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ABSTRACT

Given a monotone convex function on the space of essentially bounded random variables with the Lebesgue property
(order continuity), we consider its extension preserving the Lebesgue property to as big solid vector space of random
variables as possible. We show that there exists a maximum such extension, with explicit construction, where the
maximum domain of extension is obtained as a (possibly proper) subspace of a natural Orlicz-type space, character-
ized by a certain uniform integrability property. As an application, we provide a characterization of the Lebesgue
property of monotone convex function on arbitrary solid spaces of random variables in terms of uniform integrability
and a “nice” dual representation of the function.

Key Words: Monotone Convex Functions, Lebesgue Property, Order-Continuity, Order-Continuous Banach Lattices,
Uniform Integrability, Convex Risk Measures

1. Introduction

Motivated by the study of convex risk measures in financial mathematics, we address a “regular”
extension problem of monotone convex functions. Let L0 be the space of all finite random
variables (measurable functions) on a given probability space (Ω,F ,P) modulo P-almost sure
(a.s.) equality, and we say that a linear subspace X ⊂ L0 is solid if X ∈ X and |Y | ≤ |X| a.s.
imply Y ∈ X . By a monotone convex function on a solid space X ⊂ L0, we mean a convex
function ϕ : X → (−∞,∞] which is monotone increasing w.r.t. the a.s. pointwise order.

We are interested in monotone convex functions on some solid space X having the following
regularity property called the Lebesgue property: for any sequence (Xn)n ⊂X ,

(1.1) ∃Y ∈X , |Xn| ≤ Y (∀n) and Xn → X ∈X a.s. ⇒ ϕ(X) = lim
n
ϕ(Xn).

Note that all Lp spaces are solid, and when X = L1 := L1(Ω,F ,P) and ϕ(X) = E[X], this is
nothing but the dominated convergence theorem. When X = L∞, (1.1) reduces to

(1.2) sup
n
‖Xn‖∞ < ∞ and Xn → X a.s. ⇒ ϕ(X) = lim

n
ϕ(Xn),

and a number of practically important monotone convex functions on L∞ satisfy this.
Now given a monotone convex function ϕ0 on L∞ with the Lebesgue property (1.2), we con-

sider its extension to some big solid space preserving the Lebesgue property in the form of (1.1)
(such extensions do make sense). Of course there may be several such extensions, but we are
interested in the maximum one. So the central question of the paper is:

Question 1.1. Given a monotone convex function ϕ0 on L∞ with the Lebesgue property (1.2),
does there exist a maximum extension preserving the Lebesgue property in the sense of (1.1)?
i.e., is there a pair (ϕ̂, X̂ ) of a solid space X̂ ⊂ L0 and a monotone convex function ϕ̂ with the
Lebesgue property on X̂ such that ϕ̂|L∞ = ϕ0 and for any such pair (ϕ,X ), one has X ⊂ X̂
and ϕ = ϕ̂|X ?
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As a first (trivial) example, we briefly see what happens when ϕ0 is linear.

Example 1.2. Let ϕ0 be a positive (monotone) linear functional on L∞. Then it is finite-valued
and identified with a finitely additive measure ν0(A) := ϕ0(1A) as ϕ0(X) =

∫
Ω

Xdν0, while (1.2)
is equivalent to saying that ν0 is σ-additive. If the latter is the case, the “usual” integral ϕ̂(X) :=∫
Ω

Xdν0 defines a Lebesgue-preserving extension of ϕ0 to L1(ν0) := {X ∈ L0 :
∫
Ω
|X|dν0 < ∞}.

On the other hand, if ϕ is a monotone convex function on a solid space X ⊂ L0 with (1.1)
and ϕ|L∞ = ϕ0, it is easy that ϕ must be positive, linear and finite on X . Then

∫
|X|dν0 =

limn ϕ̂(|X| ∧ n) = limn ϕ0(|X| ∧ n) = limn ϕ(|X| ∧ n) = ϕ(|X|) < ∞ if X ∈X , hence X ⊂ L1(ν0),
where the first equality follows from the monotone convergence theorem, and the fourth from
the Lebesgue property of ϕ on X . Similarly, but with X1{|X|≤n} instead of |X| ∧ n, we see also
that ϕ = ϕ̂|X . Namely, (ϕ̂,L1(ν0)) is the maximum Lebesgue-preserving extension of ϕ0. ♦

This is just an exercise of measure theory, and we see that Question 1.1 is well-posed at least
when ϕ0 is linear. Slight surprisingly, the main result (Theorem 3.5) of this paper states that the
answer to Question 1.1 is YES as long as the original function ϕ0 is finite everywhere on L∞

(this is automatic when ϕ is linear by definition). Moreover, the maximum extension (ϕ̂, X̂ ) is
explicitly constructed.

We first construct a candidate of ϕ̂ in a rather ad-hoc way on a certain convex cone of L0

containing L∞ and the positive cone L0
+. Then based on a simple observation (Lemma 3.3), we

introduce an Orlicz-type space associated to ϕ̂, that we denote by Mϕ̂
u , beyond which Lebesgue-

preserving extension is not possible. After checking that the candidate ϕ̂ is well-defined on this
space as a finite monotone convex function, we finally verify that the space Mϕ̂

u can be made
into an order-continuous Banach lattice with respect to a natural gauge norm (Theorem 4.9)
with a suitable change of measure, which together with an extended Namioka-Klee theorem by
[7] eventually yields that ϕ̂ is Lebesgue on Mϕ̂

u and the pair (ϕ̂,Mϕ̂
u ) is the desired maximum

extension. The space Mϕ̂
u is, as the notation suggests, a subspace of the “Orlicz heart” Mϕ̂ of

ϕ̂, and the subscript “u” stands for the “uniform integrability” that characterizes the elements of
Mϕ̂

u . This point will be made clear in Theorem 3.8.
As an application, we provide a characterization of the Lebesgue property of finite mono-

tone convex functions ψ on an arbitrary solid space of random variables of the form Fatou
property plus “something extra”, with the “extra” being either a certain “uniform integrabil-
ity” or a “good” dual representation of ψ, both of which are stated using the conjugate of ψ|L∞
(Theorem 3.9). This generalizes a result known as the Jouini-Schachermayer-Touzi theorem
[21]. There the comparison of a function ψ on a solid space X and the maximum Lebesgue-
preserving extension of the restriction ψ|L∞ plays a key role.

1.1. A Motivation from Financial Mathematics: Convex Risk Measures

An initial motivation of this work was to provide an “efficient” way to the study of convex
risk measures for unbounded risks. In mathematical finance, a convex risk measure on a solid
space X ⊂ L0 is—up to a change of sign—a monotone convex function ρ on X such that
ρ(X + c) = ρ(X) + c whenever c is a constant (cash-invariance). This notion was introduced by
[6, 15, 17] as a possible replacement of Value at Risk. See [16, Ch. 4] for the background of this
notion. Since then, convex risk measures on L∞ (i.e. for bounded risks) have been extensively
studied, establishing a number of their fine properties as well as examples [see e.g. 12, 16].
However, L∞ is clearly too small to capture the actual risks, and a key current direction is the
analysis of risk measures beyond bounded risks. A natural way is to pick up a particular space,
and then to reconstruct a whole theory with careful analysis of the structure of the new space,
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e.g., Lp [1, 22], Orlicz spaces/hearts [9, 27, 4, 5], abstract locally convex Fréchet lattices [7],
and L0 [23] to mention a few.

On the other hand, it seems more efficient to extend a convex risk measure originally defined
on L∞ to some big space, and a most natural candidate seems the one preserving the Lebesgue
property. Note first that the Lebesgue property of the original risk measure on L∞ is reasonable,
since (modulo some technicality) it is necessary to have a finite valued extension to some solid
space properly containing L∞ ([11, Theorem 10]; see the paragraph after Theorem 2.4 for detail).
Next, the Lebesgue property implies or is equivalent to some other important properties in appli-
cation: existence of σ-additive subgradient, the inf-compactness of the conjugate, the continuity
for the Mackey topology induced by the good dual space and so on ([21], [10] and comments
after Theorem 3.9 for precise information). Also, functions with the Lebesgue property are
stable for the practically common procedure of approximating unbounded random variables by
suitable “truncation”, and a “nearly” converse implication is also true (Remark 2.5). This is
computationally useful, and it also means roughly that an extension preserving the Lebesgue
property retains the basic structure of the original function to the extended domain.

Several other types of extensions may be possible of course, and some of those have already
appeared in literature (see Section 2.2). Especially, [13] considered an extension preserving
the Fatou property (order lower semicontinuity), proving that any law-invariant convex risk
measure with the Fatou property on L∞ is uniquely extended to L1 preserving the Fatou prop-
erty. In contrast, a simple example shows that Lebesgue-preserving extension to L1 or to some
“common” reasonable space is not possible even if the original function is law-invariant (see
Example 2.6 and discussion that precedes). Thus it is worthwhile to ask how far a convex risk
measure originally defined on L∞ with the Lebesgue property can be extended preserving the
Lebesgue property, or more intuitively, how far a “good” risk measure can remain “good”. In
Section 7, we shall examine our main results in the context of convex risk measures with some
concrete examples.

2. Preliminaries

We use the probabilistic notation. Let (Ω,F ,P) be a probability space which will be fixed
throughout, and L0 := L0(Ω,F ,P) denotes the space of all equivalence classes of measurable
functions (or random variables) over (Ω,F ,P) modulo P-almost sure (a.s.) equality. As usual,
we do not distinguish an element of L0 and its representatives, and inequalities between (classes
of) measurable functions are to be understood in the a.s. sense, i.e., X ≤ Y a.s. which means
more precisely that f ≤ g a.s. for any representatives f and g of X and Y , respectively. This
a.s. pointwise inequality defines a partial order on L0 by which L0 is an order-complete Riesz
space (vector lattice) with the countable-sup property. By a solid space X , we mean, in this
paper, a solid vector subspace (ideal) X of L0, i.e., a vector subspace of L0 such that |X| ≤ |Y |
and Y ∈ X imply X ∈ X (solid). Note that any such X is an order complete Riesz space
with the countable sup-property on its own right, and X contains L∞ := L∞(Ω,F ,P) as soon
as it contains the constants. We denote X+ := {X ∈ X : X ≥ 0} (the positive cone). Finally,
we write E[X] =

∫
Ω

X(ω)P(dω) (expectation w.r.t. P) for X ∈ L0 as long as the integral makes
sense, and EQ[X] =

∫
Ω

X(ω)Q(dω) for other probability measures Q � P.
By a monotone convex function on a solid space X ⊂ L0, we mean a proper convex function

ϕ : X → (−∞,∞] which is monotone increasing in the a.s. order:

(2.1) ∀X,Y ∈X , X ≤ Y (a.s.) ⇒ ϕ(X) ≤ ϕ(Y).

Definition 2.1. For a monotone convex function ϕ on a solid space X ⊂ L0, we say that
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(1) ϕ satisfies the Fatou property (or simply ϕ is Fatou) if for any (Xn)n ⊂X ,

(2.2) ∃Y ∈X+ such that |Xn| ≤ Y, ∀n and Xn → X a.s. ⇒ ϕ(X) ≤ lim inf
n

ϕ(Xn).

(2) ϕ satisfies the Lebesgue property (or ϕ is Lebesgue) if for any (Xn)n ⊂X ,

(2.3) ∃Y ∈X+ such that |Xn| ≤ Y, ∀n and Xn → X a.s. ⇒ ϕ(X) = lim
n
ϕ(Xn).

Remark 2.2 (Lebesgue property and order-continuity). By the countable-sup property of X
(as a solid vector subspace (ideal) of L0), the Lebesgue property (2.3) is equivalent to the gener-

ally stronger order continuity: ϕ(Xα)→ ϕ(X) if a net Xα converges in order to X (Xα
o
→ X), i.e.,

if there exists a decreasing net (Yα)α ⊂X (with the same index set) such that |X − Xα| ≤ Yα ↓ 0
(in the lattice sense). Indeed, for a sequence (or slightly more generally a countable net)

(Xn)n ⊂ X , the order convergence Xn
o
→ X is equivalent to the dominated a.s. convergence:

|Xn| ≤ Y (∀n) for some Y ∈X+ and Xn → X a.s., thus the Lebesgue property (2.3) is nothing but
the σ-order continuity. On the other hand, for monotone (increasing) functions, the order conti-
nuity is equivalent to the continuity from above: Xα ↓ X⇒ ϕ(Xα) ↓ ϕ(X), and by the countable-
sup property, any such decreasing net admits a sequence (Xαn)n ⊂ (Xα)α such that Xαn ↓ X. Con-
sequently, the σ-order continuity implies ϕ(X) ≤ limα ϕ(Xα) = infα ϕ(Xα) ≤ infn ϕ(Xαn) = ϕ(X).
A similar remark applies also to the Fatou property (2.2) and the order-lower semicontinuity. For
further information, see e.g. [2, Ch. 8, 9]. �

The Lebesgue and Fatou properties are more “universal” than the corresponding topological
regularities as long as we discuss functions of random variables, in the sense that they are com-
parable between different spaces. In fact, it is clear from the definition that if X and Y are
solid spaces with X ⊂ Y (⊂ L0) and if a function ϕ on Y has the Lebesgue property, then
the restriction ϕ|X automatically has the Lebesgue property on X , and the same is true for
the Fatou property. In particular, the class of monotone convex functions with the Lebesgue
property on solid spaces (ϕ,X ) is partially ordered simply by (ϕ,X ) � (ψ,Y ) iff X ⊂ Y and
ϕ = ψ|X , and the maximum extension preserving the Lebesgue property does make sense, while,
for instance, maximum extension of norm-continuous function on L∞ preserving the topological
continuity does not much make sense:

Definition 2.3 (Lebesgue Extension). Let X0 ⊂ L0 be a solid space and ϕ0 : X0 → (−∞,∞] a
monotone convex function with the Lebesgue property (2.3) on X0. Then we say that (ϕ,X ) is
a Lebesgue extension of (ϕ0,X0) if X ⊂ L0 is a solid space containing X0, ϕ : X → (−∞,∞]
is a monotone convex function with the Lebesgue property on X and ϕ0 = ϕ|X . If there exists a
Lebesgue extension (ϕ̂, X̂ ) such that X ⊂ X̂ and ϕ = ϕ̂|X for any Lebesgue extension (ϕ,X )
of (ϕ0,X0), then we say that (ϕ̂, X̂ ) is the maximum Lebesgue extension of (ϕ0,X0).

If there is no risk of confusion, we omit X0 and simply say e.g. (ϕ,X ) is a Lebesgue extension
of ϕ0. In fact, we shall be discussing in the sequel the Lebesgue extensions of a monotone
convex function ϕ0 on L∞, i.e., always X0 = L∞.

2.1. Monotone Convex Functions on L∞

Here we briefly summarize some basic facts on the monotone convex functions on L∞. Note first
that the Fatou and Lebesgue properties (2.3) and (2.2), respectively, for a proper convex function
ϕ on L∞ are equivalently stated as

sup
n
‖Xn‖∞ < ∞ and Xn → X a.s. ⇒ ϕ(X) ≤ lim inf

n
ϕ(Xn),(2.2∞)

sup
n
‖Xn‖∞ < ∞ and Xn → X a.s. ⇒ ϕ(X) = lim

n
ϕ(Xn),(2.3∞)
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while (2.2∞) is equivalent to the lower semicontinuity w.r.t. σ(L∞, L1) (the weak* topology).
Indeed, a convex set C ⊂ L∞ is σ(L∞, L1)-closed if and only if for every c > 0, C ∩ {X : ‖X‖∞ ≤
c} is closed in L0 which is a well-known consequence of the Krein-Šmulian theorem (see e.g.
[19]). Thus by Fenchel-Moreau theorem, the Fatou property of a proper convex function ϕ on
L∞ is equivalent to the dual representation

(2.4) ϕ(X) = sup
Z∈L1

(E[XZ] − ϕ∗(Z))

where ϕ∗ is the Fenchel-Legendre transform (conjugate) of ϕ in 〈L∞, L1〉 duality:

(2.5) ϕ∗(Z) := sup
X∈L∞

(E[XZ] − ϕ(X)), ∀Z ∈ L1,

Then the monotonicity of ϕ is equivalent to domϕ∗ ⊂ L1
+, i.e.,

(2.6) Z ∈ L1, ϕ∗(Z) < ∞ ⇒ Z ≥ 0.

The next characterization of the Lebesgue property (2.3∞) is a ramification of a result known
as the Jouini-Schachermayer-Touzi theorem (JST in short) in financial mathematics. In the case
of convex risk measure (up to change of sign, i.e. ϕ(X + c) = ϕ(X) + c if c ∈ R), it was
first obtained by [21] with an additional separability assumption, and the latter assumption was
removed later by [10] using a homogenization trick. See also [26, 27].

Theorem 2.4 (cf. [21, 10, 26, 27] for convex risk measures). For a finite monotone convex func-
tion ϕ : L∞ → R satisfying the Fatou property (2.2∞), the following are equivalent:

(1) ϕ has the Lebesgue property (2.3∞);

(2) {Z ∈ L1 : ϕ∗(Z) ≤ c} is weakly compact in L1 for each c > 0;

(3) for each X ∈ L∞, the supremum supZ∈L1(E[XZ] − ϕ∗(Z)) is attained;

(4) ϕ is continuous for the Mackey topology τ(L∞, L1).

Proof. (1) ⇔ (2) ⇒ (3) can be proved in the same way as [21], while given the finiteness and
σ(L∞, L1)-lower semicontinuity of ϕ, (2) ⇔ (4) is also a well-known fact in convex analysis
(e.g. [25, Propositions 1 and 2]). For (3) ⇒ (2), observe that for each Z ∈ L1 and α > 0,
ϕ∗(Z) ≥ E[αsgn(Z)Z] − ϕ(αsgn(Z)) ≥ α‖Z‖1 − ϕ(−α) where sgn(Z) := 1{Z>0} − 1{Z<0} ∈ L∞.
Since ϕ is finite-valued, this shows that lim‖Z‖1→∞ ϕ

∗(Z)/‖Z‖1 = ∞ (i.e., ϕ∗ is coercive). Then
the implication (3)⇒ (2) follows from coercive James’s theorem due to [26] (recalled below as
Theorem 5.2).

Finally, we note that the Lebesgue property on L∞ is reasonable. In fact, when (Ω,F ,P) is
atomless (which is not a restriction in practice), a sufficient condition for the Lebesgue property
(2.3∞) on L∞ for monotone convex function ϕ is that it has a finite-valued extension to a solid
space X ) L∞ such that X ∈ X and law(Y) = law(X)⇒ Y ∈ X (rearrangement invariant).
See [11, Th. 3] where this is proved for convex risk measures, and an almost same proof still
works for general finite monotone convex functions. All Lp (0 ≤ p ≤ ∞), Orlicz spaces and
Orlicz hearts (the Morse subspaces of the corresponding Orlicz spaces) are of this type. Thus
functions ϕ that violate this condition are rarely of practical interest.
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2.2. Other extensions and general remarks

We emphasize that the preservation of the Lebesgue property is crucial. In fact, any finite mono-
tone convex function on L∞ has an extension to the whole L0 if one does not mind any regularity
or uniqueness. Indeed, let

(2.7) ϕext(X) := lim
n

lim
m
ϕ0((X ∨ (−n) ∧ m), X ∈ L0.

Noting that (X ∨ (−n)) ∧ m = X if ‖X‖∞ ≤ m, n < ∞, this is well-defined on L0 with values
in [−∞,∞], and ϕext|L∞ = ϕ0. But it is not a regular nor unique extension in any reasonable
sense, or it may even be improper. In the context of convex risk measures, [8] studied this type
extension, providing a necessary and sufficient condition for ϕext to avoid the value −∞ (hence
proper), but even in that case, we have no regularity nor uniqueness.

Remark 2.5. In application, one often hopes to approximate unbounded X ∈ L0 by bounded

ones via suitable truncation as X1{|X|≤n}
n
→ X, (X ∨ (−m)) ∧ n

n,m
→ X. As these convergences are

order convergences, Remark 2.2 tells us that monotone convex functions ϕ with the Lebesgue
property are stable for this sort of approximations:

(2.8) ϕ(X) = lim
m→∞

lim
n→∞

ϕ((X ∨ (−m)) ∧ n) = lim
n→∞

ϕ(X1{|X|≤n}),

and two limits in the middle expression are interchangeable. In fact, a sort of converse is also
true: a finite monotone convex function ϕ with the Fatou property on a solid space X ⊂ L0 has
the Lebesgue property if and only if for any countable net (Xα)α,

(2.9) Xα ∈ L∞, |Xα| ≤ |X|, ∀α, and Xα → X a.s. ⇒ ϕ(Xα)→ ϕ(X).

See Proposition A.2. In particular, the maximum Lebesgue extension tells us the precise extent
to which any “reasonable” truncation procedures safely work. �

A closely related question, recently addressed by [13], is the extension preserving the Fatou
property (instead of Lebesgue). There the “L1-closure” of ϕ0 given by ϕ̄1

0(X) := supY∈L∞(E[XY]−
ϕ∗0(Y)) on L1 is considered. This is clearly proper and (weakly) lower semicontinuous (hence
Fatou) on L1 as soon as domϕ∗0 ∩ L∞ , ∅, while it is not clear if ϕ̄1 is an extension of ϕ0, i.e.,

if ϕ̄1|L∞ = ϕ0. [13, Theorem 2.2] proved that this is the case if ϕ0 is law-invariant (i.e. X
law
= Y

⇒ ϕ0(X) = ϕ0(Y)), and then ϕ̄1 is the unique lower semi-continuous extension of ϕ to L1. In
particular, every law-invariant convex risk measure has a “Fatou” extension to L1. In contrast,
the Lebesgue property may not be preserved to L1 (even if law-invariant) as the next example
illustrates.

Example 2.6 (Modular). Let Φ : R → R+ be a lower semicontinuous even convex function
with Φ(0) = 0, and limx→∞Φ(x) = ∞ (i.e., a finite Young function). Then put

(2.10) ρΦ(X) := E[Φ(X+)] = E[Φ(X ∨ 0)], X ∈ L0.

This is clearly a law-invariant [0,∞]-valued monotone convex function with ρΦ(0) = 0 satisfying
the Fatou property on the whole L0 (by Fatou’s lemma since Φ ≥ 0). Let

LΦ := {X ∈ L0 : ∃α > 0, E[Φ(α|X|)] < ∞} (Orlicz space),(2.11)

MΦ := {X ∈ L0 : ∀α > 0, E[Φ(α|X|)] < ∞} (Orlicz heart).(2.12) ♦
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It always holds L∞ ⊂ MΦ ⊂ LΦ ⊂ L1 and MΦ = LΦ if Φ satisfies the so-called ∆2-condition,
while if for example Φ(x) = e|x| − 1 and (Ω,F ,P) is atomless, then L∞ ( MΦ ( LΦ ( L1. The
function ρΦ is Lebesgue on MΦ since |Xn| ≤ |Y | with Y ∈ MΦ and Xn → X a.s. imply |Φ(X+n )| ≤
Φ(|Y |) ∈ L1, hence ρΦ(Xn) = E[Φ(X+n )] → E[Φ(X+)] = ρΦ(X) by dominated convergence. On
the other hand, ρΦ is not Lebesgue on LΦ unless MΦ = LΦ. Indeed, if X ∈ LΦ \ MΦ, and
α > 0 is such that E[Φ(α|X|)] = ∞, then ρΦ(α|X|1{|X|>n}) = E[Φ(α|X|)1{|X|>n}] ≡ ∞ for all n
while 0 ≤ α|X|1{|X|>n} ≤ α|X| and α|X|1{|X|>n} → 0 a.s. By the law-invariance and [13], (ρΦ, L1)
is the unique Fatou-preserving extension of (ρΦ|L∞ , L∞) which is not Lebesgue on LΦ ( L1.
Consequently, ρΦ|L∞ has no Lebesgue extension to L1.

3. Statements of Main Results

We begin with a couple of elementary observations. Let ϕ0 : L∞ → R be a finite monotone
convex function with the Fatou property (2.2∞) hence represented as (2.4) by the conjugate
ϕ∗0(Z) = supX∈L∞(E[XZ] − ϕ0(X)) (Z ∈ L1). Let

D0 :=
{
X ∈ L0 : X−Z ∈ L1, ∀Z ∈ domϕ∗0

}
.(3.1)

This is not a vector space, but a convex cone containing L∞ ∪ L0
+, which is upward solid in the

sense that X ∈ D0 and X ≤ Y , then Y ∈ D0 since then Y− ≤ X−. We then define

(3.2) ϕ̂(X) := sup
Z∈domϕ∗0

(
E[XZ] − ϕ∗0(Z)

)
, ∀X ∈ D0,

where domϕ∗0 := {Z ∈ L1 : ϕ∗0(Z) < ∞} ⊂ L1
+ (by (2.6)). This is well-defined with values in

(−∞,∞] and is continuous from below:

Lemma 3.1. Let ϕ0 be a finite monotone convex function with the Fatou property on L∞. Then
ϕ̂ defined by (3.2) is a proper monotone convex function on D0 with ϕ̂|L∞ = ϕ0 and

(3.3) Xn ∈ D0, Xn ↑ X ∈ L0 a.s. ⇒ ϕ̂(X) = lim
n
ϕ̂(Xn).

Proof. It is clear from the Fatou property that ϕ̂|L∞ = ϕ0, and in particular, it is proper. Since
ϕ̂ is a point-wise supremum of proper convex functions X 7→ E[XZ] − ϕ∗0(Z) (Z ∈ domϕ∗0), ϕ̂
is convex. If Xn ∈ D0 for each n, and if Xn ↑ X a.s. for some X ∈ L0, we see that X ∈ D0 as
well (since D0 is upward solid) and that E[XZ] = supn E[XnZ] for all Z ∈ domϕ∗0 ⊂ L1

+ by the
monotone convergence theorem since X−1 Z ∈ L1, hence

ϕ̂(X) = sup
Z∈domϕ∗0

(
sup

n
E[XnZ] − ϕ∗0(Z)

)
= sup

n
sup

Z∈domϕ∗0

(
E[XnZ] − ϕ∗0(Z)

)
= sup

n
ϕ̂(Xn).

Thus we have (3.3).

In the sequel, we always suppose the following without further notice:

Assumption 3.2. ϕ0 is a finite-valued monotone convex function on L∞ satisfying the Lebesgue
property (2.3∞) and ϕ0(0) = 0.
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The last assumption is just for notational simplicity. Indeed, we can replace ϕ0 by ϕ0 − ϕ0(0)
since ϕ0 is supposed to be finite, and (ϕ,X ) is a Lebesgue extension of (ϕ0, L∞) if and only if
(ϕ − ϕ0(0),X ) is a Lebesgue extension of (ϕ0 − ϕ0(0), L∞).

Suppose that (ϕ,X ) is a Lebesgue extension of ϕ0 in the sense of Definition 2.3. Then observe
that for any Y ∈ X+, |Y ∧ n| ≤ Y and Y ∧ n ↑ Y a.s., hence the Lebesgue property of ϕ on X ,
the continuity from below of ϕ̂ on L0

+ and ϕ|L∞ = ϕ0 = ϕ̂|L∞ show that ϕ(Y) = limn ϕ(Y ∧ n) =
limn ϕ̂(Y ∧ n) = ϕ̂(Y). In particular,

Lemma 3.3. Let (ϕ,X ) be a Lebesgue extension of ϕ0. Then for any X ∈X ,

(3.4) lim
N
ϕ̂(α|X|1{|X|>N}) = lim

N
ϕ(α|X|1{|X|>N}) = 0, ∀α > 0.

Proof. If X ∈ X , then Xα
N := α|X|1{|X|>N} ∈ X , 0 ≤ Xα

N ≤ α|X| ∈ X (by the solidness), and
Xα

N → 0 a.s. as N → ∞. Hence ϕ̂(Xα
N) = ϕ(Xα

N) → 0 by the Lebesgue property of ϕ on X and
ϕ̂(Y) = ϕ(Y) for Y ∈X+.

This leads us to the following definition:

(3.5) Mϕ̂
u :=

{
X ∈ L0 : lim

N
ϕ̂
(
α|X|1{|X|>N}

)
= 0, ∀α > 0

}
.

At the first glance, we note that this is well-defined since L0
+ ⊂ D0 and that Mϕ̂

u is a solid vector
space. Indeed, the linearity follows from the observation that |X + Y |1{|X+Y |>N} ≤ 2|X|1{|X|>N/2} +

2|Y |1{|Y |>N/2}, while the solidness is a consequence of the monotonicity of ϕ̂ (and of x 7→
|x|1{|x|>N}).

Next, we see that ϕ̂ is well-defined on Mϕ̂
u . Observe first from the definition (3.2) that

(3.6) E[α|X|Z] ≤ ϕ̂(α|X|) + ϕ∗0(Z), ∀α > 0, X ∈ L0, Z ∈ domϕ∗0.

Thus D0 ∩ (−D0) contains the Orlicz space and Orlicz heart of ϕ̂:

Lϕ̂ : =
{
X ∈ L0 : ∃α > 0, ϕ̂(α|X|) < ∞

}
,(3.7)

Mϕ̂ : =
{
X ∈ L0 : ∀α > 0, ϕ̂(α|X|) < ∞

}
.(3.8)

Thus ϕ̂ is well-defined on Lϕ̂ as a proper monotone convex function, and it is finite on Mϕ̂ (since
ϕ̂(X) ≤ ϕ̂(|X|) < ∞ if X ∈ Mϕ̂). Also, for any α > 0, X ∈ L0 and N ∈ N,

(3.9) ϕ̂(α|X|) ≤
1
2
ϕ̂(2α|X|1{|X|>N}) +

1
2
ϕ0(2αN)

The second term in the right hand side is always finite since ϕ0 is supposed to be finite, and if
X ∈ Mϕ̂

u , then for any α > 0, the first term is eventually finite, thus Mϕ̂
u ⊂ Mϕ̂ ⊂ Lϕ̂ ⊂ D0.

Therefore, ϕ̂ is well-defined on Mϕ̂ as a finite-valued monotone convex function.

Remark 3.4. The same argument together with (3.4) tells us also that only finite-valued func-
tions can be Lebesgue extensions of ϕ0 as long as the original function ϕ0 is finite. �

3.1. Maximum Lebesgue Extension

With these preparation, we now give a positive answer to Question 1.1:

Theorem 3.5. Suppose Assumption 3.2. Then the pair (ϕ̂,Mϕ̂
u ), defined by (3.2) and (3.5), is the

maximum Lebesgue extension of ϕ0, I.e.,
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(1) Mϕ̂
u is a solid subspace of L0 containing the constants, ϕ̂ : Mϕ̂

u → R is a monotone convex
function with the Lebesgue property (1.1) on Mϕ̂

u and ϕ̂|L∞ = ϕ0;
(2) if (ϕ,X ) is a pair satisfying the conditions of (1), then X ⊂ Mϕ̂

u and ϕ = ϕ̂|X .

A proof will be given in Section 4.2. Here we briefly describe the basic idea. We already
know that Mϕ̂

u is a solid subspace of L0, ϕ̂ is well-defined and finite on Mϕ̂
u with ϕ̂|L∞ = ϕ0 and

that if (ϕ,X ) is another Lebesgue extension of ϕ0, then X ⊂ Mϕ̂
u (Lemma 3.3). It remains only

to show that ϕ̂ has the Lebesgue property on Mϕ̂
u which implies also that for any X ∈ X ⊂ Mϕ̂

u ,
ϕ(X) = limn ϕ(X1{|X|≤n}) = limn ϕ̂(X1{|X|≤n}) = ϕ̂(X). The key to the Lebesgue property of ϕ̂
on Mϕ̂

u is that, after a suitable change of measure, Mϕ̂
u can be made into an order-continuous

Banach lattice with the gauge norm induced by ϕ̂. Having established this, we can appeal to
the extended Namioka-Klee theorem that asserts that any finite monotone convex function on
a Banach lattice is norm-continuous, and the order-continuity of the norm then concludes the
proof.

Our next interest is to understand the relation between three spaces Mϕ̂
u , Mϕ̂ and Lϕ̂ as the

latter two seem more familiar. We already know, by definition, Mϕ̂
u ⊂ Mϕ̂ ⊂ Lϕ̂. In general,

however, these inclusions may be strict as the following examples illustrate.

Example 3.6 (Classical Orlicz Spaces). Let Φ and ρΦ be as in Example 2.6 and put ϕ0 = ρΦ.
Since ρΦ is continuous from below on L0, we still have ϕ̂ = ρΦ on L0

+ by Lemma 3.1. Then
clearly Mϕ̂ = MΦ ⊂ LΦ = Lϕ̂, and the inclusion is strict if (Ω,F ,P) is atomless and Φ(x) =
e|x|−1. Furthermore in this case, we have Mϕ̂

u = MΦ(= Mϕ̂). Indeed, if X ∈ MΦ (⇔Φ(α|X|) ∈ L1,
∀α > 0), then ϕ̂(α|X|1{|X|>N}) = E[Φ(α|X|)1{|X|>N}]→ 0 by dominated convergence. ♦

The next example shows that the inclusion Mρ̂
u ⊂ Mρ̂ may be strict.

Example 3.7. Let (Ω,F) = (N, 2N), with P given by P({n}) = 2−n, and (Qk)k a sequence of
probabilities on 2N given by Q1({1}) = 1, Qn({1}) = 1 − 1/n and Qn({n}) = 1/n for each n. Then
define ϕ(X) = supn EQn[X]. This is clearly monotone, convex, and positively homogeneous
(ϕ(αX) = αϕ(X) for α ≥ 0), hence ϕ∗ is {0, 1}-valued. By Hahn-Banach, we see that ϕ∗(Z) = 0
if and only if Z ∈ conv(dQn/dP, n ∈ N) =: Z , and it is clear that Z is uniformly integrable (thus
weakly compact), and ϕ has the Lebesgue property on L∞ ' l∞. Also, ϕ̂(X) = supn EQn[X] is
valid for all X ≥ 0.

Now consider a non-negative function X(k) = k. Then EQn[X] = (1−1/n)+n ·(1/n) = 2−1/n,
hence ϕ̂(α|X|) = α supn EQn[X] = 2α < ∞, thus X ∈ Mϕ̂. On the other hand, EQn[X1{X>N}] =
1{n>N}, thus for any α > 0, ϕ̂(α|X|1{|X|>N}) = α supn EQn[X1{X>N}] ≡ α for all N. Hence X < Mϕ̂

u ,
and consequently, Mϕ̂

u ( Mϕ̂. ♦

We now state our second result, which well-explains the reason for the subscript “u”.

Theorem 3.8. For X ∈ Mϕ̂, the following three conditions are equivalent:

(1) X ∈ Mϕ̂
u ;

(2) {XZ : ϕ∗0(Z) ≤ c} is uniformly integrable for all c > 0;
(3) for some ε > 0, supZ∈domϕ∗0

(E[(|X| ∨ ε)YZ] − ϕ∗0(Z)) is attained for all Y ∈ L∞.

Moreover, these three equivalent conditions imply that

(3.10) ϕ̂(X) = max
Z∈domϕ∗0

(E[XZ] − ϕ∗0(Z)),

i.e., the supremum in (3.2) is attained.

We prove this theorem in Section 5.
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3.2. Characterization of Lebesgue Property on Solid Spaces

Here we apply our results to obtain a characterization of the Lebesgue property of finite mono-
tone convex functions on arbitrary solid spaces in the spirit of Theorem 2.4 for the L∞ case.
Suppose we are given a solid space X ⊂ L0 and a finite monotone convex function ψ : X → R
with the Fatou property (not Lebesgue at now). Then the restriction ψ∞ := ψ|L∞ is a fi-
nite monotone convex function on L∞ having the Fatou property too, and putting ψ∗∞(Z) =
supX∈L∞(E[XZ] − ψ∞(X)),

(3.11) ψ̂(X) := sup
Z∈domψ∗∞

(E[XZ] − ψ∗∞(Z)),

defines an extension of ψ∞ to Dψ := {X ∈ L0 : X−Z ∈ L1, ∀Z ∈ domψ∗∞} ⊃ L0
+ ∪ L∞ by the

Fatou property. Note that the monotonicity (⇒ domψ∗∞ ⊂ L1
+) and the finiteness of ψ on the

whole X implies X ⊂ Dψ ∩ (−Dψ), or equivalently,

(3.12) XZ ∈ L1, ∀X ∈X , Z ∈ domψ∗∞.

Thus ψ̂ is well-defined on X in particular. Indeed, observe that E[|X|Z]−ψ∗∞(Z) = supn(E[|X| ∧
nZ] − ψ∗∞(Z)) ≤ supn ψ(|X| ∧ n) ≤ ψ(|X|) < ∞ for X ∈ X and Z ∈ domψ∗∞ where we used
Young’s inequality for the pair (ψ|L∞ , ψ∗∞).

On the other hand, the original (ψ,X ) is also an extension of ψ∞ since the latter is the restric-
tion of ψ. Then close comparisons of these two extensions using Theorems 3.5 and 3.8 yield the
following generalization of the JST Theorem 2.4:

Theorem 3.9 (Generalization of JST-Theorem [21]). Let X ⊂ L0 be a solid space contain-
ing the constants and ψ : X → R be a finite-valued monotone convex function satisfying the
Fatou property (2.2) on X . Then the following are equivalent:

(1) ψ has the Lebesgue property (2.3) on X ;
(2) for all X ∈X and c > 0, {XZ : ψ∗∞(Z) ≤ c} is uniformly integrable;
(3) the supremum supZ∈domψ∗∞(E[XZ] − ψ∗∞(Z)) is finite and attained for all X ∈X ;
(4) it holds that ψ(X) = maxZ∈domψ∗∞(E[XZ] − ψ∗∞(Z)), ∀X ∈X .

A proof is given in Section 3.2. Note that (4) is not a paraphrasing of (3) since it is not a priori
assumed that ψ(X) = supZ∈domψ∗∞(E[XZ] − ψ∗∞(Z)) = ψ̂(X) for all X ∈X .

When X = L∞, then ψ = ψ̂ hence (3) ⇔ (4) is trivial, and (2) is equivalent to saying that
{Z ∈ L1 : ψ∗∞(Z) ≤ c} is σ(L1, L∞)-compact for all c > 0 by the Dunford-Pettis theorem.
Thus, in this case, Theorem 3.9 is nothing but Theorem 2.4 which is essentially due to [21] and
[10]. Some other (partial) generalizations of Theorem 2.4 have been obtained in literature, so
we briefly discuss here some key features of our version.

Generality of the space X The only a priori assumption on the space X is that it is a solid
vector subspace (ideal) of L0 containing the constants. All Orlicz spaces and hearts as well as
Lp with p ∈ [0,∞] are of this type. Note also that without the solidness, the Lebesgue and Fatou
properties do not “well” make sense.

Our formulation is “universal” We note that topological qualifications (of X and ψ) are
absent in our formulation: ψ∗∞ = (ψ|L∞)∗ is used instead of the conjugate of ψ on the topological
dual of X , the inf-compactness of the conjugate is alternatively stated in a form of uniform
integrability, and the Fatou and Lebesgue properties are regularities in terms of order structure.
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These ingredients are in some sense more “universal” than the topological counter-parts. It
should also be emphasized that our characterization is still quite explicit even though it does not
rely on the topological nature of X .

Remark 3.10. Theorem 3.9 can be alternatively stated in terms of the order-continuous dual of
X , which is regarded, under our assumption on X , as the set

(3.13) X ∼
n = {Z ∈ L0 : XZ ∈ L1, ∀X ∈X }.

via the identification of Z and the order-continuous linear functional X 7→ E[XZ]. Observe that
domψ∗∞ ⊂ X ∼

n ⊂ L1 by L∞ ⊂ X and (3.12), thus “domψ∗∞” in the statements can be replaced
by X ∼

n . In particular, the Lebesgue property of ψ implies the “simplified dual representation”
on X ∼

n with the penalty function ψ∗∞ (see [7]) without any structural assumption on the space
X (than being an ideal of L0). Also, item (2) is in fact equivalent to the relative compactness
of all the level sets {Z ∈ X ∼

n : ψ∗∞(Z) ≤ c} for the weak topology σ(X ∼
n ,X ), which is a

(well-defined) locally convex Hausdorff topology as long as X contains the constants as we are
assuming. �

Given the above discussion, it seems also natural (and more common) to characterize the
Lebesgue property in the form of Theorem 3.9 but with the conjugate

(3.14) ψ∗(Z) := sup
X∈X

(E[XZ] − ψ(X)), Z ∈X ∼
n

instead of ψ∗∞. In fact, the equivalence of (1) – (4) in Theorem 3.9 remains true (see [28]) with
ψ∗ instead of ψ∗∞ if (a) X ⊂ L1(Q) for some Q ∼ P and if (b) ψ is a priori assumed to be
σ(X ,X ∼

n )-lower semicontinuous or equivalently

(3.15) ψ(X) = sup
Z∈X ∼

n

(E[XZ] − ψ∗(Z)), ∀X ∈X .

Here (a) is rather technical, which says simply that X ∼
n separates X , and only the equivalence

“Q ∼ P” is essential since that X accommodates a finite monotone convex function ψ with the
Fatou property already implies the existence of Q � P such that X ⊂ L1(Q). The assump-
tion (b) (⇔ (3.15)) implies the Fatou property (see [7, Proposition 1]), but the converse is not
generally true, and (b) may not be easy to check. In some “good” cases, however, (b) is actu-
ally equivalent to the Fatou property, and the “good” cases include X = L∞ (⇒ X ∼

n = L1),
X = MΦ with finite Young function Φ (then X ∼

n = LΦ
∗

), and X = LΦ with Φ satisfying the
so-called ∆2-condition (then LΦ = MΦ). For more general X , however, it is still open when the
Fatou property implies the σ(X ,X ∼

n )-lower semicontinuity for all convex functions.

Remark 3.11. The above question is equivalent to asking if all order closed convex subsets of
X areσ(X ,X ∼

n )-closed. This is true as soon as it is shown that anyσ(X ,X ∼
n )-convergent net

(Xα)α in X admits a sequence of indices (αn)n as well as a sequence X̃n ∈ conv(Xαn , Xαn+1 , . . .)
which converges in order to the same limit. In [7, Lemma 6 and Corollary 4], it is claimed that
the last property is true whenever (adapted to our notation) X is (lattice homomorphic to) and
ideal of L1 (hence of L0). Unfortunately, however, their proof has an error. There it is shown that
with the above assumption, any σ(X ,X ∼

n )-convergent net (Xα)α admits a sequence (X̃n)n of
forward convex combinations of the above form which, as a sequence in L1, converges in order
of L1 to the same limit. This part is correct. Then it was concluded that X̃n, as a sequence in
X , converges in order of X to the same limit. The last part is not true at least solely from the
assumptions imposed on X . In general, whenever X is an ideal of L0, the order convergence
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in X of a sequence (Xn)n is equivalent to the dominated a.s. convergence (i.e., Xn → X a.s. and
∃Y ∈ X+ with |Xn| ≤ Y (∀n)). The a.s. convergence is universal (which is common to all ideals
of L0), while being dominated in X is not universal. For a trivial example, picking Z ∈ L1

+ \L∞,
the sequence Xn = Z ∧ n which lies in L∞ converges in order in L1 to Z, but does not converge
in order in L∞. What we need to fill the gap is still an open question (for us). �

Remark 3.12. When Φ∗ is finite, [27] recently obtained the equivalence of (1) – (4) with ψ∗ for
X = LΦ, but with an even stronger assumption than (3.15) that ψ is σ(LΦ,MΦ∗)-lower semi-
continuous (note in this case that X ∼

n = LΦ
∗

which is strictly bigger than MΦ∗ if the probability
space is atomless and Φ does not satisfy the ∆2-condition). When X is a locally convex Fréchet
lattice, the implication (1)⇒ (4) is (implicitly) contained in [7, Lemma 7]. For the equivalence
of (1) – (4) with ψ∗ for general solid space X containing the constants under the assumptions
(a) and (b) above, see [28]. �

Note that with the standing assumptions of Theorem 3.9 only, the inequality E[XZ] ≤ ψ(X) +
ψ∗∞(Z) is not guaranteed for all X ∈ X and Z ∈ X ∼

n (it is true for X ∈ X+ ∪ L∞). However, if
ψ has the Lebesgue property, we see that E[XZ] = limn E[X1{|X|≤n}Z] ≤ lim supn ψ(X1{|X|≤n}) +
ψ∗∞(Z) = ψ(X) + ψ∗∞(Z). Thus (1)⇒ (4) shows that

Corollary 3.13. For a finite monotone convex function ψ on a solid vector space X ⊂ L0, the
Lebesgue property implies the existence of a σ-additive subgradient of ψ at everywhere on X ,
that is, for all X ∈X , there exists a Z ∈X ∼

n ⊂ L1 such that

E[XZ] − ψ(X) ≥ E[YZ] − ψ(Y), ∀Y ∈X .

4. Analysis of the space Mϕ̂
u and Proof of Theorem 3.5

Throughout this section, Assumption 3.2 is in force unless the contrary is explicitly stated. The
key to the proof of Theorem 3.5 is the analysis of the Orlicz-type space Mϕ̂

u .

4.1. The Gauge of ϕ̂

Let us define the gauge of the monotone convex function ϕ̂:

(4.1) ‖X‖ϕ̂ := inf{λ > 0 : ϕ̂(|X|/λ) ≤ 1}, ∀X ∈ L0,

with the convention inf ∅ = +∞. In analogy to the Luxemburg norms of usual Orlicz spaces, we
see easily that for any X,Y ∈ L0 and α ∈ R,

(4.2) ‖αX‖ϕ̂ = |α|‖X‖ϕ̂, ‖X + Y‖ϕ̂ ≤ ‖X‖ϕ̂ + ‖Y‖ϕ̂ and ‖X‖ϕ̂ ≤ ‖Y‖ϕ̂ if |X| ≤ |Y |.

Indeed, the first (resp. last) one follows from a change of variable λ′ = λ/α (resp. monotonicity
of ϕ̂), while the convexity and monotonicity of ϕ̂ implies that for any α ∈ (0, 1),

ϕ̂

(
|αX + (1 − α)Y |
αλ + (1 − α)λ′

)
≤

αλ

αλ + (1 − α)λ′
ϕ̂

(
|X|
λ

)
+

(1 − α)λ′

αλ + (1 − α)λ′
ϕ̂

(
|Y |
λ′

)
,

hence {αλ+ (1−α)λ′ : λ, λ′ > 0, ϕ̂(|X|/λ), ϕ̂(|Y |/λ′) ≤ 1} ⊂ {β > 0 : ϕ̂(|αX + (1−α)Y |/β) ≤ 1}.
We have also that

‖X‖ϕ̂ < ∞ if and only if X ∈ Lϕ̂;(4.3)

‖X‖ϕ̂ = 0 if and only if ϕ̂(α|X|) = 0, ∀α > 0;(4.4)

‖Xn‖ϕ̂ → 0 if and only if ϕ̂(α|Xn|)→ 0, ∀α > 0.(4.5)
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The necessity of (4.3) is clear from the definition while the convexity of ϕ̂ and ϕ̂(0) = 0 imply
that ϕ̂(εα|X|) ≤ εϕ̂(α|X|) = εϕ̂(α|X|) ↓ 0 whenever ϕ̂(α|X|) < ∞. The sufficiency of (4.4) is
again immediate from (4.1), and ‖X‖ϕ̂ = 0 implies that ϕ̂(α|X|) ≤ εϕ̂((α/ε)|X|) ≤ ε for any
ε ∈ (0, 1), hence ϕ̂(α|X|) = 0. Finally, (4.5) follows from the relations ‖X‖ϕ̂ < ε⇒ ϕ̂(|X|/ε) ≤ 1
⇒ ‖X‖ϕ̂ ≤ ε, and ϕ̂(α|X|) ≤ εαϕ̂(|X|/ε) ≤ εα if ε < 1/α.

In general, any R-valued function p on a Riesz space verifying the three conditions of (4.2) is
called a lattice seminorm. In view of (4.3), we have seen that ‖ · ‖ϕ̂ is a lattice seminorm on Lϕ̂

(hence on Mϕ̂ and Mϕ̂
u as well).

Note that we have used only three properties of ϕ̂ so far, namely, convexity, monotonicity and
ϕ̂(0) = 0, so the arguments above still work for any monotone convex function on L0

+ null at the
origin. Now the continuity from below of ϕ̂ (Lemma 3.1) shows:

Lemma 4.1. For any α > 0, ‖X‖ϕ̂ ≤ α if and only if ϕ̂(|X|/α) ≤ 1, and

(4.6) Xn → X a.s. ⇒ ‖X‖ϕ̂ ≤ lim inf
n
‖Xn‖ϕ̂.

Proof. The sufficiency of the first claim is clear from (4.1), while the monotonicity and conti-
nuity from below of ϕ̂ imply that for any α > 0,

α > ‖X‖ϕ̂ ⇒ ϕ̂ (|X|/α) = lim
n
ϕ̂

(
|X|

α + 1/n

)
≤ lim

n
ϕ̂

(
|X|

‖X‖ϕ̂ + 1/n

)
≤ 1.

For (4.6), we may suppose ‖X‖ϕ̂ > 0 (otherwise trivial). Put Yn := infk≥n |Xk| and note that
0 ≤ Yn ↑ |X| by Xn → X. Then for any ε ∈ (0, ‖X‖ϕ̂),

1 < ϕ̂

(
|X|

‖X‖ϕ̂ − ε

)
= lim

n
ϕ̂

(
Yn

‖X‖ϕ̂ − ε

)
,

which implies in view of the first claim that ‖Yn‖ϕ̂ > ‖X‖ϕ̂−ε for large enough n, thus we deduce
that lim infn ‖Xn‖ϕ̂ ≥ supn ‖ infk≥n |Xk|‖ϕ̂ = supn ‖Yn‖ϕ̂ ≥ ‖X‖ϕ̂ − ε. Since ε > 0 is arbitrary, we
have (4.6).

The next one is crucial.

Lemma 4.2. The lattice seminorm ‖ · ‖ϕ̂ is order-continuous on Mϕ̂
u , i.e.,

(4.7) ‖Xn‖ϕ̂ → 0 whenever ∃Y ∈ Mϕ̂
u with |Xn| ≤ |Y | (∀n) and Xn → 0, a.s.

Proof. Let (Xn)n ⊂ Mϕ̂
u be dominated by Y ∈ Mϕ̂

u and converges a.s. to 0. Then

‖Xn‖ϕ̂ ≤ ‖Xn1{|Y |>N}‖ϕ̂ + ‖Xn1{|Y |≤N}‖ϕ̂ ≤ ‖Y1{|Y |>N}‖ϕ̂ + ‖Xn1{|Y |≤N}‖ϕ̂.

We claim that (1) ‖Y1{|Y |>N}‖ϕ̂
N
→ 0, and (2) for each fixed N, ‖Xn1{|Y |≤N}‖ϕ̂

n
→ 0, then (4.7)

follows by a diagonal argument. In fact, (1) is equivalent in view of (4.5) to saying that
ϕ̂(α|Y |1{|Y |>N}) → 0 for all α > 0, which is nothing but the definition of Y being an element
of Mϕ̂

u . As for (2), we note that the sequence ZN
n := Xn1{|Y |≤N} satisfies supn ‖Z

N
n ‖∞ ≤ N < ∞

(since |Xn| ≤ |Y | by assumption) and ZN
n → 0 a.s. (n → ∞). Thus the Lebesgue property of

ϕ0 = ϕ̂|L∞ shows that ϕ̂(α|ZN
n |) = ϕ0(α|ZN

n |)→ 0 for all α > 0, hence ‖ZN
n ‖ϕ̂ → 0 by (4.5).

We now characterize the space Mϕ̂
u in terms of the gauge seminorm ‖ · ‖ϕ̂.

Lemma 4.3. For any X ∈ L0, the following are equivalent:
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(1) X ∈ Mϕ̂
u ;

(2) limN ‖X1{|X|>N}‖ϕ̂ = 0;
(3) limn ‖X1An‖ϕ̂ = 0 whenever P(An) ↓ 0.

Proof. (3) ⇒ (2) is clear, and (2) ⇒ (1) was already proved in the proof of Lemma 4.2. If
X ∈ Mϕ̂

u , then Yn := X1An ∈ Mϕ̂
u , |Yn| ≤ |X| and Yn → 0 a.s. whenever P(An) → 0. Thus (1)⇒

(3) follows from Lemma 4.2.

Finally, we have the following inequality:

Lemma 4.4. For any X ∈ L0 and Z ∈ domϕ∗0,

(4.8) E[|X|Z] ≤ (1 + ϕ∗0(Z))‖X‖ϕ̂.

Proof. We may assume ‖X‖ϕ̂ < ∞ (otherwise trivial). Then (3.6) shows 1 ≥ ϕ̂ (|X|/α) ≥
E[|X|Z/α] − ϕ∗0(Z) for any α > ‖X‖ϕ̂ and Z ∈ domϕ∗0, thus rearranging the terms,

E[|X|Z] ≤ (1 + ϕ∗0(Z))(‖X‖ϕ̂ + ε), ∀ε > 0,

and we have (4.8) by letting ε ↓ 0.

4.2. Quotient via a Change of Measure

We already know that (Mϕ̂
u , ‖ · ‖ϕ̂) is a semi-normed Riesz space with the order-continuous lattice

seminorm, and ϕ̂ is a finite monotone convex function on it. But ‖ · ‖ϕ̂ is not generally a norm,
i.e., ‖X‖ϕ̂ = 0 does not imply X = 0 as an element of Mϕ̂

u (or in L0), thus we cannot directly
conclude that Mϕ̂

u is an order-continuous Banach lattice. A standard way of tackling this kind of
difficulty is to take the quotient by the relation induced by ‖X‖ϕ̂ = 0. We shall do this through a
suitable change of probability.

Lemma 4.5. There exists a Ẑ ∈ domϕ∗0 such that for any A ∈ F ,

(4.9) E[Ẑ1A] = 0 ⇒ E[Z1A] = 0, ∀Z ∈ domϕ∗0.

Then putting dQ/dP = ĉẐ (with ĉ = E[Ẑ]−1), Q is a probability measure such that

(4.10) ϕ∗0(ĉdQ/dP) < ∞, and Q(|X| > 0) = 0 ⇔ ϕ̂(α|X|) = 0, ∀α > 0.

Remark 4.6. As we shall see in the proof, this lemma does not need the Lebesgue property of
ϕ0; the Fatou property is enough. �

Proof. We first construct a Ẑ ∈ domϕ∗0 ⊂ L1 such that

(4.11) ϕ∗0(Ẑ) ≤ 1 and P(Ẑ > 0) = max{P(Z > 0) : Z ∈ domϕ∗0, ϕ
∗
0(Z) ≤ 1}.

The set Λ := {Z ∈ domϕ∗0 : ϕ∗0(Z) ≤ 1} is convex, norm closed in L1 by the lower semicontinuity
of ϕ∗0, and is norm bounded since E[|Z|] = E[Z] ≤ ϕ0(1)+1 for all Z ∈ Λ. Thus for any sequences
(Zn)n ⊂ Λ and (αn) ⊂ R+ with

∑
n αn = 1, the series Z :=

∑
n αnZn is absolutely convergent in

L1, and we have in fact Z ∈ Λ. Indeed,

ϕ∗0(Z) = sup
X∈L∞

(E[XZ] − ϕ0(X)) = sup
X∈L∞

∑
n

αnE[XZn] − ϕ0(X)


≤

∑
n

αn sup
X′∈L∞

(
E[X′Zn] − ϕ0(X′)

)
=

∑
n

ϕ∗0(Zn) ≤ 1.
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In other words, Λ is countably convex. Then choosing a sequence (Zn)n ⊂ Λ so that P(Zn > 0) ↑
supZ∈Λ P(Z > 0), Ẑ :=

∑
n 2−nZn ∈ Λ and we have (4.11).

We check that this Ẑ satisfies (4.9). Indeed, if there exists a Z ∈ domϕ∗0 and A ∈ F such that

E[Ẑ1A] = 0 and E[Z1A] > 0, we see that P(Ẑ = 0, Z > 0) > 0, εZ ∈ Λ for some small ε > 0
since ϕ∗0(0) = 0 and Z̄ := (Ẑ + εZ)/2 ∈ Λ satisfies

P(Z̄ > 0) = P(Ẑ > 0) + P(Z > 0, Ẑ = 0) > P(Ẑ > 0).

This contradicts to (4.11).
Finally, putting dQ/dP = Ẑ/E[Ẑ], the first condition of (4.10) is clear. For the second,

if Q(|X| > 0) = E[Ẑ1{|X|>0}] = 0, then E[|X|Z] = 0 for all Z ∈ domϕ∗0, hence ϕ̂(α|X|) =
supZ∈domϕ∗0

(αE[Z|X|] − ϕ∗0(Z)) = 0 for all α > 0. On the other hand, if ϕ̂(α|X|) = 0 for all

α > 0, then αE[Ẑ|X|] ≤ ϕ̂(α|X|) + ϕ∗0(Ẑ) ≤ 1 for all α > 0, thus E[|X|Ẑ] = 0, and consequently
Q(|X| > 0) = 0.

By (4.10), we see that ‖X‖ϕ̂ = 0 if and only if X = 0, Q-a.s. Let

(4.12) NP(Q) := {X ∈ L0 : X = 0, Q-a.s.} = {X ∈ L0 : ϕ̂(α|X|) = 0, ∀α > 0}.

The quotient space L0/‖ · ‖ϕ̂ = L0/NP(Q) is (lattice isomorphic to) the space L0(Q) of equiva-
lence classes modulo Q-a.s. equality of measurable functions ordered by the Q-a.s. inequality
(remember that L0 = L0(P) also is the space of classes but modulo P-a.s. equality). All we need
is the following intuitively obvious lemma:

Lemma 4.7. There exists an onto linear mapping π : L0(P)→ L0(Q) such that

X ∧ Y = 0 in L0(P) ⇒ π(X) ∧ π(Y) in L0(Q),(4.13)

Xα ↓ 0 in L0(P) ⇒ π(Xα) ↓ 0 in L0(Q);(4.14) 
ξn, ξ, η ∈ L0(Q), |ξn| ≤ |η| in L0(Q) (∀n), ξn → ξ, Q-a.s.

⇒ ∃Xn, X,Y ∈ L0 such that ξn = π(Xn), ξ = π(X), η = π(Y),

|Xn| ≤ |Y | in L0 and Xn → X, P-a.s.

(4.15)

In general, a linear map from a Riesz space E to another Riesz space F satisfying (4.13) is called
a lattice homomorphism. (4.14) says that π is order-continuous, and such a lattice homomor-
phism is called a normal homomorphism. See [3] for more information.

Proof of Lemma 4.7. For each X ∈ L0, let π(X) be the Q-equivalence class generated by a repre-
sentative of X. This definition makes sense and does not depend on the choice of representative.
Indeed, if f and g are two representatives of X ∈ L0, then f = g P-a.s. by definition, hence f = g
Q-a.s. since Q � P. Thus the Q-equivalence classes generated by f and that by g coincide. It is
clear that π : L0 → L0(Q) is linear and onto. To see (4.13), suppose X,Y ∈ L0 and X ∧ Y = 0 in
L0. Then by definition, for any representatives f ∈ X and g ∈ Y , we have f ≥ 0 and g ≥ 0 P-a.s.,
hence Q-a.s., and consequently π(X) ≥ 0 and π(Y) ≥ 0. Next, if ξ ∈ L0(Q) and if ξ ≤ π(X),
ξ ≤ π(Y) in L0(Q), then taking a representative h ∈ ξ in L0(Q) with f , g being same as above,
we have h ≤ f and h ≤ g Q-a.s. Then putting A = {h ≤ f , h ≤ g}, we still have h1A ∈ ξ (since
Q(A) = 1), and h1A ≤ f and h1A ≤ g P-a.s. (since f ≥ 0, g ≥ 0 P-a.s.). Thus h1A ≤ 0 P-a.s.,
hence Q-a.s. Consequently, ξ ≤ 0 in L0(Q) which shows that π(X) ∧ π(Y) = 0 in L0(Q).

The first line of (4.15) means that for some (hence all) representatives fn ∈ ξn, f ∈ ξ and g ∈ η,
| fn| ≤ |g| Q-a.s. for all n, and fn → f Q-a.s. Then putting A = {| fn| ≤ |g| (∀n), fn → f } ∈ F , we
see that fn1A ∈ ξn, f1A ∈ ξ and g1A ∈ η since Q(A) = 1, while | fn1A| ≤ |g1A|, fn1A → f1A
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(pointwise). Hence if Xn (resp. X, Y) denotes the P-class generated by fn1A (resp. f1A, g1A),
we have that ξn = π(Xn), ξ = π(X) and η = π(Y) on the one hand, and on the other hand,
|Xn| ≤ |Y | in L0 and Xn → X P-a.s.

Finally, for an onto lattice homomorphism π to satisfy (4.14), it is necessary and sufficient
that the kernel of π is a band (order-closed solid subspace) in L0. In our case, the kernel of π is
NP(Q) given by (4.12), which is clearly a solid subspace of L0. To prove the order-closedness,
it suffices to check that for any increasing net (Xα)α ⊂ NP(Q) with 0 ≤ Xα ↑ X in L0, we have
X ∈ NP(Q). But since L0 has the countable sup property, there exists an increasing sequence of
indices (αn)n such that Xαn ↑ X. Then the monotone convergence theorem shows that E[XẐ] =
limn E[Xαn Ẑ] = 0, which implies X = 0, Q-a.s.

Remark 4.8. Taking η = supn |ξn| ∈ L0(Q) (if ξn → ξ) (resp. ξn ≡ ξ, ∀n) in (4.15), we have also ξn, ξ ∈ L0(Q), ξn → ξ,Q-a.s.

⇒ ∃Xn, X ∈ L0, ξn = π(Xn), ξ = π(X), Xn → X, P-a.s.
(4.16)

|ξ| ≤ |η| in L0(Q) ⇒ ∃X,Y ∈ L0, ξ = π(X), η = π(Y), |X| ≤ |Y | in L0.(4.17) �

Since π : L0 → L0(Q) is an onto lattice homomorphism, we have |π(X)| = π(|X|), and for
any solid subspace X ⊂ L0, the image X (Q) := π(X ) is a solid subspace of L0(Q) (see [3,
Theorem 1.33]). If in addition NP(Q) ⊂X , we see that π(X) ∈X (Q) if and only if X ∈X (the
if part is always true by definition). Indeed, π(X) ∈ X (Q) means π(X) = π(X′) with X′ ∈ X ,
and then π(X−X′) = 0 in L0(Q)⇔ X−X′ ∈ NP(Q), hence X = X′+(X−X′) ∈X +NP(Q) =X .
Noting that NP(Q) ⊂ Mϕ̂

u by definition (4.12), the following three are all solid subspaces of
L0(Q) of this type:

Mϕ̂
u (Q) := π(Mϕ̂

u ), Lϕ̂(Q) := π(Lϕ̂), Mϕ̂(Q) := π(Mϕ̂)

By (4.10) and ‖X‖ϕ̂ = 0⇔ ϕ̂(α|X|) = 0, ∀α > 0, the following is well-defined:

‖ξ‖ϕ̂,Q := ‖X‖ϕ̂ if ξ = π(X) ∈ L0(Q).(4.18)

Note that ‖ξ‖ϕ̂,Q < ∞ iff ξ ∈ Lϕ̂(Q) and ‖ξ‖ϕ̂,Q = 0 if and only if ξ = 0 in L0(Q) by construction.
Thus ‖ · ‖ϕ̂,Q is a lattice norm on Lϕ̂(Q) (hence on Mϕ̂

u (Q) and Mϕ̂(Q) as well). The goal of this
subsection is the following:

Theorem 4.9. (Mϕ̂
u (Q), ‖ · ‖ϕ̂,Q) is an order continuous Banach lattice, i.e., Mϕ̂

u (Q) is complete
for ‖ · ‖ϕ̂,Q and the norm ‖ · ‖ϕ̂,Q is order-continuous w.r.t. the Q-a.s. order:

(4.19) |ξn| ≤ η ∈ Mϕ̂
u (Q), ξn → 0, Q-a.s. ⇒ ‖ξn‖ϕ̂,Q → 0.

On this occasion, we shall prove also the following at once:

Proposition 4.10. Lϕ̂(Q) is a Banach lattice for the lattice norm ‖ · ‖ϕ̂,Q and Mϕ̂(Q) is its closed
linear subspace (hence itself a Banach lattice).

Lemma 4.11. ‖ · ‖ϕ̂,Q : L0(Q)→ R ∪ {+∞} satisfies the following:

ξn, ξ ∈ L0(Q), ξn → ξ, Q-a.s. ⇒ ‖ξ‖ϕ̂,Q ≤ lim inf
n
‖ξn‖ϕ̂,Q;(4.20)

‖ξ‖L1(Q) ≤ cQ‖ξ‖ϕ̂,Q,∀ξ ∈ L0(Q) where cQ = 2E[Ẑ].(4.21)
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Proof. If ξn, ξ ∈ L0(Q), ξn → ξ, Q-a.s., then by (4.16), there exist Xn, X ∈ L0 such that ξn =

π(Xn), ξ = π(X) and Xn → X, P-a.s. Thus by (4.18) and (4.6), ‖ξ‖ϕ̂,Q = ‖X‖ϕ̂ ≤ lim infn ‖Xn‖ϕ̂ =

lim infn ‖ξn‖ϕ̂,Q, and we have (4.20). For (4.21), Lemma 4.4 tells us that for each ξ = π(X) ∈
L0(Q), ĉ−1‖ξ‖L1(Q) = E[XẐ] ≤ (1 + ϕ∗0(Ẑ))‖X‖ϕ̂ = (1 + ϕ∗0(Ẑ))‖ξ‖ϕ̂,Q, thus we have (4.21) since

ϕ∗0(Ẑ) ≤ 1.

Proof of Proposition 4.10 and Theorem 4.9. We already know that (Lϕ̂(Q), ‖ · ‖ϕ̂,Q) is a normed
Riesz space, and Mϕ̂

u (Q) and Mϕ̂(Q) are its solid vector subspaces. To see that Lϕ̂(Q) is complete,
let (ξn)n ∈ Lϕ̂(Q) be a Cauchy sequence for ‖ · ‖ϕ̂,Q. Then by (4.21), it is also Cauchy in L1(Q),
hence admits the ‖ · ‖L1(Q)-limit ξ in L1(Q), and we can choose a subsequence (ξnk )k so that
ξnk → ξ, Q-a.s. Then (4.20) shows that ‖ξ − ξm‖ϕ̂,Q ≤ lim infk ‖ξnk − ξm‖ϕ̂,Q for all m. Since
the original sequence is Cauchy for ‖ · ‖ϕ̂,Q, this shows that ‖ξ‖ϕ̂,Q < ∞ (hence ξ ∈ Lϕ̂(Q)) and
‖ξ − ξn‖ϕ̂,Q → 0.

Suppose in addition that each ξn belongs to Mϕ̂(Q), and write ξn = π(Xn) with Xn ∈ Mϕ̂ and
ξ = π(X) with X ∈ Lϕ̂. Then for all α > 0, there is some large n so that ‖X−Xn‖ϕ̂ = ‖ξ−ξn‖ϕ̂,Q <

1/2α for which ϕ̂(2α|X−Xn|) ≤ 1 , hence ϕ̂(α|X|) ≤ 1
2 ϕ̂(2α|X−Xn|)+ 1

2 ϕ̂(2α|Xn|) ≤ 1+ 1
2 ϕ̂(2α|Xn|).

Consequently, X ∈ Mϕ̂, thus ξ = π(X) ∈ Mϕ̂(Q), and we deduce that Mϕ̂(Q) is closed in Lϕ̂(Q).
For Theorem 4.9, it remains to show that Mϕ̂

u (Q) is closed in Lϕ̂(Q), and ‖ · ‖ϕ̂,Q is order-
continuous for the Q-a.s. order (i.e., (4.19)). For the closedness, let (ξn)n and ξ be as in the first
paragraph and suppose that ξn ∈ Mϕ̂

u (Q) for each n. Then ξn = π(Xn) with Xn ∈ Mϕ̂
u for each n,

and ξ = π(X) with X ∈ Lϕ̂. Observe that

‖X1{|X|>N}‖ϕ̂ ≤ ‖X − Xn‖ϕ̂ + ‖Xn1{|X|>N}‖ϕ̂ = ‖ξ − ξn‖ϕ̂,Q + ‖Xn1{|X|>N}‖ϕ̂.

The first term in the right hand side tends to 0 as n→ ∞, while for each n, the second term tends
to 0 as N → ∞ since X ∈ Mϕ̂

u . Taking a diagonal, we see that X ∈ Mϕ̂
u , hence ξ = π(X) ∈ Mϕ̂

u (Q).
Therefore, Mϕ̂

u (Q) is closed.
Finally, we show (4.19). Let (ξn)n ⊂ Mϕ̂

u (Q), |ξn| ≤ η ∈ Mϕ̂
u (Q) and ξn → 0 Q-a.s. Then by

(4.15), we can choose Xn,Y with ξn = π(Xn), η = π(Y) (hence Y ∈ Mϕ̂
u ), |Xn| ≤ |Y | and Xn → 0

P-a.s. Then (4.7) and (4.18) show that ‖ξn‖ϕ̂,Q = ‖Xn‖ϕ̂ → 0, and we deduce (4.19).

Remark 4.12 (Sensitivity). In general, Q is only absolutely continuous with respect to the orig-
inal reference measure P (not equivalent). From (4.10), a necessary and sufficient condition for
the possibility of choosing an equivalent Q (Q ∼ P) is that

(4.22) ∀A ∈ F with P(A) > 0, ∃ε > 0, ϕ0(ε1A) > 0.

In financial mathematics, this condition is called the sensitivity of ϕ0. See [16, Ch. 4] for more
information. �

Corollary 4.13. If ϕ0 is sensitive in the sense of (4.22), (Mϕ̂
u , ‖ · ‖ϕ̂) itself is an order continuous

Banach lattice.

4.3. Proof of Theorem 3.5

We now proceed to Theorem 3.5. Recall that NP(Q) ⊂ Mϕ̂
u ⊂ D0 ∩ (−D0) where D0 is defined

by (3.1). Thus if X ∈ D0 and Y = X Q-a.s. (⇔ Y − X ∈ NP(Q)), we have Y = X + (Y − X) ∈
D0 + D0 = D0 since D0 is a convex cone. In this case, we have also that ϕ̂(X) = ϕ̂(Y). Indeed,
X = Y Q-a.s. implies E[|X − Y |Z] = E[|X − Y |Z1{X,Y}] = 0 for all Z ∈ domϕ∗0 by (4.9), hence
ϕ̂(X) = supZ∈domϕ∗0

(E[XZ] − ϕ∗0(Z)) = supZ∈domϕ∗0
(E[YZ] − ϕ∗0(Z)) = ϕ̂(Y). Therefore,

ϕ̂Q(ξ) := ϕ̂(X) if ξ = π(X) ∈ D0(Q) := π(D0)(4.23)
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is well-defined as a function on D0(Q) := π(D0), hence in particular on Lϕ̂(Q), Mϕ̂(Q) and on
Mϕ̂

u (Q). ϕ̂Q is convex (resp. monotone) since π is linear and ϕ̂ is convex (resp. both π and ϕ̂ are
monotone), and is finite on Mϕ̂(Q) (hence on Mϕ̂

u (Q) in particular).

Proof of Theorem 3.5. Recall that any monotone convex function on a Banach lattice is norm-
continuous on the interior of its effective domain by the extended Namioka-Klee theorem [7,
Theorem 1]. Thus ϕ̂Q : Mϕ̂

u (Q) → R is ‖ · ‖ϕ̂,Q-continuous as a finite valued monotone convex
function on a Banach lattice Mϕ̂

u (Q), while since ‖ · ‖ϕ̂,Q is Q-order continuous in the sense of
(4.19) by Theorem 4.9, we deduce that ϕ̂Q : Mϕ̂

u (Q)→ R is Q-order continuous. Thus recalling
that ϕ̂ = ϕ̂Q ◦ π and π : L0(P) → L0(Q) is order continuous, we obtain that ϕ̂ : Mϕ̂

u → R is
P-order continuous. Consequently, (ϕ̂,Mϕ̂

u ) is indeed a Lebesgue extension of ϕ0.
If (ϕ,X ) is another Lebesgue extension, we must have X ⊂ Mϕ̂

u by (3.4), and for any
X ∈ X ⊂ Mϕ̂

u , the Lebesgue properties of ϕ̂ and ϕ on X and ϕ̂|L∞ = ϕ|L∞ show that ϕ̂(X) =
limn ϕ̂(X1{|X|≤n}) = limn ϕ0(X1{|X|≤n}) = limn ϕ(X1{|X|≤n}) = ϕ(X). Thus we have ϕ = ϕ̂|X .

Remark 4.14. The three Orlicz-type spaces Mϕ̂
u (Q), Mϕ̂(Q) and Lϕ̂(Q) are also expressed using

ϕ̂Q in forms parallel to those of original spaces:

Lϕ̂(Q) = {ξ ∈ L0(Q) : ϕ̂Q(α|ξ|) < ∞, ∃α > 0},

Mϕ̂(Q) = {ξ ∈ L0(Q) : ϕ̂Q(α|ξ|) < ∞, ∀α > 0},

Mϕ̂
u (Q) = {ξ ∈ L0(Q) : lim

N
ϕ̂Q(α|ξ|1{|ξ|>N}) = 0, ∀α > 0}.

For the last identity, we note that π(|X|1{|X|>N}) = π(|X|)π(1{|X|>N}) = |π(X)|1{|π(X)|>N} which is
straightforward from the definition of π in Lemma 4.7. �

5. Proof of Theorem 3.8

Proof of Theorem 3.8: (1)⇒ (2). If {XZ : ϕ∗0(Z) ≤ c} is not uniformly integrable, there exists
ε > 0 such that for any n, there exists An ∈ F and Zn ∈ L1 with P(An) ≤ 1/n and ϕ∗0(Zn) ≤ c and
E[|X|Zn1An] > ε. But then ε < E[|X|Zn1An] ≤ (1 + c)‖X1An‖ϕ̂ for all n by Lemma 4.4, hence
X < Mϕ̂

u by Lemma 4.3.

Recall that if X ∈ Mϕ̂ (or more generally Lϕ̂), XZ ∈ L1 for any Z ∈ domϕ∗0 by (4.8).

Lemma 5.1. Let U ∈ Mϕ̂ and suppose that {UZ : ϕ∗0(Z) ≤ c} is uniformly integrable for each c.
Then Λβ,U,Y := {Z : Z ∈ domϕ∗0, E[UYZ] − ϕ∗0(Z) ≥ −β} is weakly compact in L1 for all β ∈ R
and Y ∈ L∞.

Proof. Since Λβ,U,Y is convex, it suffices to show that it is norm-closed and uniformly integrable.
For the latter, fix an arbitrary Z0 ∈ domϕ∗0, and observe that

E[UYZ] ≤ E[2‖Y‖∞|U |(Z/2)] ≤ E
[
2‖Y‖∞|U |

(
1
2

Z +
1
2

Z0

)]
≤ ϕ̂(2‖Y‖∞|U |) +

1
2
ϕ∗0(Z) +

1
2
ϕ∗0(Z0).

Thus Z ∈ Λβ,U,Y implies that

−β ≤ E[UYZ] − ϕ∗0(Z) ≤ ϕ̂(2‖Y‖∞|U |) +
1
2
ϕ∗0(Z0) −

1
2
ϕ∗0(Z).
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Putting β′ := 2β + 2ϕ̂(2‖Y‖∞|U |) + ϕ∗0(Z0) < ∞ (since U ∈ Mϕ̂), this tells us that Λβ,U,Y ⊂ {Z :
ϕ∗0(Z) ≤ β′} and the latter set is uniformly integrable by the fundamental assumption that ϕ0 is
Lebesgue on L∞ and Theorem 2.4.

To see the closedness, let Zn ∈ Λβ,U,Y and Zn → Z ∈ L1 in norm. Then Zn → Z in probability,
hence UYZn → UYZ in probability as well. On the other hand, from what we just proved and
the assumption of lemma, (UZn)n is uniformly integrable, thus so is (UYZn)n since Y ∈ L∞.
Consequently, E[UYZ] = limn E[UYZn], and since ϕ∗0 is lower semicontinuous on L1, we have
also ϕ∗0(Z) ≤ lim infn ϕ

∗
0(Zn). Summing up,

E[UYZ] − ϕ∗0(Z) ≥ lim
n

E[UYZn] − lim inf
n

ϕ∗0(Zn)

≥ lim sup
n

(E[UYZn] − ϕ∗0(Zn)) ≥ −β.

Hence Z ∈ Λβ,U,Y .

Proof of Theorem 3.8: (2)⇒ (3) and (3.10). For U ∈ Mϕ̂, Y ∈ L∞, we put lU,Y (Z) := E[UYZ]−
ϕ∗0(Z). Then Lemma 5.1 tells us that if {UZ : ϕ∗0(Z) ≤ c} is uniformly integrable for each c > 0,
lU,Y is weakly upper semicontinuous and all its upper level sets are weakly compact for each
Y ∈ L∞, and thus supZ∈domϕ∗0

lU,Y (Z) is attained. By the condition (2) of Theorem 3.8, this applies
to U = X and Y = 1 (constant), and we obtain (3.10). For (3), we note that |X| ≤ |X| ∨1 ≤ |X|+1
and {Z : ϕ∗0(Z) ≤ c} is uniformly integrable for each c > 0 by Theorem 2.4 and the Lebesgue
property of ϕ0 on L∞, hence (2) implies also that {(|X| ∨1)Z : ϕ∗0(Z) ≤ c} is uniformly integrable
too. Therefore, the above argument applies to U = |X| ∨ 1 ∈ Mϕ̂ and arbitrary Y ∈ L∞, showing
that the supremum supZ∈domϕ∗0

(E[(|X| ∨ 1)YZ] − ϕ∗0(Z)) = supZ∈domϕ∗0
l|X|∨1,Y (Z) is attained for

each Y ∈ L∞. This concludes the proof of (2)⇒ (3).

Proof of Theorem 3.8: (2)⇒ (1). We apply a version of minimax theorem (Theorem A.1) to the
function L∞ × domϕ∗0 3 (Y,Z) 7→ f (Y,Z) := E[|X|YZ] − ϕ∗0(Z). We already know under (2) that
for each Y ∈ L∞, Z 7→ f (Y,Z) is concave, weakly upper semicontinuous on domϕ∗0 and all its
level sets are weakly compact by Lemma 5.1 applied to U = |X|. On the other hand Y 7→ f (Y,Z)
is affine (hence convex). Thus for any convex set C ⊂ L∞, we have

inf
Y∈C

sup
Z∈domϕ∗0

(
E[|X|YZ] − ϕ∗0(Z)

)
= sup

Z∈domϕ∗0

inf
Y∈C

(
E[|X|YZ] − ϕ∗0(Z)

)
.(5.1)

Let C1 be the convex hull conv(1{|X|>N},N ∈ N). Observe that for any n ∈ N, λi ≥ 0, λ1+· · ·+λn =

1 and N1 < N2 < · · · < Nn, we have 1{|X|>Nn} ≤ λ11{|X|>N1} + · · · + λn1{|X|>Nn} ≤ 1{|X|>N1} and
every element of C1 is written in the form of middle expression. Thus for any α > 0,

lim
N
ϕ̂(α|X|1{|X|>N}) = inf

Y∈αC1
ϕ̂(|X|Y) = inf

Y∈αC1
sup

Z∈domϕ∗0

(
E[|X|YZ] − ϕ∗0(Z)

)
(5.1)
= sup

Z∈domϕ∗0

(
inf

Y∈αC1
E[|X|YZ] − ϕ∗0(Z)

)
= sup

Z∈domϕ∗0

(
lim

N
αE[|X|1{|X|>N}Z] − ϕ∗0(Z)

)
= sup

Z∈domϕ∗0

−ϕ∗0(Z) = 0.

Thus X ∈ Mϕ̂
u .

We proceed to the implication (3) ⇒ (2). This will follow from the following version of
perturbed James’s theorem recently obtained by [26]:
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Theorem 5.2 ([26], Theorem 2). Let E be a real Banach space and f : E → R ∪ {+∞} be a
function which is coercive, i.e.,

(5.2) lim
‖x‖→∞

f (x)
‖x‖
= +∞.

Then if the supremum supx∈E(〈x, x∗〉 − f (x)) is attained for every x∗ ∈ E∗, the level set {x ∈ E :
f (x) ≤ c} is relatively weakly compact for each c ∈ R.

We shall apply this theorem with E = L1. We first make a “change of variable”. For U ∈ Mϕ̂

with U ≥ 1 a.s., we set

(5.3) gU(Z) := ϕ∗0(Z/U) = sup
ξ∈L∞

(E[ξZ/U] − ϕ̂(ξ)) , ∀Z ∈ L1.

Note that domgU ⊂ L1
+ since ϕ0 is monotone (see (2.6)), and that

{Z ∈ L1 : gU(Z) ≤ c} = {UZ′ : Z′ ∈ L1, ϕ∗0(Z′) ≤ c},

domgU = Udomϕ∗0 = {UZ : Z ∈ domϕ∗0}.
(5.4)

(Remember that XZ ∈ L1 for any X ∈ Mϕ̂ and Z ∈ domϕ∗0 by (4.8).)

Lemma 5.3. Let U ∈ Mϕ̂ with U ≥ 1. Then gU is coercive:

(5.5) lim
‖Z‖1→∞

gU(Z)/‖Z‖1 = ∞.

Proof. For any n and α > 0 (constant), αU1{U≤n} ∈ L∞, hence from the definition of gU ,

gU(Z) ≥ E[αU1{U≤n}(Z/U)] − ϕ̂(αU1{U≤n}) = α‖Z1{U≤n}‖1 − ϕ̂(αU1{U≤n})

→ α‖Z‖1 − ϕ̂(αU), ∀Z ∈ L1
+,

while gU(Z) = ∞ if Z ∈ L1 \ L1
+. Here the last convergence follows from 0 ≤ αU1{U≤n} ↑ αU,

so ϕ̂(αU) = limn ϕ̂(αU1{U≤n}) by Lemma 3.1. Since ϕ̂(αU) < ∞ for any α > 0 by U ∈ Mϕ̂, this
shows (5.5).

Proof of Theorem 3.8: (3)⇒ (2). Suppose (3), namely, for some ε > 0, the supremum
supZ∈domϕ∗0

(E[(|X| ∨ ε)YZ] − ϕ∗0(Z)) = supZ∈domϕ∗0
(E[(|X/ε| ∨ 1)(εY)Z] − ϕ∗0(Z)) is attained for

every Y ∈ L∞. Putting U = |X/ε| ∨ 1 ∈ Mϕ̂, this says that for any Y ∈ L∞, there exists
ZU,Y ∈ domϕ∗0 ⊂ L1 such that ϕ̂(YU) = E[YUZU,Y ] − ϕ∗0(ZU,Y ) = E[Y(UZU,Y )] − gU(UZU,Y ). On
the other hand, for any Z′ ∈ domgU = Udomϕ∗0,

E[YZ′] − gU(Z′) = E
[
YU

Z′

U

]
− ϕ∗0

(
Z′

U

)
≤ ϕ̂(YU).

Thus supZ∈L1(E[YZ] − gU(Z)) is attained for all Y ∈ L∞, hence Theorem 5.2 shows that {Z′ ∈
L1 : gU(Z′) ≤ c} = {UZ : ϕ∗0(Z) ≤ c} is relatively weakly compact (⇔ uniformly integrable) for
each c > 0. Since |X| ≤ εU, we deduce that {XZ : ϕ∗0(Z) ≤ c} is uniformly integrable for each
c > 0.
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6. Proof of Theorem 3.9

We use the notation of Theorem 3.9, namely, ψ : X → R is a finite monotone convex function
with the Fatou property (2.2) on a solid space X ⊂ L0 containing the constants, and we put
ψ∞ := ψ|L∞ , ψ∗∞(Z) = supX∈L∞(E[XZ] − ψ(X)) = (ψ|L∞)∗(Z) and

ψ̂(X) = sup
Z∈domψ∗∞

(E[XZ] − ψ∗∞(Z)),

on D0 = {X ∈ L0 : X−Z ∈ L1, ∀Z ∈ domψ∗∞}. Remember that we do not a priori assume
the Lebesgue property of ψ∞ on L∞ here, but it is implied by any of conditions (1) - (4) of
Theorem 3.9 as we shall see in the proof below. Note also that we can and do in the sequel
assume that ψ(0) = 0, replacing ψ by ψ − ψ(0).

Proof of Theorem 3.9: (1)⇒ (2). If ψ is finite and has the Lebesgue property on X , ψ∞ is a
finite monotone convex function with the Lebesgue property on L∞. Thus Theorem 3.5 applies

to ϕ0 = ψ∞ (hence ϕ̂ = ψ̂) implying that (ψ̂,Mψ̂
u ) is the maximum Lebesgue extension of ψ∞.

On the other hand, (ψ,X ) is another Lebesgue extension of ψ∞, hence we must have X ⊂ Mϕ̂
u .

Consequently, (2) follows from Theorem 3.8 ((1)⇒ (2)).

Proof of Theorem 3.9: (2)⇒ (3). Since ψ is supposed to have the Fatou property on X , ψ∞ =
ψ|L∞ has the Fatou property on L∞. Then condition (2) of Theorem 3.9 applied to X = 1
implies through Theorem 2.4 that ψ∞ has the Lebesgue property on L∞. On the other hand,
since ψ is finite on X and has the Fatou property (⇔ continuous from below), we see that
ψ̂(α|X|) = limn ψ̂(α|X| ∧ n) = limn ψ(α|X| ∧ n) = ψ(α|X|) < ∞, hence X ⊂ Mψ̂. Consequently,
for each X ∈ X , the assumption of Theorem 3.8 ((2) ⇒ (3.10)) is satisfied with ϕ0 = ψ∞ (⇒
ϕ̂ = ψ̂), thus the supremum supZ∈domψ∗∞(E[XZ] − ψ∗∞(Z)) is attained.

The implication (3) ⇒ (1) is a little more subtle. We first note that condition (3) of The-
orem 3.9 restricted to L∞ ⊂ X again implies the Lebesgue property of ψ∞ = ψ|L∞ on L∞.
Thus ϕ0 = ψ∞ satisfies our standing assumption (Assumption 3.2). Let Q � P be the proba-
bility measure constructed in Lemma 4.5 with ϕ0 = ψ∞, i.e., a measure such that Q(A) = 0
iff ψ∞(α1A) = 0 for all α > 0, and we use the notation (adapted to ϕ0 = ψ∞, ϕ̂ = ψ̂)
of Section 4.2: π : L0 → L0(Q) (the order-continuous lattice homomorphism constructed in

Lemma 4.7), Mψ̂
u (Q) = π(Mψ̂

u ), Mψ̂(Q) = π(Mψ̂) and ψ̂Q (defined by (4.23) with ϕ̂ = ψ̂). Then
X (Q) := π(X ) is a solid subspace of L0(Q).

Lemma 6.1. With the notation above and the condition (3) of Theorem 3.9,

(6.1) X,Y ∈X , X = Y, Q-a.s. ⇒ ψ(X) = ψ(Y).

In particular,

(6.2) ψQ(ξ) := ψ(X), ξ = π(X) ∈X (Q)

is well defined as a monotone convex function on X (Q), and it has the Q-Fatou property on
X (Q), and thus ψQ(ξ) = ψ̂Q(ξ) for all ξ ∈X+(Q).

Proof. We first claim that for any X,Y ∈X ,

(6.3) ψ(α|X − Y |) = 0, ∀α > 0 ⇒ ψ(X) = ψ(Y).
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To see this, we note that

ψ(X) − ψ(Y) ≤
1
α
ψ(α|X − Y |) +

α − 1
α

ψ
(

α

α − 1
Y
)
− ψ(Y), ∀α > 1.

Since ψ is finite, the finite convex function β 7→ ψ(βY) is continuous on R, thus f (β) = ψ(βY)/β
is continuous at β = 1 with f (1) = ψ(Y). Therefore, for any ε > 0, there exists αε > 1 so that
αε−1
αε

ψ
(
αε
αε−1 Y

)
− ψ(Y) < ε. Combining this with the assumption ψ(α|X − Y |) = 0 for all α, we

see that ψ(X) − ψ(Y) < ε for all ε > 0, hence ψ(X) ≥ ψ(Y). Changing the roles of X and Y , we
have also ψ(X) ≤ ψ(Y), and (6.3) follows.

If X = Y , Q-a.s., then by the construction of Q (with ϕ0 = ψ∞), we see that ψ(α|X − Y | ∧ n) =
ψ∞(α|X−Y |∧n) = 0 for all n, then the Fatou property of ψ implies ψ(α|X−Y |) ≤ lim infn ψ(α|X−
Y | ∧ n) = 0. Thus (6.1) follows from (6.3).

It is clear from (6.1) that ψQ of (6.2) is well-defined and finite on X (Q). To see the Q-Fatou
property, suppose |ξn| ≤ |η| (∀n) for some η ∈X (Q) and ξn → ξ Q-a.s.. Then by (4.15), we can
choose Xn, X ∈ L0 and Y ∈X so that ξn = π(Xn), ξ = π(X), η = π(Y) with |Xn| ≤ |Y | in L0 (hence
Xn, X ∈ X by the solidness) and that Xn → X P-a.s. Then the P-Fatou property of the original
ψ shows that ψQ(ξ) = ψ(X) ≤ lim infn ψ(Xn) = lim infn ψn(ξn). The final assertion follows since
if ξ ≥ 0, then Q-Fatou property shows ψQ(ξ) = limn ψQ(ξ ∧ n) = limn ψ̂(ξ ∧ n) = ψ̂Q(ξ).

Consequently, we have ψ = ψQ ◦ π and recall that π : L0 → L0(Q) is order-continuous. Thus
ψ is order-continuous on X as soon as ψQ is Q-order continuous on X (Q) = π(X ) which is a

solid subspace of Mψ̂
u (Q). Then if X (Q) was further norm-closed in Mψ̂

u (Q), we could conclude
that (X (Q), ‖ · ‖ψ̂,Q) is an order-continuous Banach lattice on its own right, hence any finite
monotone convex function on it is order continuous. But there is no guarantee that X (Q) is
closed in Mϕ̂

u (Q), so we need a trick.

Lemma 6.2. In addition to the assumption of Lemma 6.1, we suppose that X ⊂ Mψ̂
u . Then ψ

has the Lebesgue property on X , hence a fortiori ψ = ψ̂|X .

Proof. To see the Lebesgue property of ψ on X , it suffices to show that ψQ has the Q-Lebesgue
property on X (Q), and for the latter, we have to show that for any η ∈X (Q),

(6.4) |ξn| ≤ |η| (∀n), ξn → ξ ∈X (Q)Q-a.s. ⇒ ψQ(ξ) = lim
n
ψQ(ξn).

Thus in the sequel, we fix an η = π(Y) ∈X (Q), and note that X (Q) is solid subspace of Mψ̂
u (Q)

since X is a solid subspace of Mψ̂
u and π is an onto lattice homomorphism.

Step 1. Define

(6.5) Bη(Q) := {ζ ∈ Mψ̂
u (Q) : |ζ | ∧ n|η| ↑ |ζ |}.

This is the principal band generated by η in Mψ̂
u (Q), i.e., it is the smallest order closed solid sub-

space (band) of Mψ̂
u (Q) containing η. Consequently, Bη(Q) is norm closed ([2, Theorem 8.43])

in the order-continuous Banach lattice (Mψ̂
u (Q), ‖ · ‖ψ̂,Q), so (Bη(Q), ‖ · ‖ψ̂,Q) is itself an order-

continuous Banach lattice. Hence the extended Namioka-Klee theorem shows that any finite
monotone convex function on Bη(Q) is order-continuous.
Step 2. Define

(6.6) ψ
η
Q(ξ) := lim

m
lim

n
ψQ((ξ ∨ (−m|η|) ∧ n|η|), ξ ∈ Bη(Q).
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Observe that (ξ∨(−m|η|))∧n|η| ∈X (Q) for each m, n since η ∈X (Q) and X (Q) is solid, hence
ψ
η
Q is well-defined at least as a [−∞,∞]-valued monotone function, and it is straightforward

to deduce from the monotonicity and convexity of ψQ that ψηQ is also monotone and convex.

Moreover, ψηQ is finite on Bη(Q). To see this, note first that for all ξ ∈ Bη(Q) ⊂ Mψ̂
u (Q),

Lemma 6.1 shows that

ψ
η
Q(|ξ|) = lim

n
ψQ(|ξ| ∧ n|η|) = lim

n
ψ̂Q(|ξ| ∧ n|η|) = ψ̂Q(|ξ|) < ∞.

On the other hand, ψηQ(−|ξ|) = limn ψQ(−(|ξ| ∧ n|η|)) by definition, and

0 = 2ψQ(0) ≤ ψQ(|ξ| ∧ n|η|) + ψQ(−(|ξ| ∧ n|η|))

≤ ψ̂Q(|ξ|) + ψQ(−(|ξ| ∧ n|η|)), ∀n,

hence ψηQ(−|ξ|) = infn ψQ(−(|ξ| ∧ n|η|) ≥ −ψ̂(−|ξ|) > −∞. Consequently, Step 1 tells us that ψηQ
is Q-order continuous on Bη(Q) as a finite monotone convex function on an order continuous
Banach lattice.
Step 3. Though Bη(Q) may not contain the whole X , we see that if |ξ| ≤ |η|, then ξ ∈ X (Q) ∩
Bη(Q) and (ξ ∨ (−m|η|)) ∧ n|η| = ξ for all m, n, hence ψηQ(ξ) = ψQ(ξ). In particular, if |ξn| ≤ |η|

and ξn → ξ, Q-a.s., we have ψQ(ξn) = ψηQ(ξn)→ ψ
η
Q(ξ) = ψQ(ξ) by Step 2, and we have (6.4).

Proof of Theorem 3.9: (3)⇒ (1) and (4). Remember that (3) restricted to L∞ implies that ψ∞ =
ψ|L∞ has the Lebesgue property on L∞. Also, since X is supposed to be solid, we have (|X| ∨
1)Y ∈ X for all X ∈ X and Y ∈ L∞, hence the condition (3) of Theorem 3.9 already implies
that the supremum supZ∈domψ∗∞(E[(|X| ∨ 1)YZ] − ψ∗∞(Z)) is attained for any X ∈ X , Y ∈ L∞

and Z ∈ domψ∗∞. Hence we see from Theorem 3.8 ((3) ⇒ (1)) that X ⊂ Mψ̂
u . Thus by

Lemma 6.2, ψ has the Lebesgue property on X (thus (1)), and Theorem 3.5 shows that ψ(X) =
ψ̂(X) = supZ∈domψ∗∞(E[XZ] − ψ∗∞(Z)), hence we have (4) since the supremum is supposed to be
attained.

7. Convex Risk Measures

Here we consider convex risk measures as our motivating class of monotone convex functions.
In mathematical finance, a convex risk measure on a solid space X is a proper convex function
ρ which is monotone decreasing in the a.s. order and satisfies the cash-invariance: ρ(X + c) =
ρ(X) − c if X ∈X and c ∈ R. Making a change of sign, we call a proper monotone (increasing)
convex function ϕ on X a convex risk function if

(7.1) ϕ(X + c) = ϕ(X) + c, ∀X ∈X , c ∈ R.

The relation between the two notions is obvious; if ϕ is a convex risk function, then ρ(X) =
ϕ(−X) is a convex risk measure, and also −ϕ(−X) is called a concave monetary utility function.
Though it is just a matter of notation, we prefer monotone increasing and convex functions which
fit to our and standard notation of convex analysis, and it is also less confusing. Also, a convex
risk function ϕ is called coherent if it is positively homogeneous: ϕ(αX) = αϕ(X) if α ≥ 0. We
refer the reader to [16, Ch. 4] for a comprehensive account.

When X = L∞, condition (7.1) for a monotone convex function ϕ is equivalent to

(7.2) ϕ∗(Z) < ∞ ⇒ Z ≥ 0 and E[Z] = 1,
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i.e., ϕ∗(Z) is finite only if Z is a Radon-Nikodým density of a probability measure, say Q, abso-
lutely continuous w.r.t. P. Adopting the usual convention of identifying a probability measure
Q � P with its density dQ/dP, the representation (2.4) is written as

(7.3) ϕ(X) = sup
Q∈Qϕ

(EQ[X] − ϕ∗(Q)), X ∈ L∞,

where Qϕ∗ := {Q � P : probability, dQ/dP ∈ domϕ∗}. Another consequence of cash-
invariance (7.1) is that it implies ϕ is finite on L∞, since then −‖X‖∞ = ϕ(−‖X‖∞) ≤ ϕ(X) ≤
ϕ(‖X‖∞) = ‖X‖∞ for all X ∈ L∞ by the monotonicity and (7.1). Thus all of our main results
apply to any Lebesgue convex risk functions on L∞. Note also that any Lebesgue extension of
a convex risk function ϕ0 on L∞ retains the cash-invariance (7.1) since if (ϕ,X ) is a Lebesgue
extension of such ϕ0,

ϕ(X + c) = lim
n
ϕ(X1{|X|≤n} + c) = lim

n
ϕ0(X1{|X|≤n} + c)

= lim
n
ϕ0(X1{|X|≤n}) + c = lim

n
ϕ(X1{|X|≤n}) + c

Consequently we have the following as a paraphrasing of Theorem 3.5:

Corollary 7.1. Let ϕ0 be a convex risk function on L∞ with the Lebesgue property and ϕ0(0) =
0, ϕ∗0 its conjugate, Q0 := Qϕ0 and D0 := {X ∈ L0 : X− ∈ L1(Q), ∀Q ∈ Q0}. Then we have:

(1) The following are well-defined

ϕ̂(X) = sup
Q∈Q0

(EQ[X] − ϕ∗0(Q)), X ∈ D0(7.4)

Mϕ̂
u = {X ∈ L0 : lim

N
ϕ̂(α|X|1{|X|>N}) = 0, ∀α > 0} ⊂ D0 ∩ (−D0).(7.5)

(2) ϕ̂ is a finite convex risk function on Mϕ̂
u with the Lebesgue property and ϕ̂|L∞ = ϕ0, and for

any other pair (ϕ,X ) of a solid space X ⊂ L0 and a convex risk function on X with the
Lebesgue property and ϕ|L∞ = ϕ0, we have X ⊂ Mϕ̂

u and ϕ = ϕ̂|X .

Note that the assumption ϕ0(0) = 0 is just for notational simplicity; without this assumption,
(ϕ̂,Mϕ̂−ϕ0(0)

u ) is the maximum Lebesgue extension of ϕ0.
Here we examine some typical risk functions deriving the explicit forms of the space Mϕ̂

u . We
begin with a simple remark. Though we defined ϕ̂ using the dual representation of ϕ0 on L∞, it
may be more convenient to use other more explicit formula for ϕ0 if available. By Lemma 3.1,
we know that ϕ̂ is continuous from below on D0 ⊃ L0

+. In particular,

(7.6) ϕ̂(X) = lim
n
ϕ0(X ∧ n), ∀X ∈ L0

+.

Note that this formula may not be true for X ∈ D0 \ L0
+, but we need only consider |X| with

X ∈ L0 to derive the spaces Mϕ̂
u and Mϕ̂.

Example 7.2 (Entropic Risk Function). Let

(7.7) ϕent(X) := logE[exp(X)], X ∈ L∞.

This is called the entropic risk function. It is straightforward from the dominated convergence
theorem that ϕent has the Lebesgue property on L∞. Its conjugate ϕ∗ent is given as ϕ∗ent(Q) =
H(Q|P) := E[(dQ/dP) log(dQ/dP)], the relative entropy (thus entropic), hence we have

ϕ̂ent(X) = sup
Q�P,H(Q|P)<∞

(EQ[X] −H(Q|P)), ♦
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and the identity ϕ̂ent(X) = logE[exp(X)] remains true for all X ∈ L0
+. In particular, Mϕ̂ent =

MΦexp ( LΦexp = Lϕ̂ent if (Ω,F ,P) is atomless, where Φexp(x) = ex − 1 (x ≥ 0) and MΦexp (resp.
LΦexp) is the associated Orlicz heart (resp. space). Further, we see that Mϕ̂ent

u = Mϕ̂ent(= MΦexp),
since if X ∈ MΦexp , exp(ϕent(λ|X|1{|X|>N})) = E[exp(λ|X|1{|X|>N})] = E[exp(λ|X|)1{|X|>N}] +
P(|X| ≤ N)→ 1 by the dominated convergence for every λ > 0.

7.1. Utility Based Shortfall Risk

Let l : R → R be a (finite) increasing convex function with l(0) > infx l(x) (thus not identically
constant). Then its conjugate l∗(y) = supx(xy − l(x)) is a convex function with

(7.8) doml∗ ⊂ R+ and lim
y↑∞

l∗(y)
y
= +∞.

The second one shows also that for any c > 0, there exist Λ(c), Λ(c) ∈ (0,∞) such that

(7.9)
l(0) + l∗(y)

y
≤ c + 1 ⇒ y ∈ [Λ(c), Λ(c)]

Indeed, if Ic := {y > 0 : (l(0) + l∗(y))/y ≤ c + 1} is empty, put Λ(c) = Λ(c) = 1. Otherwise,
Λ(c) := sup Ic is finite by (7.8), and picking x0 < 0 with l(x0) < l(0) (by assumption),

l(0) + l∗(y)
y

= sup
x

(
x +

l(0) − l(x)
y

)
≥ x0 +

l(0) − l(x0)
y

,

hence Λ(c) = l(0)−l(x0)
c+1−x0

> 0 does the job.
Now we define the associated shortfall risk function by

(7.10) ϕl(X) := inf{x ∈ R : E[l(X − x)] ≤ l(0)}, ∀X ∈ L∞.

This is a convex risk function with the Lebesgue property (2.3∞) and its conjugate is

(7.11) ϕ∗l (Q) := ϕ∗l (dQ/dP) = inf
λ>0

1
λ

(
l(0) + E

[
l∗

(
λ

dQ
dP

)])
.

(See [16, Ch.4]). Also, (7.6) implies that

ϕ̂l(|X|) = sup
n

inf{x : E[l(|X| ∧ n − x)] ≤ l(0)} ≤ inf{x : E[l(|X| − x)] ≤ l(0)},

while if ϕ̂l(|X|) < ∞, then E[l(|X| − ϕ̂l(|X|))] ≤ limn E[l(|X| ∧ n − ϕ̂l(|X|))] ≤ lim supn E[l(|X| ∧
n − ϕl(|X| ∧ n))] ≤ l(0) by monotone convergence and ϕl(|X| ∧ n) ≤ ϕ̂l(|X|), thus

ϕ̂l(|X|) = inf{x : E[l(|X| − x)] ≤ l(0)}, X ∈ L0.(7.12)

In this case, two spaces Mϕ̂l
u and Mϕ̂l coincide and equal to the Orlicz heart associated to the

Young function Φl(x) := l(|x|) − l(0), i.e.,

Proposition 7.3. Mϕ̂l
u = Mϕ̂l = MΦl .
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Proof. To see MΦl ⊂ Mϕ̂l
u , it suffices that {XdQ/dP : ϕ∗l (Q) ≤ c} is uniformly integrable for any

c > 0 and X ∈ MΦl by Theorem 3.8 . So let us fix c > 0 and X ∈ MΦl . Observe that if ϕ∗l (Q) ≤ c,
then there exists a λQ > 0 such that

(7.13) c + 1 ≥
1
λQ

(
l(0) + E

[
l∗

(
λQ

dQ
dP

)])
≥

l(0) + l∗(λQ)

λQ

by (7.11) and Jensen’s inequality, and then λQ ∈ [Λ(c), Λ(c)] by (7.9). Since l(α|X|1A) =
Φl(α|X|)1A + l(0), Young’s inequality shows for any A ∈ F , α > 0 and Q with ϕ∗l (Q) ≤ c,

EQ[|X|1A] ≤
1
αλQ

(
E[Φl(α|X|)1A] +

(
l(0) + E

[
l∗

(
λQ

dQ
dP

)]))
≤

1
αλQ

E[Φl(α|X|)1A] +
c + 1
α
≤

1
αΛ(c)

E[Φl(α|X|)1A] +
c + 1
α

.

Since X ∈ MΦl , the desired uniform integrability follows from a diagonal argument.
On the other hand, note that l(α|X|/2) ≤ 1

2 l(α|X| − x) + 1
2 l(x) by convexity, hence Mϕ̂l ⊂ MΦl

follows from (7.12), and we deduce that the three spaces agree.

Remark 7.4. In definition (7.10), we have chosen l(0) for the acceptance level so that ϕl(0) = 0.
If ϕl is defined with other acceptance level δ instead of l(0), we can normalize it by adding the
constant al(δ) := sup{x : l(x) ≤ δ} or equivalently replacing the function l by x 7→ l(x + al(δ)).
The case l(0) = infx l(x) corresponds to the worst case risk function ϕworst(X) = ess sup X. Also,
if l(x) = ex, then ϕl = ϕent. �

7.2. Robust Shortfall Risk

Let l be as above and fix a set P of probabilities P � P such that

(7.14) P is convex and weakly compact in L1.

Then we consider a robust shortfall risk function

(7.15) ϕl,P (X) := inf{x ∈ R : sup
P∈P

EP[l(X − x)] ≤ l(0)}, X ∈ L∞.

The function ϕl,P on L∞ is a convex risk function whose conjugate is given by

(7.16) ϕ∗l,P (Q) := inf
λ>0

1
λ

(
l(0) + inf

P∈P
EP

[
l∗

(
λ

dQ
dP

)])
with the convention l∗(∞) := ∞ and dQ

dP := dQ/dP
dP/dP1{dP/dP>0} + ∞ · 1{dQ/dP>0,dP/dP=0} (see [16,

Corollary 4.119]). Slightly modifying the argument for (7.12), we still have

(7.17) ϕ̂l,P (|X|) = inf{x ∈ R : sup
P∈P

EP[l(|X| − x)] ≤ l(0)}, X ∈ L0.

We introduce a couple of “robust analogues” of MΦl :

MΦl(P) := {X ∈ L0 : sup
P∈P

EP[Φl(λ|X|)] < ∞, ∀λ > 0}

MΦl
u (P) := {X ∈ L0 : lim

N→∞
sup
P∈P

EP[Φl(λ|X|)1{|X|>N}] = 0, ∀λ > 0}.

When P = {P}, the two spaces coincide with MΦl . Now we have:
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Proposition 7.5. Assume (7.14). Then ϕl,P is Lebesgue on L∞ and

MΦl
u (P) = Mϕ̂l,P

u ⊂ Mϕ̂l,P ⊂ MΦl(P).

Proof. With a similar reasoning as Proposition 7.3, if Q ∈ Qc := {Q � P : ϕ∗l,P (Q) ≤ c}, there

exist λQ ∈ [Λ(c), Λ(c)] and PQ ∈ P such that

1
λQ

(
l(0) + inf

P∈P
EP

[
l∗

(
λQ

dQ
dP

)])
≤

1
λQ

(
l(0) + EPQ

[
l∗

(
λQ

dQ
dPQ

)])
≤ c + 1.

In particular, infP∈P EP[l∗(λQdQ/dP)] ≤ Λ(c)(c + 1) − l(0) whenever Q ∈ Qc. In view of (7.8),
this shows that {λQdQ/dP : Q ∈ Qc} is uniformly integrable thanks to the robust version of de la
Vallée-Poussin theorem [14, Lemma 2.12] (which is stated there for sets of probabilities, but the
exactly same proof works for sets of positive finite measures), hence so is Qc since λQ ≥ Λ(c)
for each Q ∈ Qc. Consequently, ϕl,P is Lebesgue on L∞ by the JST theorem (Theorem 2.4).

From the same inequality, we see also that

EQ[|X|1A] ≤
1
αλQ

(
EPQ[Φ(α|X|)1A] + l(0) + EPQ

[
l∗

(
λQ

dQ
dPQ

)])
≤

1
αΛ(c)

sup
P∈P

EP[Φ(α|X|)1A] +
c + 1
α

for any α > 0, A ∈ F and Q ∈ Qc. Hence if X ∈ MΦl
u (P), a diagonal argument shows that

{XdQ/dP : Q ∈ Qc} is uniformly integrable, hence MΦl
u (P) ⊂ Mϕ̂l,P

u by Theorem 3.8.
To see MΦl

u (P) ⊃ Mϕ̂l,P
u , let X ∈ Mϕ̂l,P

u and α > 0. By the definition of Mϕ̂l,P
u , there is a

sequence (Nn)n ⊂ N such that ϕ̂l,P (nα|X|1{|X|>Nn}) < 2−n. Then by (7.17),

sup
P∈P

EP[l(nα|X|1{|X|>Nn} − 2−n)] ≤ l(0).

Noting that Φl(α|X|1An) = l(α|X|1An) − l(0) ≤ n−1l(nα|X|1An − 2−n) + n−1
n l( 2−n

n−1 ) − l(0) with
An := {|X| > Nn} by the convexity, we have

sup
P∈P

EP[Φl(α|X|)1An] ≤
1
n

sup
P∈P

EP[l(nα|X|1An − 2−n)] +
n − 1

n
l

(
2−n

n − 1

)
− l(0)

≤
l(0)
n
+

n − 1
n

l

(
2−n

n − 1

)
− l(0)→ 0 + l(0) − l(0) = 0.

Since α > 0 is arbitrary, we have X ∈ MΦl
u (P).

Finally, we show Mϕ̂l,P ⊂ MΦl(P). If X ∈ Mϕ̂l,P , then for every α > 0,

sup
P∈P

EP[Φl(α|X|)] = sup
P∈P

EP[l(α|X|)] − l(0)

≤
1
2

sup
P∈P

EP[l(2α|X| − x)] +
1
2

l(x) − l(0) < ∞.

for x > ϕ̂l,P (α|X|) by (7.17). Thus Mϕ̂l,P ⊂ MΦl(P).

Example 7.6 (Robust Entropic Risk Functions). Let l(x) = ex. Then ϕl,P is the entropic one,

and the associated Young function is Φexp(x) = ex − 1. In this case, we have M
Φexp
u (P) =

MΦexp(P), thus Mϕ̂l,P
u = Mϕ̂l,P . Indeed, by Hölder’s inequality,

sup
P∈P

EP[eα|X|1{|X|>N}] ≤ sup
P∈P

(
EP[e2α|X|]1/2P(|X| > N)1/2

)
≤ sup

P∈P
EP[e2α|X|]1/2 sup

P∈P
P(|X| > N)1/2.
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This and the uniform integrability of P show that limN supP∈P EP[eα|X|1{|X|>N}] = 0 for every

α > 0 as soon as X ∈ MΦexp(P), hence M
Φexp
u (P) = MΦexp(P). ♦

7.3. Law-Invariant Case

Recall that a convex risk function ϕ0 on L∞ is called law-invariant if ϕ0(X) = ϕ0(Y) whenever
X and Y have the same distribution. Any law-invariant convex risk function on L∞ has the
following Kusuoka representation ([24], [18]):

ϕ0(X) = sup
µ∈M1((0,1])

(∫
(0,1]

vλ(X)µ(dλ) − β(µ)

)
(7.18)

where vλ(X) := 1
λ

∫ λ

0
qX(1 − t)dt, the average value at risk at level λ (up to change of sign),

qX(t) := inf{x : P(X ≤ x) > t}, M1((0, 1]) is the set of all Borel probability measures on (0, 1]
and β is a lower semi-continuous penalty function. Then ϕ0 has the Lebesgue property on L∞

if and only if all the level sets {µ : β(µ) ≤ c} are relatively weak* compact in M1((0, 1]) or
equivalently tight ([12, Ch. 5] or [21]). In particular, for any relatively weak* compact convex
set M ⊂M1((0, 1]),

ϕM(X) := sup
µ∈M

∫
(0,1]

vλ(X)µ(dλ)

is a law-invariant coherent risk function on L∞ satisfying the Lebesgue property.

Example 7.7 (AV@R). For every λ ∈ (0, 1], vλ admits the representation:

(7.19) vλ(X) = sup{EQ[X] : Q ∈ P , dQ/dP ≤ 1/λ},

for all X ∈ L∞, and since v̂λ(|X|) = supn vλ(|X| ∧ n),

‖X‖L1 ≤ v̂λ(|X|) = ‖X‖v̂λ ≤
1
λ
‖X‖L1 , X ≥ 0. ♦

Hence we have Mv̂λ
u = Mv̂λ = L1 for every λ ∈ (0, 1], and the representation (7.19) extends to

L1. In particular, v̂λ has the Lebesgue property on L1.

Example 7.8 (Concave Distortions). Let µ ∈M1((0, 1]) and define

ϕµ(X) :=
∫

(0,1]
vt(X)µ(dt).

This type of risk functions are called concave distortion, and it is known that if the probability
space (Ω,F ,P) is atomless, every law-invariant comonotonic risk function is written in this form
(see [16, Theorem 4.93]). For ϕµ, two spaces M

ϕ̂µ
u and Mϕ̂µ coincide. Indeed, if ϕ̂µ(|X|) < ∞

(⇔ v̂·(|X|) ∈ L1((0, 1], µ)), then from Example 7.7, we see that vt(|X|1{|X|>N}) ≤ vt(|X|) and
limN vt(|X|1{|X|>N}) = 0 for (µ-a.e., hence) all t ∈ (0, 1]. Thus the dominated convergence theo-
rem implies that

lim
N

∫
(0,1]

v̂t(|X|1{|X|>N})µ(dt) =
∫

(0,1]
lim

N
v̂t(|X|1{|X|>N})µ(dt) = 0.

Repeating the same argument for α|X| (α > 0) instead of X, we have M
ϕ̂µ
u = Mϕ̂µ . ♦
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Recall that any finite-valued convex risk function on a solid and rearrangement-invariant space
strictly bigger than L∞ has the Lebesgue property restricted to L∞ ([11, Theorem 3] or see the
comment after Theorem 2.4). The next example concerns how is the Lebesgue property on the
whole space. In our context, both Mϕ̂

u and Mϕ̂ are (solid and) rearrangement-invariant if the ϕ0

is law-invariant, and Mϕ̂ is the maximum solid vector space on which ϕ̂ is finite-valued. Then
the question is translated as: does it hold Mϕ̂

u = Mϕ̂ as soon as ϕ0 is law-invariant? The answer
is generally no.

Example 7.9 (A law-invariant risk function with Mϕ̂u ( Mϕ̂). Let (Ω,F ,P) be atomless and
for each n, we define a Borel probability measure on (0, 1] by

µn(dt) :=

(
1 −

1
n

)
e

e − 1
1(e−1,1](t)dt +

1
n

en

e − 1
1(e−n,e−n+1](t)dt.(7.20)

Then (µn)n (and hence conv(µn; n ∈ N)) is uniformly integrable in L1((0, 1], dt) (⇔ weak* com-
pact in M1((0, 1])). Hence the law-invariant coherent risk function

ϕ0(X) := sup
n

∫
(0,1]

vt(X)µn(dt)

(
⇒ ϕ̂(|X|) = sup

n

∫
(0,1]

v̂λ(|X|)µn(dλ)

)
has the Lebesgue property on L∞. In this case, Mϕ̂

u ( Mϕ̂. Indeed, let X be an exponential
random variable with parameter 1, i.e., FX(x) := P(X ≤ x) = 1 − e−x ⇔ qX(t) = − log(1 − t).
Then

v̂λ(X) =
1
λ

∫ λ

0
(− log t)dt = 1 − log λ.

For each n,
∫

(0,1]
v̂t(X)µn(dt) = 4 − e

e−1 −
1
n , so ϕ̂(X) = supn

∫
(0,1]

v̂t(X)µn(dt) = 4 − e
e−1 < ∞.

This shows that X ∈ Mϕ̂. We next compute limN ϕ(X1{X>N}). Since qX1{X>N}(t) = qX1{qX(t)>N}

and qX(1 − t) > N ⇔ t < 1 − FX(N) = e−N ,

v̂λ(X1{X>N}) =
1
λ

∫ λ

0
qX(1 − t)1{qX(1−t)>N}dt

= {λ ∧ e−N − (λ ∧ e−N) log(λ ∧ e−N))}/λ.

Thus for n > N + 1,∫
(0,1]

v̂t(X1{X>N})µn(dt)

=

(
1 −

1
n

)
e

e − 1

(
e−N − e−N log e−N

)
+

1
n

(
2 + n −

e
e − 1

)
= 1 +

e
e − 1

(
e−N − e−N log e−N

)
+

1
n

{
2 −

e
e − 1

(
1 + e−N − e−N log e−N

)}
Hence ϕ̂(X1{X>N}) = supn

∫
(0,1]

v̂t(X1{X>N})µn(dt) = 1 + e
e−1

(
e−N − e−N log e−N

)
. Consequently,

limN→∞ ϕ(X1{X>N}) ≥ 1 + limN
e

e−1

(
e−N − e−N log e−N

)
= 1. Thus X < Mϕ̂

u . ♦
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A. Appendix

We have used the following version of minimax theorem which should be known as it is an
immediate corollary to [20, Theorems 1 and 2]. But we could not find an appropriate reference,
so we include here a simple proof.

Theorem A.1. Let C be a convex subset of a Hausdorff topological vector space, and D an
arbitrary convex set. Suppose we are given a function f : C × D→ R such that

(1) for any y ∈ D, x 7→ f (x, y) is convex and {x ∈ C : f (x, y) ≤ c} is compact for each c ∈ R;
(2) for any x ∈ C, y 7→ f (x, y) is concave on D.

Then we have

(A.1) inf
x∈C

sup
y∈D

f (x, y) = sup
y∈D

inf
x∈C

f (x, y).

Proof. Note first that “≥” is always true whatever C, D and f are. Thus there is nothing to prove
if α := supy∈D infx∈C f (x, y) = ∞, hence we assume α < ∞.

For any y ∈ D and β ∈ R, we set Aβy := {x ∈ C : f (x, y) ≤ β}. Then [20, Theorem 1] implies
that the family {Aα+εy }y∈D has the finite intersection property for every ε > 0. Noting that each
Aα+εy is compact by assumption made on f , we have

⋂
y∈D Aα+εy , ∅ (indeed, fixing arbitrary

y0 ∈ D, we have Aα+εy0
is compact, Aα+εy ∩ Aα+εy0

is its non-empty closed subset for each y ∈ D,
and

⋂
y∈D Aα+εy =

⋂
y∈D(Aα+εy ∩ Aα+εy0

) , ∅). But this is a necessary and sufficient condition for
the equality (A.1) by [20, Theorem 2].

Proposition A.2. For a finite monotone convex function ϕ with the Fatou property on a solid
space X containing the constants, the Lebesgue property is equivalent to: for any countable
net (Xα)α,

(2.9) Xα ∈ L∞, |Xα| ≤ |X|, ∀α, and Xα → X a.s. ⇒ ϕ(Xα)→ ϕ(X).

Proof. The necessity is clear from Remark 2.2. Recall that the Lebesgue property of ϕ is
equivalent to the sequential continuity from above. For a sequence (Xn)n ⊂ X with Xn ↓

X ∈ X , consider a net Xn,m := (Xn ∨ (−n)) ∧ m with indices (n,m) directed by (n,m) �

(n′,m′) iff n ≤ n′ and m ≤ m′. Then Xn,m ∈ L∞ for each (n,m) and Xn,m
o
→ X in X . In-

deed, lim sup(n,m) Xn,m = inf(n,m) supn′≥n,m′≥m(Xn′ ∨ (−n′)) ∧ m′ = inf(n,m) Xn ∨ (−n) = X, and
lim inf(n,m) Xn,m = sup(n,m) infn′≥n,m′≥m(Xn′ ∨ (−n′)) ∧ m′ = sup(n,m) X ∧ m = X. Therefore
ϕ(X) = lim(n,m) ϕ(Xn,m) by (2.9). On the other hand, ϕ(Xn) ≤ ϕ(Xn∨(−n)) = supm ϕ((Xn∨−n)∧m)
by Fatou and monotonicity, thus

inf
n
ϕ(Xn) ≤ inf

n
sup

m
ϕ((Xn ∨ −n) ∧ m) = lim

n
lim

m
ϕ((Xn ∨ −n) ∧ m)

= lim
(n,m)

ϕ(Xn,m) = ϕ(X).

Hence ϕ has the Lebesgue property.
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