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Abstract

This paper proposes the optimal pricing bounds on barrier options in an environment where plain-vanilla
options and no-touch options can be used as hedging instruments.

Super-hedging and sub-hedging portfolios are derived without specifying any underlying processes, which
are static ones consisting of not only plain-vanilla options but also cash-paying no-touch options and/or asset
paying no-touch options that pay one cash or one underlying asset respectively if the barrier has not been
hit. Moreover, the prices of these portfolios turn out to be the optimal pricing bounds through finding
risk-neutral measures under which the barrier option price is equal to the hedging portfolio’s value.

The model-independent pricing bounds are useful because a price of a barrier option is significantly
dependent on a model. It is demonstrated through numerical examples that prices outside the pricing
bounds can be produced by models which are calibrated to market prices of plain-vanilla options, but not
to that of a no-touch option.
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1 Introduction

This paper proposes pricing bounds on barrier options.
Pricing and hedging barrier options have been researched widely so far. In particular, a lot of methods

which semi-statically hedge barrier options have been proposed by several researchers (see e.g. Carr and
Chou (1997), Carr et al. (1998), Derman et al. (1995), Fink (2003)). Here, semi-static hedging means
replication of barrier options by trading plain-vanilla options at no more than one time after inception.
Since plain-vanilla options are needed for these hedging strategies, models which price barrier options must
be calibrated to plain-vanilla options.

However, model risk on the valuation of barrier options has been pointed out, even if the model is
perfectly calibrated to a volatility surface. For instance, it is documented in Hirsa et al. (2003) and Lipton
and McGhee (2002) that models may produce similar prices of plain-vanilla options, yet give markedly
different prices of barrier options. As a result, they demonstrate that static hedging of barrier options with
plain-vanilla options is model dependent. Schoutens et al. (2005) also reports a general feature of pricing
exotic options under several models calibrated nicely to the same volatility surface. Their results about
barrier options show that the variation can be significant, especially if the spot price is close to the barrier
level.

Model risk of barrier options is explained as follows. Since barrier options are path-dependent options,
joint distributions of the underlying asset prices at different time points are significantly important in order
to price or hedge these options. In contrast, plain-vanilla options determine only the marginal distribution
of the risk-neutral measure, but leave considerable freedom in the specification of joint distributions. Joint
distributions are determined not by market prices but by models, if the models are calibrated only to plain-
vanilla options. Then, what model is used to price barrier options is heavily important. This implies that
models must be not only matched to the market prices of plain-vanilla options, but also be consistent with
the observable prices of exotic options. Carr and Crosby (2010) proposes a model which is calibrated to
both the market prices of plain-vanilla options and the observable prices of exotic options. They consider
pricing of barrier options in the foreign exchange (FX) options market. In this market, the most actively
traded barrier options are double-no-touch (DNT) options. They regard DNT options as instruments which
are calibrated to.

In contrast, this study proposes not exact prices for barrier options but pricing bounds, using no-touch
options as well as plain-vanilla options, where a no-touch option is a knock-out option which is worthless if
the barrier is hit, pays one cash at maturity if the barrier has not been hit. Moreover, the corresponding
super-hedging and sub-hedging portfolios are also provided, which are static ones consisting of plain-vanilla
options and no-touch options. They are derived without any specification of underlying processes and are
the optimal pricing bounds among model-independent bounds. The optimality is proved through finding
risk-neutral measures under which the barrier option price is equal to the hedging portfolio’s value. In
addition, if one can use another type of a no-touch option which pays one underlying asset at maturity if the
barrier has not been hit, the pricing bounds are much tighter. In particular, this no-touch option is common
in FX options market because it is nothing but a no-touch option which pays one cash for a foreign trader.
Hereafter, these no-touch options are called cash-paying no-touch option and asset-paying no-touch option
respectively in this article.

The model-independent pricing bounds and the hedging portfolios are useful for checking a barrier
option’s price. If the price is outside the pricing bounds, it provides an arbitrage opportunity which yields a
profit without any risk. It will be demonstrated through numerical examples in this paper that prices outside
the pricing bounds may be produced by models which are calibrated to market prices of plain-vanilla options,
but not to that of a no-touch option. As Carr and Crosby (2010) does, this study also suggests that models
for pricing barrier options should be calibrated to the market prices of no-touch options. Otherwise, it is
likely that arbitrage opportunities are provided.

The strategy proposed in this article is unique, while model-independent pricing bounds and the hedging
portfolios have been studied so far. For example, Brown et al. (2001) and Cox and Oblój (2011) derive

2



hedging portfolios which consist of only plain-vanilla options and require a certain transaction at the first
hitting time, assuming that plain-vanilla options are liquidly traded and an underlying asset price itself is
a martingale. The approach of this study is more robust than theirs because their assumption is violated
in the real markets with nonzero interest rates and it is not necessarily possible to trade during the turmoil
periods, which may cause substantial hedging errors. It should be pointed out that the strategy is crucially
dependent on liquidity of no-touch options, while Brown et al. (2001) is so general that they can be applied to
these options as well. Pricing bounds and the corresponding hedging strategies for no-touch options are well
documented in these Brown et al. (2001) and Cox and Oblój (2011). Also, pricing no-touch options under
several models is studied by Lipton and McGhee (2002). An interesting point in this study is, however, to
make use of market prices of no-touch options for the purpose of finding arbitrage opportunities. Actually,
these options are likely to be overestimated or underestimated, since they are highly dependent on models
and market views of traders.

Numerical examples are used to demonstrate how useful the bounds are for pricing and hedging barrier
options. The pricing bounds are compared with exact prices under several models which are calibrated
to plain-vanilla options and with pricing bounds proposed by Brown et al. (2001). In particular, a com-
parison with the prices in Schoutens et al. (2005) shows that some models produce prices outside the
model-independent bounds. It is suggested that great care should be taken when choosing models to price
barrier options and the models should be calibrated to both the market prices of plain-vanilla options and
no-touch options.

The rest of this paper is as follows: In the next section, the setup and the problem considered in this paper
are described. The third section is devoted to showing pricing bounds on the barrier option and hedging
strategies corresponding to them. The fourth section provides numerical examples. Finally, concluding
remarks are given in the last section.

2 Setup

Consider a problem of pricing and hedging barrier options in an environment where plain-vanilla options
and no-touch options are liquid.

In order to state the problem precisely, some assumptions and notations are introduced. First, a barrier
option under consideration is assumed to be a single or double knock-out option with maturity T , payoff g
and barrier levels l, u where 0 ≤ l < u ≤ +∞. This option is worthless if l or u is hit at any time during its
life. If the barrier has not been hit by the expiration date, the terminal payoff is g. Let St be the spot price
of the underlying asset at time t ∈ [0, T ] and l < S0 < u. Then, the payoff of the barrier option is:

g(ST )1A, (2.1)

where I := [l, u] and A := {St ∈ I | 0 ≤ ∀t ≤ T}. A cash-paying no-touch option with maturity T and
barrier levels l, u is a knock-out option which is worthless if the barrier is hit, pays one cash at maturity if
the barrier has not been hit. The payoff is 1A. An asset-paying no-touch option pays one underlying asset
instead of one cash. The payoff is ST 1A.

Next, some assumptions on the market environment are described. The risk-free interest rate r and the
dividend yield q of the underlying asset are assumed to be constant for simplicity. Different from other
research of barrier options, these two quantities are not required to be equal. In addition, the time-0 prices
of all plain-vanilla options with maturity T and a cash-paying no-touch option with the barrier level l, u
and the same maturity are assumed to be known. That is, the risk-neutral distribution of ST is uniquely
determined by prices of plain-vanilla options and the risk-neutral probability that the barrier is hit at any
time during its life is known. Furthermore, it is assumed that the prices of plain-vanilla options are twice
continuously differentiable by strike and the second order derivative is positive. The last assumption ensures
that the density of the random variable ST exists and is a continuous function.
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All one knows is the risk-neutral distribution of ST and the risk-neutral probability that the barrier is
hit until time T . In these settings, one has no information about the risk-neutral distribution of St (t < T ).

The problem is stated as follows: How can a knock-out call option be priced and hedged in an environment
where the underlying asset, all plain-vanilla options with the same maturity and a cash-paying no-touch option
with the same maturity and the same barrier levels can be used as hedging instruments?

Remark 1. This paper considers a knock-out call option with a single or double barrier. The theorems in
this paper introduced in Section 3 are however valid for other types of barrier options if it is slightly modified.
For example, the knock-out condition A can be replaced with {St ∈ I | ∀t ∈ J}, where J is a subset of the
interval [0, T ], and with {Xt ∈ I | 0 ≤ ∀t ≤ T}, where X is an another asset price process.

The approach in this paper to this problem is not to derive an exact price and an exact hedging, but to
derive pricing bounds, and super-hedging and sub-hedging strategies corresponding to the bounds. These
pricing bounds are the optimal under a certain condition, which means that the pricing bounds cannot be
improved without additional condition.

The undiscounted price, or forward price, of a call option and a cash-paying no-touch option at time t
are denoted by Ct(K) and NC

t (I). All one requires of a pricing framework is that they are calibrated to
market prices of these options. In order to define this requirement, the following definition is introduced.

Definition 1. A pair of a probability space (Ω,F ,Q) and a stochastic process {St}t∈[0,T ] on it is a calibrated
probability space if and only if

C0(K) = E((ST −K)+), (2.2)

NC
0 (I) = E(1A), (2.3)

where ∀K > 0 and E is the expectation operator under Q. PC is a set of all calibrated probability spaces.

In addition, a constraint on trading strategies is imposed: trading is allowed only at the initial time. This
kind of strategies is called a static strategy in this paper. Limiting the strategy static one means that it is
not required that the process {e−(r−q)tSt}t∈[0,T ) is a continuous-time martingale1 and that all of probability
one has to consider is PC .

If a market is incomplete, the price of the barrier option cannot be determined uniquely. The next best
thing is to derive the optimal pricing bounds. If there are no arbitrage opportunities, undiscounted values
of the barrier option must lie somewhere between the bounds [WC

L ,WC
G ], where

WC
L := inf

PC
E(g(ST )1A), (2.4)

WC
G := sup

PC

E(g(ST )1A). (2.5)

This study derives pricing bounds which are enforced by a static super-hedging strategy and a static sub-
hedging strategy. In particular, the bounds are turned out to be the optimal, which means that they are
equal to [WC

L ,WC
G ]. This is proved by constructing specific calibrated probability spaces under which a price

of the barrier option is equal to the super-hedging and sub-hedging values respectively.
After establishing pricing bounds for this problem, it is considered how the pricing bounds are improved

by adding an assumption that one can use an asset-paying no-touch option as a hedging instrument. Similarly
to the problem stated above, the following notations are defined:

Definition 2. PA is a subset of PC such that its element satisfies

NA
0 (I) = E(ST 1A), (2.6)

where NA
0 (I) is an undiscounted price of the asset-paying no-touch option.

1It is required that the discrete-time process {S0, e−(r−q)TST } is a martingale, but it is imposed from the prices of plain-vanilla
options.
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The pricing bounds with this probability space PA are

WA
L := inf

PA
E(g(ST )1A), (2.7)

WA
G := sup

PA

E(g(ST )1A). (2.8)

Lastly, a measure to be considered is a component of an element of PCorPA hereafter in this paper.
Then, Q or E is respectively used to denote the risk-neutral distribution or expectation of ST and of A for
simplicity if it is not ambiguous, because they do not depend on a choice of an element of PCorPA.

3 Pricing Bounds

This section derives pricing bounds on barrier options and hedging portfolios corresponding to the bounds.
Theorem 1 is the main theorem of this paper.

Theorem 1. Define A∗ ⊆ I such that sups∈A∗ g(s) ≤ infs/∈A∗ g(s) and A∗ ⊆ I such that sups/∈A∗ g(s) ≤
infs∈A∗ g(s). Then,

(g(ST )− g∗)1{ST∈A∗} + g∗1A (3.1)

≤ g(ST )1A (3.2)

≤ (g(ST )− g∗)1{ST∈A∗} + g∗1A, (3.3)

where g∗ and g∗ are arbitrary values such that g∗ ∈ [sups∈A∗ g(s), infs/∈A∗ g(s)] and g∗ ∈ [sups/∈A∗ g(s), infs∈A∗ g(s)]

respectively. Moreover, suppose that NC
0 (I) = Q(ST ∈ A∗) and NC

0 (I) = Q(ST ∈ A∗). Then,

WC
L = E((g(ST )− g∗)1{ST∈A∗} + g∗1A), (3.4)

WC
G = E((g(ST )− g∗)1{ST∈A∗} + g∗1A). (3.5)

Remark 2. The former part of Theorem 1 implies that the barrier option can be dominated by or dominate
some portfolios which consist of plain-vanilla options and a cash-paying no-touch option. The latter part of
Theorem 1 implies that the portfolios give the optimal pricing bounds respectively.

Remark 3. One can find A∗ and A∗ because it is assumed that the density of ST is continuous.

In the following, two propositions which constitute Theorem 1 are provided. The first one shows that
there are families of super-hedging and sub-hedging portfolios.

Proposition 1 (super-hedging and sub-hedging portfolio). Suppose that g∗, A∗, g
∗ and A∗ are defined as

in Theorem 1 for g. Then,

(g(ST )− g∗)1{ST∈A∗} + g∗1A (3.6)

≤ g(ST )1A (3.7)

≤ (g(ST )− g∗)1{ST∈A∗} + g∗1A. (3.8)

Proof. Inequality (3.1) is proved by

(g(ST (ω))− g∗)1{ST (ω)∈A∗} + g∗1{ω∈A} =


g(ST (ω)) (ST (ω) ∈ A∗, ω ∈ A)
g∗ (ST (ω) /∈ A∗, ω ∈ A)
g(ST (ω))− g∗ (ST (ω) ∈ A∗, ω /∈ A)
0 (ST (ω) /∈ A∗, ω /∈ A)

≤


g(ST (ω)) (ST (ω) ∈ A∗, ω ∈ A)
g(ST (ω)) (ST (ω) /∈ A∗, ω ∈ A)
0 (ST (ω) ∈ A∗, ω /∈ A)
0 (ST (ω) /∈ A∗, ω /∈ A)

= g(ST (ω))1{ω∈A} (3.9)
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and Inequality (3.3) is proved in the same manner.

Eq.(3.6) shows that the payoff of the knock-out option dominates that of the following portfolio:

• g∗ unit of the cash-paying no-touch option

• one unit of a European derivative with the payoff (g(ST )− g∗)1{ST∈A∗}.

Similarly, Eq.(3.8) shows that the payoff of the knock-out option is dominated by that of the following
portfolio:

• g∗ unit of the cash-paying no-touch option

• one unit of a European derivative with the payoff (g(ST )− g∗)1{ST∈A∗}.

Remark 4. Construction of the payoffs (g(ST ) − g∗)1{ST∈A∗} and (g(ST ) − g∗)1{ST∈A∗} is theoretically
possible using call and put options (see Breeden and Litzenberger (1978)). However, the construction in
practice requires high transaction cost. One way to address this problem is to trade these options with an
internal option trader not with an external market participant. The internal option trader manages the
options as a part of his or her own position and hedging or taking risk is up to him or her.

Proposition 2 shows the optimality of the pricing bounds by constructing calibrated probability spaces
under which a price of the barrier option is equal to WC

L and WC
G respectively.

Proposition 2 (the optimality of the bounds). Suppose that NC
0 (I) = Q(ST ∈ A∗) and NC

0 (I) = Q(ST ∈
A∗).

(i) There exists a calibrated probability space (ΩL,FL,QL, {SL
t }t∈[0,T ]) ∈ PC such that

EL(g(ST )1A) = E((g(ST )− g∗)1{ST∈A∗} + g∗1A). (3.10)

(ii) There exists a calibrated probability space (ΩG,FG,QG, {SG
t }t∈[0,T ]) ∈ PC such that

EG(g(ST )1A) = E((g(ST )− g∗)1{ST∈A∗} + g∗1A). (3.11)

Proof. First, an arbitrary element (Ω,F ,Q, {St}t∈[0,T ]) ∈ PC is chosen.
Let (ΩL,FL,QL) = (Ω,F ,Q) and X be a random variable on it such that

X :=

{
ST (ST ∈ A∗)
x (ST /∈ A∗)

, (3.12)

where x /∈ I is an arbitrary value. In addition, a stochastic process SL is defined by

SL
t := S01{t< 1

3
T} +X1{ 1

3
T≤t< 2

3
T} + ST 1{ 2

3
T≤t≤T}. (3.13)

Then, (ΩL,FL,QL, {SL
t }t∈[0,T ]) is a calibrated probability space, because the distribution of SL

T is coincident
with that of ST and QL(SL

t ∈ I | 0 ≤ t ≤ T ) = QL(SL
T ∈ A∗) = Q(A). Then,

EL(g(SL
T )1A) = EL(g(SL

T )1{SL
T
∈A∗})

= E((g(ST )− g∗)1{ST∈A∗} + g∗1{ST∈A∗})

= E((g(ST )− g∗)1{ST∈A∗} + g∗1A). (3.14)

Therefore, Eq.(3.10) holds.
One can prove Eq.(3.11) in the same manner.
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Remark 5. The calibrated probability space (ΩG,FG,QG, {SG
t }t∈[0,T ]) is explained intuitively as follows.

Consider the worst case scenario for a writer of a knock-out option whose payoff is g(ST )1A under the
condition that the risk-neutral distribution of ST and the risk-neutral probability that the barrier is hit are
given. Since the writer has to pay the payoff of the option at maturity if the barrier has not been hit, the
worst scenario for the writer is that the payoff is high if the barrier has not been hit and low if the barrier
has been hit. Then, the process {SG

t }t∈[0,T ] should be constructed by distributing SG
T (ω) to A∗ for ω ∈ A.

The event A has the same probability as that of {SG
T ∈ A∗}. As a result, the upper bound is an expectation

of the plain-vanilla payoff g(SG
T ) on the domain {SG

T ∈ A∗}.
In particular, the pricing bounds for a knock-out call option with strike K and an asset-paying no-touch

option are obtained:

Corollary 1. Suppose κ ∈ [K,u]. Then

(κ−K)(1A − 1AT ) + ((ST −K)+ − (ST − κ)+)1AT (3.15)

≤ (ST −K)+1A (3.16)

≤ (κ−K)1A + (ST − κ)+1AT , (3.17)

where AT := {ST ∈ I}. Moreover,

(i) the expectation of Eq.(3.15) takes the supremum value at κ = κ∗ ∨K and the value is WC
L ,

(ii) the expectation of Eq.(3.17) takes the infimum value at κ = κ∗ ∨K and the value is WC
G ,

where κ∗ and κ∗ are real numbers in [l, u] such that

Q(A) = Q({l ≤ ST ≤ κ∗}) (3.18)

Q(A) = Q({κ∗ ≤ ST ≤ u}) (3.19)

and x ∨ y := max(x, y).

Corollary 2. The following holds for any element of PC

E(ST 1{l≤ST≤κ∗}) ≤ E(ST 1A) ≤ E(ST 1{κ∗≤ST≤u}), (3.20)

where κ∗ and κ∗ are defined as in Corollary 1.

Next, consider how the pricing bounds are improved by adding an assumption that one can use an
asset-paying no-touch option as a hedging instrument.

Theorem 2. Suppose α ∈ R. Then

(h(ST )− h∗)1{ST∈A∗} + h∗1A + αST 1A (3.21)

≤ g(ST )1A (3.22)

≤ (h(ST )− h∗)1{ST∈A∗} + h∗1A + αST 1A, (3.23)

where h(s) := g(s)− αs and h∗, A∗, h
∗ and A∗ are defined as in Theorem 1 for h. Moreover, suppose that

supλ∈I−s

∣∣∣∣g(s+ λ)− g(s)

λ

∣∣∣∣ < +∞ (3.24)

for s = κ∗ and s = κ∗, where κ∗ and κ∗ are defined as in Corollary 1. Then,

(i) the expectation of Eq.(3.21) takes the supremum value at α = α∗ and the value is WA
L ,

(ii) the expectation of Eq.(3.23) takes the infimum value at α = α∗ and the value is WA
G ,

where α∗ and α∗ are defined by NA
0 (I) = E(ST 1{ST∈A∗}) = E(ST 1{ST∈A∗}) respectively.
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Proof. The inequalities are from Theorem 1. The set A∗ is close to {l ≤ ST ≤ κ∗} as α −→ −∞ and
{κ∗ ≤ ST ≤ u} as α −→ +∞. By Corollary 2, one can find α∗ and A∗ such that NA

0 (I) = E(ST 1{ST∈A∗}).
One can construct an element of PC such that A = {ST ∈ A∗}. Then,

E((h(ST )− h∗)1{ST∈A∗} + h∗1A + α∗ST 1A) = E((h(ST )− h∗)1A + h∗1A + α∗ST 1A)

= E(g(ST )1A). (3.25)

Eq.(3.21) shows that the payoff of the knock-out option dominates that of the following portfolio:

• h∗ unit of the cash-paying no-touch option

• α unit of the asset-paying no-touch option

• one unit of a European derivative with the payoff (g(ST )− αST − h∗)1{ST∈A∗}.

Similarly, Eq.(3.23) shows that the payoff of the knock-out option is dominated by that of the following
portfolio:

• h∗ unit of the cash-paying no-touch option

• α unit of the asset-paying no-touch option

• one unit of a European derivative with the payoff (g(ST )− αST − h∗)1{ST∈A∗}.

4 Numerical Examples

This section shows numerical examples. The pricing bounds are compared with exact prices derived by some
specific models.

The Heston’s stochastic volatility model (Heston (1993)) is regarded as the process of the underlying
asset, which means all market options are produced by the model. The process of the underlying under the
Heston model is as follows:

dSt

St
= (r − q)dt+ σtdWt, (4.1)

dσ2
t = κ(η − σ2

t )dt+ θσtdW̃t, (4.2)

where W and W̃ are Brownian motions with correlation ρ under the risk-neutral measure.

4.1 Pricing Bounds on Double Barrier Options

The first example of pricing bounds is for double barrier options. Double barrier options can be priced
analytically under the Heston model with r = q and ρ = 0 (see Lipton (2001)). The barrier option considered
in this example is set to be a double knock-out call option with maturity 1-month or 3-month, K = 0.95,
l = 0.8 and u = 1.1. The Heston prices, the model-independent pricing bounds and trivial upper bounds for
this option are calculated with the spot price varied from l to u under the Heston model with the parameters
listed in Table 1. Here, a trivial upper bound means a European option whose payoff is (ST − K)+1AT ,
where AT is defined in Corollary 1.

The results are Figure 1 and Table 4 for 1-month and Figure 2 and Table 5 for 3-month2, which show
that all of the model-independent upper bounds or lower bounds are upper or lower than the exact prices
respectively. In addition, the pricing bounds using an asset-paying no-touch option are much closer to the
Heston prices than those using only a cash-paying no-touch option.

2The pricing bounds using asset-paying no-touch options are omitted from the figures since they are very close to the Heston
prices.
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Table 1: Parameters of the Heston Model

r q σ2
0 κ η θ ρ

0.03 0.03 0.152 3.0 0.22 0.4 0.0

The upper bound with a cash-paying no-touch option seems much more conservative than the lower
bound in these examples. Although this is not true in general, the case of this example is explained as
follows: Consider the calibrated probability space (ΩG,FG,QG, {SG

t }t∈[0,T ]) ∈ PC , which gives the upper
bound for the knock-out call options in the examples. As in Remark 5, SG

T (ω) belongs to A∗ for a scenario
ω ∈ A where the barrier is not hit and SG

T (ω) does not belongs to A∗ for a scenario ω ∈ Ac. This scenario
is, however, far from a reality, because A∗ is a subset of I which is close to the barrier levels l and u. On
the other hand, the probability space that gives the lower bound is more likely. This is a reason why the
upper bound is much more conservative than the lower bound.

4.2 Comparison with Brown et al. (2001)

The second example is comparison with the method proposed by Brown et al. (2001) for single barrier
options, which are up-and-out call options with maturity 1-month or 3-month, K = 0.95 and u = 1.1. The
Heston prices, the model-independent pricing bounds, pricing bounds of Brown et al. (2001) and trivial
upper bounds for this option are calculated with the spot price varied from 0.95 to 1.075 under the Heston
model with the parameters listed in Table 2.

Table 2: Parameters of the Heston Model

r q σ2
0 κ η θ ρ

0.0 0.0 0.152 3.0 0.22 0.4 0.0

The results are Table 6 for 1-month and Table 7 for 3-month. Generally, one cannot claim that either of
the two methods is superior to the other. The method proposed by this paper uses a no-touch option and
do not assume the underlying asset price is martingale, while Brown et al. (2001) assume it is martingale.
Actually, Table 6 and Table 7 show that the lower bounds of Brown et al. (2001) and the upper bounds of
this paper are more conservative.

4.3 Comparison with Schoutens et al. (2005)

The third example is a comparison with the results of Schoutens et al. (2005). They study prices of single
barrier options under several models: the Heston model (HEST) and its generalization allowing for jumps in
the price process (see e.g. Bakshi et al. (1997)) (HESJ), the Barndorff-Nielsen-Shephard model introduced
in Barndorff-Nielsen and Shephard (2001) (BN-S) and Lévy models with stochastic time introduced by Carr
et al. (2001). The Lévy models with stochastic time in their study are NIG Lévy process with CIR Stochastic
Clock(NIG-CIR), NIG Lévy process with Gamma-OU Stochastic Clock(NIG-OUΓ), VG Lévy process with
CIR Stochastic Clock(VG-CIR), and VG Lévy process with Gamma-OU Stochastic Clock(VG-OUΓ), where
NIG is for the Normal Inverse Gaussian distribution and VG for the Variance Gamma distribution.

The barrier options considered in their example are knock-out call options with maturity 3 years, strike
equal to the spot S0 and several barrier levels (ranging from 1.05S0 to 1.5S0). They price the barrier options
under models which are calibrated very well to a set of plain-vanilla options.
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The pricing bounds proposed in this paper are compared with their exact prices under the above models.
The calculation is based on the Heston model with the parameters listed in Table 3. Note that the prices
of no-touch options are also calculated by the Heston model, which are different from those by the other
models.

Table 3: Parameters of the Heston Model in Schoutens et al. (2005)

S0 r q σ2
0 κ η θ ρ

2461.44 0.03 0.0 0.0654 0.6067 0.0707 0.2928 -0.7571

The results are listed in Table 8.
First, it is noteworthy that there are significant differences in the prices of the barrier options even if the

models are calibrated very well to plain-vanilla options, according to Schoutens et al. (2005). This is due to
the different structure in path-behaviour between these models.

Second, whether the prices under the above models are in the model-independent pricing bounds or not
is examined. Since the prices of no-touch options in the calculation is based on the Heston model, all prices
under the Heston model are in the pricing bounds. On the other hand, some prices are outside the bounds
using only cash-paying no-touch options; the prices under NIG-OUΓ, VG-CIR, VG-OUΓ and NIG-CIR take
higher values than the upper bounds at H/S0 = 0.95, 0.9, 0.85. The bounds using asset-paying no-touch
options are so close to the Heston prices that many prices produced by the other models are outside them.

5 Concluding Remarks

This paper provides model-independent pricing bounds on barrier options and corresponding hedging strate-
gies using no-touch options. Moreover, the optimal pricing bounds among them are derived and the opti-
mality is shown through finding risk-neutral measures under which the barrier option price is equal to the
hedging portfolio’s value. Comparing the pricing bounds proposed by this study with exact prices under sev-
eral models which are calibrated only to plain-vanilla options, it is demonstrated that some models produce
prices outside the model-independent bounds. This implies that great care should be taken when choosing
models to price barrier options.

Finally, the next research topic will be to consider a pricing model for barrier options which is calibrated
to both the market prices of plain-vanilla options and no-touch options.
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Figure 1: Pricing bounds and Heston prices (1M)
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Table 4: Pricing bounds and Heston prices (1M)

spot 0.950 0.975 1.000 1.025 1.050 1.075

WC
L 0.0162 0.0308 0.0470 0.0587 0.0567 0.0336

WA
L 0.0162 0.0308 0.0472 0.0592 0.0582 0.0373

Heston 0.0162 0.0308 0.0472 0.0594 0.0586 0.0374
WA

G 0.0163 0.0308 0.0473 0.0595 0.0587 0.0377
WC

G 0.0165 0.0314 0.0496 0.0663 0.0716 0.0516
trivial upper bound 0.0165 0.0314 0.0496 0.0663 0.0756 0.0722

DNT 0.9940 0.9878 0.9610 0.8886 0.7212 0.4150
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Figure 2: Pricing bounds and Heston prices (3M)
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Table 5: Pricing bounds and Heston prices (3M)

spot 0.950 0.975 1.000 1.025 1.050 1.075

WC
L 0.0160 0.0225 0.0263 0.0253 0.0184 0.0070

WA
L 0.0187 0.0246 0.0284 0.0281 0.0225 0.0126

Heston 0.0193 0.0255 0.0298 0.0302 0.0249 0.0142
WA

G 0.0220 0.0271 0.0309 0.0310 0.0259 0.0153
WC

G 0.0231 0.0322 0.0409 0.0475 0.0459 0.0305
trivial upper bound 0.0231 0.0322 0.0409 0.0475 0.0503 0.0487

DNT 0.8739 0.8399 0.7638 0.6400 0.4654 0.2460
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Table 6: Comparison with Brown et al. (2001) (1M)

spot 0.95 0.975 1.000 1.025 1.05 1.075

lower bound of Brown et al. (2001) 0.0162 0.0303 0.0457 0.0549 0.0486 0.0236
WC

L 0.0163 0.0309 0.0474 0.0595 0.0580 0.0360
Heston 0.0164 0.0310 0.0477 0.0602 0.0598 0.0397
WC

G 0.0165 0.0315 0.0497 0.0665 0.0723 0.0537
upper bound of Brown et al. (2001) 0.0165 0.0314 0.0493 0.0657 0.0747 0.0686

trivial upper bound 0.0165 0.0315 0.0497 0.0665 0.0758 0.0724
DNT 0.9976 0.9905 0.9660 0.8961 0.7328 0.4361

Table 7: Comparison with Brown et al. (2001) (3M)

spot 0.95 0.975 1.000 1.025 1.05 1.075

lower bound of Brown et al. (2001) 0.0161 0.0200 0.0211 0.0179 0.0104 0.0022
WC

L 0.0187 0.0244 0.0277 0.0266 0.0196 0.0079
Heston 0.0197 0.0262 0.0306 0.0310 0.0260 0.0152
WC

G 0.0233 0.0324 0.0412 0.0478 0.0469 0.0320
upper bound of Brown et al. (2001) 0.0223 0.0310 0.0394 0.0459 0.0491 0.0466

trivial upper bound 0.0233 0.0324 0.0412 0.0478 0.0507 0.0491
DNT 0.9295 0.8760 0.7884 0.6591 0.4828 0.2618
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