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Abstract

This paper examines an auction platform in which the platform provider maximizes profits

by adjusting participation fees and by choosing an auction format. The seller has private

information on the quality of the good, and each participating buyer receives a private signal

about his valuation of the good. The choice of auction format determines the allocation of

trading surplus among participating seller and buyers. This paper shows that when the seller’s

type is affiliated with buyers’ signals, the platform provider can charge higher participation fees

to both sides by choosing a first-price auction rather than a second-price or English auction. It

also examines the effect of allowing participating buyers to acquire information on the seller’s

type and shows that the provider can charge higher participation fees under a non-transparency

policy.
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1 Introduction

Auctions are considered to be an effective tool for the exchange of goods. For example, eBay,

the most successful online auction platform, reported that its gross fourth quarter merchandise

volume in 2011 exceeded $16 billion.1 Today, there are so many online auction sites, some of which

specialize in goods as diverse as jewelry, musical instruments, and real estate. However, although

economists have studied bidders’ behavior in auctions and trading mechanisms that lead to an

efficient allocation or that maximize revenue, few studies have incorporated the fact that sellers are

typically mere users of auction platforms rather than designers of them.

Following the view of Hagiu and Wright (2011), this paper examines a simple model of a plat-

form that enables direct interactions between participating agents. To focus on how the platform

provider indirectly controls their interactions by charging fees and designing auctions, we assume

that the platform provider chooses both the participation fees and the auction format. Implicit in

this formulation is that it is infeasible for the platform provider to be involved in direct trading.

Although real-world auction platforms such as eBay allow the use of price contingent fees, re-

serve prices, and buy-it-now prices, which have been the subject of both theoretical and empirical

research, we rather focus on the informational aspect of auctions when designing platforms.2

Specifically, the auction model in the present paper is based on that proposed by Milgrom and

Weber (1982). In this model, the seller has private information on the quality of the good and each

participating buyer receives a private signal about his valuation of the seller’s good. The buyer’s

valuation is then determined by his signal as well as by the seller’s type. When the seller’s type

is affiliated with the buyer’s signal, a first-price auction on average yields lower revenues to the

seller than a second-price auction, which in turn yields lower revenues than an English (ascending)

auction (this is the so-called linkage principle). Intuitively, the price in a first-price auction is less

sensitive to bidders’ information than it is in other auction formats. However, the question remains

of whether the platform provider should choose an auction that has a stronger linkage.

The main conclusion of this paper is that the platform provider can charge higher participation

fees to both sides and hence earn higher profits by choosing a first-price auction rather than a

1For further information, see http://www.investor.ebay.com.
2For surveys, see Bajari and Hortaçsu (2004), Ockenfels, Reiley and Sadrieh (2006), and Hasker and Sickles

(2010).
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second-price or English auction based on the linkage principle discussed herein.

Since the choice of auction format does not affect total surplus, the linkage principle implies

that the buyer’s surplus is higher in a first-price auction than it is in a second-price or English

auction.3 That is, the choice of auction format affects allocation of trading surplus between the

two sides. Moreover, the provider can charge a higher fee to the seller since the expected payment

to the marginal type is also higher in a first-price auction than it is in a second-price or English

auction. The marginal type is a seller who is indifferent between participating in the platform or

not. The seller’s revenue reflects his type based on bidders’ signals and their competitive bids.

Expected revenue varies less with the seller’s type in a first-price auction since it is less sensitive

to bidders’ information. Therefore, compared with a second-price or English auction, a first-price

auction increases the expected revenue of lower types and reduces the information rents of higher

types, and facilitates rent extraction by the platform provider through participation fees. In other

words, the choice of auction format affects allocation of trading surplus within the seller side.

The linkage principle also allows us to conclude that the disclosure of the seller’s information

increases average prices. Put simply, market transparency benefits sellers on average. To examine

whether the platform should be transparent, we consider an extension to the model in which the

platform provider also determines whether participating buyers observe the seller’s type (its so-

called transparency policy). Figure 1 depicts the relationships between the four types of auctions

(two auction formats, each with two policies) in the private value setting. The result in the baseline

model is indicated as a dotted arrow on the right-hand side of the figure. The new result here is that

opacity is preferred to transparency in a first-price auction (dotted arrow at the top). The intuition

is analogous to that of the first result discussed above. In a first price auction, the equilibrium

bidding strategy depends on the belief about the seller’s type. Each bidder thus adjusts his bid to

the seller’s type when this is observable. In particular, when the seller has a lower type, each bidder

is optimistic about the probability of winning and bids less aggressively. Therefore, the revelation

of the seller’s type to bidders decreases the expected revenue of the marginal type. Furthermore,

the linkage principle implies that transparency decreases the buyer’s surplus. Consequently, the

platform provider can charge higher fees to both sides under opacity than under transparency. Other

relationships follow from the strategic equivalence in a second-price auction under the private value

3This argument is true only when we consider the symmetric and monotone strategy equilibrium.
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Figure 1: Relationships among four types of auctions in the private value model

setting (two-sided arrow at the bottom of the figure) and the standard revenue equivalence theorem

under an assumption that the bidders’ signals are conditionally independent given the seller’s type

(two-sided arrow on the left-hand side). Therefore, the revenue difference between a transparent

and an opaque first-price auction (dotted arrow at the top) is equal to the difference between an

opaque first-price auction and an opaque second-price auction (vertical dotted arrow).

Our results depend on several assumptions. First, we assume that potential bidders have no

private information about valuation before participation. We consider situations where buyers have

uncertain what types of items (design, color, specification, etc.) are present in the marketplace. So,

his taste specific to the item can be determined only after he observes the item put up for auction.

If each bidder observes a private signal that is correlated with his valuation before participation,

the bidder’s participation strategy may not be monotone in equilibrium (see Landsberger and

Tsirelson (2000) for this issue). Our formulation avoids such complication. Second, we suppose

that the platform provider charges constant participation fees. In practice, however, many Internet

auction cites and art auction houses charges percentage fees. In Appendix A, we show that with a

slight modification of the model, our results can be applied in a setting where the platform provider

charges a percentage fee to the seller’s revenue.

The rest of the paper is organized as follows. Section 2 reviews the related literature and Section

3 describes the model. Section 4 characterizes equilibrium in auctions and derives preliminary

results. Section 5 characterizes equilibrium participation strategies. Section 6 presents the main

results. Section 7 concludes the paper.
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2 Related Literature

This paper contributes to the literature on two-sided markets and multi-sided platform design.4

A number of papers including those by Armstrong (2006), Rochet and Tirole (2006), and Weyl

(2010) have examined monopoly and/or competitive pricing by platform providers that internalize

cross-side network externalities. Recently, some papers also consider non-price instruments that

affect the interactions between participating agents. For example, Cañón (2011) explores a matching

platform that controls information about the matching partner available to participating agents,

while Veiga and Weyl (2012) investigate a general model of a multidimensional product monopoly

(such as broadcast media) that controls price and non-price instruments in order to screen agents

with multidimensional characteristics. As emphasized in the findings of these papers, the non-price

instruments considered in the present paper (e.g., the choice of auction format and transparency

policy) affect the interaction values of different types of users and thereby serve as a screening device.

In the same vein, Lizzeri (1999) and Gaudeul and Jullien (2005) examine the informational role of

intermediaries and demonstrate the suboptimality of full transparency about the seller’s product

quality. Unlike these papers, however, the present paper explores a different aspect of information

mediation by addressing the effect of market transparency on competition among buyers.

The optimal mechanism for a mediator is studied by Myerson and Satterthwaite (1983), who

consider the optimal intermediation mechanisms for bilateral trading in an independent private

value setting. Likewise, Matros and Zapechelnyuk (2011) analyze a dynamic model of Internet

auctions and show that the optimal mechanism involves charging no participation fee to the seller.

Since these authors consider an independent private value setting, they do not focus on the infor-

mational aspect of auctions.

The present paper singles out a transparency policy as a non-price instrument for the platform

provider and finds an interesting relationship between the effects of market transparency and that

of auction choice. In the literature on auction theory, a number of papers have investigated the

seller’s incentives to reveal information both in independent private value settings (Bergemann and

Pesendorfer (2007), Esö and Szentes (2007), Ganuza and Penalva (2010)) and in interdependent or

common value settings (Gershkov (2009), Lauermann and Virág (2012)). In addition, Forand (2010)

4For surveys, see Rysman (2009) and Hagiu and Wright (2011).
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and Troncoso-Valverde (2011) explore the incentives of competing sellers who post mechanisms and

choose disclosure policies that reveal sellers’ private information to (potential) buyers and examine

whether full transparency arises in equilibrium. Finally, other authors assess the choice of auction

formats (Kremer and Skrzypacz (2004)) and reserve prices (Jullien and Mariotti (2006)) by an

informed seller.

3 The Model

Consider an auction platform for trading between a seller with one unit of a good for sale and N

potential buyers. The platform provider chooses an auction format A and sets participation fees tS

and tB for the seller and buyers, respectively. The format A is assumed to be one of the first-price

(A = I), second-price (A = II) and English (A = Eng) auctions. In a later section, we include

a transparency policy as an additional non-price instrument for the platform design. Given the

provider’s choice, each seller/buyer chooses whether or not to participate in the platform. When

the seller and at least one buyer participate, an auction is held.

The seller has private information about the quality of the good. Let θ ∈ Θ ≡ [0, 1] denote

the seller’s type. The distribution function of the seller’s type is denoted by Φ0(θ) and is assumed

to have density ϕ0(θ) > 0 over θ. Let σS : Θ → {0, 1} be the seller’s participation strategy,

where σS(θ) = 1 denotes participation and σS(θ) = 0 denotes non-participation. The conditional

distribution Φ(θ) of the seller’s type given participation is determined by Φ0 and σS .

Each buyer i ∈ {1, . . . , N} has an opportunity cost ki ≥ 0 for participation. Let D be the

distribution function of ki over R+. Let σ
B
i : R+ → {0, 1} be the participation strategy of buyer i.

Upon participation, each buyer i observes a private signal Xi ∈ [0, 1] about the seller’s good. The

bidder i’s valuation of the object is denoted by u(θ, xi) when the seller’s type is θ and his private

signal is Xi = xi. Assume that u is non-negative and non-decreasing in each of its arguments. We

say the values are private if u(θ, xi) = xi. Within an auction, the buyers’ signals are independent

and identically distributed conditional on the seller’s type. The conditional distribution of Xi given

θ is Fθ with a continuous density fθ. We assume that Fθ satisfies the monotone likelihood ratio

property: for θ > θ′, the likelihood fθ(x)/fθ′(x) is increasing in x. This assumption means that in

an auction with bidder 1, . . . , n, (θ,X1, . . . , Xn) are affiliated.
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We assume that the number of participating buyers is publicly observable. We focus on the

symmetric monotone Bayesian Nash equilibrium of the auction game. Let µ ∈ ∆(Θ) denote the

posterior belief of the seller’s type conditional on her participation. Let UA
θ (n, µ) be the expected

revenue of a participating seller of type θ in auction A when she faces n bidders. Note that it

depends on µ since the bidding strategy in equilibrium may depend on the bidders’ beliefs about

the seller’s type.

Since the participation decisions are simultaneous, potential participants do not know how

many bidders she/he will face. Let UA
θ (σS , σB

1 , . . . , σ
B
N ) and VA

i (σ
S , σB

1 , . . . , σ
B
N ) denote the expected

payoff from participation for the seller and the buyer, respectively. If the seller does not participate,

she receives utility normalized to zero. Hence, the seller participates if UA
θ − tS ≥ 0 and the buyer

if VA
i − tB ≥ ki.

The provider’s profit is π ≡ tSE
[
σS(θ)

]
+ tB

∑N
i=1 E

[
σB
i (ki)

]
where (σS , σB

1 , . . . , σ
B
N ) are de-

termined in equilibrium. We focus on a pure strategy symmetric equilibrium in which every buyer

chooses the same participation strategy.

4 Equilibrium in Auctions

In this section, we present the equilibrium bidding strategy in an auction A ∈ {I, II, Eng} with

n bidders participate with the belief that the seller’s type θ is distributed according to µ ∈ ∆(Θ).

4.1 Preliminary: Order Statistics

Fix n ≥ 2. The density function of (θ,X1, . . . , Xn) is given by ϕ(θ)fθ(x1) · · · fθ(xn). Note that

θ,X1, . . . , Xn are affiliated.

Now, fix bidder 1. Define Y1 ≡ max{X2, . . . , Xn} to be the highest signal among the bidders

other than bidder 1. Similarly, define Yk to be the k-th highest signal among X2, . . . , Xn. Let

Gθ(y1) ≡ [Fθ(y1)]
n−1 denote the conditional distribution of Y1 given θ. Note that for any θ ≥ θ′,

Gθ(·) dominates Gθ′(·) in terms of the likelihood ratio.

Given θ, the (conditional) distribution function of (X,Y1) is Fθ(x)Gθ(y1), so the joint distribu-
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tion H of (X,Y1) (not conditional on θ) is given by

Hµ(x, y1) =

∫
θ∈Θ

Fθ(x)Gθ(y1)dµ.

Thus, the distribution of Y1 given X1 = x (i.e., posterior belief of bidder 1 when his signal is x) is

Hµ(y1|x) =
∫
θ fθ(x)Gθ(y1)dµ∫

θ fθ(x)dµ
. (1)

Let hµ(y|x) denote the density of Hµ(y|x). Recall that each buyer is not informed of the type of

the seller, so he may update his belief from the signal realization. Consequently, buyers may have

different posterior beliefs about the seller’s type and the rivals’ valuation (see (1)). Note that X1

and Y1 are affiliated: i.e., for any µ and any x > x′, Hµ(·|x) dominates Hµ(·|x′) in terms of the

likelihood ratio.

Let θ̂ is the lowest type in the support of µ. Then for any x, Hµ(·|x) dominates Gθ̂(·) in terms of

the likelihood ratio. An immediate implication is that the reverse hazard rate of Hµ(·|x) is greater

than that of Gθ̂(·).

4.2 Second-Price Auctions

We now describe the equilibrium bidding strategy and the expected payment in the second-price

auction. The results presented in the rest of this section draw on Milgrom and Weber (1982) except

Lemma 3 below.

First, we define the function

v(x, y) = E[u(θ, x)|X1 = x, Y1 = y] (2)

to be the expected valuation of bidder 1 when his signal is x and the highest signal among the

competing bidders is y.

In a second-price auction, the symmetric equilibrium strategy is given by

bII(x) = v(x, x).
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The expected payment by a bidder with signal x to the seller of type θ is given by

eIIθ (x;n, µ) =

∫ x

0
bII(y)gθ(y)dy.

Note that bII implicitly depends on n and µ while gθ depends on n but not on µ.

4.3 English Auctions

In an English auction, the symmetric equilibrium strategy is recursively defined as follows:

bEng(k)(x, pk+1, . . . , pn) = E[u(θ, x)|X1 = Yj = x ∀j < k, Yk = yk, . . . , Yn−1 = yn−1]

where yk is defined by bEng(k+1)(yk, pk+2, . . . , pn) = pk+1.

The expected payment function in the English auction is

eEng
θ (x;n, µ) = E [E [u(θ, x)|X1 = Y1 = x, Yj = yj∀j > 1] |Y1 ≤ x, θ] · Pr(Y1 ≤ x|θ).

4.4 First-Price Auctions

The symmetric equilibrium in a first-price auction under (n, µ) is

bI(x) =

∫ x

0
v(y, y)dL(y|x)

where

L(y|x) = exp

(
−
∫ x

y

hµ(t|t)
Hµ(t|t)

dt

)
.

The expected payment function in the first-price auction is

eIθ(x;n, µ) = Gθ(x)b
I(x).
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4.5 Preliminary Results

This subsection provides payoff comparisons among the three auction formats. Note that for

A ∈ {I, II, Eng}, the expected revenue of type θ is

UA
θ (n, µ) = n

∫ 1

0
eAθ (x;n, µ)fθ(x)dx.

The first result is that the expected revenue in auction is increasing in the seller’s type. Intuitively,

higher types generate higher revenues.

Lemma 1 For every A ∈ {I, II, Eng} and (n, µ), UA
θ (n, µ) is increasing in θ.

The second result is an application of the linkage principle (Milgrom and Weber (1982)).

Lemma 2 For any n ≥ 2 and µ, the expected payment by a bidder with signal x is ordered as

follows

∫
θ∈Θ

eEng
θ (x;n, µ)dµ(θ|x) ≥

∫
θ∈Θ

eIIθ (x;n, µ)dµ(θ|x) ≥
∫
θ∈Θ

eIθ(x;n, µ)dµ(θ|x).

Proof. See Krishna (2002).

It immediately follows from Lemma 2 that

∫
UEng
θ (n, µ)dµ ≥

∫
U II
θ (n, µ)dµ ≥

∫
U I
θ(n, µ)dµ.

It is worth noting that Lemma 2 does not mean that every type θ prefers the English auction to the

second-price and first-price auctions. Indeed, for the lowest type θ̂ in the support of µ, the revenue

ranking of the three auction formats is reversed.

Lemma 3 For any n ≥ 2 and µ with the lowest type θ̂ in the support, the expected payments from

a bidder with signal x to a seller of type θ̂ are ordered as follows:

eI
θ̂
(x;n, µ) ≥ eII

θ̂
(x;n, µ) ≥ eEng

θ̂
(x;n, µ).

Proof. See Appendix B.
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The first-price auction is less sensitive to the bidders’ signals compared with the other auction

formats. Although this property decreases average prices in auctions, it increases the expected rev-

enue of lower types. Intuitively, higher types gain and lower type lose when the bidders’ information

is well reflected to the price through competitive bidding.

5 Equilibrium Participation Strategy

5.1 Expected Payoffs and Welfare

Pick an auction with a seller of type θ and n bidders. In the symmetric equilibrium, a bidder

with the highest signal wins the object. Let Z = max{X1, X2, . . . , Xn}. The distribution of Z

is given by Fθ(·)n and the expected surplus is Wθ(n) ≡ E[u(θ, Z)|θ] =
∫
u(θ, z)dFθ(z)

n, which is

independent of the auction format. The seller’s expected revenue is UA
θ (n, µ) and the total surplus

to n bidders as a whole is given by Wθ(n) − UA
θ (n, µ). Thus, the expected payoff for each bidder

in an auction with n bidders (i.e., n− 1 competitors) is

V A(n, µ) =
1

n

∫
θ∈Θ

(Wθ(n)− UA
θ (n, µ))dµ. (3)

5.2 Cut-off Strategy

A participation strategy profile (σS , σB
1 , . . . , σ

B
N ) induces a distribution (θ, n). In equilibrium,

the buyer’s belief µ must be consistent with the conditional distribution Φ induced by the seller’s

participation strategy σS and the prior Φ0. Since the seller’s expected revenue UA
θ (n, µ) is increasing

in θ for any (A,n, µ) (Lemma 1), so is its expected value. This implies that the seller’s participating

strategy in equilibrium has the following cut-off property: there is a unique marginal type θ̂ ∈ [0, 1]

such that any seller of type θ > θ̂ chooses to participate and receives a positive (expected) payoff

and no type θ < θ̂ participate. That is, the equilibrium strategy is given by

σS(θ) =


1 if θ ≥ θ̂

0 otherwise.

11



There is a unique distribution of the seller’s type that is consistent with the above cut-off strategy.

Define Φθ̂ by

Φθ̂(θ) =
Φ0(θ)− Φ0(θ̂)

1− Φ0(θ̂)

with support θ ∈ [θ̂, 1].

Similarly, the buyer’s participation strategy in equilibrium is

σB(k) =


1 if k ≤ k̂

0 otherwise

for some k̂. Then the probability of participation is given by D(k̂).

Suppose that a pair (θ̂, k̂) of cut-off strategies constitutes an equilibrium. Then, the expected

payoff from participation for a seller of type θ is

UA
θ (θ̂, k̂) =

N∑
n=0

(
N

n

)
D(k̂)n(1−D(k̂))N−nUA

θ (n,Φθ̂).

The value of participation for a buyer is

VA(θ̂, k̂) =
(
1− Φ0(θ̂)

)N−1∑
l=0

(
N − 1

l

)
D(k̂)l(1−D(k̂))N−1−lV A(l + 1,Φθ̂)

=
1

ND(k̂)

(
1− Φ0(θ̂)

)∫ (
Wθ(k̂)− UA

θ (θ̂, k̂)
)
dΦθ̂(θ)

where Wθ is the expected surplus when the seller participates as defined by

Wθ(k̂) =

N∑
n=0

(
N

n

)
D(k̂)n(1−D(k̂))N−nWθ(n).

6 Platform Design

Given any (θ̂, k̂), there is a unique pair of participation fees that sustains these (θ̂, k̂) as an equi-

librium. Indeed, under tS = UA
θ̂
(θ̂, k̂) and tB = VA(θ̂, k̂)− k̂, the strategy profile (θ̂, k̂) constitutes

an equilibrium. Following Weyl (2010), we investigate (A, θ̂, k̂) that is optimal for the platform

provider.

12



6.1 Optimality of First-price Auctions

The provider’s problem is written as

max
A,θ̂,k̂

(
1− Φ0(θ̂)

)
tS +ND(k̂)tB

subject to Φθ̂(θ) = (Φ0(θ)− Φ0(θ̂))/(1− Φ0(θ̂)) for θ ∈ [θ̂, 1]

tS = UA
θ̂
(θ̂, k̂)

tB = VA(θ̂, k̂)− k̂.

Notice that given any (θ̂, k̂), the choice of an auction format affects the profit only through tS and

tB. From Lemma 2 and equation (3), we have

VI(θ̂, k̂) ≥ VII(θ̂, k̂) ≥ VEng(θ̂, k̂).

On the other hand, Lemma 3 implies that

U I
θ̂
(θ̂, k̂) ≥ U II

θ̂
(θ̂, k̂) ≥ UEng

θ̂
(θ̂, k̂).

From these facts, we find that for any (θ̂, k̂), the provider can charge higher fees to both sides in

the first-price auction than in the second-price or English auction.

Proposition 1 The first-price auction yields higher profits to the platform provider than does the

second-price or English auction.

Proposition 1 provides a sharp contrast to the revenue ranking principle by Milgrom and Weber

(1982). Compared with the other auction formats, the first-price auction yields higher revenues to

the lowest type and higher payoffs to the participating buyers. Such a change in the distribution of

expected payoffs among participating users allows the provider to charge higher participation fees.

13



Note that the provider’s profit is written as

π =(1− Φ0(θ̂))UA
θ̂
(θ̂, k̂) +ND(k̂)

(
VA(θ̂, k̂)− k̂

)
=

∫ 1

θ̂
Wθ(k̂)dΦ0(θ)︸ ︷︷ ︸

trading surplus

−
∫ 1

θ̂

(
UA
θ (θ̂, k̂)− UA

θ̂
(θ̂, k̂)

)
dΦ0(θ)︸ ︷︷ ︸

seller’s rents

− k̂ND(k̂)︸ ︷︷ ︸
opportunity cost + buyers’ rents

(4)

Intuitively, the provider should increase the total surplus from trade and decrease the sellers’

information rents. By choosing an auction format that is less sensitive to the bidders’ information

(e.g., FPA), the provider can reduce the seller’s information rent.

6.2 Optimality of Opaque Auctions

One main finding of Milgrom and Weber (1982) is that disclosure of the seller’s information

increases the ex ante expected revenues. Intuitively, when the seller’s information is available to

the bidders, the payments become more sensitive to the signals. Our previous result suggests

that the provider prefers an auction with a weaker linkage. In this subsection, we investigate the

optimality of opaque auctions for the provider. Specifically, suppose that the provider can choose

either a transparent auction indexed by ATr where the seller’s type is observable to the bidders or

an opaque auction AOp where it is unobservable. To make the point clear, we focus on a private

value setting (that is, u(θ, x) = x for all θ and x). In the private value, any information revelation

about the seller’s type does not affect his valuation of the object, and hence it allows us to focus

on the effect on competition among bidders. Note that in the private value setting, the English

auction is equivalent to the second-price auction, so this section considers only A ∈ {I, II}.

In the second-price auction, it is a weakly dominant strategy to bid the true valuation:

bIITr
θ (x) = bIIOp(x) = x.

This strategy does not depend on the belief about the seller’s type, so the two policies induce

the same expected revenue to every type. Hence, U IITr
θ (n, µ = {θ}) = U

IIOp

θ (n, µ) for all θ where

µ = {θ} denotes the degenerate distribution at θ.

On the other hand, in the first-price auction, the buyers’ belief about the seller’s type matters.
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Under transparency, the bidders face an auction in which their signals are independently distributed.

In the independent private value model, the well-known revenue equivalence theorem holds. Namely,

in the class of standard auctions including the first- and second-price auctions, the expected revenue

in equilibrium is independent of the auction format. Hence, for every θ, U ITr
θ (n, µ = {θ}) =

U IITr
θ (n, µ = {θ}).

Under transparency, the equilibrium strategy in the first-price auction is expressed as the ex-

pectation of the highest signal among the rival bidders conditional on winning. Formally, the

equilibrium strategy is given by

bITr
θ (x) =E[Y1|Y1 < x, θ]

=

∫ x

0
ydGθ(y|y < x).

On the other hand, under opaqueness, the equilibrium strategy is given by

bIOp(x) =

∫ x

0
ydL(y|x)

where L(y|x) = exp
(
−
∫ x
y

h(t|t)
H(t|t)dt

)
. Since for any Φ with the lowest type θ̂ in its support, L(y|x) is

first-order stochastically dominates Gθ̂(y|y < x) for all x, we obtain bITr

θ̂
(x) ≤ bIOp(x). This implies

that U ITr

θ̂
(n, µ = {θ̂}) ≤ U

IOp

θ̂
(n, µ). Intuitively, for the marginal type θ̂, information revelation

about her type makes bidders less aggressive, thereby decreasing her revenues.

Note that the standard linkage principle implies that full transparency is the best policy for the

seller on average, that is,

∫
U ITr
θ (n, µ)dµ ≥

∫
U

IOp

θ (n, µ)dµ.

Hence, the expected payoffs from participation in the four types of auctions are ordered as

U IOp

θ̂
(θ̂, k̂) ≥ U IIOp

θ̂
(θ̂, k̂) = U IITr

θ̂
(θ̂, k̂) = U ITr

θ̂
(θ̂, k̂)

VIOp(θ̂, k̂) ≥ VIIOp(θ̂, k̂) = VIITr(θ̂, k̂) = VITr(θ̂, k̂).

Applying the same argument as in Proposition 1, we obtain the following result.
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Proposition 2 The opaque auction yields higher profits to the platform provider than does the

transparent auction.

Note that in the private value setting, the transparency policy affects the bidder’s belief of the

competitors’ bids (i.e., his winning probability) but not his willingness to pay for the good. In this

sense, we focus on the effect of market transparency on competition among the bidders. Proposition

2 remains true even when some assumptions are relaxed. Under the interdependent value setting,

the strategic equivalence between bIITr
θ and bIIOp collapses. Thus, the revenue ranking of the marginal

type becomes U IOp

θ̂
≥ U IIOp

θ̂
≥ U IITr

θ̂
= U ITr

θ̂
. The revenue equivalence between ITr and IITr depends

on the conditional independence of the bidders’ signals. If the signals are affiliated conditional on

θ but the value is private, the linkage principle applies and hence U IOp

θ̂
≥ U ITr

θ̂
≥ U IITr

θ̂
= U IIOp

θ̂
.

The transparency policy can be interpreted as a communication environment on the platform.

For example, suppose that the seller can credibly transmit her private information to the bidders

when communication is allowed. In such a situation, the unraveling argument works and full

revelation occurs. Intuitively, the highest type among participating types has an incentive to reveal

all information she possesses, and then the second highest type also reveals her information in

order to escape from the pool of lower types, and so on. Our result suggests that communication

among users enhances competition for higher types and reduces for lower types, thereby increasing

information rents of the seller.

7 Conclusion

This paper considered a model of an auction platform in order to analyze the problem of a

monopoly platform provider that maximizes profits by charging participation fees and choosing

an auction format. In a setting that displays affiliated signals, we refocused on the informational

role of competitive bidding in auctions from the perspective of the platform provider and showed

that it is optimal for the platform provider to choose a first-price auction and an opacity policy in

preference to other formats and a transparency policy.

Future work should aim to investigate a multidimensional screening problem in which both

the quality of the object for buyers and the reservation value for sellers constitute the seller’s

type. In particular, when the platform provider has limited price instruments available, the choice
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of auction format becomes a useful screening device. For example, a second-price auction yields

higher expected revenues to higher types of sellers and lower expected revenues to lower types,

which may improve the quality of participating seller types in the platform. In contrast to our

main result, the platform provider may also face a trade-off between increasing total surplus and

reducing information rents.

Appendix

A Extension

A.1 Variable fees

We now examine the case where the platform provider makes fees contingent on the seller’s

revenue. Specifically, we suppose that the provider charges a fixed percentage τ ∈ [0, 1] from the

seller’s revenue in stead of a participation fee tS . In the baseline model, we assume that the seller’s

reservation utility is zero, so the provider can extract almost all surplus by setting τ = 1 − ϵ. To

avoid such a trivial solution, we assume that the seller incurs a fixed opportunity cost c > 0 when

she participates.

The provider’s problem is now written as

max
A,θ̂,k̂

τ

∫ 1

θ̂
UA
θ (n,Φ)dΦ0(θ) +ND(k̂)tB

subject to Φθ̂(θ) = (Φ0(θ)− Φ0(θ̂))/(1− Φ0(θ̂)) for θ ∈ [θ̂, 1]

(1− τ)UA
θ̂
(θ̂, k̂) = c

tB = VA(θ̂, k̂)− k̂.

The second constraint is the break-even condition for the marginal type, who gets 1 − τ fraction

of the revenue and pays opportunity costs c. As in (4), the platform provider’s profit is essentially
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expressed as total surplus minus information rents minus opportunity costs.

π =τA(θ̂, k̂)

∫ 1

θ̂
UA
θ (n,Φ)dΦ0(θ) +ND(k̂)tB

=

∫ 1

θ̂
Wθ(k̂)dΦ0(θ)− (1− τA(θ̂, k̂))

∫ 1

θ̂

(
UA
θ (θ̂, k̂)− UA

θ̂
(θ̂, k̂)

)
dΦ0(θ)

− (1− τA(θ̂, k̂))UA
θ̂
(θ̂, k̂)︸ ︷︷ ︸

c

(1− Φ0(θ̂))− k̂ND(k̂).

Note that U I
θ̂
(θ̂, k̂) ≥ U II

θ̂
(θ̂, k̂) implies 1 − τ II(θ̂, k̂) ≥ 1 − τ I(θ̂, k̂). Furthermore,

as explained in equation 4, we know that
∫ 1
θ̂

(
U II
θ (θ̂, k̂)− U II

θ̂
(θ̂, k̂)

)
dΦ0(θ) is greater than∫ 1

θ̂

(
U I
θ(θ̂, k̂)− U I

θ̂
(θ̂, k̂)

)
dΦ0(θ). Hence, the seller’s information rents is smaller when the provider

chooses a first-price auction then a second-price or English auction.

B Proof of Lemma 3

First-price vs. Second-price auctions. Fix n and Φ with the lowest type θ̂. We will show that

eI
θ̂
(x;n,Φ) ≥ eII

θ̂
(x;n,Φ) for all x. That is, Gθ̂(x)

∫ x
0 v(y, y)dL(y|x) ≥

∫ x
0 v(y, y)gθ̂(y)dy for all x.

To show this, it suffices to show that L(·|x) first-order stochastically dominates Gθ̂(·|Y
(1)

θ̂
≤ x, θ̂).

It is equivalent to show that for all y < x, L(y|x) ≤ Gθ̂(y)

Gθ̂(x)
.

Note that

−
∫ x

y

h(t|t)
H(t|t)

dt ≤−
∫ x

y

gθ̂(t)

Gθ̂(t)
dt

= lnGθ̂(y)− lnGθ̂(x)

= ln

(
Gθ̂(y)

Gθ̂(x)

)
.

Hence we have L(y|x) ≤ Gθ̂(y)

Gθ̂(x)
for all y < x.

Second-price vs. English auctions. The symmetric bidding strategy in the second-price
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auction is written as

bII(y) =E[u(θ, y)|X1 = y, Y1 = y]

=E[E[u(θ, y)|X1 = y, Y1 = y, Y2 = y2, . . . , Yn−1 = yn−1]|X1 = y, Y1 = y]

=E[bEng(2)(y, y2, y3, . . . , yn−1)|X1 = y, Y1 = y].

When his signal is x and the seller’s type is θ, the expected payment by bidder 1

eIIθ (x) =E[bII(Y1)|Y1 < x, θ] · Pr(Y1 < x|θ)

=E[E[bEng(2)(Y1, Y2, . . . , Yn−1)|X1 = y, Y1 = y]|Y1 < x, θ] · Pr(Y1 < x|θ).

On the other hand, in English auction, bidder 1’s expected payment is

eEng
θ (x) =E[bEng(2)(Y1, Y2, . . . , Yn−1)|Y1 < x, θ] · Pr(Y1 < x|θ)

=E[E[bEng(2)(Y1, Y2, . . . , Yn−1)|X1 = x, Y1 = y, θ]|Y1 < x, θ] · Pr(Y1 < x|θ).

Since bEng(2)(y1, y2, . . . , yn−1) is nondecreasing in each argument, it suffices to show that the dis-

tribution H(y−1|x, y1) of y−1 ≡ (y2, . . . , yn−1) given X1 = x and Y1 = y1 first-order stochastically

dominates the distribution Gθ̂(y−1|x, y) of y−1 given X1 = x, Y1 = y1 and θ = θ̂. The density

function of H(y−1|x, y1) is

h(y−1|x, y1) =
∫
(n− 1)!fθ(x)fθ(y1)fθ(y2) · · · fθ(xn−1)dΦ(θ)∫

fθ(x)gθ(y1)dΦ(θ)

and the density of Gθ̂(y−1|x, y1) does not depend on x and is written as

gθ̂(y−1|x, y1) =
(n− 1)!fθ̂(y1)fθ̂(y2) · · · fθ̂(yn−1)

gθ̂(y1)
.

Since fθ(y)/fθ̂(y) is increasing in y when θ belongs to the support of Φ, so is h(y−1|x,y1)
gθ̂(y−1|x,y1) . That

is, H(y−1|x, y1) dominates Gθ̂(y−1|x, y) in terms of the likelihood ratio. It suffices to obtain the

result.
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