order for bubbles to

be sustainable, the following condition must be satisfied for any t:

ϕt < 1. (26)

Violation of this condition means explosion of bubbles.

As examined in the literature (Tirole 1985; Farhi and Tirole 2012), dynamics

of bubbles take three patterns. The first one is that bubbles become too large and

explode to ϕt ≥ 1. This dynamic path cannot be sustained by this economy and thus,

bubbles cannot exist in this pattern. The second pattern is that ϕt becomes smaller

over time and converges to zero. This path is called asymptotically bubbleless. In

this dynamic path, the effects of bubbles converge to zero. Hence, we exclude this

21



path from our consideration as usual in the literature. The third pattern is that ϕt

converges to a positive value as long as the bubbles do not collapse. In this paper, we

focus on this third pattern as usual in the literature, for example, Farhi and Tirole

(2012), and derive the dynamics of ϕt.

The dynamic system of this economy is characterized by (22) and (25). However,

(25) is independent from Kt and the dynamics of ϕt is derived only by (25). From

(25), we can derive that ϕt must be constant over time unless ϕt is asymptotically

bubbleless. This means that on the saddle path, wealth of entrepreneurs and bubbles

grow at the same rate. More precisely, under the existence condition of bubbles which

wil be explained below, ϕt = ϕ for any t and ϕ is a function of λ :

ϕ(λ) =



δ(λ)− 1− δ(λ)β(1− p)[
1 + ( αH−αL

αL−θαH )p
]
β − β(1− p)

1− 1− δ(λ)β(1− p)[
1 + ( αH−αL

αL−θαH )p
]
β − β(1− p)

(1− p) if 0 ≤ λ ≤ λ∗,

δ(λ)β(1− p)− θ

β(1− θ)
if λ∗ < λ ≤ 1.

(27)

λ∗ is the degree of bailouts which realizes the bubble size, ϕ∗. More precisely, λ∗ =

Max[0, λ̂], where λ̂ is the value of λ which realizes ϕ(λ̂) = ϕ∗, and it is explicitly

written as

λ̂ =
1

1− π

αL [β(1− p) + (1− β + pβ)θ]− θαH [β + (1− β)θ]

β(1− p)(αL − θαH)
− π

1− π
.

(The deriving process about ϕ(λ) and λ̂ is explained in Appendix A.) In later sections,

this λ∗ becomes important for considering bailout policies. Let us add a few remarks

concerning the value of λ̂. The value of λ̂ is a decreasing function of the survival rate
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of bubbles, π, the productivity of H-projects, αH , and the efficiency of the financial

market, θ. Thus, unless government bailouts are sufficiently guaranteed, L-types are

more likely to invest if bubbles are riskier, the productivity of H-projects is lower,

and the financial markets are less efficient.9 Here we have not examined whether ϕ(λ)

is positive or not, in other words, whether bubbles can exist or not. We examine this

point in the next section.

4 Stochastic Stationary Equilibrium with Bubbles

Next, we examine the existence conditions of stochastic bubbles. In other words,

we investigate whether a dynamic path with bubbles does not explode. As we show

below, expectations about government guarantees affect the prevailing conditions.

(Proofs of all the Propositions and Lemmas are in Appendix).

Proposition 1 Stochastic bubbles can exist if and only if

θ < δ(λ)β(1− p) ≡ θ1,

and

π >
αL − θαH

β(αL − θαH) + pβ(αH − αL)

1

1− λ
− λ

1− λ
≡ π1,

are satisfied. Under the conditions, ϕt = ϕ for any t and ϕ is a function of λ as (27).

This Proposition means that stochastic bubbles can arise if and only if bubbles

are not too risky and when financial market imperfection is sufficiently severe.10

9If π, or αH or θ is sufficiently high, then λ∗ = 0, i.e., there is no region where L-types invest
positive amount.

10In our model, if ϕ(λ) ≤ 0, no equilibrium with bubbles can exist. Not only stochastic stationary
bubbles cannot exist, but also asymptotically bubbleless paths cannot exist.
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Intuitively, when π is too low (i.e., the bursting probability is too high) and lower

than the critical value π1, the risk premium on bubble assets becomes too high,

because the required rate of return is sufficiently high. As a result, the growth rate

of bubbles is too high for the economy to sustain growing bubbles and thereby too

risky bubbles cannot occur. Moreover, in high θ regions where financial markets are

sufficiently efficient, the interest rate becomes sufficiently high in the credit market

and so does the rate of return on bubbles. Bubbles then grow so fast that the

economy cannot sustain them. Thus, if θ is greater than θ1, bubbles cannot occur.

The important point is that both π1 and θ1 depend on λ. In other words, ex-

pectations about government guarantees affect the existence conditions. From the

existence conditions, we learn that π1 is a decreasing function of λ, and θ1 is an

increasing function of λ, i.e., bubble regions become wider with an increase in λ.

This means that even too risky bubbles can arise once government guarantees are

expected. In other words, the more government bailouts are guaranteed, the more

likely riskier bubbles can occur. Intuition is that when bailouts are expected, the risk

premium declines because bubble assets become safer assets. As a result, the growth

rate of bubbles is sufficiently low that the economy can support growing bubbles.

Since ϕt is constant over time, the dynamics of Kt, (22), is very simple. From

(22), and (27), we have

Kt+1 = H(λ)Kσ
t (28)

with

H(λ) =



(
1 + αH−αL

αL−θαH p
)
βαL − βαL(1− p)

1− δ(λ)β(1− p)
σ if 0 ≤ λ ≤ λ∗,

αH β [1− δ(λ)(1− p)] + (1− β)θ

1− δ(λ)β(1− p)
σ if λ∗ ≤ λ ≤ 1.
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As long as bubbles persist, the economy runs according to (28) and converges toward

the stochastic stationary state. H(λ) represents aggregate investment efficiency. An

important point is that this H(λ) function is independent of time t. From this

property, we can characterize the dynamics of K very simply. We see that bubbly

dynamics depends on aggregate investment efficiency, which in turn depends on

expectations about the government’s financial safety net, λ.

Hence, by defining the stochastic stationary state as the state where all variables

(Kt, At, qt, rt, wt, Pt, ϕt) become constant over time as long as bubbles persist, we can

derive the following Proposition.

Proposition 2 There exists a saddle point path on which the economy converges

toward the stochastic stationary state as long as bubbles persist.

As we will explain in the next section, by using the result of this Proposition,

we can derive the effects of bailouts on ex-ante production efficiency and boom-bust

cycles.

Moreover, according to (27), we can derive the following Proposition on the size

of bubbles, ϕ.

Proposition 3 ϕ increases with λ. That is, the size of bubbles increases as more

government bailouts are guaranteed.

An intuition of this Proposition is natural. The change in ϕ by λ is realized

through the change in Pt. That is, when government bailouts are expected at a

higher probability, bubbles become safer assets and current bubble prices jump up

instantaneously. This instant rise in bubble prices reflects not only the future transfer

from the government but also future changes in output. An increase in bubble prices
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improves the net worth of H-types and expands their investments, thereby increasing

future total output and bubble prices in period t+1, t+2, t+3, · · ·. These changes

in future bubble prices must then be feedbacked into current bubble prices, which in

turn affects current net worth of H-types once again. By reflecting on these effects,

the ϕ(λ) function is complicated as in (27).

5 Macro Effects of Bailouts

5.1 Effects on Ex-ante Production Efficiency

Bailouts may mitigate the adverse effects of bubbles’ collapsing. However, once

bailouts are expected, they may produce inefficiency ex-ante. To what extent are ex-

post bailouts desirable from an ex-ante perspective? In this subsection, we analyze

how expansions in government guarantees affect ex-ante production efficiency, which

is defined as the production level at any date before the bubble bursts.

The following Lemma summarizes the property on H(λ).

Lemma 1 H(λ) increases with λ in the region of λ ∈ [0, λ∗) , while it decreases with

λ in the region of λ ∈ (λ∗, 1].

This lemma reflects the fact that in the region of λ ∈ [0, λ∗) , where L-types

as well as H-types invest, a rise in λ crowds in H-projects, while it crowds out L-

projects, thereby increasing aggregate investment efficiency, H(λ). By contrast, in

the region of λ ∈ (λ∗, 1] , where only H-types invest, a rise in λ ends up crowding out

H-projects, thereby decreasing aggregate investment efficiency.

From Lemma 1 and the dynamics of K, (28), we can show that expansions in

government guarantees have a non-linear relation with ex-ante production efficiency.

When bailouts are expected, L-types are willing to buy more bubble assets instead of
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investing in their own L-projects. Thus, L-projects are crowded out. By contrast, H-

projects are crowded in, because bubble prices rise together with demand for bubble

assets, which increases the net worth of H-types and their investments. Thus, in

the region of λ ∈ [0, λ∗) , expansions in government guarantees enhance ex-ante

production efficiency. When λ equals λ∗, all L-projects are completely crowded out

and ex-ante production efficiency is maximized. If the government increases bailouts

furthermore, i.e., beyond λ∗, then, even H-projects are crowded out. In other words,

in the region of λ ∈ (λ∗, 1] , the more bailouts are guaranteed, the more H-projects are

crowded out and the less productive activity is created. In this region, expansions in

government guarantees generate overinvestment in bubbles and ex-ante production

becomes inefficient.

To summarize, from the perspective of ex-ante production efficiency, no-bailouts

(λ = 0) and overly generous bailouts (λ ∈ (λ∗, 1]) are undesirable. Partial bailouts

are desirable. Figure 2 illustrates the relationship between ex-post bailouts and

ex-ante production efficiency.

5.2 Effects on Boom-Bust Cycles

In this subsection, we discuss how anticipated bailouts affect boom-bust cycles. Sup-

pose that at date 0 (initial period), bubbles occur. Here, at date −1, the economy

is assumed to be in the steady state of a bubbleless economy. In Figure 3, the lines

with λ = λ∗ are the impulse responses when bailouts are λ∗, while the lines with

λ = 0 are impulse responses of the economy with no bailouts. These charts in Figure

3 represent qualitative solutions, because we can work with the model analytically.

Figure 3 shows that boom-bust cycles are larger when λ = λ∗. When government

bailouts are expected with a probability λ∗ at date 0, L-types are willing to buy more

bubble assets. Thus, bubble prices jump up in the initial period. Because of this
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increase in bubble prices, the net worth of H-types improves and their investments

jump up too in the initial period, while the share of L-investments over aggregate

savings (ZL
0 /βA0) falls to zero. That is, production efficiency improves. As a result,

both output and the wage rate also rise in the next period (date 1). Moreover, the

aggregate consumption of entrepreneurs jumps up in the initial period through the

wealth effect of bubbles (i.e., the aggregate wealth of entrepreneurs rises together

with the increase in bubble prices). All these macroeconomic variables continue to

increase until the bubble bursts. Since this is an asset pricing model, expected future

increases in output are reflected in bubble prices in the initial period. Thus, bubble

prices jump up largely at date 0, which in turn improves the net worth of H-types

and their investments substantially. A two-way feedback between bubble prices and

output thus operates, which leads to a bubbly boom. Once bubbles collapse, all

those macroeconomic variables begin to fall and converge toward a stationary steady

state of the bubbleless economy.

Figure 3 shows that once bailouts are anticipated ex-ante, it ends up destabilizing

the economy and requiring large amounts of public funds following the collapse of

bubbles. We should mention that this instability comes from an improvement in

resource allocation, namely, L-projects are crowded out and H-projects are crowded

in. Thus, there might be a trade-off between the improvement in resource allocation

and stability of the economy. In the next section, we carry out welfare analysis by

accounting for this trade-off in order to examine optimal bailouts.

Here let us add a few remarks concerning impulse responses when λ ∈ (λ∗, 1] .

The more bailouts are guaranteed, the more H-projects are crowded out, and the less

productive activity is created. A rise in λ therefore dampens both investment booms

and output booms, and lowers the wage rate, but raises bubble prices more, increasing

the consumption booms of entrepreneurs. These asymmetric impulse responses in the
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wage rate and entrepreneurs’ consumption suggest that in the region of λ ∈ (λ∗, 1] ,

a rise in λ leads to increased inequality in average consumption between bubble

holders (entrepreneurs) and non-bubble holders (workers).11 As we will see in the

next section, inequality in welfare also widens.

6 Welfare Analysis

In this section, we conduct a welfare analysis of anticipated bailouts to derive optimal

bailouts for workers (i.e., taxpayers) and rescued entrepreneurs. We then discuss

how to design desirable bailout policies depending on the various objectives of the

government.

6.1 Welfare Effects for Taxpayers

Let us first examine whether bailouts are good for taxpayers after bubbles burst. Sup-

pose that at date t, the bubble collapses (i.e., after date t, the economy is bubbleless).

Whether the government decides to bail out entrepreneurs at date t depends on costs

and benefits. For instance, when bubbles collapse, workers have to pay a lump sum

tax to rescue entrepreneurs, which lowers their consumption and welfare. However,

bailouts improve the net worth of the rescued entrepreneurs and their investments

expand at date t compared with the no-bailout case. This thereby increases wage

income and workers’ consumption after date t + 1 by expanding output, improving

workers’ welfare. Which of these effects dominates determines workers’ welfare.

Let V BL
t (Kt) be the value function of taxpayers at date t when bubbles collapse.

11We get this asymmetric impulse response as long as β is sufficiently larger than σ (for example,
β = 0.99 and σ = 0.3).
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Given the optimal decision rules, the Bellman equation can be written as

V BL
t (Kt) = log ct + βV BL

t+1 (Kt+1),

with

ct = wt − T u
t ,

ct = wt after date t+ 1.

T u
t = λPtX is bailout money per unit of workers. Solving the value function yields

(see the Technical Appendix for derivation.)

V BL
t (Kt) = M(λ) +

σ

1− βσ
logKt, (29)

with

M(λ) = log

[
1− σ − λ

βϕ(λ)

1− βϕ(λ)
σ

]
+

βσ

1− βσ
log

[
1 + λ

βϕ(λ)

1− βϕ(λ)

]
+

βσ

1− βσ

1

1− β
log

[(
1 +

αH − αL

αL − θαH
p

)
βαLσ

]
+

β

1− β
log(1− σ).

The first term in M(λ) captures the costs of the bailouts, while the second term

captures the benefits.12 From (29), we obtain the following Lemma.13

Lemma 2 Suppose that a bubble collapses at date t. Then, we have
dV BL

t

dλ
= dM(λ)

dλ
<

0, i.e., after bubbles’ collapsing, bailout expansions reduce taxpayers’ welfare mono-

tonically. Thus, from an ex-post perspective, no-bailouts are optimal for taxpayers.

We are now ready to compute the value function of taxpayers in the initial period

12
(
1 + αH−αL

αL−θαH p
)
βαLσ in W (λ) is replaced with αHβσ if αH ≥ αL(1 − p)/θ. In our numerical

examples, since we consider the case where λ∗ = λ̂ holds, αH < αL(1− p)/θ is satisfied.
13We should mention that Lemma 2 holds true irrespective of whether the bailout policy is

anticipated or not (whether ϕ is dependent upon λ or not).
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(period 0). Let V BB
t (Kt) be the value function of taxpayers at date t in the bubble

economy. Given the optimal decision rules, the Bellman equation can be written as

V BB
t (Kt) = log ct + β

[
πV BB

t+1 (Kt+1) + (1− π)V BL
t+1 (Kt+1)

]
.

Solving the value function yields (see the Technical Appendix for derivation.)

V BB
t (Kt) =

1

1− βπ

βσ

1− βσ
logH(λ) +

β(1− π)

1− βπ
M(λ)

+
1

1− βπ
log(1− σ) +

σ

1− βσ
logKt. (30)

The first term in equation (30) captures the effects of anticipated bailouts on welfare

before bubbles’ collapse, which are influenced by changes in aggregate investment

efficiency, H(λ). The second term captures the effects on welfare after bubbles’

burst, which are influenced by the changes in M(λ). Since we consider expected

discounted welfare, both terms are weighted by the survival rate of bubbles. Thus,

by setting t = 0, we can understand how a change in λ affects taxpayers’ welfare in

the initial period.14 Differentiating (30) with respect to λ yields

dV BB
0

dλ
=

1

1− βπ

βσ

1− βσ

d logH(λ)

dλ
+

β(1− π)

1− βπ

dM(λ)

dλ
. (31)

In order to check the sign of (31), let us first consider the region of λ ∈ (λ∗, 1] . In

this region, we know from Lemma 1 that aggregate investment efficiency decreases

with λ. That is,

d logH(λ)

dλ
< 0.

We also know from Lemma 2 that after bubbles’ collapse, bailout expansions reduce

14When we compute how tax payers’ welfare is affected in the initial period, we assume that
bubbles arise in the initial period.
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taxpayers’ welfare. That is,

dM(λ)

dλ
< 0.

Taken together, we have

dV BB
0

dλ
< 0 in λ ∈ (λ∗, 1] .

This means that too generous bailouts reduce taxpayers’ welfare. Thus, the optimal λ

for taxpayers never exists in the region where ex-ante production efficiency decreases.

The following lemma 3 summarizes this.

Lemma 3 Let λ∗∗ be the value of λ which maximizes V BB
0 . Then, λ∗∗ /∈ (λ∗, 1] .

Let us next consider the region of λ ∈ [0, λ∗) . In this region, we know that

aggregate investment efficiency increases with λ. That is,

d logH(λ)

dλ
> 0.

Thus, in this region, expansions in the government’s financial safety net generate two

competing effects. One is the welfare-enhancing effect captured by the first term of

(31). The other is the welfare-reducing effect captured by the second term of (31).

Whether expansions in bailout guarantees increase taxpayers’ welfare thus depends

on which of these effects dominates.

Here let us assume

(1− p)[1− βϕ(λ = 0)](1− σ) > ϕ(λ = 0)(1− β)[1− πβ(1− p)]. (A1)

This assumption ensures that the slope of V BB
0 evaluated at λ = 0 is positive. Since

1 − p > ϕ and 1 − βϕ > 1 − β, this assumption is more likely to be satisfied if σ is
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small enough. The reason is that when σ is small enough, the share of wage income

over output is large relative to the share of total bailout money. As a result, the

welfare-reducing effect becomes sufficiently small and the welfare-enhancing effect

dominates.

Using Lemma 3, we obtain the following Proposition.

Proposition 4 If (A1) holds, λ∗∗ ̸= 0. That is, partial bailouts are optimal for

taxpayers, wheres no-bailouts (λ = 0) and overly generous bailouts (λ ∈ (λ∗, 1]) are

not optimal for taxpayers.

From the property of λ̂, Lemma 3, and Proposition 4, we learn the following im-

plications. In the economies where the survival rate of bubbles, π, the productivity

of H-projects, αH , and efficiency of the financial market, θ, are relatively low, then

partial bailouts are optimal. This is because in those economies, without bailouts,

resource allocation is inefficient. Increasing financial safety net can improve resource

allocation by encouraging risk-taking, thereby increasing welfare, but too generous

financial safety net induces too much risk-taking and reduces welfare. By contrast,

in the economies where those variables are relatively high, no-bailouts are optimal.

In those economies, even without bailouts, only H-types invest. In such a situa-

tion, expansions in financial safety net reduce welfare by crowding out productive

investments.

Figure 4 illustrates numerical examples of Proposition 4 showing the relationship

between V BB
0 and λ. When we compute V BB

0 , without loss of generality, we set

an initial aggregate capital stock, K0, to the steady-state value of the bubbleless

economy. Other parameter values are shown in Table 1. The only difference between

the four cases lies in the bursting probability of the bubbles. The lower π is, the

riskier bubbles are. In the benchmark case and case 1, bubbles are therefore relatively
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risky compared with case 2 and case 3.

Figure 4 holds an important implication. In the benchmark case and case 1,

taxpayers’ welfare is maximized at λ, which is lower than λ∗. Thus, the equilibrium

where even L-types invest is optimal from a welfare perspective for taxpayers. This

finding suggests that in order to maximize taxpayers’ welfare, the government must

sacrifice some efficiency in production. Put simply, in the case of riskier bubbles,

L-types do not want to invest a large proportion of their savings in bubble assets,

because the bursting probability is high. Therefore, they end up investing more

savings in their own L-projects in order to hedge their risk. In such a situation, in

order to crowd out L-projects completely, the government needs to rescue greater

fractions of entrepreneurs (i.e., λ∗ = λ̂ is a decreasing function of π.), which directly

increases the total bailout money required. Moreover, when anticipated, such large-

scale government bailouts create large bubbles, which increases the bailout money,

too. These two effects require large amounts of public funds (i.e., taxpayers’ money).

Thus, welfare decreases with λ in the region of λ ∈ (λ∗∗, 1] .15 By contrast, in case

2 and case 3, where the bursting probability of bubbles is lower (i.e., bubbles are

relatively safer), ex-ante production efficiency is maximized by rescuing only smaller

fractions of entrepreneurs, meaning that the total bailout money required is lower.

The welfare-enhancing effect thus dominates the welfare-reducing one in all ranges

of λ ∈ (0, λ∗) and welfare is maximized at λ = λ∗.

The presented results show that the government faces a trade-off. When financial

markets are imperfect, enough resources cannot be transferred to the productive sec-

tor and resource allocation is inefficient. Although the presence of the government’s

financial safety net can improve resource allocation by encouraging risk-taking, it

15In λ ∈ [0, λ∗∗] , the welfare-enhancing effect dominates the welfare-reducing one. In λ ∈ (λ∗∗, 1] ,
the welfare-reducing effect dominates the welfare-enhancing one.
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also generates costs. Together with the improvement in resource allocation, large

bubbles are created, which reduces welfare. In the case of riskier bubbles, the lat-

ter effect becomes too large. Thus, if the government aims to maximize taxpayers’

welfare, it must sacrifice some production efficiency.

6.2 Welfare Effects for Entrepreneurs

We next examine the welfare effects for entrepreneurs. Let WBB
t (et, Kt) be the value

function of the entrepreneur in the bubble economy who holds the net worth, et, at

the beginning of period t before knowing his/her type of period t. When we compute

the value function, we must take into account the survival probability of bubbles,

the probability of becoming H-type and L-type, and the bailout probability. Given

the decision rules, the Bellman equation can be written as

WBB
t (et, Kt) = log ct + βπ

[
pWBB

t+1 (R
H
t βet, Kt+1) + (1− p)WBB

t+1 (R
L
t βet, Kt+1)

]
+ β(1− π)

 pWBL
t+1(R

H
t βet, Kt+1) + (1− p)λWBL

t+1(R
L
t βet, Kt+1)

+(1− p)(1− λ)WBL
t+1(R

LL
t βet, Kt+1)

 ,

where RH
t βet, R

L
t βet, and RLL

t βet are the net worth of the entrepreneur at date t+1

in each state. Note that the net worth of entrepreneurs evolves as et+1 = Rj
tβet,

where j = H, L, LL. RH
t , R

L
t , and RLL

t , which are given in the Technical Appendix,

are realized rate of return on savings from date t to date t+ 1.

Solving the value function yields (derivation is given in the Technical Appendix.)

WBB
t (et, Kt) = m(λ) +

βσ(σ − 1)

1− βσ

1

1− β
logKt +

1

1− β
log et(λ), (32)

where m(λ) is given in the Technical Appendix. The period t net worth, et, in the
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third term increases with λ. When bailouts are expected, bubble prices and en-

trepreneurs’ net worth jump up instantaneously, which increases their consumption.

Thus, the third term captures the wealth effect of consumption.

By setting t = 0, we can understand how a rise in λ affects entrepreneurs’ welfare

in the initial period. Since it is hard to provide full characterization analytically on

the relationship between WBB
0 and λ, here, we show numerical examples. We will

explain more details about procedures to derive numerical examples in the Technical

Appendix. Figure 5 illustrates the relationship in the benchmark parameter case,

highlighting that welfare increases monotonically with λ. That is, the more bailouts

are guaranteed, the more entrepreneurs gain. This result holds in cases 1-3, too.

Thus, in our numerical examples, λ = 1 is optimal for entrepreneurs. Intuition is the

following. In the region of λ ∈ [0, λ∗) , a rise in λ increases production before and after

bubbles’ collapse, which increases entrepreneurs’ consumption. Moreover, because

of the increase in bubble prices, the wealth effect of consumption is enhanced. Thus,

entrepreneurs’ consumption increases with λ throughout the lifetime. In the region

of λ ∈ (λ∗, 1] , a rise in λ reduces production before the bubble bursts, which lowers

entrepreneurs’ consumption, while the wealth effect of consumption operates. In our

numerical examples, the latter effect dominates the former. Hence, entrepreneurs’

consumption increases even in the region where ex-ante production efficiency worsens

with λ.16

Furthermore, the fact that entrepreneurs’ welfare monotonically increases with

λ in λ ∈ (λ∗∗, 1] , wheres workers’ welfare decreases, suggests that in λ ∈ (λ∗∗, 1] ,

the rise in λ leads to increased inequality in welfare between bubble holders and

non-bubble holders as well as in average consumption.17

16Moreover, in the region of λ ∈ (λ∗, 1] , the rate-of-return difference in H-projects, bubbles, and
lending becomes smaller with λ, which contributes to decreasing consumption volatility.

17Stiglitz (2012) discusses how speculative activity including bubbles affects inequality between
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In light of the above welfare analysis, the government’s financial safety net can

be Pareto-improving as long as λ is relatively low. In our numerical analysis, the

government’s financial safety net makes all agents better off until λ = λ∗∗. Therefore,

if the government chooses λ according to the Pareto dominance criteria, λ stops at

λ∗∗. This holds an important implication for boom-bust cycles. Figure 3 compares

three cases of boom-bust cycles, λ = 0, λ = λ∗, and λ = λ∗∗. The Figure 3 illustrates

the case of λ∗∗ < λ∗. These charts show that in the case of λ = λ∗∗, boom-bust

cycles are milder than they are in the case of λ = λ∗, although production efficiency

decreases compared with λ = λ∗.

Of course, an actual λ may change depending on the objectives of the govern-

ment. For example, suppose that workers were median voters. The objective of the

government would be to maximize workers’ welfare by setting λ = λ∗∗. Alternatively,

if the government aimed to maximize entrepreneurs’ welfare for political reasons,

then they would rescue all loss-suffering entrepreneurs by setting λ = 1. In this case,

overinvestment in bubbles would occur. Moreover, if the government’s objective were

to maximize ex-ante production efficiency, setting λ = λ∗ would be optimal; however

it may not choose this λ∗ since a conflict of interest exists.

7 Discussion

7.1 How to Finance Bailouts

Thus far, we have considered the case that the total bailout money is financed by

taxing workers. Here we should mention the reason why we focus on this policy. In

our model, as long as the government transfers resources among entrepreneurs, for

example, from entrepreneurs who do not suffer losses to those who do, neither the

speculators and non-speculators.
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aggregate wealth of entrepreneurs nor the aggregate net worth of H-types increases.18

This means that transferring resources among entrepreneurs does not mitigate eco-

nomic contractions when bubbles burst. In our model, entrepreneurs’ aggregate

wealth and H-types’ aggregate net worth increase only if the government transfers

resources from workers to entrepreneurs, thereby mitigating such contractions.

To see this point clearly, we consider a case that in order to finance the total

bailout fund, the government taxes not only workers, but also entrepreneurs who do

not suffer losses from bubble investments. In this case, when the bubble collapses

at date t, the bailout fund, λPtX, is financed through the aggregate tax revenues

received both from workers, T u
t , and from entrepreneurs who do not suffer losses, T e

t :

λPtX = T u
t + T e

t , (33)

with

T e
t = τ

(
qtα

HZH
t−1 − rt−1B

H
t−1

)
where τ is the tax rate imposed at date t on the date t net worth of the non–loss-

making entrepreneurs, (i.e., H-types in period t− 1).19

The date t aggregate wealth of entrepreneurs after the transfer policy can be

written as

At = (1− τ)(qtα
HZH

t−1 − rt−1B
H
t−1) + qtα

LZL
t−1 − rt−1B

L
t−1 + λPtX.

The aggregate wealth of entrepreneurs at date t is composed of two parts. The first

18Of course, this depends on the assumption that the arrival rate of H-projects is the same for
every entrepreneur in every period. In effect, the identity of H-types and L-types is completely
reshuffled in every period. As we have seen, this assumption greatly simplifies aggregation. At the
aggregate level, then, distribution between H-types and L-types does not matter.

19For technical reasons, i,e., in order to derive entrepreneur’s consumption function explicitly, we
consider the case that the government taxes entrepreneur’s net worth.
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term is the date t aggregate net worth after tax of entrepreneurs who were H-types

in period t − 1. The second term is the date t aggregate net worth including the

bailout money of entrepreneurs who were L-types in period t− 1. By using (33), the

above At can be rearranged as

At = qtKt + T u
t .

It follows that T u
t , namely, the transfer from workers to entrepreneurs, matters for

the aggregate wealth of entrepreneurs at date t as well as the aggregate net worth of

H-types in period t. This finding lends support to why we consider transfer policies

from workers to entrepreneurs. In this case, welfare implications remains unaffected.

In the Appendix G, We explain this point more in depth.

7.2 Is Non-Stochastic Bubbles the Best?

In this final subsection, we ask the following question: If the government could make

stochastic bubbles non-stochastic ones with a bailout policy, would that be the best

policy from a welfare perspective? Thus far, we have examined the effects of transfer

policies from workers to loss-suffering entrepreneurs. However, instead of transfer

policies, we could consider a different bailout policy that uses government debt as a

bailout tool. For example, consider an entrepreneur who holds bubble assets when the

bubble collapses at date t. The government promises to hand out that entrepreneur

government bonds. The bond prices are pegged to bubble prices on survival at date t.

This bailout means that the government fully guarantees bubble investments against

losses for all loss–suffering entrepreneurs. After date t + 1, the government then

simply rolls over the debt.20 If entrepreneurs are aware of this government’s bailout

20Government debt can be a substitute for privately created bubble assets. See Caballero and
Krishnamurthy (2006), Kocherlakota (2009), and Hirano and Yanagawa (2010b) for details.
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plan, they expect bubble assets to deliver the same rate of return regardless of the

realization of π. Bubble assets are thus considered to be risk-free, and so L-types no

longer invest in their L-projects for risk-hedge. This policy restores entrepreneurs’

net worth to what it would have been in the absence of the bubbles’ bursting. The law

of motion of the aggregate economy is thus the same as in the non-stochastic bubbly

economy throughout the lifetime of the economy, not just after the bubble bursts,

but also before the bursts. However, although this bailout policy has exactly the

same effects as the government policy that makes stochastic bubbles non-stochastic

ones, is this the best policy from a welfare perspective?

Moreover, the probability, π, might be affected by transfer policies from workers

to loss-suffering entrepreneurs. In this paper, we have assumed that π is exogenously

given and unaffected by policies in line with the traditional literature. However, if the

government fully guaranteed bubble investments against losses for all loss-suffering

entrepreneurs, (i.e., setting λ = 1), all agents might change their expectations about

bubble bursts and might expect π = 1. Here, we have no intention to extend our

argument to examine whether such a change in expectations is reasonable or not,

or examine endogenous formulation of π. However, if agents were to change their

expectations to π = 1, setting λ = 1 would make stochastic bubbles non-stochastic

ones. If so, once again, is this the best policy?

In order to answer these questions, we thus examine whether stochastic bubbles

(riskier bubbles) can be better than non-stochastic ones from the welfare perspective

of workers. In order to examine this, we set λ = 0 in (30). Then, from (30), we have
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dV BB
0

dπ
|π=1 = − β2σ

1− βσ

1

pβ + (1− β)θ

(1− p)(1− θ)

1− β + pβ

+
1

(1− β)2
β2σ

1− βσ

{
log

[
αH pβ + (1− β)θ

1− β + pβ
σ

]
− log

[(
1 +

αH − αL

αL − θαH
p

)
βαLσ

]}
,

(34)

(34) says that rise in π produces two competing effects on workers’ welfare. If the

bursting probability of bubbles falls, workers can earn higher wage incomes and con-

sume more for longer periods, improving their levels of welfare. The second line of

(34) captures this effect. The term in the brackets in the second line reflects the

difference in wage income between the bubble economy and the bubbleless one. On

the other hand, with the increase in π, L-types are willing to buy more bubble as-

sets, because bubble assets become safer. As a result, larger bubbles are created (ϕ

increases with π), which strengthens the crowding out effect of bubbles. This, in

turn, reduces production, wage income, and consumption before the bubble bursts,

lowering workers’ welfare. The first line of (34) captures this effect. Under certain

parameter values (see the Appendix F), the expansionary effects of bubbles are rel-

atively small, namely the wage-income difference becomes sufficiently small. As a

result, the crowding-out effect dominates the first effect. Thus, the sign of (34) be-

comes negative. This all means that the following welfare ranking holds for workers:

V BB
0 (π = 1) < V BB

0 (π < 1 and λ = 0).

i.e., stochastic bubbles can be better than non-stochastic bubbles. This finding

suggests that increasing the fragility of bubbles might actually enhance workers’

welfare. The following Proposition summarizes this.
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Proposition 5 From welfare perspective of workers, stochastic bubbles can be better

than non-stochastic ones, i.e., π = 1 is not necessarily the best.

Moreover, under some parameter values,21 we have the following welfare ranking

for workers:

V BB
0 (π = 1) < V BB

0 (π < 1 and λ = 0) < V BB
0 (π < 1 and λ > 0).

This says that welfare under stochastic bubbles without bailouts is better than

that under non-stochastic bubbles. Moreover, welfare under stochastic bubbles with

bailouts is better than that under stochastic bubbles without bailouts.

8 Conclusion

In this paper, we analyzed how anticipated bailouts affect the existence of stochastic

bubbles, production efficiency, and boom-bust cycles. Moreover, we examined the

welfare consequences of such anticipated bailouts, and considered optimal bailout

policies for taxpayers and for rescued entrepreneurs. Based on the presented analysis,

we can draw the following conclusions.

Firstly, bailouts affect the existence conditions of stochastic bubbles. Even riskier

bubbles can occur because of the existence of government guarantees.

Secondly, bailouts initially improve ex-ante efficiency in production by crowding

in productive investments, while crowding out unproductive ones, but too generous

bailouts lead to overinvestment in bubbles, which leads to strong crowding-out ef-

fects even on productive investments, thereby decreasing the production efficiency.

In other words, bailouts have non-monotonic effects on ex-ante production efficiency.

21For example, αH = 1.065, αL = 1, β = 0.98, σ = 0.25, θ = 0.1, p = 0.3, π = 0.99999999,
λ = 0.0000001.
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This suggests that there is a certain bailout level at which ex-ante production effi-

ciency is maximized. Under the bailout policy, although the production efficiency

is maximized, it may increase boom-bust cycles and require large amount of public

funds following the collapse of bubbles. This finding suggests a trade-off between

economic stability and efficient resource allocation, which leads onto our third con-

tribution.

Thirdly, we found that no-bailouts and full-bailouts are not optimal for taxpayers,

i.e., partial bailouts are optimal for them. Moreover, in the case of riskier bubbles, in

order to maximize taxpayers’ welfare, the government must sacrifice some production

efficiency to reduce the size of bubbles and soften boom-bust cycles. In contrast, wel-

fare for rescued entrepreneurs monotonically increases with the provision of bailouts.

Our finding from the welfare analysis suggests that bailouts can be Pareto-improving

from a welfare perspective.

Lastly, stochastic bubbles can be better than non-stochastic ones from the welfare

perspective of taxpayers. This finding suggests that increasing the fragility of bubbles

might actually enhance taxpayers’ welfare.

In this paper, we focused on optimal ex-post bailouts by taking ex-ante effects

into consideration. Future work could extend the presented analysis in order to

additionally consider ex-ante regulations such as leverage regulations or tax/subsidy

policy on risky assets. It would also be interesting to examine the desirable policy

mix from a welfare perspective.
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Appendix A: Proof of Proposition 1

From (25),

ϕt+1 =


f(ϕt) if ϕt ≤ ϕ∗,

g(ϕt) if ϕt > ϕ∗,

(A.1)

where f(ϕt) ≡
(1−p−ϕt)

δ(λ)(1−p)−ϕt(
1+ αH−αL

αL−θαH p
)
β+

[1−δ(λ)](1−p)
δ(λ)(1−p)−ϕt

βϕt

ϕt, g(ϕt) ≡ θ
β

1
δ(λ)(1−p)−(1−θ)ϕt

ϕt, and ϕ∗ ≡
αL(1−p)−θαH

αL−θαH . Note that if and only if θ < αL

αH (1−p), ϕ∗ > 0. Moreover, f(ϕ∗) = g(ϕ∗).

We can easily derive that g′ > 0 and g” > 0. Hence, if and only if g′(0) < 1 ⇔ θ <

δ(λ)β(1− p), g(ϕ) = ϕ has a unique strictly positive solution, ϕg = δ(λ)β(1−p)−θ
β(1−θ)

> 0.

f(ϕt) function is rather complicated, but, by solving f(ϕ) = ϕ explicitly, we can find

that this equation has only two solutions, 0 and ϕf =

δ(λ)− 1−δ(λ)β(1−p)[
1+( αH−αL

αL−θαH
)p

]
β−β(1−p)

1− 1−δ(λ)β(1−p)[
1+( αH−αL

αL−θαH
)p

]
β−β(1−p)

(1−p).

Furthermore ϕf > 0 if and only if f ′(0) < 1 ⇔ θ > (1−δβ)αL−pβδ(αH−αL)
αH(1−δβ)

.

(i-1) Obviously, if ϕf ≤ 0 and ϕg ≤ 0, bubbles cannot exist.

(i-2) Next, we examine the case where ϕf ≤ 0 and ϕg > 0. In this case ϕg is

a candidate to realize ϕt+1 = ϕt ≡ ϕ. However, ϕf ≤ 0 means f(ϕ) > ϕ for any

positive ϕ and thus f(ϕ∗) = g(ϕ∗) > ϕ∗. It follows that ϕg < ϕ∗ and ϕg ̸= ϕ. In

other words, bubbles cannot exist.

(i-3) When ϕf > 0 and ϕg ≤ 0, ϕf is a candidate of ϕ. In order that both ϕg ≤ 0

and ϕ∗ > 0 are satisfied, δβ(1− p) < θ < αL

αH (1− p) and δβ < αL

αH must be satisfied.

However, when δβ < αL

αH , θ < (1−δβ)αL−pβδ(αH−αL)
αH(1−δβ)

and ϕf cannot be strictly positive.

Hence, there is a contradiction and bubbles cannot exist even in this case.

(i-4) Lastly, we examine the case where ϕf > 0 and ϕg > 0. This is the situation

where (1−δβ)αL−pβδ(αH−αL)
αH(1−δβ)

< θ < αL

αH (1 − p) and αL

αH (1 − p) < δβ(1 − p) ⇔ ϕ∗ > 0

is satisfied from (1−δβ)αL−pβδ(αH−αL)
αH(1−δβ)

< θ. By defining that λ̂ is the value of λ that
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satisfies ϕg(λ̂) = ϕ∗, we can obtain that ϕ∗ = g(ϕ∗) = f(ϕ∗) = ϕf (λ̂). Since ϕf and

ϕg are increasing functions of λ, ϕf (λ) < ϕ∗ and ϕg(λ) < ϕ∗ under λ < λ̂. This

means ϕf (λ) = ϕ(λ) under λ < λ̂. Similarly, ϕf (λ) > ϕ∗ and ϕg(λ) > ϕ∗ under

λ > λ̂, and we obtain that ϕg(λ) = ϕ(λ) under λ > λ̂. If λ̂ < 0, ϕf (λ) > ϕ∗ and

ϕg(λ) > ϕ∗ for any λ and ϕg(λ) = ϕ(λ). From these results we can obtain (27).

Moreover, if and ony if (1−δβ)αL−pβδ(αH−αL)
αH(1−δβ)

< θ < αL

αH (1 − p), ϕ(λ) > 0 and

stochastic bubbles can exist. The condition θ < δ(λ)β(1− p) ≡ θ1 is directly derived

from the second inequality, and the condition π > αL−θαH

β(αL−θαH)+pβ(αH−αL)
1

1−λ
− λ

1−λ
≡ π1

can be derived from the first inequality.

Appendix B: Proof of Proposition 2

When we solve for the steady-state capital stock from (28), we learn that there are

two steady-state values. One is K = 0. The other is K(λ) > 0. Since dKt+1

dKt
> 0,

d2Kt+1

dK2
t

< 0, dKt+1

dKt
(Kt = 0) = ∞, dKt+1

dKt
(Kt = K(λ) > 0) = σ < 1, the stochastic

steady state K(λ) > 0 is globally stable. Thus, for any positive initial capital stock

level, K0 > 0, the economy runs according to (28) and converges to the stochastic

steady-state K(λ) > 0 until bubbles collapse. As long as the capital stock level

converges to K(λ), other variables, At, qt, rt, and wt must converge to constant levels.

Moreover, Pt converges to a positive value since At converges to a positive value and

ϕ is constant over time.
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Appendix C: Proof of Proposition 3

Differentiating (27) in 0 ≤ λ ≤ λ∗ yields

dϕ(λ)

dλ
=

(1− p)(1− π)[(
1 + αH−αL

αL−θαH p
)
β − 1− β(1− p)[1− δ(λ)]

]2
×
[(

1 +
αH − αL

αL − θαH
p

)
β − 1

] [(
1 +

αH − αL

αL − θαH
p

)
β − β(1− p)

]
> 0,

because in the bubble regions, since ϕ(λ) > 0, the following inequality is satisfied:

(
1 +

αH − αL

αL − θαH
p

)
β >

1

δ(λ)
> 1 > β(1− p) > 0.

In λ∗ < λ ≤ 1, differentiating (27) yields

dϕ(λ)

dλ
=

β(1− p)(1− π)

β(1− θ)
> 0.

Appendix D: Proof of Lemma 1

In 0 ≤ λ < λ∗, differentiating H(λ) with respect to λ yields

dH(λ)

dλ
=

(
1 + αH−αL

αL−θαH p
)
βαL − βαL(1− p)

[1− δ(λ)β(1− p)]2
σβ(1− p)(1− π) > 0,

because in the bubble regions, since ϕ(λ) > 0, the following inequality is satisfied:

(
1 +

αH − αL

αL − θαH
p

)
β >

1

δ(λ)
> 1 > β(1− p) > 0.

46



In λ∗ < λ ≤ 1, differentiating H(λ) with respect to λ yields

dH(λ)

dλ
= −αHβ(1− p)(1− π)σ

[1− δ(λ)β(1− p)]2
(1− β)(1− θ) < 0.

Appendix E: Proof of Lemma 2

By differentiating equation (29) with respect to λ, we obtain

dV BL
t

dλ
=

−σ

1− σ − λ βϕ(λ)
1−βϕ(λ)

σ

{
βϕ(λ)

1− βϕ(λ)
+

λβ

[1− βϕ(λ)]2
dϕ(λ)

dλ

}
+

βσ

1− βσ

1

1 + λ βϕ(λ)
1−βϕ(λ)

{
βϕ(λ)

1− βϕ(λ)
+

λβ

[1− βϕ(λ)]2
dϕ(λ)

dλ

}
< 0

The first line is the marginal cost of bailout expansions, while the second line is the

marginal benefit. The above equation says that the marginal cost dominates the

marginal benefit.

Appendix F: Proof of Proposition 5

We need to prove that there exist parameter values under which stochastic bubbles

can arise and the sign of (34) is negative.

First, we prove that there exist parameter values under which the sign of (34) is

negative. With regard to the second term of (34), when we solve for αH that satisfies

αH pβ+(1−β)θ
1−β+pβ

σ =
(
1 + αH−αL

αL−θαH p
)
βαLσ, then we obtain αH = αL(1−β+pβ)

(1−β)θ+pβ
and αLβ(1−p)

θ
.

We focus on the case where θ < pβ2(1−p)
(1−β)(1−β+pβ)+pβ

. In this case, αL(1−β+pβ)
(1−β)θ+pβ

< αLβ(1−p)
θ

.

If we pick up αH
1 ∈

(
αL(1−β+pβ)
(1−β)θ+pβ

, α
Lβ(1−p)

θ

)
that is sufficiently close to αL(1−β+pβ)

(1−β)θ+pβ
or

αLβ(1−p)
θ

, then αH pβ+(1−β)θ
1−β+pβ

σ is sufficiently close to
[
1 + αH−αL

αL−θαH p
]
βαLσ. Thus, under

αH
1 , the first term of (34) dominates the second term of (34), i.e., under αH

1 , the sign
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of (34) is negative.

Next, we prove that stochastic bubbles can arise under αH
1 . If we characterize bub-

ble regions with αH , stochastic bubbles can arise if and only if αH > αL[1−πβ(1−p)]
(1−πβ)θ+pβπ

≡

α̂H(π), where α̂H is a decreasing function of π in 0 < π ≤ 1 with α̂H = αL(1−β+pβ)
(1−β)θ+pβ

if π = 1 (Note that if π = 1, deterministic bubbles can arise in αH ≥ αL(1−β+pβ)
(1−β)θ+pβ

).

Thus, there exist a critical value of π1(α
H
1 ) < 1 where stochastic bubbles can arise

under αH
1 in π ∈

(
π1(α

H
1 ), 1

]
.

Appendix G: Tax on entrepreneurs

In the main text, we have considered the case that the total bailout money is financed

by taxing workers. In this Appendix G, we consider a case that in order to finance

bailout money, the government taxes not only workers, but also entrepreneurs who

do not suffer losses from bubble investments.

In this case, when bubbles collapse at date t, bailout money, λPtX, is financed

through aggregate tax revenues from workers, T u
t , and aggregate tax revenues from

entrepreneurs who do not suffer losses, T e
t :

λPtX = T u
t + T e

t ,

with

T e
t = τ

(
qtα

HZH
t−1 − rt−1B

H
t−1

)

=


τ

αH(1− θ)p

(αL − θαH)[1− ϕ(λ)] + (αH − αL)p
σKσ

t if 0 ≤ λ ≤ λ∗,

τ(1− θ)σKσ
t if λ∗ ≤ λ ≤ 1,
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where τ is a tax rate imposed on the date t net worth of the non–loss-making en-

trepreneurs, (i.e., H-types in period t − 1). For technical reasons, i,e., in order to

derive entrepreneur’s consumption function explicitly, we consider the case that the

government taxes entrepreneur’s net worth. T e
t increases with λ in 0 ≤ λ ≤ λ∗.

This means that as λ rises, aggregate H-investments expand during bubbly periods,

which increases tax revenues from the non–loss-making entrepreneurs when bubbles

collapse. This increase in tax revenues reduces tax burden for workers. When we

solve for tax burden per unit of workers, T u
t (recall that there are workers with unit

measure), we learn

T u
t = λPtX − T e

t = F (λ)σKσ
t , (G.2)

with

F (λ) =


λ

βϕ(λ)

1− βϕ(λ)
− τ

αH(1− θ)p

(αL − θαH)[1− ϕ(λ)] + (αH − αL)p
if 0 ≤ λ ≤ λ∗,

λ
βϕ(λ)

1− βϕ(λ)
− τ(1− θ) if λ∗ ≤ λ ≤ 1.

(G.3)

It follows that T u
t is a decreasing function of τ.

By using (G.2) and (G.3), W (λ) is replaced with

M(λ) = log [1− σ − σF (λ)] +
βσ

1− βσ
log [1 + F (λ)] (G.4)

+
βσ

1− βσ

1

1− β
log

[(
1 +

αH − αL

αL − θαH
p

)
βαLσ

]
+

β

1− β
log(1− σ).

From (30) together with (G.4), we see how an increase in τ affects workers’ welfare.

We learn that (30) is an increasing function of τ, i.e., workers’ welfare increases with

τ. Intuition is very simple. If the government imposes higher tax rate on the non–

loss-making entrepreneurs, tax burden per unit of workers decreases, which increases
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workers’ consumption when bubbles collapse, thereby improving their welfare. We

also learn from (30) how an increase in bailout guarantees affects workers’ welfare in

this case. We find that even in this case, if (A1) holds, then partial bailouts are opti-

mal for workers. Moreover, when we compute (30) with (G.4) under the benchmark

parameter case, then we find that λ∗∗ increases with τ and approaches λ∗. This means

that optimal bailouts for workers approach the bailout level that maximizes ex-ante

output efficiency. When the government taxes the non–loss-making entrepreneurs,

tax revenues from those entrepreneurs increase together with an increase in λ, since

T e
t is an increasing function of λ. This increase in tax revenues lowers tax burden for

workers. As a result, the welfare-enhancing effect captured by the first term of (31)

dominates the welfare-reducing effect captured by the second term of (31) even in

greater values of λ < λ∗.

We can also compute welfare for entrepreneurs in this case. When computing

it, we need to take into account the fact that entrepreneurs are taxed when bubbles

collapse if they are H-types in one period before bubbles’ collapsing (see the Technical

Appendix for derivation of the value function in this case). We find that welfare for

entrepreneurs monotonically increases with λ even in this case.
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Technical Appendices

Appendix H: Derive the demand function for bub-

ble assets of a L-entrepreneur

Each L-entrepreneur chooses optimal amounts of bit, x
i
t, and zit so that the expected

marginal utility from investing in three assets is equalized. The first order conditions

with respect to xi
t and bit are

(xi
t) :

Pt

cit
= πβ

Pt+1

ci,πt+1

+ (1− π)λβ
dt+1

c
i,(1−π)λ
t+1

, (H.5)

(bit) :
1

cit
= πβ

rt

ci,πt+1

+ (1− π)λβ
rt

c
i,(1−π)λ
t+1

+ (1− π)(1− λ)β
rt

c
i,(1−π)(1−λ)
t+1

, (H.6)

where ci,πt+1 = (1−β)(qt+1α
Lzit−rtb

i
t+Pt+1x

i
t), c

i,(1−π)λ
t+1 = (1−β)(qt+1α

Lzit−rtb
i
t+mi

t+1),

and c
i,(1−π)(1−λ)
t+1 = (1 − β)(qt+1α

Lzit − rtb
i
t).

22 The RHS of (H.5) is the gain in

expected discounted utility from holding one additional unit of bubble assets at date

t + 1. With probability π bubbles survive, in which case the entrepreneur can sell

the additional unit at Pt+1, but with probability 1 − π bubbles collapse, in which

case with probability λ he/she is rescued and receives dt+1 units of consumption

goods per unit of bubble assets, and with probability 1 − λ, he/she is not rescued

and receives nothing. The denominators reflect the respective marginal utilities of

consumption. The RHS of (H.6) is the gain in expected discounted utility from

lending one additional unit. It is similar to the RHS of (H.5), except for the fact

that lending yields rt at date t+ 1, irrespective of whether or not bubbles collapse.

22Since the entrepreneur consumes a fraction 1− β of the current net worth in each period, the
optimal consumption level at date t+ 1 is independent of the entrepreneur’s type at date t+ 1. It
only depends on whether bubbles collapse and whether government rescues the entrepreneur.

51



From (17), (H.5), and (H.6), we can derive the demand function for bubble assets

of a type i L-entrepreneur in the main text.

Appendix I: Aggregation

The great merit of the expressions for each entrepreneur’s investment and demand

for bubble assets, zit and xi
t, is that they are linear in period-t net worth, eit. Hence

aggregation is easy: we do not need to keep track of the distributions.

From (16), we learn the aggregate H-investments:

ZH
t =

βpAt

1− θqt+1α
H

rt

, (I.7)

where At ≡ qtKt + PtX is the aggregate wealth of entrepreneurs at date t, and∑
i∈Ht

eit = pAt is the aggregate wealth of H-entrepreneurs at date t. From this invest-

ment function, we see that the aggregate H-investments are both history-dependent

and forward-looking, because they depend on asset prices, Pt, as well as cash flows

from the investment projects in the previous period, qtKt. In this respect, this in-

vestment function is similar to the one in Kiyotaki and Moore (1997). There is a

significant difference. In the Kiyotaki-Moore model, the investment function depends

on land prices which reflect fundamentals (cash flows from land), while in our model,

it depends on bubble prices.

Aggregate L-investments depend on the level of the interest rate:

ZL
t =


βAt − βpAt

1− θαH

αL

− PtX if rt = qt+1α
L,

0 if rt > qt+1α
L.

(I.8)
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When rt = qt+1α
L, L-entrepreneurs may invest positive amount. In this case, we

know from (19) that aggregate L-investments are equal to aggregate savings of the

economy minus aggregate H-investments minus aggregate value of bubbles. When

rt > qt+1α
L, L-entrepreneurs do not invest.

The aggregate counterpart to (18) is

PtXt =
δ(λ)Pt+1

Pt
− rt

Pt+1

Pt
− rt

β(1− p)At, (I.9)

where
∑

i∈Lt
eit = (1− p)At is the aggregate net worth of L-entrepreneurs at date t.

(I.9) is the aggregate demand function for bubble assets at date t.

Appendix J: Worker’s Behavior

We verify that workers do not save nor buy asset bubbles in equilibrium. First, we

verify that workers do not save. When the borrowing constrained binds, workers do

not save. The condition that the borrowing constraint binds is

1

cut
> πβ

rt
cu,πt+1

+ (1− π)β
rt

cu,1−π
t+1

.

We know that cut = wt and cu,πt+1 = wt+1 if workers do not save nor buy bubble assets.

Then, the above can be written as

1 >

[
π + (1− π)

1− σ

1− σ − λ βϕ(λ)
1−βϕ(λ)

σ

]
β

Kσ
t

Kσ
t+1

rt. (J.10)

When rt = qt+1α
L, (J.10) can be written as

H(λ)

βσαL
> π + (1− π)

1− σ

1− σ − λ βϕ(λ)
1−βϕ(λ)

σ
. (J.11)
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Since H(λ)/βσαL > 1 in the bubble regions and the right hand side of (J.11) is an

increasing function of σ and equals one with σ = 0, (J.11) holds if σ is sufficiently

small.

When rt = θqt+1α
H [1− βϕ(λ)]/[1− p− ϕ(λ)], (J.11) can be written as

H(λ)[1− p− ϕ(λ)]

θβσαH [1− ϕ(λ)]
> π + (1− π)

1− σ

1− σ − λ βϕ(λ)
1−βϕ(λ)

σ
. (J.12)

SinceH(λ)[1−p−ϕ(λ)]/θβσαH [1−ϕ(λ)] > 1 in the bubble regions and the right hand

side of (J.11) is an increasing function of σ and equals one with σ = 0, (J.12) holds

if σ is sufficiently small. Under the reasonable parameter values in our numerical

examples, both (J.11) and (J.12) hold.

Next, we verify that workers do not buy bubble assets. When the short sale

constraint binds, workers do not buy bubble assets. The condition that the short

sale constraint binds is

1

cut
> πβ

1

cu,πt+1

Pt+1

Pt

.

We know cut = wt and cu,πt+1 = wt+1 if workers do not save nor buy bubble assets.

Then, the above can be written as

1 > πβ
wt

wt+1

Pt+1

Pt

= πβ,

which is true.

Appendix K: Behavior of H-types

We verify that H-types do not buy bubble assets in equilibrium. When the short

sale constraint binds, H-types do not buy bubble assets. In order that the short sale
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constraint binds, the following condition must hold:

1

cit
> βEt

[
1

cit+1

Pt+1

Pt

]
. (K.13)

Since the borrowing constraint is binding for H-types, we have

1

cit
= βEt

[
rt
cit+1

qt+1α
H(1− θ)

rt − θqt+1αH

]
. (K.14)

We also know that cit+1 = (1− β)
[

rtαH(1−θ)
rt−θqt+1αH

]
if (K.13) is true. Inserting (K.14) into

(K.13) yields

β
1

cit+1

rt

[
qt+1α

H − δ(λ)Pt+1

Pt

]
+ θqt+1α

H
[
δ(λ)Pt+1

Pt
− rt

]
rt − θqt+1αH

> 0. (K.15)

If (K.15) holds, then the short sale constraint binds. We see that the second term

in the numerator is positive as long as ϕ > 0 and we know that ϕ > 0 on the saddle

path. Thus, if the first term is positive, (K.15) holds. The condition that the first

term is positive is

qt+1α
H > δ(λ)

Pt+1

Pt

.

On the saddle path, since Pt follows according to

Pt =
βϕ(λ)

X[1− βϕ(λ)]
σKσ

t , (K.16)

Using (K.16), the above inequality condition can be written as

σαHKσ
t > δ(λ)Kt+1. (K.17)
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First, we show that (K.17) holds in 0 ≤ λ ≤ λ∗. In 0 ≤ λ ≤ λ∗, aggregate capital

stock follows (28). Thus, (K.17) can be written as

αH > δ(λ)

[
(1 +

αH − αL

αL − θαH
p)βαL − βαLϕ(λ)

]
/ [1− βϕ(λ)] , (K.18)

which is equivalent to

αH > δ(λ)

[
(1 +

αH − αL

αL − θαH
p)βαL − βαL(1− p)

]
/ [1− δ(λ)β(1− p)] . (K.19)

The right hand side of (K.19) is an increasing and convex function of λ in 0 ≤ λ ≤ λ∗.

Thus (K.17) holds in 0 ≤ λ ≤ λ∗ if (K.17) is true at λ = λ∗. At λ = λ∗, we know

ϕ = [αL(1− p)− θαH ]/(αL − θαH). Inserting this relation into (K.18) yields

αH(1− β) +
αLpβαH

αL − θαH
[1− δ(λ∗)] > 0,

which is true.

Next, we show that (K.17) holds in λ∗ ≤ λ ≤ 1. In λ∗ ≤ λ ≤ 1, aggregate capital

stock follows (28). Thus, (K.17) can be written as

1− βϕ > δ(λ)β(1− ϕ),

which is true, since 1− βϕ > 1− ϕ and δ(λ)β < 1.
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Appendix L: Derivation of taxpayer’s value func-

tion

Suppose that at date t, bubbles collapse. After the date t, the economy is in the

bubbleless economy. Let V BL
t be the value function of taxpayers at date t when

bubbles collapse and the government bails out entrepreneurs. First, we solve V BL
t+1 .

Given the optimal decision rules, the Bellman equation can be written as

V BL
t+1 (Kt+1) = log ct+1 + βV BL

t+2 (Kt+2), after date t+ 1, (L.20)

with 
ct+1 = wt+1 after date t+ 1,

Kt+2 =
[
1 + αH−αL

αL−θαH p
]
βαLσKσ

t+1 after date t+ 1.

(L.21)

We guess that the value function is a linear function of logK :

V BL
t+1 (Kt+1) = f + g logKt+1 after date t+ 1. (L.22)

From (L.20)-(L.22), applying the method of undetermined coefficients yields

f =
1

1− β
log(1− σ) +

1

1− β

βσ

1− βσ
log

[(
1 +

αH − αL

αL − θαH
p

)
βαLσ

]
,

g =
σ

1− βσ
.
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Thus, we have

V BL
t+1 (Kt+1) =

1

1− β
log(1− σ) +

1

1− β

βσ

1− βσ
log

[(
1 +

αH − αL

αL − θαH
p

)
βαLσ

]
+

σ

1− βσ
logKt+1, after date t+ 1. (L.23)

Next, we derive the value function of taxpayers at date t when bubbles collapse and

the government bails out entrepreneur by taking into account the effects of bailouts

on the date t consumption and the date t + 1 aggregate capital stock. The value

function of taxpayers at date t satisfies

V BL
t (Kt) = log ct + βV BL

t+1 (Kt+1), (L.24)

with 
ct = wt − λPtX = wt − λ βϕ(λ)

1−βϕ(λ)
σKσ

t ,

Kt+1 =
[
1 + αH−αL

αL−θαH p
]
βαLσ

[
1 + λ βϕ(λ)

1−βϕ(λ)

]
Kσ

t .

(L.25)

From (L.23), (L.24), and (L.25), we have (29) in the text.

Now, we are in a position to derive the value function at any date t in the bubble

economy. Let V BB
t (Kt) be the value function of taxpayers at date t in the bubble

economy. Given optimal decision rules, the Bellman equation can be written as

V BB
t (Kt) = log ct + β

[
πV BB

t+1 (Kt+1) + (1− π)V BL
t+1 (Kt+1)

]
. (L.26)

with the optimal decision rule of aggregate capital stock until bubbles collapse:

Kt+1 = H(λ)Kσ
t , (L.27)
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We guess that the value function is a linear function of logK :

V BB
t (Kt) = s+Q logKt, (L.28)

From (29), and (L.26)-(L.27), applying the method of undetermined coefficients

yields

s =
1

1− βπ
log(1− σ) +

β(1− π)

1− βπ
M(λ) +

1

1− βπ

βσ

1− βσ
logH(λ),

Q =
σ

1− βσ
.

Thus, we have (30) in the text.

Appendix M: Derivation of entrepreneur’s value

function

Appendix M:.1 the case where the government does not tax

entrepreneurs

Suppose that at date t, bubbles collapse. After the date t, the economy is in the

bubbleless economy. Let WBL
t (et, Kt) be the value function of the entrepreneur at

date t who holds the net worth, et, at the beginning of the period t before knowing

his/her type of the period t. First, we solve WBL
t+1(et, Kt). Given the optimal decision

rules, the Bellman equation can be written as

WBL
t+1(et+1, Kt+1) = log cit+1+β

 pWBL
t+2(R

′H
t+1βet+1, Kt+2)

+(1− p)WBL
t+2(R

′L
t+1βet+1, Kt+2)

 after date t+1,

(M.29)
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where R′H
t+1βet+1 and R′L

t+1βet+1 are the date t+2 net worth of the entrepreneur when

he/she was H-type and L-type at date t+1, respectively. R′H
t+1 and R′L

t+1 are realized

rate of return on savings from date t + 1 to date t + 2 in the bubbleless economy,

and they satisfy 
R′H

t = qt+1αH(1−θ)

1− θαH

αL

after date t,

R′L
t = qt+1α

L after date t.

(M.30)

Aggregate capital stock follows:

Kt+2 = (1 + αH−αL

αL−θαH p)βα
LσKσ

t+1 after date t+ 1. (M.31)

We guess that the value function are linear functions of logK and log e :

WBL
t+1(et+1, Kt+1) = f1 + g1 logKt+1 + h1 log et+1 (M.32)

From (M.29)-(M.32), applying the method of undetermined coefficients yields

f1 =
1

1− β
log(1− β) +

β

(1− β)2
log(1− β) +

β

(1− β)2
log σ (M.33)

+
β

(1− β)2

[
p log

αH(1− θ)

1− θαH

αL

+ (1− p) logαL

]

+
β(σ − 1)

(1− β)2
1

1− βσ
log

[
(1 +

αH − αL

αL − θαH
p)βαLσ

]
,

g1 =
βσ

1− βσ

σ − 1

1− β
, (M.34)

h1 =
1

1− β
. (M.35)

Next, we derive the value function at date t when bubbles collapse and the gov-
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ernment bails out entrepreneurs by taking into account the effects of bailouts on

the date t + 1 aggregate capital stock. Given the optimal decision rules, the value

function at date t satisfies

WBL
t (et, Kt) = log ct + β

[
pWBL

t+1(R
′H
t βet, Kt+1) + (1− p)WBL

t+1(R
′L
t βet, Kt+1)

]
,

(M.36)

with

Kt+1 =

[
1 +

αH − αL

αL − θαH
p

]
βαLσ

[
1 + λ

βϕ(λ)

1− βϕ(λ)

]
Kσ

t . (M.37)

From (M.32)-(M.37), we obtain

WBL
t (et, Kt) = f1+

β(σ − 1)

1− β

1

1− βσ
log

[
1 + λ

βϕ(λ)

1− βϕ(λ)

]
+

βσ

1− βσ

σ − 1

1− β
logKt+

1

1− β
log et.

(M.38)

Now, we are in a position to derive the value function at any date t in the bubble

economy. WBB
t (et, Kt) is the value function of the entrepreneur at any date t in the

bubble economy who holds the net worth, et, at the beginning of the period t before

knowing his/her type of the period t. Given optimal decision rules, the Bellman

equation can be written as

WBB
t (et, Kt) = log ct + βπ

[
pWBB

t+1 (R
H
t βet, Kt+1) + (1− p)WBB

t+1 (R
L
t βet, Kt+1)

]
+ β(1− π)

 pWBL
t+1(R

H
t βet, Kt+1) + (1− p)λWBL

t+1(R
L
t βet, Kt+1)

+(1− p)(1− λ)WBL
t+1(R

LL
t βet, Kt+1)

 , (M.39)

where RH
t βet, R

L
t βet, and RLL

t βet are the date t + 1 net worth of the entrepreneur

in each state. RH
t , R

L
t , and RLL

t are realized rate of return from savings from date t
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to date t+ 1, and in 0 ≤ λ ≤ λ∗, they satisfy



RH
t = qt+1αH(1−θ)

1− θαH

αL

,

RL
t = δ(λ)Pt+1

Pt
= δ(λ) qt+1αL[1−p−ϕ(λ)]

δ(λ)(1−p)−ϕ(λ)
,

RLL
t = qt+1αL[1−p−ϕ(λ)]

1−p
.

(M.40)

and in λ∗ ≤ λ ≤ 1, they satisfy



RH
t = qt+1αH(1−θ)[1−ϕ(λ)]

p
,

RL
t = δ(λ)Pt+1

Pt
= δ(λ) qt+1θαH [1−ϕ(λ)]

δ(λ)(1−p)−ϕ(λ)
,

RLL
t = qt+1θαH [1−ϕ(λ)]

1−p
.

(M.41)

Aggregate capital stock until bubbles collapse follows:

Kt+1 = H(λ)Kσ
t . (M.42)

We guess that the value function are linear functions of logK and log e :

WBB
t (et, Kt) = m+ l logKt + n log et. (M.43)

From (M.38)-(M.43), and (M.39), applying the method of undetermined coefficients
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yields

m =
1

1− βπ
log(1− β) +

1

1− βπ

β

1− β
log β +

1

1− βπ

β

1− β
log σ

+
β(σ − 1)

1− βπ

1

1− βσ

1

1− β
logH(λ)

+
β(1− π)

1− βπ

{
f1 +

β(σ − 1)

1− β

1

1− βσ
log

[
1 + λ

βϕ(λ)

1− βϕ(λ)

]}
+

1

1− βπ

β

1− β
[πJ1 + (1− π)J2] ,

l =
βσ(σ − 1)

1− βσ

1

1− β
,

n =
1

1− β
,

where in 0 ≤ λ ≤ λ∗,

J1 = p log
αH(1− θ)

1− θαH

αL

+ (1− p) log

[
δ(λ)

αL[1− p− ϕ(λ)]

δ(λ)(1− p)− ϕ(λ)

]
,

J2 = p log
αH(1− θ)

1− θαH

αL

+ (1− p)λ log

[
δ(λ)

αL[1− p− ϕ(λ)]

δ(λ)(1− p)− ϕ(λ)

]
+(1− p)(1− λ) log

[
αL[1− p− ϕ(λ)]

1− p

]
.

and in λ∗ ≤ λ ≤ 1,

J1 = p log
αH(1− θ)[1− ϕ(λ)]

p
+ (1− p) log

[
δ(λ)

θαH [1− ϕ(λ)]

δ(λ)(1− p)− ϕ(λ)

]
,
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J2 = p log
αH(1− θ)[1− ϕ(λ)]

p
+ (1− p)λ log

[
δ(λ)

θαH [1− ϕ(λ)]

δ(λ)(1− p)− ϕ(λ)

]
+(1− p)(1− λ) log

[
θαH [1− ϕ(λ)]

1− p

]
.

Thus, we have (32) in the text.

Appendix M:.2 the case where the government taxes en-

trepreneurs

When the government taxes entrepreneurs who do not suffer losses from bubble

investments, m and J2 change as follows:

m =
1

1− βπ
log(1− β) +

1

1− βπ

β

1− β
log β +

1

1− βπ

β

1− β
log σ

+
β(σ − 1)

1− βπ

1

1− βσ

1

1− β
logH(λ)

+
β(1− π)

1− βπ

{
f1 +

β(σ − 1)

1− β

1

1− βσ
log [1 + F (λ)]

}
+

1

1− βπ

β

1− β
[πJ1 + (1− π)J2] ,

in 0 ≤ λ ≤ λ∗,

J2 = p log
(1− τ)αH(1− θ)

1− θαH

αL

+ (1− p)λ log

[
δ(λ)

αL[1− p− ϕ(λ)]

δ(λ)(1− p)− ϕ(λ)

]
+(1− p)(1− λ) log

[
αL[1− p− ϕ(λ)]

1− p

]
.
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in λ∗ ≤ λ ≤ 1,

J2 = p log
(1− τ)αH(1− θ)[1− ϕ(λ)]

p
+ (1− p)λ log

[
δ(λ)

θαH [1− ϕ(λ)]

δ(λ)(1− p)− ϕ(λ)

]
+(1− p)(1− λ) log

[
θαH [1− ϕ(λ)]

1− p

]
.

Appendix N: Procedures to derive numerical ex-

amples of entrepreneur’s welfare

When we compute (32), we make the following assumptions: aggregate capital stock

in the initial period is set to the steady-state value of the bubbleless economy; pop-

ulation measure of entrepreneurs is assumed to be equal to one; in the initial period,

each entrepreneur is endowed with the same amount of capital, ki
t = kt, and one unit

of bubble assets, and owes no debt. Under these assumptions, all entrepreneurs hold

the same amount of net worth in the initial period, i.e., e0 = q0k0 + P0. By using

determination of equilibrium bubble prices (K.16), e0 can be written as

e0(λ) =
1

1− βϕ(λ)
σKσ

0 .

Inserting the above relation into (32) yields

WBB
0 (K0) = m(λ) +

1

1− β
log σ +

1

1− βσ
logK0 −

1

1− β
log [1− βϕ(λ)] .

Figure 4 describes the relationship between WBB
0 and λ.

65



References

[1] Aoki, Kosuke, and Kalin Nikolov. 2011. “Bubbles, Banks and Financial Stabil-

ity,” University of Tokyo.

[2] Bernanke, Ben, and Mark Gertler. 1989. “Agency Costs, Net Worth, and Busi-

ness Fluctuations,” American Economic Review, 79(1): 14–31.

[3] Bernanke, Ben, Mark Gerlter, and Simon Gilchrist. 1999. “The Financial Accel-

erator in a Quantitative Business Cycle Framework,” in J. Taylor and M. Wood-

ford eds, the Handbook of Macroeconomics, 1341-1393. Amsterdam: North-

Holland.

[4] Brunnermeier, Markus, and Yuliy Sannikov. 2011. “The I Theory of Money,”

mimeo, Princeton University.

[5] Caballero, Ricardo, and Arvind Krishnamurthy. 2006. “Bubbles and Capital

Flow Volatility: Causes and Risk Management,” Journal of Monetary Eco-

nomics, 53(1): 35-53.

[6] Diamond, Douglas, and Raghuram Rajan. 2012. “Illiquid Banks, Financial Sta-

bility, and Interest Rate Policy,” Journal of Political Economy, 120(3), 552-91.

[7] Farhi, Emmanuel, and Jean Tirole. 2009a. “Bubbly Liquidity,” Review of Eco-

nomic Studies, 79(2): 678-706.

[8] Farhi, Emmanuel, and Jean Tirole. 2009b. “Leverage and the Central Banker’s

Put,” American Economic Review Papers and Proceedings, 99(2): 589-593.

[9] Farhi, Emmanuel, and Jean Tirole. 2012. “Collective Moral Hazard, Maturity

Mismatch and Systemic Bailouts,” American Economic Review, 102(1): 60-93

66



[10] Gertler, Mark, and Peter Karadi. 2011. “A Model of Unconventional Monetary

Policy,” Journal of Monetary Economics, 58(1): 17–34.

[11] Gerlter, Mark, and Nobuhiro Kiyotaki. 2010. “Financial Intermediation and

Credit Policy in Business Cycle Analysis,” In Friedman, B., and Woodford, M.

eds, Handbook of Monetary Economics, 547-599. Elsevier, Amsterdam, Nether-

lands.

[12] Gertler, Mark, Nobuhiro Kiyotaki, and Albert Queralto. 2011. “Financial Crises,

Bank Risk Exposure and Government Financial Policy,” Princeton University.

[13] Hart, Oliver, and John Moore. 1994. “A Theory of Debt Based on the Inalien-

ability of Human Capital,” Quarterly Journal of Economics, 109(4): 841–879.

[14] Hellwig, Christian, and Guido Lorenzoni. 2009. “Bubbles and Self-Enforcing

Debt,” Econometrica, 77(4): 1137-1164.

[15] Hirano, Tomohiro, and Noriyuki Yanagawa. 2010a. “Asset Bubbles, Endogenous

Growth, and Financial Frictions,” Working Paper, CARF-F-223, University of

Tokyo.

[16] Hirano, Tomohiro, and Noriyuki Yanagawa. 2010b. “Financial Institution, Asset

Bubbles and Economic Performance,” Working Paper, CARF-F-234, University

of Tokyo.

[17] Hirano, Tomohiro, and Noriyuki Yanagawa. 2012(January). “Asset Bubbles and

Bailout,” CIRJE-F-838, CIRJE, University of Tokyo.

[18] Holmstrom, Bengt, and Jean Tirole. 1998. “Private and Public Supply of Liq-

uidity,” Journal of Political Economy, 106(1): 1-40.

67



[19] Jovanovic, Boyan. 2012. “Bubbles in Prices of Exhaustible Resources,” Interna-

tional Economic Review, 54(1): 1-34.

[20] Kamihigashi, Takashi, 2009. “Asset Bubbles in a Small Open Economy,” Kobe

University.

[21] Kamihigashi, Takashi, 2011. “Recurrent Bubbles,” The Japanese Economic Re-

view, 62(1): 27-62.

[22] Kiyotaki, Nobuhiro, 1998. “Credit and Business Cycles,” The Japanese Eco-

nomic Review, 49(1): 18–35.

[23] Kiyotaki, Nobuhiro, and John Moore. 1997. “Credit Cycles,” Journal of Political

Economy, 105(2): 211-248.

[24] Kiyotaki, Nobuhiro, and John Moore. 2008. “Liquidity, Business Cycles and

Monetary Policy,” Princeton University.

[25] Kocherlakota, R. Narayana. 1992. “Bubbles and Constraints on Debt Accumu-

lation,” Journal of Economic Theory, 57(1): 245-256.

[26] Kocherlakota, R. Narayana. 2009. “Bursting Bubbles: Consequences and

Cures,” University of Minnesota.

[27] Martin, Alberto, and Jaume Ventura. 2011b. “Economic Growth with Bubbles,”

Forthcoming in American Economic Review.

[28] Matsuyama, Kiminori. 2007. “Credit Traps and Credit Cycles,” American Eco-

nomic Review, 97(1): 503-516.

[29] Matsuyama, Kiminori. 2008. “Aggregate Implications of Credit Market Imper-

fections,” in D. Acemoglu, K. Rogoff, and M. Woodford, eds., NBER Macroe-

conomics Annual 2007, 1-60. University of Chicago Press.

68



[30] Miao, Jianjun, and Pengfei Wang. 2011. “Bubbles and Credit Constraints,”

mimeo, Boston University.

[31] Roch, Francisco, and Harald Uhlig. 2012. “The Dynamics of Sovereign Debt

Crises and Bailouts,” Chicago University.

[32] Stiglitz, Joseph. 2012. The Price of Inequality: How Today’s Divided Society

Endangers Our Future. W. W. Norton & Company.

[33] Tirole, Jean. 1985. “Asset Bubbles and Overlapping Generations,” Economet-

rica, 53(6): 1499-1528.

[34] Tirole, Jean. 2005. The Theory of Corporate Finance. Princeton, New Jersey:

Princeton University Press.

[35] Uhlig, Harald (2010), “A Model of a Systemic Bank Run,” Journal of Monetary

Economics, 57(1): 78-96.

[36] Weil, Philippe. 1987. “Confidence and the Real Value of Money,” Quarterly

Journal of Economics, 102(1): 1-22.

[37] Woodford, Michael. 1990. “Public Debt as Private Liquidity,” American Eco-

nomic Review, 80(2): 382-388.

69



Parameters benchmark case 1 case 2 case 3

αH productivity of high project 1.1 1.1 1.1 1.1
αL productivity of low project 1 1 1 1
β discount factor 0.98 0.98 0.98 0.98
σ capital share 0.25 0.25 0.25 0.25
θ collateral ratio 0.1 0.1 0.1 0.1
π survival rate of bubbles 0.99 0.995 0.997 0.998
p probability for high project 0.3 0.3 0.3 0.3

Table 1: Parameters
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Figure 1: Effects on Capital Stock

Figure 2: Effects on Ex-ante Production Efficiency

71



Figure 3: Anticipated Bailouts and Boom-Bust Cycles
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