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Abstract

The mean-variance hedging (MVH) problem is studied in a partially observable
market where the drift processes can only be inferred through the observation of asset
or index processes. Although most of the literatures treat the MVH problem by
the duality method, here we study a system consisting of three BSDEs derived by
Mania and Tevzadze (2003) and Mania et.al.(2008) and try to provide more explicit
expressions directly implementable by practitioners. Under the Bayesian and Kalman-
Bucy frameworks, we find that a relevant BSDE can yield a semi-closed solution
via a simple set of ODEs which allow a quick numerical evaluation. This renders
remaining problems equivalent to solving European contingent claims under a new
forward measure, and it is straightforward to obtain a forward looking non-sequential
Monte Carlo simulation scheme. We also give a special example where the hedging
position is available in a semi-closed form. For more generic setups, we provide explicit
expressions of approximate hedging portfolio by an asymptotic expansion. These
analytic expressions not only allow the hedgers to update the hedging positions in
real time but also make a direct analysis of the terminal distribution of the hedged
portfolio feasible by standard Monte Carlo simulation.
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1 Introduction

Since the last financial crisis, there are market-wide efforts for standardization of financial
products so that they can be traded through security exchanges or central counterparties.
This is expected to make them more liquid, transparent, remote from counterparty credit
risks, and in particular significantly reduces the regulatory cost for financial firms. For
these products, an idealistic situation for electronic trading is emerging and many finan-
cial firms are heavily investing to setup sophisticated e-trading systems to maintain their
profitability for coming years. At first sight, it might appear that it leads the financial
market closer to the ideal “complete” environment. However, on the other hand, remain-
ing uncleared OTC contracts are going to be severely penalized in terms of regulatory cost
so that it gives financial firms a strong incentive to walk away from them. This inevitably
makes a part of security universe less liquid and costlier to trade, and can make practition-
ers reluctant to use them even if they were the most efficient hedging instruments before
the crisis. The last crisis also created another complication by pushing all the practition-
ers into a new pricing regime for the collateralized contracts. Growing recognition of the
critical importance of the choice of collateral and its funding cost makes it impossible to
perfectly hedge even a very simple cash flow unless one has an easy access to the relevant
collateral assets or there exist very liquid basis markets.

Considering the above situation, we naturally expect that there is a growing need of
systematic hedging method allowing investors to flexibly choose the hedging instruments
based on their own regulatory and accessibility conditions. Mean-variance hedging (MVH)
is a one possible approach to this problem. MVH has been studied by many authors and
there exist vast literatures on the related issues. See, as some of recent works, Laurent &
Pham (1999) [8], Pham (2001) [14], Pham & Quenez (2001) [15] and references therein.
Although the mathematical understanding of the MVH problem has been greatly pro-
gressed by those adopting the duality method, more practical issues related to the actual
implementation of a hedging program have not attracted much attention so far and there
exist only a few special examples reported with explicit expressions. In this paper, we
try to make a progress in that direction by studying the system of equations derived by
Mania, Tevzadza and their co-authors.

In Mania & Tevzadze (2003) [9], the authors studied a minimizing problem of a convex
cost function and showed that the optimal value function follows a backward stochastic
partial differential equation (BSPDE). They have used the flow dynamics of the value
function derived from the Itô-Ventzell formula combined with a martingale property of
the optimal value function to obtain a BSPDE as a sufficient condition for the optimality.
For the MVH problem, they showed that the BSPDE can be decomposed into three
backward stochastic differential equations (BSDEs). The technique is extended for a
partial information setup by Mania et.al.(2008) [11], for utility maximization by Mania &
Santacroce (2010) [12], and for MVH problem with general semimartingales by Jeanblanc
et.al. (2012) [6].

In the following, we consider the MVH problem in a partially observable market where
the drift processes can only be inferred through the observation of stock or any index
processes driven by Brownian motions possibly with stochastic volatilities. Under the
Bayesian and Kalman-Bucy frameworks, we find that a relevant BSDE yields an semi-
closed solution via a simple set of ODEs allowing a quick numerical evaluation. This
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renders remaining problems equivalent to solving European contingent claims, and it is
straightforward to obtain a forward looking Monte Carlo simulation scheme using a simple
particle method [4]. As far as the optimal hedging positions are concerned, it is also
pointed out that one only needs the standard simulations for the terminal liability and
its Delta sensitivities against the state processes under a certain forward measure. We
also provide explicit expressions for a solvable case and approximate hedging portfolio for
more generic setups by an asymptotic expansion method. These explicit forms allow the
hedgers to update the hedging positions in real time, and also make the direct analysis
of the terminal distribution of the hedged portfolio feasible by standard Monte Carlo
simulation. We also provide several numerical examples to demonstrate our procedures.

2 The Market Setup

Let (Ω,F ,P) be a complete probability space equipped with a filtration F = {Ft, 0 ≤
t ≤ T}, where T is a fixed time horizon. We consider a financial market with a risk-less
asset, d tradable stocks or indexes S = {Si}1≤i≤d , and m := (n− d) non-tradable indexes
or otherwise state processes relevant for stochastic volatilities Y = {Yj}d+1≤j≤n. For
simplicity, we assume that the interest rate is zero by focusing on a relatively short time
period. Using a vector notation of S and Y , we write the dynamics of the underlyings as

dSt = σ(t, St, Yt)
(
dWt + θtdt

)
(2.1)

dYt = σ̄(t, St, Yt)
(
dWt + θtdt

)
+ ρ(t, St, Yt)

(
dBt + αtdt

)
(2.2)

Here, (W,B) are independent (P,F)-Brownian motions with dimension d and m. θ and α
are {Ft}-adapted market price-of-risk (MPR) processes for W and B. σ(t, s, y), σ̄(t, s, y)
and ρ(t, s, y) are assumed to be known smooth functions taking values in Rd×d, Rm×d

and Rm×m. We assume all of them satisfy the technical conditions to allow unique strong
solutions for S and Y .

We denote the available information set for the investor by a sub-σ-field Gt ⊂ Ft. We
assume that G = {Gt, 0 ≤ t ≤ T} is the P-augmentation of filtration generated by the
processes of all the stocks S and a subset {Y }obs ⊂ {Yj}d+1≤j≤n which are continuously
observable assets or indexes but not tradable by the investor by regulatory or some other
reasons. Although S and {Y }obs can be observed continuously, we assume that the investor
cannot identify their drifts and Brownian shocks independently, which is most likely the
case in the real financial market. Thus, neither θ nor α is {Gt}-adapted. Through the
observation of quadratic covariation of S and {Y }obs, we can recover the values of σtσ

⊤
t ,

σ̄obst σ⊤t and (σ̄tσ̄
⊤
t +ρtρ

⊤
t )

obs at each time. We assume the maps (σ, σ̄, ρ) are constructed in
such a way that they allow to fix the values of all the remaining Yk ∈ {Y }d+1≤j≤n\{Y }obs

uniquely from the values of
{
St, Y

obs
t , σtσ

⊤
t , σ̄

obf
t σ⊤t , (σ̄tσ̄

⊤
t + ρtρ

⊤
t )

obs
}

at every time t.
Thus, under the above construction, the whole elements of {Y }d+1≤j≤n are in fact {Gt}-
adapted. Let us further assume σ and ρ are always nonsingular and thus

W̃t :=

∫ t

0
σ−1(u, Su, Yu)dSu

= Wt +

∫ t

0
θudu (2.3)

3



B̃t :=

∫ t

0
ρ−1(u, Su, Yu)

(
dYu − σ̄(u, Su, Yu)σ

−1(u, Su, Yu)dSu

)
= Bt +

∫ t

0
αudu (2.4)

are actually {Gt}-adapted processes.

3 Linear Filtering

From the expressions (2.3) and (2.4) and the fact that both of (W̃ , B̃) are observable,
we have a linear observation system for the MPR processes. If we further assume that
the MPRs are either constants or linear Gaussian processes in (P,F), then the system
becomes a well-known Bayesian or Kalman-Bucy filtering model. See a textbook written
by Bain & Crisan (2008) [1] for the details of stochastic filtering.

Let us denote

zt :=

(
θt
αt

)
, ωt =

(
Wt

Bt

)
(3.1)

for notational simplicity, and then we put

Λt = exp
(
−
∫ t

0
z⊤s dωs −

1

2

∫ t

0
||zs||2ds

)
. (3.2)

For linear filtering models we discuss below, Λ is actually shown to be a true (P,F)-
martingale. We can then define a new measure P̃ by

dP̃

dP

∣∣∣∣∣
Ft

= Λt (3.3)

then, it is easy to check

ω̃t :=

(
W̃t

B̃t

)
(3.4)

is a n-dimensional (P̃,F)-Brownian motion. By (2.1) and (2.2), one can see that G is

actually the augmented filtration generated by (W̃ , B̃) (See Ref. [15] for details.). (P̃,F)-
martingale Λ̃t = 1/Λt gives the inverse relation between the measures

dP

dP̃

∣∣∣∣
Ft

= Λ̃t . (3.5)

We denote the expectation of the MPRs conditional on Gt by

ẑt :=

(
θ̂t
α̂t

)
:=

(
E[θt|Gt]
E[αt|Gt]

)
. (3.6)
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By Kallianpur-Striebel formula, it is given by

ẑt =
Ẽ[ztΛ̃|Gt]

Ẽ[Λ̃t|Gt]
. (3.7)

where Ẽ[ ] is the expectation under P̃ measure. This equation can be explicitly solvable
for a Bayesian and also for a linear Gaussian model. Note that the processes defined by

Nt = W̃t −
∫ t

0
θ̂sds (3.8)

Mt = B̃t −
∫ t

0
α̂sds (3.9)

are called innovation processes and they are (P,G)-Brownian motions.

3.1 A Bayesian model

In this section, we consider a Bayesian model in which the MPR is assumed to be F0-
measurable with a known prior distribution. The constant vector

z =

(
θ
α

)
(3.10)

denotes a value of the MPR. For a concrete calculation, let us assume that z has a prior
Gaussian distribution with the mean z0 and its covariance denoted by a positive definite
symmetric matrix Σ0. Let us denote the corresponding density function by ς(z).

In this setup, one has

Λ̃t = exp

(
z⊤ω̃t −

t

2
||z||2

)
(3.11)

and hence

F (t, ω̃t) := Ẽ[Λ̃t|Gt]

=

∫
Rn

exp

(
ω̃⊤
t z −

t

2
||z||2

)
ς(z)dnz . (3.12)

This yields

ẑt =
∂wF (t, ω̃t)

F (t, ω̃t)
. (3.13)

For a Gaussian prior distribution, ẑ can be evaluated explicitly. One can show that

F (t, ω̃t) =
1

(2π)n/2|Σ0|1/2

∫
exp

(
ω̃⊤
t z −

t

2
||z||2 − 1

2
(z − z0)

⊤Σ−1
0 (z − z0)

)
dnz. (3.14)

Using a new positive definite symmetric matrix Σ(t) defined by

Σ(t) := [Σ−1
0 + tI]−1 (3.15)

5



and x := z − z0, one obtains

F (t, ω̃t) =
exp
(
ω̃⊤
t z0 − t

2 ||z0||
2
)

(2π)n/2|Σ0|1/2

∫
exp
(
[ω̃t − tz0]

⊤x− 1

2
x⊤Σ(t)−1x

)
dnx. (3.16)

Then, simple calculation gives

F (t, ω̃t) =

√
|Σ(t)|
|Σ0|

exp

(
− t

2
||z0||2 + ω̃⊤

t z0 +
1

2
[ω̃t − tz0]

⊤Σ(t)[ω̃t − tz0]

)
. (3.17)

As a result, the conditional expectation of the MPR is given by

ẑt = z0 +Σ(t)[ω̃t − tz0] (3.18)

Using a simple fact

d

dt
(Σ(t)Σ(t)−1) = 0 (3.19)

one can easily confirm that

d

dt
Σ(t) = −Σ(t)2. (3.20)

Thus, the dynamics of ẑ can be written as

dẑt = −Σ(t)ẑtdt+Σ(t)dω̃t (3.21)

i.e.,

dẑt = Σ(t)dnt . (3.22)

where we have used a shorthand notation

nt :=

(
Nt

Mt

)
. (3.23)

Thus, we can see that ẑ is a Gaussian martingale process in (P̃,G).

3.2 A Kalman-Bucy model

In this model, we assume zt (or, “signal”) follows a linear Gaussian process in (P,F):

dzt = [µ− Fzt]dt+ δdVt (3.24)

where µ ∈ Rn and δ ∈ Rn×p, F ∈ Rn×n are constants. V denotes p-dimensional (P,F)-
Brownian motions independent of (W,B). The MPR is assumed to have a prior Gaussian
distribution with mean z0 and covariance matrix Σ0.

The observation is made through

dω̃t = ztdt+ dωt . (3.25)
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In this case, we have a well-known result that

dẑt = [µ− F ẑt]dt+Σ(t)dnt, ẑ0 = z0 (3.26)

where Σ(t) ∈ Rn×n is a deterministic function given as a solution of the following ODE:

dΣ(t)

dt
= δδ⊤ − FΣ(t)− Σ(t)F⊤ − Σ(t)2 (3.27)

with the initial condition Σ(0) = Σ0. In the remainder of the paper, we provide the
detailed calculations only for this Kalman-Buycy model. For Bayesian case, one can get
the equivalent results by simply putting µ = F = 0 and using the relevant Σ(t) given in
(3.15) in the corresponding formulas.

4 A System of BSDEs for Mean-Variance Hedging

Since we are assuming that the interest rate is zero 1, the dynamics of wealth with the
initial capital w at s < t is given by

Wπ
t (s, w) = w +

∫ t

s
π⊤u dSu (4.1)

where π ∈ Π is a portfolio strategy. Here, Π denotes a set of d-dimensional G-predictable
processes satisfying appropriate integrability conditions. Our problem is to solve

V (t, w) = ess inf
π∈Π

E
[(

Wπ
T (t, w)−H

)2∣∣∣Gt

]
. (4.2)

In this paper, we suppose H is some GT -measurable (and hence the investor can exactly
know the terminal liability) square integrable random variable, that is H ∈ L2(P,GT ).

Mania & Tevzadze [9, 11] proved (using more general setup) that a solution of the
above problem is given by

V (t, w) = w2V2(t)− 2wV1(t) + V0(t) (4.3)

where V2, V1 and V0 are the solutions of the following BSDEs:

V2(t) = 1−
∫ T

t

||Z2(s) + V2(s)θ̂s||2

V2(s)
ds−

∫ T

t
Z2(s)

⊤dNs −
∫ T

t
Γ2(s)

⊤dMs (4.4)

V1(t) = H −
∫ T

t

[Z2(s) + V2(s)θ̂s]
⊤[Z1(s) + V1(s)θ̂s]

V2(s)
ds

−
∫ T

t
Z1(s)

⊤dNs −
∫ T

t
Γ1(s)

⊤dMs (4.5)

V0(t) = H2 −
∫ T

t

||Z1(s) + V1(s)θ̂s||2

V2(s)
ds−

∫ T

t
Z0(s)

⊤dNs −
∫ T

t
Γ0(s)

⊤dMs (4.6)

1Practically, one can still include bonds in his/her portfolio by modeling their dynamics directly just
as equities or commodities.
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with some positive constant c such that c < V2 under the existence of equivalent martingale
measures and with some mild conditions. Here, all the {Zi,Γi} are {Gt}-adapted processes
with appropriate dimensionality.

The corresponding optimal wealth process is given by

Wπ∗
T (t, w) = w +

∫ T

t

[Z1(s) + V1(s)θ̂s]
⊤

V2(s)
[dNs + θ̂sds]

−
∫ T

t
Wπ∗

s (t, w)
[Z2(s) + V2(s)θ̂s]

⊤

V2(s)
[dNs + θ̂sds]. (4.7)

Using the relationship
dNs + θ̂sds = σ−1(s, Ss, Ys)dSs (4.8)

one can easily read off the optimal hedging position from (4.7) as

π∗s = (σ−1)⊤(s, Ss, Ys)
1

V2(s)

{
[Z1(s) + V1(s)θ̂s]−Wπ∗

s [Zs(s) + V2(s)θ̂s]
}
. (4.9)

In our setup with Brownian motions, derivation of the above BSDEs is quite straight-
forward by using Itô-Ventzell formula and the martingale property of V (t,Wπ∗

t ) for the
optimal strategy. The main ideas are briefly explained in Appendix A. The detailed expla-
nation on Itô-Ventzell formula is available, for example, in the section 3.3 of a textbook [7]
as a generalized Itô formula. It is quite interesting to see there exists a direct link between
the BSPDE and the usual HJB equation. See discussions given in Mania & Tevzadze
(2008) [10] for this point.

5 Solving V2 by ODEs

We now try to solve V2 for our Kalman-Bucy filtering model. Firstly, using the fact that
0 < c < V2, we transform V2, Z2 and Γ2 as follows:

VL(t) = log V2(t), ZL(t) = Z2(t)/V2(t), ΓL(t) = Γ2(t)/V2(t) . (5.1)

Simple calculation gives a quadratic growth BSDE

VL(t) = −
∫ T

t

{
1

2
(||ZL(s)||2 − ||ΓL(s)||2) + 2θ̂⊤s ZL(s) + ||θ̂s||2

}
ds

−
∫ T

t
ZL(s)

⊤dNs −
∫ T

t
ΓL(s)

⊤dMs . (5.2)

The only ingredient of the BSDE is ẑ and it has a linear Gaussian form.
Now, let us suppose that the solution has the following form:

VL(t) =
1

2
ẑ⊤t a

[2](t)ẑt + a[1](t)⊤ẑt + a[0](t) (5.3)

where {a[i]} are deterministic functions taking values in a[2](t) ∈ Rn×n, a[1](t) ∈ Rn and
a[0](t) ∈ R. We can take a[2] as a symmetric form. Then, simple application of Itô formula
gives (

ZL(t)
ΓL(t)

)
= Σ(t)[a[1](t) + a[2](t)ẑt] . (5.4)
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Substituting this result into (5.2), one obtains

dVL(t) =
{1
2
a[1](t)⊤Ξ(t)a[1](t) +

[(
a[2](t)Ξ(t) + 21(d,0)Σ(t)

)
a[1](t)

]⊤
ẑt

+
1

2
ẑ⊤t

[
21(d,0) + a[2](t)Ξ(t)a[2](t) + 21(d,0)Σ(t)a

[2](t) + 2a[2](t)Σ(t)1(d,0)

]
ẑt

}
dt

+ZL(t)
⊤dNt + ΓL(t)

⊤dMt . (5.5)

Here, we have defined

Ξ(t) := (Σ⊤
d Σd)(t)− (Σ⊤

mΣm)(t) (5.6)

and Σd (Σm) are d × n (m × n) matrices obtained by restricting to the first d (last m)
rows of Σ(t), and 1(d,0) is the diagonal matrix which has 1 for the first d elements and 0
for all the others.

On the other hand, the dynamics of ẑ in (3.26) and Itô formula yield

dVL(t) =
{
ȧ[0](t) + µ⊤a[1](t) +

1

2
tr(a[2](t)Σ2(t))

+
[
ȧ[1](t)− F⊤a[1](t) + a[2](t)µ

]⊤
ẑt

+
1

2
ẑ⊤t

[
ȧ[2](t)− F⊤a[2](t)− a[2](t)F

]
ẑt

}
dt

+ZL(t)
⊤dNt + ΓL(t)

⊤dMt . (5.7)

Matching the coefficients of (ẑẑ, ẑ) and a remaining constant term respectively, and using
the fact that VL(T ) = 0, one obtains the following ODEs 2:

ȧ[2](t) = 21(d,0) + a[2](t)Ξ(t)a[2](t)

+F⊤a[2](t) + a[2](t)F + 2
(
1(d,0)Σ(t)a

[2](t) + a[2](t)Σ(t)1(d,0)

)
(5.8)

ȧ[1](t) = −a[2](t)µ+
[
F⊤ + a[2](t)Ξ(t) + 21(d,0)Σ(t)

]
a[1](t) (5.9)

ȧ[0](t) = −µ⊤a[1](t)− 1

2
tr(a[2](t)Σ2(t)) +

1

2
a[1](t)⊤Ξ(t)a[1](t) (5.10)

with terminal conditions a[2](T ) = a[1](T ) = a[0](T ) = 0.
The ODEs can be solved sequentially in (a[2] → a[1] → a[0]) order. Due to the quadratic

form, the existence of a[2] is not guaranteed and the detailed conditions are difficult to
obtain due to its multi-dimensionality. However, it is clear that a[2] stays finite in [0, T ]
unless the maturity is too long or the size of Ξ is very large. In any case, the behavior of a[2]

can be easily checked by numerically solving the ODE. Once we assume its existence, it is
clearly seen that (5.3) actually satisfies the BSDE by a standard application of Itô formula.
In fact, this technique for a quadratic BSDE was already discussed in Schroder & Skiadas
(1999) [16] in the application to a recursive utility, but to the best of our knowledge, it is
the first time as the application to the MVH problem in Mania & Tevzadze approach.

2Put µ = F = 0 and use the corresponding Σ(t) for our first Bayesian model.
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Remark:

It is instructive to apply the perturbative solution technique of FBSDEs proposed by Fujii
& Takahashi (2012) [3] to (5.2). One can confirm that the VL has a quadratic form of ẑ
and (ZL,ΓL) have a linear form of ẑ at an arbitrary order of the perturbative expansion.
This is actually how we have noticed the existence of a quadratic-form solution.

6 V1 as a simple forward expectation of H

Since the BSDE for V1 is linear

dV1(t) = [ZL(t) + θ̂t]
⊤[Z1(t) + V1(t)θ̂t]dt+ Z1(t)

⊤dNt + Γ1(t)
⊤dMt (6.1)

with V1(T ) = H, it is clear that we have

V1(t) = EA
[
H exp

(
−
∫ T

t

[
||θ̂s||2 + θ̂⊤s ZL(s)

]
ds
)∣∣∣Gt

]
. (6.2)

Here, the measure PA is defined by

dPA

dP

∣∣∣∣
Gt

= ηt (6.3)

where

ηt = exp
(
−
∫ t

0
[ZL(s) + θ̂s]

⊤dNs −
1

2

∫ t

0
||ZL(s) + θ̂s||2ds

)
. (6.4)

By the result of the previous section, ZL + θ̂ is a linear Gaussian process and hence the
above measure change can be justified, for example, by Lemma 3.9 in [1].

Now, let us evaluate

A(t, T ) := EA
[
exp
(
−
∫ T

t

[
||θ̂s||2 + θ̂⊤s ZL(s)

]
ds
)∣∣∣Gt

]
. (6.5)

The argument of exp() has a quadratic Gaussian form and is given by

A(t, T ) = EA
[
exp
(
−
∫ T

t

{1
2
ẑ⊤s b

[2](s)ẑs + b[1](s)⊤ẑs

}
ds
)∣∣∣Gt

]
(6.6)

where b[2](t) ∈ Rn×n and b[1](t) ∈ Rn are deterministic functions defined as

b[2](t) := 21(d,0) + 1(d,0)Σ(t)a
[2](t) + a[2](t)Σ(t)1(d,0) (6.7)

b[1](t) := 1(d,0)Σ(t)a
[1](t) . (6.8)

One may notice that the problem is equivalent to the pricing of the zero-coupon bond in
a quadratic Gaussian short rate model, and we in fact borrow the same technique below.
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Let us focus on the Kalman-Bucy model. The result for the Bayesian model can be
obtained by the simple parameter replacement as before. In the measure PA, the MPR
follows

dẑt = [φ(t) + κ(t)ẑt]dt+Σ(t)dnAt (6.9)

where

φ(t) := µ− (Σ⊤
d Σd)(t)a

[1](t)

κ(t) := −
[
F + (Σ⊤

d Σd)(t)a
[2](t) + Σ(t)1(d,0)

]
(6.10)

and nAt is the (PA,G)-Brownian motion which is related to nt by Girsanov’s theorem as

nAt = nt +

∫ t

0
1(d,0)

[
Σ(s)[a[1](s) + a[2](s)ẑs] + ẑs

]
ds . (6.11)

Let us suppose A is given in the following form 3:

A(t, T ) = exp

(
1

2
ẑ⊤t c

[2](t)ẑt + c[1](t)⊤ẑt + c[0](t)

)
. (6.12)

with deterministic functions {c[i]} taking values in c[2](t) ∈ Rn×n, c[1](t) ∈ Rn, c[0](t) ∈ R.
From (6.6), one sees that the dynamics of A is given by

dA(t, T ) = A(t, T )
{1
2
ẑ⊤t b

[2](t)ẑt + b[1](t)⊤ẑt

}
dt+ (· · · )dnAt , (6.13)

but from (6.12) and the dynamics of ẑ tell us that

dA(t, T )

= A(t, T )
{1
2
ẑ⊤t
[
ċ[2](t) + c[2](t)κ(t) + κ(t)⊤c[2](t) + c[2](t)Σ2(t)c[2](t)

]
ẑt

+
[
ċ[1](t) + κ(t)⊤c[1](t) + c[2](t)φ(t) + c[2](t)Σ2(t)c[1](t)

]⊤
ẑt

+
[
ċ[0](t) + φ(t)⊤c[1](t) +

1

2
tr
(
c[2](t)Σ2(t)

)
+

1

2
c[1](t)⊤Σ2(t)c[1](t)

]}
dt+ (· · · )dnAt .

(6.14)

Therefore, one can see that the solution of A is given by the form (6.12) if and only if
{c[i]} solve the following ODEs:

ċ[2](t) = b[2](t)− c[2](t)κ(t)− κ(t)⊤c[2](t)− c[2](t)Σ2(t)c[2](t) (6.15)

ċ[1](t) = b[1](t)− κ(t)⊤c[1](t)− c[2](t)φ(t)− c[2](t)Σ2(t)c[1](t) (6.16)

ċ[0](t) = −φ(t)⊤c[1](t)− 1

2
tr
(
c[2](t)Σ2(t)

)
− 1

2
c[1](t)⊤Σ2(t)c[1](t) (6.17)

with the terminal conditions c[2](T ) = c[1](T ) = c[0](T ) = 0. Numerical evaluation can be
easily performed in (c[2] → c[1] → c[0]) order. The solutions of the ODEs have the same

3The argument T is omitted in {c[i]} for notational simplicity.
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problem for their existence due to the quadratic term of c[2] as in the case for a[2]. In the
remainder, let us suppose that there exists a finite solution for (c[2], c[1], c[0]) in [0, T ] for a
given parameter set, which can be checked numerically in any case.

If there exists a solution for {c[i]}, we can define a very useful forward measure PAT

by

dPAT

dPA

∣∣∣∣
Gt

=
A(t, T )

A(0, T ) exp
(∫ t

0

[
||θ̂s||2 + θ̂⊤s ZL(s)

]
ds
) (6.18)

under which standard Brownian motion is given by the relation

nAT
t = nt +

∫ t

0
1(d,0)

{
Σ(s)[a[1](s) + a[2](s)ẑs] + ẑs

}
ds

−
∫ t

0
Σ(s)[c[1](s) + c[2](s)ẑs]ds (6.19)

by Girsanov’s theorem. Using this measure, one can now express V1 in a very simple
fashion:

V1(t) = A(t, T )EAT

[
H
∣∣∣Gt

]
. (6.20)

7 Monte Carlo Method

In this section, we consider how to evaluate (V1, Z1) and V0 by Mote Carlo simulation.
Although V0 is not necessary for the specification of the optimal hedging position, it is
needed to obtain the optimal value function V (t, w) as well as the mean-variance price of
H that is the w minimizing V (t, w) for a given terminal liability H.

For notational simplicity, let us put

Xt :=

(
St
Yt

)
(7.1)

γ(t,Xt) :=

(
σ(t,Xt) 0
σ̄(t,Xt) ρ(t,Xt)

)
, (7.2)

then, the relevant dynamics under (P,G) can be written as

dXt = γ(t,Xt)[dnt + ẑtdt] . (7.3)

In the forward measure (PAT ,G), it becomes

dXt = γ(t,Xt)
{
dnAT

t +
[
ψ(t) + Ψ(t)ẑt

]
dt
}

(7.4)

where ψ and Ψ are deterministic functions given below:

ψ(t) := Σ(t)c[1](t)− 1(d,0)Σ(t)a
[1](t) (7.5)

Ψ(t) := 1(0,m) +Σ(t)c[2](t)− 1(d,0)Σ(t)a
[2](t) . (7.6)
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Similarly, the dynamics of ẑ in (PAT ,G) is given by

dẑt =
[
ϕ(t)− Φ(t)ẑt

]
dt+Σ(t)dnAT

t (7.7)

with deterministic functions (ϕ,Φ):

ϕ(t) := µ− (Σ⊤
d Σd)(t)a

[1](t) + Σ2(t)c[1](t) (7.8)

Φ(t) := F + (Σ⊤
d Σd)(t)a

[2](t) + Σ(t)1(d,0) − Σ2(t)c[2](t) . (7.9)

In the remainder, we consider a situation where the terminal liability H is given by
some function of XT , i.e.,

H = H(XT ) . (7.10)

7.1 Evaluation of (V1, Z1)

Of course, the evaluation of

V1(t) = A(t, T )EAT

[
H(XT )

∣∣∣Gt

]
(7.11)

can be performed by simply running (Xt, ẑt) under (P
AT ,G) in standard simulation.

For the evaluation of Z1, we need to introduce the three stochastic flows, (ξt,u, χt,u, χ̃t,u).
They are associated with the sensitivity of the values ẑu and Xu at certain future time
u (> t) against the small changes of their initial values at time t. The first one is defined
as, for 1 ≤ i, j ≤ n,

(ξt,u)i,j :=
∂ẑju(t, ẑ)

∂ẑi
(7.12)

and is actually given as the solution of the following ODE:

dξt,u
du

= −ξt,uΦ⊤(u), (ξt,t)i,j = δi,j . (7.13)

Here, the notation ẑu(t, ẑ) emphasizes that ẑu started from the value ẑ at time t.
The next two quantities are similarly defined as

(χt,u)i,j :=
∂Xj

u(t, x, ẑ)

∂xi
, (χ̃t,u)i,j :=

∂Xj
u(t, x, ẑ)

∂ẑi
. (7.14)

The three arguments (t, x, ẑ) indicate that X stated from x at time t but its future value
Xu also depends on the value of ẑ at time t. One can show that they follow the SDEs

d(χt,u)i,j = (χt,u)i,k∂kγj(u,Xu)
{
dnAT

u + [ψ(u) + Ψ(u)ẑu]du
}

(7.15)

d(χ̃t,u)i,j = (χ̃t,u)i,k∂kγj(u,Xu)
{
dnAT

u + [ψ(u) + Ψ(u)ẑu]du
}

+(γ(u,Xu)Ψ(u))j,k(ξ
⊤
t,u)k,idu (7.16)

with initial conditions (χt,t)i,j = δi,j and χ̃t,t = 0, respectively. In the above equations,
and also in the reminder of the paper, we will often use the so-called Einstein convention
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which assumes the summation of the duplicated indexes. For example, (7.15) should be
understood to involve

∑n
k=1.

Using the above stochastic flows, one obtains(
Z1(t)
Γ1(t)

)
= V1(t)

(
Σ(t)[c[1](t) + c[2](t)ẑt]

)
+A(t, T )

{
EAT

[
(χt,T )i,j∂jH(XT )|Gt

]
γi(t,Xt) + EAT

[
(χ̃t,T )i,j∂jH(XT )|Gt

]
Σi(t)

}
.

(7.17)

Thus, the simulation of those stochastic flows alongside of the original underlyings (X, ẑ)
provides us the wanted quantity.

Remark: Calculation of Z1 from Delta sensitivity

In the previous formulation, we have introduced the stochastic flows. This complication
is not avoidable in order to make a one-shot Monte Carlo simulation possible for the
evaluation of V0 which will be explained in the next section. However, if one only needs
the hedging position at time t (and if the dimension n is not too large), we can take a
much simpler approach. As one can imagine from the definitions of the stochastic flows,
the second line of (7.17) can also be estimated by the usual “Delta” sensitivity of the
terminal liability:

EAT [(χt,T )i,j∂jH(XT )|Gt] =
∂

∂xi
EAT [H(XT )|Gt]

EAT [(χ̃t,T )i,j∂jH(XT )|Gt] =
∂

∂ẑi
EAT [H(XT )|Gt] . (7.18)

Thus, the required simulations to obtain (V1, Z1) are only those for the estimations of
the terminal liability H(XT ) and its Delta sensitivities against the underlyings (X, ẑ) in
(PAT ,G) measure.

7.2 Evaluation of V0

Let us define, for (t < s < T ) and (1 ≤ r ≤ n),

Zs(XT , χs,T , χ̃s,T ) := A(s, T )H(XT )
{
Σ(s)[c[1](s) + c[2](s)ẑs] + ẑs

}
+A(s, T )

{
(χs,T )i,j∂jH(XT )γi(s,Xs) + (χ̃s,T )i,j∂jH(XT )Σi(s)

}
. (7.19)

We also put

ζ1(s) :=

(
Z1(s)
Γ1(s)

)
(7.20)

for a lighter notation. Then, it is easy to confirm that

ζ1(s) + V1(s)ẑs = EAT

[
Zs(XT , χs,T , χ̃s,T )

∣∣∣Gs

]
. (7.21)
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Note that the Radon-Nikodym derivative between PAT and P conditional on Gt is
given by

Lt :=
dPAT

dP

∣∣∣∣
Gt

= exp

(∫ t

0
[G(s) +K(s)ẑs]dns −

1

2

∫ t

0
||G(s) +K(s)ẑs||2ds

)
(7.22)

where G and K are the deterministic functions defined as

G(t) := Σ(t)c[1](t)− 1(d,0)Σ(t)a
[1](t) (7.23)

K(t) := Σ(t)c[2](t)− 1(d,0)Σ(t)a
[2](t)− 1(d,0) . (7.24)

Then the inverse relation is given by

L−1
t =

dP

dPAT

∣∣∣∣
Gt

= exp

(
−
∫ t

0
[G(s) +K(s)ẑs]dn

AT
s − 1

2

∫ t

0
||G(s) +K(s)ẑs||2ds

)
. (7.25)

Since V0 follows a linear BSDE, it is easy to see that V0 satisfies

V0(t) = E
[
H2(XT )−

∫ T

t
e−VL(s)[ζ1(s) + V1(s)ẑs]

⊤1(d,0)[ζ1(s) + V1(s)ẑs]ds
∣∣∣Gt

]
. (7.26)

Changing the measure to PAT , one can express it as

V0(t) = LtEAT

[
L−1
T H2(XT )−

∫ T

t
L−1
s e−VL(s)EAT

[
Zs(XT , χs,T , χ̃s,T )|Gs

]⊤
×1(d,0)EAT

[
Zs(XT , χs,T , χ̃s,T )|Gs

]
ds
∣∣∣Gt

]
. (7.27)

Unfortunately, the naive evaluation of the above expression requires sequential Monte
Carlo simulations and seems numerically too burdensome to be useful in practice.

However, there is a nice way called a particle method to compress convoluted expec-
tations. The method describes a physical system where multiple copies of particles are
created at random interaction times following Poisson law. After the creation, the par-
ticles belonging to a common specie follow the same probability law but are driven by
independent Brownian motions. This idea was introduced by McKean (1975) [13] to solve
a certain type of semilinear PDE and has been applied to various research areas since
then.

For the current problem (7.27), let us introduce a deterministic intensity λt and denote
the corresponding random interaction time by τ . Then, V0(t) can be represented by

V0(t) = LtEAT

[
L−1
T H2(XT )

∣∣∣Gt

]
−1{τ>t}LtEAT

[
1{t<τ<T}L

−1
τ e−VL(τ)+

∫ τ
t λudu

× 1

λτ

(
Zτ (XT , χτ,T , χ̃τ,T )

)p=1
1(d,0)

(
Zτ (XT , χτ,T , χ̃τ,T )

)p=2∣∣∣Gt

]
. (7.28)
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Here, the underlyings (or “particles”) (X, ẑ, χ, χ̃) belong to either the group (p = 1) or
(p = 2), and they follow the SDEs having the same form (7.4), (7.7), (7.15) and (7.16)
respectively, but driven by two independent n-dimensional Brownian motions nAT (p = 1)
and nAT (p = 2). This particle representation allows a one-shot non-sequential Monte
Carlo simulation. See Fujii & Takahashi (2012) [4] for the details of the particle method
as a solution technique for BSDEs, and also Fujii et.al.(2012) [5] as a concrete application
to the pricing of American options.

As long as there exist solutions for {a[i]} and {c[i]}, the explained procedures allow us
to obtain the solutions for the three BSDEs given in Sec. 4 under a quite general setup.
However, it may be tough to update the hedging positions in timely manner in a volatile
market, and in addition, it seems almost impossible to analyze the terminal distribution of
the hedged portfolio, which may be important for financial firms from a risk-management
perspective, by simulating (4.7) in the current approach. In the remainder of the paper, we
give an explicitly solvable example and then an asymptotic expansion method to answer
this issue.

8 A simple solvable example

In this section, we consider a solvable case where the terminal liability depends only on a
non-tradable index Y I ∈ {Y }obs

H(XT ) = Y I
T . (8.1)

Let us suppose that γI(t,Xt) = Y I
t σ

⊤
y where σy ∈ Rn is a n-dimensional constant vector.

Then from (7.4), the index’s dynamics under (PAT ,G) can be written as

dY I
s = Y I

s σ
⊤
y

[
ψ(s) + Ψ(s)ẑs

]
ds+ Y I

s σ
⊤
y dn

AT
s . (8.2)

In order to get V1, it is enough to evaluate

EAT
[
Y I
T |Gt

]
= Y I

t EAT

[
exp
(∫ T

t
σ⊤y
[
ψ(s) + Ψ(s)ẑs

]
ds
)∣∣∣Gt

]
. (8.3)

Since it has an affine structure, one can evaluate the above expectation by the same
method used for the evaluation of A(t, T ). One can show that

P (t, T ) := EAT

[
exp
(∫ T

t
σ⊤y
[
ψ(s) + Ψ(s)ẑs

]
ds
)∣∣∣Gt

]
(8.4)

can be written by the deterministic functions (β[1](t) ∈ Rn, β[0](t) ∈ R) and ẑt as

P (t, T ) = exp
(
β[1](t)⊤ẑt + β[0](t)

)
(8.5)

where {β[i]} solve the following ODEs:

β̇[1](t) = Φ(t)⊤β[1](t)−Ψ(t)⊤σy (8.6)

β̇[0](t) = −ϕ(t)⊤β[1](t)− 1

2
β[1](t)⊤Σ2(t)β[1](t)− ψ(t)⊤σy (8.7)
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with terminal conditions β[1](T ) = β[0](T ) = 0.
Now, from the above arguments, one obtains

V1(t) = Y I
t A(t, T )P (t, T ) . (8.8)

A simple application of Itô formula gives(
Z1(t)
Γ1(t)

)
= V1(t)

{
σy +Σ(t)

[
c[1](t) + β[1](t) + c[2](t)ẑt

]}
. (8.9)

Once we calculate and store all the relevant deterministic functions, it is straightforward
to evaluate V0 from

V0(t) = E

[
(Y I

T )
2 −

∫ T

t

||Z1(s) + V1(s)θ̂s||2

V2(s)
ds
∣∣∣Gt

]
(8.10)

by standard Monte Carlo simulation.

8.1 A numerical test using the solvable example

Let us provide an interesting numerical example which tests the consistency of our pro-
cedures. In this solvable example, we can directly run the optimal wealth process Wπ∗

t

given in (4.7). Thus, it is possible to compare V (0, w) = w2V2(0) − 2wV1(0) + V0(0),
which is obtained by the ODEs and a standard Monte Carlo simulation for (8.10), with
E[(Y I

T −Wπ∗
T )2] directly obtained by running the simulation for Y I and Wπ∗

.
Let us use the following parameters with (n = 3, d = 2): 4

z0 =

0.3
0.3
0.1

 , µ =

0.06
0.06
0.02

 , F =

 0.2 0.07 0.05
0.07 0.2 0.03
0.05 0.03 0.2


δ =

 0.3 0.15 −0.1
0.15 0.3 −0.08
−0.03 −0.07 0.3

 , Σ0 =

 0.2 0.1 −0.01
0.1 0.2 −0.05

−0.01 −0.05 0.2

 (8.11)

and

σ⊤y = (−0.07,−0.12, 0.27) (8.12)

with the initial value Y I
0 = 1.

For T = 0.5, we have obtained V2(0) = 0.9263, V1(0) = 0.9399 by numerically solving
ODEs, and V0(0) = 0.9974 after (100, 000 + 100, 000 antipathetic) paths with step size
dt = 2 × 10−3. The standard error for V0 simulation is about 4 × 10−4. In Fig. 1, we
have compared the quadratic form of V (0, w) to the results of direct simulation of hedged
portfolio with various initial capitals with the same number of paths and step size for the
evaluation of V0. The standard error for the portfolio simulation is less than 4 × 10−4.

4Here, we put p = 3 in (3.24). But the choice is free and what only matters for the dynamics of ẑ is
(δδ⊤) ∈ Rn×n.
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Figure 1: Comparison of V (0, w) = w2V2(0) − 2wV1(0) + V0(0) and direct simulation of
E(Y I

T −Wπ∗
T )2. The solid line is based on the quadratic form of V (0, w) and {∗} marks

are those obtained from the direct simulation of the wealth. The horizontal axis denotes
the size of the initial capital w.

One can see that the prediction of the BSDEs matches very well with the result of the
direct simulation of the hedged portfolio.

One can also study the terminal distribution of the hedged portfolio: (Y I
T − Wπ∗

T ).
In Fig. 2, we have plotted the terminal distribution of (Y I

T − Wπ∗
T ) for the five choices

of the initial capital w = {0, 0.5, 1, 1.5, 2}. The graphs are obtained by connecting
the histograms after sampling 400, 000 scenarios with the same parameters used to obtain
Fig. 1. One can see distributions of the hedged portfolios change consistently with the
result of Fig. 1 and achieves the smallest variance at w = 1 scenario among the five choices.

9 An asymptotic expansion method

Although it is impossible to obtain a closed-form solution for

V1(t) = A(t, T )EAT
[
H(XT )|Gt

]
(9.1)

in general, its evaluation is clearly equivalent to solving a European contingent claim.
Thus, one can borrow various techniques developed for the pricing of financial derivatives
from the vast existing literatures. Here, we adopt an asymptotic expansion method to
obtain explicit approximate expressions. See, for example, [18, 17, 19] and references
therein for the details of the method. In those works, the terminal probability distribution
of the underlying process is estimated, which is then applied to a generic payoff function to
price an interested contingent claim. In this article, however, we adopt a slightly simplified
approach in which the asymptotic expansion is directly applied to the terminal payoff by
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Figure 2: The terminal distribution of (Y I
T −Wπ∗

T ) for the five choices of the initial capital
w = {0, 0.5, 1, 1.5, 2}. The graphs are obtained by connecting the histograms after
sampling 400, 000 paths.

assuming H(x) is a smooth function of x. If necessary, we can also apply the original
method in [18, 17, 19] to the current problem, but the resultant formula and required
calculation would be more involved. We also assume the time-homogeneous volatility
structure γ(Xt) without explicit dependence on t for simplicity.

9.1 Approximation scheme

Firstly, let us introduce an auxiliary parameter ϵ and ϵ-dependent processes:

dXϵ
s = ϵγ(Xϵ

s)1(0,m)ẑ
ϵ
sds+ ϵγ(Xϵ

s)dn
AT
s

+ϵ2γ(Xϵ
s)[ψ(s) + Ψ̃(s)ẑϵs]ds (9.2)

dẑϵs = ϵ
[
ϕ(s)− Φ(s)ẑϵs

]
ds+ ϵΣ(s)dnAT

s , (9.3)

where

Ψ̃(s) := Σ(s)c[2](s)− 1(d,0)Σ(s)a
[2](s) (9.4)
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is a deterministic function 5. The idea behind this setup is to assume

Σ(s), γ(x), µ, F (9.5)

have small enough sizes relative to 1. Then, the auxiliary parameter ϵ is introduced to
count the order of those small quantities appearing in the expansion. Since Ψ contains
1(0,m), the remaining small term is extracted as Ψ̃ in (9.4).

Suppose, we have expanded the ϵ-dependent process Xϵ as a power series of ϵ in the
following form:

Xϵ
s = X(0)

s + ϵX(1)
s + ϵ2X(2)

s + · · · (9.6)

where

X(k)
s :=

1

k!

∂kXϵ
s

∂ϵk

∣∣∣∣
ϵ=0

(9.7)

Since the termX(k) contains the k-th order products of small quantities in (9.5), the higher
order terms in (9.6) can be naturally neglected for the approximation purpose. Putting
ϵ = 1 at the end of calculation provides an approximate valuation for the original process
X. In the current work, we will provide the formula for (V1, Z1) up to the third order
contribution. The accuracy of approximation is, of course, determined by the size of the
quantities given in (9.5) 6. As we can see in the numerical examples provided later in
the paper, the scheme seems to work well with realistic parameters, at least for relatively
short maturities.

9.2 Asymptotic expansions of the underlying processes

Let us consider the expansion of (Xϵ
s, ẑ

ϵ
s) for (s > t) under the given condition at t.

Obviously, we have

X(0)
s ≡ x (9.8)

ẑ(0)s ≡ ẑ (9.9)

with the conventions that x := Xϵ
t and ẑ := ẑϵt .

Assuming γ(x) is smooth enough, one can easily derive

dX(1)
s = γ(x)1(0,m)ẑds+ γ(x)dnAT

s (9.10)

dX(2)
s =

{
Xi,(1)

s ∂iγ(x)1(0,m)ẑ + γ(x)1(0,m)ẑ
(1)
s + γ(x)[ψ(s) + Ψ̃(s)ẑ]

}
ds

+Xi,(1)
s ∂iγ(x)dn

AT
s (9.11)

dX(3)
s =

{[
Xi,(2)

s ∂iγ(x) +
1

2
Xi,(1)

s Xj,(1)
s ∂i,jγ(x)

]
1(0,m)ẑ (9.12)

+Xi,(1)
s ∂iγ(x)1(0,m)ẑ

(1)
s + γ(x)1(0,m)ẑ

(2)
s

+Xi,(1)
s ∂iγ(x)[ψ(s) + Ψ̃(s)ẑ] + γ(x)Ψ̃(s)ẑ(1)s

}
ds

+
[
Xi,(2)

s ∂iγ(x) +
1

2
∂i,jγ(x)

]
dnAT

s (9.13)

5In theory, there is no need to expand ẑ by introducing ϵ since it already has a linear dynamics. However,
if one treats ẑ exactly, the calculations associated with X become hugely involved due to the presence of
ẑ in its drift process most likely with only a minor improvement of accuracy.

6More precisely speaking, we need to consider the effect of time-integration together.
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with initial conditions X
(i)
t = 0 for i ∈ {1, 2, 3}. Similarly, for ẑ

(i)
s , one obtains

dẑ(1)s = [ϕ(s)− Φ(s)ẑ]ds+Σ(s)dnAT
s (9.14)

dẑ(2)s = −Φ(s)ẑ(1)s ds (9.15)

dẑ(3)s = −Φ(s)ẑ(2)s ds (9.16)

with ẑ
(i)
t = 0 for i ∈ {1, 2, 3}.

9.2.1 Approximation of V1

Under the assumption that H(x) is smooth enough, one can expand it as

EAT
[
H(Xϵ

T )|Gt

]
= H(x) + ϵ∂iH(x)EAT

[
X

i,(1)
T |Gt

]
(9.17)

+ϵ2
{
∂iH(x)EAT

[
X

i,(2)
T |Gt

]
+

1

2
∂i,jH(x)EAT

[
X

i,(1)
T X

j,(1)
T |Gt

]}
(9.18)

+ϵ3
{
∂iH(x)EAT

[
X

i,(3)
T |Gt

]
+ ∂i,jH(x)EAT

[
X

i,(2)
T X

i,(1)
T |Gt

]
+
1

6
∂i,j,kH(x)EAT

[
X

i,(1)
T X

j,(1)
T X

k,(1)
T |Gt

]}
+O(ϵ4). (9.19)

Since A(t, T ) is already available as a solution of the ODEs, one only needs the expectations

of {X(i)
T } and their cross products to obtain an analytic expression of V1(t). This is

actually calculable because all the {X(i)} have linear dynamics thanks to the way we have
introduced ϵ in (9.2) and (9.3). Once this is done, Z1(t) can be easily derived by the simple
application of Itô formula.

Let us put

g(x, ẑ) := γ(x)1(0,m)ẑ ∈ Rn (9.20)

and a shorthand notation of a time integration, such as

[f ]Tt :=

∫ T

t
f(s)ds

[
[f ]st
]T
t
:=

∫ T

t

(∫ s

t
f(u)du

)
ds

· · · (9.21)

to lighten the expressions. From the application of Itô formula, we can obtain all the
necessary expectations as follows:

EAT
[
X

(1)
T |Gt

]
= (T − t)g(x, ẑ)

EAT
[
X

(2)
T |Gt

]
=

1

2
(T − t)2∂ig(x, ẑ)g

i(x, ẑ) + γ(x)
(
[ψ]Tt + 1(0,m)

[
[ϕ]st
]T
t

)
+γ(x)

(
[Ψ̃]Tt − 1(0,m)

[
[Φ]st

]T
t

)
ẑ

EAT
[
X

i,(1)
T X

j,(1)
T |Gt

]
= (T − t)2gi(x, ẑ)gj(x, ẑ) + (T − t)(γγ⊤)i,j(x) (9.22)
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and

EAT
[
X

(3)
T |Gt

]
=

1

6
(T − t)3

{
∂ig(x, ẑ)∂jg

i(x, ẑ)gj(x, ẑ) + ∂i,jg(x, ẑ)g
i(x, ẑ)gj(x, ẑ)

}
+
1

4
(T − t)2∂i,jg(x, ẑ)(γγ

⊤)i,j(x) +
(
∂iγ(x)1(0,m)

[
[Σ]st

]T
t
γ⊤(x)

)
i

+∂ig(x, ẑ)γi(x)
([

[ψ]st ]
T
t + 1(0,m)

[[
[ϕ]ut

]s
t

]T
t

)
+∂ig(x, ẑ)γi(x)

([
[Ψ̃]st ]

T
t − 1(0,m)

[[
[Φ]ut

]s
t

]T
t

)
ẑ

+gi(x, ẑ)∂iγ(x)
{
[(s− t)ψ]Tt + 1(0,m)

([[
[ϕ]ut

]s
t

]T
t
+
[
[(u− t)ϕ]st

]T
t

)}
+gi(x, ẑ)∂iγ(x)

{
[(s− t)Ψ̃]Tt − 1(0,m)

([[
[Φ]ut

]s
t

]T
t
+
[
[(u− t)Φ]st

]T
t

)}
ẑ

+γ(x)
([

Ψ̃[ϕ]st
]T
t
− 1(0,m)

[[
Φ[ϕ]ut

]s
t

]T
t

)
+γ(x)

(
−
[
Ψ̃[Φ]st

]T
t
+ 1(0,m)

[[
Φ[Φ]ut

]s
t

]T
t

)
ẑ

EAT
[
X

i,(2)
T X

j,(1)
T |Gt

]
=

1

2
(T − t)3gk(x, ẑ)∂kg

i(x, ẑ)gj(x, ẑ) +
(
γ(x)1(0,m)

[
[Σ]st

]T
t
γ⊤(x)

)
i,j

+
1

2
(T − t)2

{
gk(x, ẑ)((∂kγ)γ

⊤)i,j(x) + ∂kg
i(x, ẑ)(γγ⊤)k,j

}
+gj(x, ẑ)γi(x)

{[
[ψ]st

]T
t
+ [(s− t)ψ]Tt + 1(0,m)

(
2
[[
[ϕ]ut

]s
t

]T
t
+
[
[(u− t)ϕ]st

]T
t

)}
+gj(x, ẑ)γi(x)

{[
[Ψ̃]st

]T
t
+ [(s− t)Ψ̃]Tt − 1(0,m)

(
2
[[
[Φ]ut

]s
t

]T
t
+
[
[(u− t)Φ]st

]T
t

)}
ẑ

EAT
[
X

i,(1)
T X

j,(1)
T X

k,(1)
T |Gt

]
= (T − t)2

{
gi(x, ẑ)(γγ⊤)j,k(x) + gj(x, ẑ)(γγ⊤)k,i(x) + gk(x, ẑ)(γγ⊤)i,j(x)

}
+(T − t)3gi(x, ẑ)gj(x, ẑ)gk(x, ẑ)

(9.23)

Although the expressions are rather lengthy for higher order corrections, there is an
important feature making our method useful. As one can see from the above result, the
stochastic variable (x = Xϵ

t , ẑ = ẑϵt ) are separated from all the necessary time integrations.
Thus, one can carry out the required integrations beforehand and store them in the mem-
ory, which then makes possible to use V1(t) in the simulation with only the usual update
of underlying state processes (Xϵ

t , ẑ
ϵ
t ). As we shall see next, this property continues to

hold for Z1(t).

9.2.2 Approximation of (Z1,Γ1)

We now try to expand

ζϵ1(t) :=

(
Zϵ
1(t)

Γϵ
1(t)

)
(9.24)

as

ζϵ1(t) = ϵζ
(1)
1 (t) + ϵ2ζ

(2)
1 (t) + ϵ3ζ

(3)
1 (t) + · · · (9.25)
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up to the ϵ-third order corrections. Since the expansion for

V ϵ
1 (t) = A(t, T )EAT [H(Xϵ

T )|Gt] (9.26)

is already obtained, one only needs a simple application of Itô formula. Since it increases
ϵ-order by 1, we only need up to the 2nd order corrections of V ϵ

1 , and also there is no 0-th
order contribution to ζ1.

By extracting the coefficients (as row vector) of the n-dimensional Brownian motion
from the SDEs of the following conditional expectations,

X
i,(1)
t,T (x, ẑ) := EAT [X

i,(1)
T |Gt]

X
i,(2)
t,T (x, ẑ) := EAT [X

i,(2)
T |Gt]

X
(i,j),(1,1)
t,T (x, ẑ) := EAT [X

i,(1)
T X

j,(1)
T |Gt] (9.27)

one obtains

σ̄
i,(1)
t,T (x, ẑ) := (T − t)

{
∂jg

i(x, ẑ)γj(x) + γi(x)1(0,m)Σ(t)
}

(9.28)

σ̄
i,(2)
t,T (x, ẑ) :=

1

2
(T − t)2

[
∂j,kg

i(x, ẑ)gj(x, ẑ) + ∂jg
i(x, ẑ)∂kg

j(x, ẑ)
]
γk(x)

+
1

2
(T − t)2

[
gj(x, ẑ)∂jγi(x) + ∂jg

i(x, ẑ)γj(x)
]
1(0,m)Σ(t)

+∂jγi(x)
{(

[ψ]Tt + 1(0,m)

[
[ϕ]st
]T
t

)
+
(
[Ψ̃]Tt − 1(0,m)

[
[Φ]st

]T
t

)
ẑ
}
γj(x)

+γi(x)
(
[Ψ̃]Tt − 1(0,m)

[
[Φ]st

]T
t

)
Σ(t) (9.29)

σ̄
(i,j),(1,1)
t,T (x, ẑ) = (T − t)2

[
∂kg

i(x, ẑ)gj(x, ẑ) + gi(x, ẑ)∂kg
j(x, ẑ)

]
γk(x)

+(T − t)
[
(∂kγγ

⊤)i,j(x) + (∂kγγ
⊤)j,i(x)

]
γk(x)

+(T − t)2
[
gj(x, ẑ)γi(x) + gi(x, ẑ)γj(x)

]
1(0,m)Σ(t) , (9.30)

respectively. Using this result, one can show that the expansion is finally given by

ζ
(1)
1 (t)⊤ = A(t, T )H(x)

[
c[1](t)⊤ + ẑ⊤c[2](t)

]
Σ(t) +A(t, T )∂iH(x)γi(x)

ζ
(2)
1 (t)⊤ = A(t, T )

(
∂iH(x)X

i,(1)
t,T (x, ẑ)

)[
c[1](t)⊤ + ẑ⊤c[2](t)

]
Σ(t)

+A(t, T )
[
∂i,jH(x)X

i,(1)
t,T (x, ẑ)γj(x) + ∂iH(x)σ̄

i,(1)
t,T (x, ẑ)

]
ζ
(3)
1 (t)⊤ = A(t, T )

[
∂iH(x)X

i,(2)
t,T (x, ẑ) +

1

2
∂i,jH(x)X

(i,j),(1,1)
t,T (x, ẑ)

]
[c[1](t)⊤ + ẑ⊤c[2](t)]Σ(t)

+A(t, T )
[
∂i,jH(x)X

i,(2)
t,T (x, ẑ)γj(x) + ∂iH(x)σ̄

i,(2)
t,T (x, ẑ)

]
+
A(t, T )

2

[
∂i,j,kH(x)X

(i,j),(1,1)
t,T (x, ẑ)γk(x) + ∂i,jH(x)σ̄

(i,j),(1,1)
t,T (x, ẑ)

]
.

(9.31)
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9.3 Numerical Examples

As a simple application of the asymptotic expansion, let us consider

H(XT ) = Y I
T (9.32)

as in Sec. 8, but now

γI(Xt) = (Y I
t )

βσ⊤y (9.33)

for its volatility term. Here, β ∈ [0, 1] is some constant, and σy ∈ Rn is a constant vector.
In this case, many cross terms vanish in the asymptotic expansion and one obtains rather
simple formulas. The results of the asymptotic expansion for this model are summarized
in Appendix B.

V
(0)
1 V

(1)
1 V

(2)
1 V

(3)
1 V

(0)
0 V

(1)
0 V

(2)
0 V

(3)
0

β = 0.25 0.87206 0.89560 0.90216 0.90409 0.9052 1.0095 1.0116 1.0088

β = 0.5 0.87206 0.89560 0.90224 0.90596 0.9106 1.0142 1.0164 1.0160

Table 1: The numerical results for V
(i)
1 , V

(i)
0 for β = 0.25 and β = 0.5 models. V

(i)
1 is

calculated based on the asymptotic expansion including all the contribution up to the i-th

order. V
(i)
0 is obtained by running simulation for (8.10) with the corresponding order of

approximation for (V1, Z1).

Figure 3: Comparison of V (0, w) ≃ w2V2(0) − 2wV
(3)
1 (0) + V

(3)
0 (0) and direct simulation

of E(Y I
T − Wπ∗

T )2 with each approximation order of (V1, Z1). The solid line is based on
the quadratic form of V (0, w) and the other symbols are those obtained from the direct
simulation of wealth with each approximation order. The horizontal axis denotes the size
of the initial capital w.

We have studied β = 0.25 and β = 0.5 cases for T = 1yr maturity. For the remaining
parameters (z0, µ, F, δ, Σ0) and also σy are those we have used in Sec. 8.1. We have
also set Y I

0 = 1 for both of the models. V2(0) is independent from the model of Y I and
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we have obtained V2(0) = 0.8721 by numerically solving the ODEs. In Table 1, we have
listed the numerical results for V1(0) and V0(0).

There, the results of {V (i)
1 } are based on the asymptotic expansion including all the

contribution up to the i-th order, and {V (i)
0 } are calculated by simulating (8.10) with the

corresponding order of approximation for (V1, Z1). The number of simulation paths and
step size are the same as those used in Sec. 8.1. The standard error of V0 simulation is
around 7× 10−4 for both of the models.

In Fig. 3, we have done the same consistency test as in Sec. 8.1, where we have
compared the quadratic form of V (0, w) and direct simulation of E(Y I

T −Wπ∗
T )2. The solid

line corresponds to the prediction of V (0, w) using the 3rd order approximation, and the
other symbols denote the results of direct simulation of E(Y I

T − Wπ∗
T )2 using each order

of approximation of (V1, Z1). One can confirm the consistency of our approximation and
also that even the 1st order approximation realizes the most part of the hedging benefit
of the variance reduction.

Figure 4: The comparison of the terminal distribution (Y I
T −Wπ∗

T ) with the initial capital
w = 1 using the third order asymptotic expansion. The graphs are obtained by connecting
the histograms after sampling 400, 000 paths.

It might be surprising that these results are very close between the two choices of
β, but in fact, this result is naturally expected. Actually, one can easily confirm that

(V
(0)
1 (0), V

(1)
1 (0)) should have exactly the same value with arbitrary β ∈ [0, 1] in the

current setup. Furthermore, the common σy and the initial value of Y I
0 = 1 indicate that

every model with β ∈ [0, 1] has almost the same variance for relatively short maturities,
which naturally leads to the similar variance for the hedging error. However, as can be
seen from Fig. 4, there appears a difference in the distribution of the hedged portfolio.
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There, we have compared the terminal distribution (Y I
T − Wπ∗

T ) with the initial capital
w = 1 for four models of β = {1, 0.5, 0.25, 0}. The graphs of distribution were obtained
by connecting the histogram after sampling 400,000 paths. These difference may become
important for financial firms from a risk-management perspective.

10 Conclusions

In this article, we have studied the mean-variance hedging (MVH) problem in a partially
observable market by studying a set of three BSDEs derived by Mania & Tevzadze [9].
Under the Bayesian and Kalman-Bucy frameworks, we have found that one of these BSDEs
yields a semi-closed solution via a simple set of ODEs which allow a quick numerical
evaluation. We have proposed a Monte Carlo scheme using a particle method to solve the
remaining two BSDEs without nested simulations. As far as the optimal hedging positions
are concerned, it is also pointed out that one only needs the standard simulations for the
terminal liability and its Delta sensitivities against the state processes under a new measure
(PAT ,G).

We gave a special example where the hedging position is available in a semi-closed form
and presented an interesting consistency test by directly simulating the optimal portfolio.
For more general situations, we have provided explicit expressions of the approximate
hedging portfolio by an asymptotic expansion method and demonstrated the procedures
by several numerical examples. It would be interesting future works to apply the obtained
asymptotic expansion formula to more involved situations where the payoff function H is
non-linear or dependent on both S and Y .

Although the simplifying assumptions on the MPR dynamics in (P,F) are very re-
strictive, generalization to a non-linear dynamics remains as a very challenging issue of the
non-linear filtering problem with infinite degrees of freedom. It may be worth considering
to use a similar asymptotic expansion technique (see, for example, Fujii (2013) [2].) for
this problem. If the MPR process is perfectly observable, then, in principle, we can take
its non-linear effects into account perturbatively by the method proposed in [3].

A Derivation of BSDEs

In this section, for interested readers, we briefly explain the main ideas of Mania &
Tevzadze leading to the system of BSDEs. Since V (t, w) defined by (4.2) given the ini-
tial capital w at t is a {Gt}-adapted semimartingale in general, using the “representation
theorem” (see, Lemma 4.1 of [15]), one can decompose it as

V (t, w) = V (s, w) +

∫ t

s
a(u,w)du+

∫ t

s
Z(u,w)⊤dNu +

∫ t

s
Γ(u,w)⊤dMu (A.1)

with an appropriate {Gt}-adapted triple (a, Z,Γ). Then, recalling

dSu = σu[dNu + θ̂udu], σu ≡ σ(u, Su, Yu),
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and assuming appropriate conditions for the use of Itô-Ventzell formula [7], one obtains

V (t,Wπ
t ) = V (s, w) +

∫ t

s
a(u,Wπ

u )du+

∫ t

s
Z(u,Wπ

u )
⊤dNu +

∫ t

s
Γ(u,Wπ

u )
⊤dMu

+

∫ t

s
Vw(u,Wπ

u )π
⊤
u σu[dNu + θ̂udu] +

∫ t

s
π⊤u σuZw(u,Wπ

u )du

+

∫ t

s

1

2
Vww(u,Wπ

u )π
⊤
u (σσ

⊤)(u)πudu (A.2)

Here, we have written Wπ
t (s, w) as Wπ

t for simplicity. It is easy to see V (t,Wπ
t ) should

be a (P,G)-martingale for the optimal strategy π∗ (and submartingale otherwise). Then,
one obtains

a(s, w) = − inf
π∈Π

{
1

2
Vww(s, w)

∣∣∣∣∣∣σ⊤(s)πs + Zw(s, w) + Vw(s, w)θ̂s
Vww(s, w)

∣∣∣∣∣∣2}

+
||Zw(s, w) + Vw(s, w)θ̂s||2

2Vww(s, w)
(A.3)

as a drift condition.
Assuming the π which makes the first term zero is admissible and hence corresponding

to π∗, one obtains

a(s, w) =
||Zw(s, w) + Vw(s, w)θ̂s||2

2Vww(s, w)
. (A.4)

Substituting the above result into (A.1) yields a BSPDE

V (t, w) =
∣∣∣H − w

∣∣∣2 − 1

2

∫ T

t

||Zw(s, w) + Vw(s, w)θ̂s||2

Vww(s, w)
ds

−
∫ T

t
Z(s, w)⊤dNs −

∫ T

t
Γ(s, w)⊤dMs . (A.5)

The optimal wealth dynamics can also be read as

Wπ∗
T (t, w) = w −

∫ T

t

[Zw(s,Wπ∗
s ) + Vw(s,Wπ∗

s )θ̂s]
⊤

Vww(s,Wπ∗
s )

[dNs + θ̂sds] . (A.6)

Since
∫ T
t (π∗(u))⊤dSu is given by the orthogonal projection of H−w ∈ L2(P) on the closed

subspace of stochastic integrals, the optimal strategy π∗ is linear with respect to the initial
capital w. Thus, one may suppose the following decomposition holds. (See Theorem 1.4
of [6] and Theorem 4.1 of [9] for the detail.)

V (t, w) = w2V2(t)− 2wV1(t) + V0(t) (A.7)

where {Vi} do not depend on w. This decomposition needs to hold for arbitrary w. Then,
inserting back to (A.5) leads to the desired set of BSDEs. Economic meanings of Vi are
explained in [9].
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B Asymptotic expansion formulas for the model in Sec. 9.3

Firstly, let us put

Y
I,(1)
t,T (y, ẑ) := EAT [Y

I,(1)
T |Gt]

Y
I,(2)
t,T (y, ẑ) := EAT [Y

I,(2)
T |Gt]

Y
I,(3)
t,T (y, ẑ) := EAT [Y

I,(3)
T |Gt] , (B.1)

with the convention that

y := Y I,ϵ
t . (B.2)

From the results in Sec. 9.2.1 and 9.2.2, one obtains

Y
I,(1)
t,T (y, ẑ) = (T − t)yβ(σ⊤y 1(0,m)ẑ)

Y
I,(2)
t,T (y, ẑ) =

1

2
(T − t)2βy2β−1(σ⊤y 1(0,m)ẑ)

2 + yβσ⊤y

(
[ψ]Tt + 1(0,m)

[
[ϕ]st
]T
t

)
+yβσ⊤y

(
[Ψ̃]Tt − 1(0,m)

[
[Φ]st

]T
t

)
ẑ

Y
I,(3)
t,T (y, ẑ)

=
1

6
(T − t)3(2β2 − β)y3β−2(σ⊤y 1(0,m)ẑ)

3 +
1

4
(T − t)2(β2 − β)y3β−2(σ⊤y 1(0,m)ẑ)||σy||2

+βy2β−1(σ⊤y 1(0,m)ẑ)σ
⊤
y

{[
[ψ]st

]T
t
+ [(s− t)ψ]Tt + 1(0,m)

(
2
[[
[ϕ]ut

]s
t

]T
t
+
[
[(u− t)ϕ]st

]T
t

)}
+βy2β−1(σ⊤y 1(0,m)ẑ)σ

⊤
y

{[
[Ψ̃]st

]T
t
+ [(s− t)Ψ̃]Tt − 1(0,m)

(
2
[[
[Φ]ut

]s
t

]T
t
+
[
[(u− t)Φ]st

]T
t

)}
ẑ

+yβσ⊤y

([
Ψ̃[ϕ]st

]T
t
− 1(0,m)

[[
Φ[ϕ]ut

]s
t

]T
t

)
+ yβσ⊤y

(
−
[
Ψ̃[Φ]st

]T
t
+ 1(0,m)

[[
Φ[Φ]ut

]s
t

]T
t

)
ẑ

+βy2β−1
(
σ⊤y 1(0,m)

[
[Σ]st

]T
t
σy
)
. (B.3)

Using the above results, one can show V ϵ
1 (t) can be expanded as

V ϵ
1 (t) = A(t, T )

{
y + ϵY

I,(1)
t,T (y, ẑ) + ϵ2Y

I,(2)
t,T (y, ẑ) + ϵ3Y

I,(3)
t,T (y, ẑ) + o(ϵ3)

}
. (B.4)

It is also straightforward to obtain

ζ
(1)
1 (t)⊤ = A(t, T )

{
y[c[1](t)⊤ + ẑ⊤c[2](t)]Σ(t) + yβσ⊤y

}
ζ
(2)
1 (t)⊤ = A(t, T )

{
Y

I,(1)
t,T (y, ẑ)[c[1](t)⊤ + ẑ⊤c[2](t)]Σ(t) + σ̄

I,(1)
t,T (y, ẑ)

}
ζ
(3)
1 (t)⊤ = A(t, T )

{
Y

I,(2)
t,T (y, ẑ)[c[1](t)⊤ + ẑ⊤c[2](t)]Σ(t) + σ̄

I,(2)
t,T (y, ẑ)

}
, (B.5)
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with the definitions of

σ̄
I,(1)
t,T (y, ẑ) := (T − t)

{
βy2β−1(σ⊤y 1(0,m)ẑ)σ

⊤
y + yβ(σ⊤y 1(0,m)Σ(t))

}
σ̄
I,(2)
t,T (y, ẑ) =

1

2
(T − t)2(2β2 − β)y3β−2(σ⊤y 1(0,m)ẑ)

2σ⊤y

+(T − t)2βy2β−1(σ⊤y 1(0,m)ẑ)(σ
⊤
y 1(0,m)Σ(t))

+βy2β−1σ⊤y

[(
[ψ]Tt + 1(0,m)

[
[ϕ]st
]T
t

)
+
(
[Ψ̃]Tt − 1(0,m)

[
[Φ]st

]T
t

)
ẑ
]
σ⊤y

+yβσ⊤y

(
[Ψ̃]Tt − 1(0,m)

[
[Φ]st

]T
t

)
Σ(t).

(B.6)
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