CARF Working Paper

CARF-F-347

On Error Estimates for Asymptotic Expansions with Malliavin Weights -Application to Stochastic Volatility Model-

Akihiko Takahashi
The University of Tokyo
Toshihiro Yamada
The University of Tokyo
Mitsubishi UFJ Trust Investment Technology Institute Co.,Ltd. (MTEC)

First version: July 2014
Current version: September 2014

CARF is presently supported by Bank of Tokyo-Mitsubishi UFJ, Ltd., Dai-ichi Mutual Life Insurance Company, Nomura Holdings, Inc. and Sumitomo Mitsui Banking Corporation (in alphabetical order). This financial support enables us to issue CARF Working Papers.

CARF Working Papers can be downloaded without charge from:
http://www.carf.e.u-tokyo.ac.jp/workingpaper/index.html

Working Papers are a series of manuscripts in their draft form. They are not intended for circulation or distribution except as indicated by the author. For that reason Working Papers may not be reproduced or distributed without the written consent of the author.
On Error Estimates for Asymptotic Expansions with Malliavin Weights – Application to Stochastic Volatility Model –

Akihiko Takahashi† and Toshihiro Yamada‡

September 14, 2014

Abstract

This paper proposes a unified method for precise estimates of the error bounds in asymptotic expansions of an option price and its Greeks (sensitivities) under a stochastic volatility model. More generally, we also derive an error estimate for an asymptotic expansion around a general partially elliptic diffusion and a more general Wiener functional, which is applicable to various important valuation and risk management tasks in the financial business such as the ones for multi-dimensional diffusion and non-diffusion models. In particular, we take the Malliavin calculus approach, and estimate the error bounds for the Malliavin weights of both the coefficient and the residual terms in the expansions by effectively applying the properties of Kusuoka-Stroock functions. Moreover, a numerical experiment under the Heston-type model confirms the effectiveness of our method.

Keywords: Asymptotic expansion, Malliavin calculus, Kusuoka-Stroock functions, Stochastic volatility model, Option price, Greeks

1 Introduction

In this paper, we derive asymptotic expansions of option prices and Greeks (sensitivities) around the Black-Scholes model in stochastic volatility environment, and develop a unified method for precise estimates of the expansion errors by extending the method proposed in Takahashi-Yamada [46] (2012).

Moreover, we present an error estimate for an asymptotic expansion around a partially elliptic diffusion under a multi-dimensional setting and for an asymptotic expansion of a more general Wiener functional, which can be applied to various important pricing problems as well as computing Greeks in finance such as the ones for the basket and average options under stochastic volatility models, and the ones for bond options/swaptions.

*We are very grateful to Professor Peter Laurence that he was constantly giving us invaluable advise and precious comments on this paper and the related topics. Forthcoming in Mathematics of Operations Research.

†University of Tokyo
‡University of Tokyo & Mitsubishi UFJ Trust Investment Technology Institute Co.,Ltd. (MTEC)
and long-term currency options under the Heath-Jarrow-Morton (HJM) framework [17] (1992) or the Libor Market Models (LMMs).

Particularly, we make use of the Kusuoka-Stroock functions introduced by Kusuoka [23] (2003), which is a powerful tool to clarify the order of a Wiener functional with respect to the time parameter \(t \) in a unified manner. Then, we are able to estimate the error bounds for the Malliavin weights of both the coefficient and the residual terms in the expansions.

In mathematical finance, one of the main issues is to compute a derivative price \(E[f(S_t)] \) and its Greeks under a equivalent martingale measure, where \(f \) is a payoff function and \(S_t \) denotes the underlying asset price at time \(t \in [0, T] \). However, as the analytical probability distributions describing the whole dynamics of the realistic models are rarely known, various analytical and numerical schemes have been proposed in order to satisfy the practical requirement of the fast computation. Among them, one of the tractable approach is to approximate a model by a perturbation around a main driving process whose underlying distribution is analytically obtained (e.g. Black-Scholes log-normal model). In this case we often encounter an asymptotic expansion around a partially elliptic diffusion. More precisely, introducing a small perturbation parameter \(\varepsilon \) into a model of the underlying asset price, we expand the price and the Greeks against a parameter \(\beta \) around \(\varepsilon = 0 \), which corresponds to an expansion around a partially elliptic diffusion process. Particularly, it has been well-established to apply the Watanabe’s expansion in Malliavin calculus (Watanabe [51] (1987)), That is:

\[
E[f(S_\varepsilon t)] = E[f(S_0 t)] + \sum_{i=1}^{N} \varepsilon^i a_i + O(\varepsilon^{N+1}),
\]

\[
\frac{\partial^n}{\partial \beta^n} E[f(S_\varepsilon t)] = \frac{\partial^n}{\partial \beta^n} E[f(S_0 t)] + \sum_{i=1}^{N} \varepsilon^i b_i + O(\varepsilon^{N+1}).
\]

(1)

Although this expansion is proved to be mathematically rigorous, the error terms \(O(\varepsilon^{N+1}) \) depend on the time-to-maturity, the smoothness of the payoff \(f \), the parameter \(\beta \) and the order of the Greeks \(n \). Hence, it is better to distinguish these effects as much as possible. In particular, when \(f \) has no smoothness, the Greeks may show unstable behavior with respect to the time-to-maturity, especially near the expiry. (For the detail, see Friedman [14] (1964), Kusuoka-Stroock [24] (1984) and Kusuoka [23] (2003).) For instance, as for the Greeks with respect to the initial asset price such as Delta and
Gamma, one can show that there exist C such that
\[
\frac{\partial^n}{\partial S^n_0} E[f(S^t_0)] \leq \frac{C}{t^{n/2}}. \tag{2}
\]
Thus, we can observe that the right hand side could become huge for a small t, that is near the maturity.

Also, from the practical viewpoint of the risk management for a derivative portfolio, the precise evaluation of the approximation errors against its true values and Greeks is highly desirable. This is because the exact computation is usually impossible under complex finance models required in financial business and hence some analytical approximation or/and a certain numerical scheme should be employed.

For this purpose, we develop a unified method for investigating the orders of the expansion errors for the bounded payoff and the Lipschitz continuous payoff in stochastic volatility environment. Consequently, we are able to provide more concrete expressions for the error terms than $O(\epsilon^{N+1})$ in the asymptotic expansions of the values and the Greeks (1), which appears in Section 4 of the main text.

The organization of the paper is as follows: after the next section introduces the Kusuoka-Stroock functions, Section 3 derives an error estimate of an asymptotic expansion around a partially elliptic diffusion under a general multi-dimensional setting. Section 4 presents our main theorem and a lemma which is useful for proving the theorem. Section 5 describes how to compute option prices and their Greeks based on our method, and Section 6 provides a numerical experiment in a Heston-type model. Finally, Section 7 briefly explains an extension of the method to more general Wiener functionals.

2 The Kusuoka-Stroock Functions

2.1 The space \mathcal{K}^T_r

In this section, we introduce the space of Wiener functionals \mathcal{K}^T_r developed by Kusuoka [23] (2003) and its properties. The element of \mathcal{K}^T_r is called the Kusuoka-Stroock function. See Nee [33] (2011), Crisan-Delarue [7] (2012) and Crisan et al. [8] (2013) for more details of the notations and the proofs. Let (W, H, P) be the standard n-dimensional Wiener space. Let E be a separable Hilbert space and $D_{l,\infty}(E) = \cap_{1 \leq p < \infty} D_{l,p}(E)$ be the space of E-valued functionals that admit the Malliavin derivatives up to the l-th order. The following definition and lemma correspond to Definition 2.1 and Lemma 2.2 of Crisan-Delarue [7] (2012).

Definition 2.1 Given $r \in \mathbb{R}$ and $l \in \mathbb{N}$, we denote by $\mathcal{K}^T_r(E, l)$ the set of functions $G : (0, T] \times \mathbb{R}^d \to D^{l,\infty}(E)$ satisfying the following:

1. $G(t, \cdot)$ is l-times continuously differentiable and $[\partial^\alpha G/\partial x^\alpha](\cdot, \cdot)$ is continuous in $(t, x) \in (0, T] \times \mathbb{R}^d$ a.s. for any multi-index α of the elements of $\{1, \cdots, d\}$ with length $|\alpha| \leq l$.

2. For all $k \in \mathbb{N}$, $p \in [1,\infty)$ and $k \leq l - |\alpha|$,
\[
\sup_{t \in (0, T], x \in \mathbb{R}^d} t^{-r/2} \left\| \frac{\partial^\alpha G}{\partial x^\alpha}(t, x) \right\|_{D^{k,p}} < \infty. \tag{3}
\]

We write $\mathcal{K}^T_r(l)$ for $\mathcal{K}^T_r(\mathbb{R}, l)$ and \mathcal{K}^T_r for $\mathcal{K}^T_r(\mathbb{R}, \infty)$.

3
Let \((X_t)_{t \in [0,T]}\) be the solution to the following stochastic differential equation:

\[
\begin{align*}
 dX^x_t &= V_0(X^x_t)dt + \sum_{i=1}^n V_i(X^x_t)dW_{i,t}, \\
 X_0 &= x \in \mathbb{R}^d,
\end{align*}
\]

where each \(V_i, i = 0, 1, \ldots, n\) is bounded and belongs to \(C_0^\infty(\mathbb{R}^d; \mathbb{R}^d)\). We assume the Hörmander condition of Kusuoka [23]. See Definition 3 in Kusuoka [23] for the definition of the Hörmander condition. The properties of the Kusuoka-Stroock functions are the following. (See Lemma 2.19 of Nee [33] (2011) or Lemma 75 of Crisan et al. [8] (2013) for the proof.)

Lemma 2.1 [Properties of Kusuoka-Stroock functions]

1. The function \((t, x) \in (0, T) \times \mathbb{R}^d \mapsto X^x_t\) belongs to \(\mathcal{K}^T_0\), for any \(T > 0\).
2. Suppose \(G \in \mathcal{K}^T_r(l)\) where \(r \geq 0\). Then, for \(i = 1, \ldots, d\),
 \[
 \begin{align*}
 &a) \quad \int_0^T G(s, x)dW^d_s \in \mathcal{K}^T_{r+1}(l), \quad \text{and} \quad \text{(b) } \int_0^T G(s, x)ds \in \mathcal{K}^T_{r+2}(l).
 \end{align*}
 \]
3. If \(G_i \in \mathcal{K}^T_{r_i}(n_i), i = 1, \ldots, N\), then
 \[
 \begin{align*}
 &a) \quad \prod_i G_i \in \mathcal{K}^T_{r_1 + \cdots + r_N}(\min_i n_i), \quad \text{and} \quad \text{(b) } \sum_i G_i \in \mathcal{K}^T_{\min_i r_i}(\min_i n_i).
 \end{align*}
 \]

Next, we summarize the Malliavin’s integration by parts formula using Kusuoka-Stroock functions. For any multi-index \(\alpha^{(k)} := \alpha \in \{1, \ldots, d\}^k, k \geq 1\), we denote by \(\partial_{\alpha^{(k)}}\) the partial derivative \(\frac{\partial^k}{\partial x_{\alpha_{1}} \cdots \partial x_{\alpha_{k}}}\).

Proposition 2.1 Let \(G : (0, T) \times \mathbb{R}^d \rightarrow \mathbb{D}^\infty = \mathbb{D}^{\infty, \infty}(\mathbb{R})\) be an element of \(\mathcal{K}^T_r\) and let \(f\) be a function that belongs to the space \(C_0^\infty(\mathbb{R}^d)\). Then for any multi-index \(\alpha^{(k)} \in \{1, \ldots, d\}^k, k \geq 1\), there exists \(H_{\alpha^{(k)}}(X^x_t, G(t, x)) \in \mathcal{K}^T_{r-|\alpha^{(k)}|} = \mathcal{K}^T_{r-k}\) such that

\[
E[\partial_{\alpha^{(k)}} f(X^x_t)G(t, x)] = E[f(X^x_t)H_{\alpha^{(k)}}(X^x_t, G(t, x))],
\]

with

\[
\sup_{x \in \mathbb{R}^d} \|H_{\alpha^{(k)}}(X^x_t, G(t, x))\|_{L^p} \leq Ct^{(r-k)/2},
\]

where \(H_{\alpha^{(k)}}(X^x_t, G)\) is recursively given by

\[
\begin{align*}
 H_{(1)}(X^x_t, G(t, x)) &= \delta \left(\sum_{j=1}^d G(t, x)\gamma_{ij}^{X^x_t} DX^x_{i,j} \right), \\
 H_{\alpha^{(k)}}(X^x_t, G(t, x)) &= H_{\alpha^{(k-1)}}(X^x_t, H_{\alpha^{(k-1)}}(X^x_t, G(t, x))),
\end{align*}
\]

and a positive constant \(C > 0\) Here, \(\delta\) is the Skorohod integral and \((\gamma_{ij}^{X^x_t})_{1 \leq i, j \leq n}\) is the inverse matrix of the Malliavin covariance of \(X^x_t\).

3 Asymptotic Expansion around a Partially Elliptic Diffusion and its Error Rate

In mathematical finance, various complex models have been developed for the practical purpose, but the analytical probability distributions describing the whole dynamics are rarely known. Thus, to satisfy the requirement for the fast computation of prices and Greeks (sensitivities), we sometimes approximate the model by a perturbation around a main driving process whose underlying distribution is analytically obtained (e.g. Black-Scholes log-normal model). In this case we often encounter an asymptotic expansion around a partially elliptic diffusion. To illustrate this situation, let us consider the following general setup.

Let \((\Omega, \mathcal{F}, P)\) be a complete probability space on which a \(n\)-dimensional Brownian motion \(W = \{(W_t^1, \cdots, W_t^n) : 0 \leq t \leq T\}\) is defined. We also define \(\mathcal{F}_t^r, r \in \mathbb{R}\) on this space. Let \((\mathcal{F}_t)_{0 \leq t \leq T}\) be the natural filtration generated by \(W\), augmented by the \(P\)-null sets of \(\mathcal{F}\). Then, let us consider the following \(m\)-dimensional stochastic differential equation \(X_t^\epsilon = (X_t^{1,\epsilon}, \cdots, X_t^{m,\epsilon}, \tilde{X}_t^{1,\epsilon}, \cdots, \tilde{X}_t^{m-d,\epsilon})\) as follows:

\[
dX_t^{i,\epsilon} = V_0(t, \tilde{X}_t^{i})dt + \sum_{j=1}^{n} V_j(t, \tilde{X}_t^{i})dW_t^j, \quad i = 1, \cdots, d, \tag{11}
\]
\[
X_0^{i,\epsilon} = x_0^i \in \mathbb{R},
\]
\[
d\tilde{X}_t^{i,\epsilon} = \tilde{V}_0(t, \tilde{X}_t^{i})dt + \epsilon \sum_{j=1}^{n} \tilde{V}_j(t, \tilde{X}_t^{i})dW_t^j, \quad i = 1, \cdots, m-d, \tag{12}
\]
\[
\tilde{X}_0^{i,\epsilon} = \tilde{x}_0^i \in \mathbb{R},
\]

where \(V_0 = (V_0^1, \cdots, V_0^n) : [0, T] \times \mathbb{R}^m \to \mathbb{R}^d\), \(\tilde{V}_0 = (\tilde{V}_0^1, \cdots, \tilde{V}_0^{m-d}) : [0, T] \times \mathbb{R}^{m-d} \to \mathbb{R}^{m-d}\) and \(V : [0, T] \times \mathbb{R}^m \to \mathbb{R}^{d \times n}\), \(\tilde{V} : [0, T] \times \mathbb{R}^{m-d} \to \mathbb{R}^{(m-d) \times n}\) are bounded and smooth functions with bounded derivatives. For all fixed \((t, x) \in [0, T] \times \mathbb{R}^d\), the functions \(\mathbb{R}^{m-d} \ni \tilde{x} \mapsto V_0(t, (x, \tilde{x}))\) and \(\mathbb{R}^{m-d} \ni \tilde{x} \mapsto V(t, (x, \tilde{x}))\) are non-constants.

In finance models, \((X_t)\) and \((\tilde{X}_t)\) represent the asset price processes and the state variable dynamics such as the interest rate and volatility processes, respectively.

Note that when \(\epsilon = 0\), the above SDE becomes a \(d\)-dimensional SDE \(X_t\) and an \((m-d)\)-dimensional ODE \(\tilde{X}_t\):

\[
dx_t = V_0(t, \tilde{X}_0^0)dt + \sum_{j=1}^{n} V_j(t, \tilde{X}_0^0)dW_t^j, \quad X_0 = x_0 \in \mathbb{R}^d, \tag{13}
\]
\[
d\tilde{X}_t = \tilde{V}_0(t, \tilde{X}_0^0)dt, \quad \tilde{X}_0 = \tilde{x}_0 \in \mathbb{R}^{m-d}.
\]

We introduce the following notation:

\[
\sum_{\mathbf{b}_k, \alpha(k)}^{(i)} = \sum_{k=1}^{i} \sum_{\mathbf{b}_k \in \mathbb{L}, \alpha(k) \in \{1, \cdots, d\}^k} \frac{1}{k!}, \tag{14}
\]

with

\[
\mathbb{L}_{i,k} = \left\{ \mathbf{b}_k = (\beta_1, \cdots, \beta_k) : \sum_{l=1}^{k} \beta_l = i; \ (i, \beta_l, k \in \mathbb{N}) \right\}. \tag{15}
\]
The next theorem shows an asymptotic expansion with its error estimate of $E[f(X^\varepsilon_t)]$ for a bounded Borel function or a Lipschitz continuous function f around $E[f(X^0_t)]$ under a partially elliptic diffusion (13).

Theorem 3.1 Suppose for any $t \in [0,T]$ and any $\bar{x} \in \mathbb{R}^m$, there exists $a > 0$ such that

$$VV^T(t, \bar{x}) > aI_d,$$

where V^T stands for the transpose of V.

1. Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a bounded Borel function. Then, for $N \in \mathbb{N}$, there exists $C_N > 0$ depending on N such that

$$\sup_{(x_0, \bar{x}_0) \in \mathbb{R}^m} \left| E[f(X^0_t)] - \left\{ E[f(X^0_t)] + \sum_{i=1}^N \varepsilon^i E[f(X^0_t)H^i_t] \right\} \right| \leq \|f\|_\infty C_N \left(\varepsilon \sqrt{t} \right)^{N+1}, \tag{17}$$

where

$$H^i_t = \sum_{b_\alpha(k)}^{(i)} H_{\alpha(k)} \left(X^0_{t, \bar{x}_0} \prod_{l=1}^k X^0_{\alpha_l, t} \right), \tag{18}$$

$$X^0_{\alpha_l, t} := \frac{1}{\beta_l!} \frac{\partial^{\beta_l}}{\partial \varepsilon^{\beta_l}} X^{\varepsilon, \alpha_l}_t \bigg|_{\varepsilon = 0},$$

and $X^{\varepsilon, \alpha_l}_t$ is the α_l-th element of X_t^ε.

2. Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a Lipschitz function with constant C_f and $|f(0)| \leq C_f$. Then, for $N \in \mathbb{N}$, there exists $C_N > 0$ depending on N such that

$$\sup_{(x_0, \bar{x}_0) \in \mathbb{R}^m} \left| E[f(X^0_t)] - \left\{ E[f(X^0_t)] + \sum_{i=1}^N \varepsilon^i E[f(X^0_t)H^i_t] \right\} \right| \leq C_f C_N \sqrt{t} \left(\varepsilon \sqrt{t} \right)^{N+1}, \tag{19}$$

with the same weight (18) as in (17).

Proof.

Under the condition (16), the Malliavin covariance matrix $\gamma^{X^0_t}$ of X^0_t satisfies

$$\left\| \left(\det \gamma^{X^0_t} \right)^{-1} \right\|_{L^p} < \infty, \quad 1 \leq p < \infty. \tag{20}$$

By the result of Yoshida [50] (1992b) and Takahashi-Yoshida [48] (2005), we are able to expand $E[f(X^\varepsilon_t)]$ around $E[f(X^0_t)]$. We remark that $(X^\varepsilon_t)_t$ can be denoted as

$$dX^\varepsilon_t = V_0(t, X^\varepsilon_t, \bar{X}^\varepsilon_t)dt + \sum_{i=1}^n V_i(t, X^\varepsilon_t, \bar{X}^\varepsilon_t)dW^i_t, \tag{21}$$

where V_0 and V are regarded as maps on $[0,T] \times \mathbb{R}^d \times \mathbb{R}^{m-d}$, that is, $V_0(t, \bar{x}) = V_0(t, x, \bar{x})$ and $V(t, \bar{x}) = V(t, x, \bar{x})$. Then, the process of $\frac{\partial}{\partial \varepsilon} X^\varepsilon_t$ is expressed as:

$$\frac{d}{d\varepsilon} X^\varepsilon_t = \nabla_x V_0(t, X^\varepsilon_t, \bar{X}^\varepsilon_t) \frac{\partial}{\partial \varepsilon} X^\varepsilon_t dt + \nabla_{\bar{x}} V_0(t, X^\varepsilon_t, \bar{X}^\varepsilon_t) \frac{\partial}{\partial \varepsilon} \bar{X}^\varepsilon_t dt$$

$$+ \sum_{j=1}^n \nabla_x V_j(t, X^\varepsilon_t, \bar{X}^\varepsilon_t) \frac{\partial}{\partial \varepsilon} X^\varepsilon_t dW^j_t + \sum_{j=1}^n \nabla_{\bar{x}} \bar{V}_j(t, X^\varepsilon_t, \bar{X}^\varepsilon_t) \frac{\partial}{\partial \varepsilon} \bar{X}^\varepsilon_t dW^j_t. \tag{22}$$
Particularly, the process of $\frac{\partial}{\partial \varepsilon} \tilde{X}_t^\varepsilon$ is given by:

$$
\frac{\partial}{\partial \varepsilon} \tilde{X}_t^\varepsilon = \int_0^t \frac{\partial^j}{\partial \varepsilon^j} \tilde{X}_u^\varepsilon \frac{\partial}{\partial \varepsilon} \tilde{X}_u^\varepsilon du + \sum_{j=1}^n \int_0^t \tilde{V}_j(u, \tilde{X}_u^\varepsilon) dW_u^j + \varepsilon \sum_{j=1}^n \int_0^t \nabla \tilde{V}_j(u, \tilde{X}_u^\varepsilon) \frac{\partial}{\partial \varepsilon} \tilde{X}_u^\varepsilon dW_u^j,
$$

and it can be expressed as

$$
\frac{\partial}{\partial \varepsilon} \tilde{X}_t^\varepsilon = \sum_{j=1}^n \left(\nabla \tilde{X}_t^\varepsilon \right) \left[\int_0^t (\nabla \tilde{X}_u^\varepsilon)^{-1} \left\{ \tilde{V}_j(u, \tilde{X}_u^\varepsilon) dW_u^j - \varepsilon \nabla \tilde{V}_j(u, \tilde{X}_u^\varepsilon) \tilde{V}_j(u, \tilde{X}_u^\varepsilon) du \right\} \right].
$$

(23)

$\nabla \tilde{X}_t^\varepsilon, (\nabla \tilde{X}_u^\varepsilon)^{-1} \in \mathcal{K}_0^T$, then $\frac{\partial}{\partial \varepsilon} \tilde{X}_t^\varepsilon \in \mathcal{K}_1^T$.

Also, $\frac{\partial}{\partial \varepsilon} X_t^\varepsilon$ can be expressed as

$$
\frac{\partial}{\partial \varepsilon} X_t^\varepsilon = \nabla X_t^\varepsilon \int_0^t (\nabla X_u^\varepsilon)^{-1} \left[\nabla V_0(u, X_u^\varepsilon, \tilde{X}_u^\varepsilon) \frac{\partial}{\partial \varepsilon} \tilde{X}_u^\varepsilon du + \sum_{j=1}^n \nabla V_j(u, X_u^\varepsilon, \tilde{X}_u^\varepsilon) \frac{\partial}{\partial \varepsilon} \tilde{X}_u^\varepsilon dW_u^j \right.
$$

$$
- \left. \sum_{j=1}^n \nabla V_j(u, X_u^\varepsilon, \tilde{X}_u^\varepsilon) \nabla \tilde{V}_j(u, X_u^\varepsilon, \tilde{X}_u^\varepsilon) \frac{\partial}{\partial \varepsilon} \tilde{X}_u^\varepsilon dW_u^j \right].
$$

(24)

Hence, due to the fact that $\nabla X_t^\varepsilon, (\nabla X_u^\varepsilon)^{-1} \in \mathcal{K}_0^T$ and $\frac{\partial}{\partial \varepsilon} X_t^\varepsilon \in \mathcal{K}_1^T$, we have $\frac{\partial}{\partial \varepsilon} X_t^\varepsilon \in \mathcal{K}_2^T$.

Next, we prove $\frac{1}{n} \frac{\partial^i}{\partial \varepsilon^i} \tilde{X}_t^\varepsilon \in \mathcal{K}_i^T$ and $\frac{1}{n} \frac{\partial^i}{\partial \varepsilon^i} X_t^\varepsilon \in \mathcal{K}_{i+1}^T$ by induction. For $i \geq 2$, $\frac{1}{n} \frac{\partial^i}{\partial \varepsilon^i} \tilde{X}_t^\varepsilon = \left(\frac{1}{n} \frac{\partial^i}{\partial \varepsilon^i} \tilde{X}_t^{\varepsilon,1}, \ldots, \frac{1}{n} \frac{\partial^i}{\partial \varepsilon^i} \tilde{X}_t^{\varepsilon,d} \right)$ is recursively determined by the following:

$$
\frac{1}{n} \frac{\partial^i}{\partial \varepsilon^i} \tilde{X}_t^{\varepsilon,j} = \sum_{i_1, i_2} \left(\prod_{k=1}^{i_2} \frac{1}{i_k!} \frac{\partial^{i_k}}{\partial \varepsilon^{i_k}} \tilde{X}_s^{\varepsilon,j} \right) \frac{\partial_{d(j)}}{\partial \varepsilon^{d(j)}} \tilde{V}_s^{j}(s, \tilde{X}_s^{\varepsilon,j}) ds
$$

$$
+ \sum_{i_1, i_2} \left(\prod_{k=1}^{i_2} \frac{1}{i_k!} \frac{\partial^{i_k}}{\partial \varepsilon^{i_k}} \tilde{X}_s^{\varepsilon,j} \right) \sum_{l=1}^n \frac{\partial_{d(l)}}{\partial \varepsilon^{d(l)}} \tilde{V}_s^{l}(s, \tilde{X}_s^{\varepsilon,l}) dW_s^l
$$

$$
+ \varepsilon \sum_{i_1, i_2} \left(\prod_{k=1}^{i_2} \frac{1}{i_k!} \frac{\partial^{i_k}}{\partial \varepsilon^{i_k}} \tilde{X}_s^{\varepsilon,j} \right) \sum_{l=1}^n \frac{\partial_{d(l)}}{\partial \varepsilon^{d(l)}} \tilde{V}_s^{l}(s, \tilde{X}_s^{\varepsilon,l}) dW_s^l,
$$

(25)

(26)

(27)

where

$$
\sum_{i_1, i_2} = \sum_{\beta=1}^1 \sum_{i_1, i_2} \sum_{d(j) \in \{1, \ldots, m-d\}^d} \frac{1}{\beta j},
$$

(28)

Since the above SDE is linear, the order of the Kusuoka-Stroock function $\frac{1}{n} \frac{\partial^i}{\partial \varepsilon^i} \tilde{X}_t^\varepsilon$ is determined inductively by the term:

$$
\sum_{i_1, i_2} \int_0^t \nabla \tilde{X}_t^\varepsilon (\nabla \tilde{X}_s^\varepsilon)^{-1} \left(\prod_{k=1}^{i_2} \frac{1}{i_k!} \frac{\partial^{i_k}}{\partial \varepsilon^{i_k}} \tilde{X}_s^{\varepsilon,j} \right) \sum_{l=1}^n \frac{\partial_{d(l)}}{\partial \varepsilon^{d(l)}} \tilde{V}_l(s, \tilde{X}_s^{\varepsilon,l}) dW_s^l \in \mathcal{K}_i^T,
$$

(29)
because this term gives the minimum order in the terms that consist of \(\frac{1}{n} \frac{\partial^n}{\partial t^n} \tilde{X}^\varepsilon_t \). Then,
\[\frac{1}{n} \frac{\partial^n}{\partial t^n} \tilde{X}^\varepsilon_t \in \mathcal{K}^T. \]

Also, \(\frac{1}{n} \frac{\partial^n}{\partial t^n} X^{\varepsilon,j}_t \) is a solution to the following linear SDE:

\[
\sum_{i,j,\mathbf{e}(\beta)}^{(i)} \int_0^t \left(\prod_{k=1}^r \frac{1}{i_k!} \frac{\partial^{i_k}}{\partial \varepsilon_{i_k}} \tilde{X}^\varepsilon_{k} \right) \sum_{l=1}^n \frac{\partial^{\beta}}{\partial \varepsilon_{f_1} \cdots \partial \varepsilon_{f_l}} V_l(s, \tilde{X}^\varepsilon_s) dW^l_s \]

with

\[\sum_{i,j,\mathbf{e}(\beta)}^{(i)} = \sum_{\beta=1}^{i} \sum_{\mathbf{e}(\beta) \in \{1, \ldots, m\}^i} \sum_{1}^{(i)} \frac{1}{\beta!}. \]

The order of the Kusuoka-Stroock function \(X^{\varepsilon,j}_{t,\varepsilon} \) determined inductively by the term:

\[
\sum_{i,j,\mathbf{e}(\beta)}^{(i)} \int_0^t \nabla_x X^\varepsilon_t \left(\nabla_x \tilde{X}^\varepsilon_t \right)^{-1} \left(\prod_{k=1}^r \frac{1}{i_k!} \frac{\partial^{i_k}}{\partial \varepsilon_{i_k}} \tilde{X}^\varepsilon_s \right) \sum_{l=1}^n \frac{\partial^{\beta}}{\partial \varepsilon_{f_1} \cdots \partial \varepsilon_{f_l}} V_l(s, \tilde{X}^\varepsilon_s) dW^l_s \in \mathcal{K}^T_{t+1}, \]

where

\[\sum_{i,j,\mathbf{e}(\beta)}^{(i)} = \sum_{\beta=1}^{i} \sum_{\mathbf{e}(\beta) \in \{d+1, \ldots, m\}^i} \sum_{1}^{(i)} \frac{1}{\beta!}. \]

since this term gives the minimum order in the terms that consist of \(\frac{1}{n} \frac{\partial^n}{\partial t^n} X^{\varepsilon,j}_t \). Then, we have \(X^{\varepsilon,j}_{t,\varepsilon} \in \mathcal{K}^T_{t+1} \).

1. By Proposition 2.1, we obtain for a smooth function \(f_n \) such that \(f_n \) converges to a bounded Borel measurable function \(f \),

\[
\sum_{\mathbf{b}_k,\alpha(k)}^{(i)} E \left[\partial_{\alpha(k)} f_n(X^\varepsilon_t) \prod_{l=1}^k X^{\varepsilon,\alpha_l}_{t,\varepsilon} \right] = \sum_{\mathbf{b}_k,\alpha(k)}^{(i)} E \left[f_n(X^\varepsilon_t) H_{\alpha(k)} \left(X^\varepsilon_t, \prod_{l=1}^k X^{\varepsilon,\alpha_l}_{t,\varepsilon} \right) \right],
\]

with

\[
\sup_{(x_0, x_0) \in \mathbb{R}^m} \left\| H_{\alpha(k)} \left(X^\varepsilon_t, \prod_{l=1}^k X^{\varepsilon,\alpha_l}_{t,\varepsilon} \right) \right\|_{L^p} \leq C_{t}^{(i+1+k-k)/2} = C_{t}^{(i+1)/2}.
\]

2. Also, we obtain for a smooth function \(f_n \) such that \(f_n \) converges to a Lipschitz continuous function \(f \),

\[
\sum_{\mathbf{b}_k,\alpha(k)}^{(i)} E \left[f_n(X^\varepsilon_t) H_{\alpha(k)} \left(X^\varepsilon_t, \prod_{l=1}^k X^{\varepsilon,\alpha_l}_{t,\varepsilon} \right) \right] = \sum_{\mathbf{b}_k,\alpha(k)}^{(i)} E \left[\partial_{\alpha(k)} f_n(X^\varepsilon_t) H_{\alpha(k-1)} \left(X^\varepsilon_t, \prod_{l=1}^k X^{\varepsilon,\alpha_l}_{t,\varepsilon} \right) \right]
\]

(37)
\[W = \text{Let } (\Omega, \mathcal{F}, P) \text{ be a probability space where } P \text{ is an equivalent martingale measure, and } W = \{(W_{1,t}, W_{2,t}) : t \geq 0\} \text{ be a 2-dimensional Brownian motion. Let } (\mathcal{F}_t)_{t \in [0,T]} \text{ be a filtration generated by } W, \text{ augmented by the } P\text{-null sets of } \mathcal{F}. \text{ We consider the following stochastic volatility model } (S_t, \sigma_t)_{0 \leq t \leq T}, \]
\[dS_t = \alpha S_t dt + \sigma_t \xi S_t \, dW_{1,t}, \quad \text{for all } t \geq 0, \quad \sigma_0 = \sigma \in (0, \infty), \]
where \(\alpha \) is a constant, \(a : [0,T] \times \mathbb{R} \to (0, \infty), \) \(V_0 : [0,T] \times \mathbb{R} \to \mathbb{R}, \) \(V_1 : [0,T] \times \mathbb{R} \to \mathbb{R}, \) and \(\rho : [0,T] \to [-1,1]. \) Also, \(a(t,x), V_0(t,x), \) and \(V_1(t,x) \) are assumed to be bounded, smooth in \(x, \) and all orders of their derivatives are bounded.

\[\text{Remark 4.1} \ An \ example \ of \ stochastic \ volatility \ models \ is \ the \ following: } \]
\[dS_t = \alpha S_t dt + \sigma_t^\delta S_t \, dW_{1,t}, \quad \text{for all } t \geq 0, \quad \sigma_0 = \sigma \in (0, \infty), \quad \xi = \xi \in (0, \infty), \]
where \(\delta, \nu, \gamma > 0, \rho \in [-1,1] \) and \(b_0 \in C^\infty_{\text{loc}}(\mathbb{R} \to \mathbb{R}). \) Lions-Musiela [28] (2007) clarifies the relations between conditions on \(\delta, \gamma, b_0, \rho \) and the existence of the \(p\)-th order moment of \(S_t. \) For example, if \(\gamma + \delta < 1, \) no moment explosion occurs, that is \(E[S_t^p] < \infty \) for all \(p \geq 1 \) and \(t \geq 0. \) (See Theorem 3.2. in the paper for the detail.)

In general, the diffusion coefficients of \(S_t \) and \(\sigma_t \) in (40) do not satisfy the smoothness and bounded conditions required in (39). However, we can still apply the expansion in Malliavin calculus by making use of a smooth and bounded modification technique.

For instance, by applying the technique as in Remark 1 of Takahashi-Yoshida [47] (2004), Section 7 of and Takahashi-Yoshida [48] (2005), Section 4.1 in Takahashi-Yamada [46] (2012) considered the following model with those modifications of \(\sigma_t^\delta \) and
\[\sigma_t^\varepsilon, \text{ which are denoted respectively by } a \text{ and } b: \]
\[d\hat{S}_t^\varepsilon = \alpha \hat{S}_t^\varepsilon dt + a(\hat{\sigma}_t^\varepsilon) \hat{S}_t^\varepsilon dW_{1,t}, \]
\[d\hat{\sigma}_t^\varepsilon = b_0(\hat{\sigma}_t^\varepsilon) dt + \varepsilon b(\hat{\sigma}_t^\varepsilon)(\rho dW_{1,t} + \sqrt{1-\rho^2}dW_{2,t}), \]
\[\hat{S}_0 = S_0 > 0, \hat{\sigma}_0 = \sigma \in (0, \infty), \]

Then, using a large deviation result reported as Lemma 2 in Takahashi and Yoshida [48] (2005), (which can be proved by slight modification of Lemma 5.3 in Yoshida [49] (1992) or Lemma 7.1 in Kunitomo and Takahashi [22] (2003)), we are able to show
\[E[|f(S_t^\varepsilon) - f(\hat{S}_t^\varepsilon)|] = o(\varepsilon^n), \quad n = 1, 2, \cdots. \] (42)

Therefore, the difference between \(f(S_t^\varepsilon) \) and \(f(\hat{S}_t^\varepsilon) \) is negligible in the small disturbance asymptotic theory, and hence our expansion can be applied to (40) through (41).

We remark that when \(\varepsilon = 0, S_0^\varepsilon \) becomes the Black-Scholes model with a deterministic volatility \(\sigma^{BS} = \left(\frac{1}{t} \int_0^t a(s, \sigma_0^s)^2 ds \right)^{1/2} \):
\[dS_t^{BS} = \alpha S_t^{BS} dt + a(t, \sigma_0^t) S_t^{BS} dW_{1,t}, \]
\[d\sigma_0^t = V_0(t, \sigma_0^t) dt. \]

Next, note that we have \(S_t^\varepsilon \in K_{0_T}^T \) since \(S_t^\varepsilon \in D^\infty \) under our assumptions made for the stochastic volatility model (39), and
\[\frac{\partial}{\partial S_0} S_t^\varepsilon = \frac{S_t^\varepsilon}{S_0}, \] (43)
\[\frac{\partial^n}{\partial S_0^n} S_t^\varepsilon = 0, \quad n \geq 2. \]

Moreover, in order to clarify the orders of expansion errors of the option price and the Greeks, in the next lemma we show the orders of Kusuoka-Stroock functions for the derivatives of \(\sigma_t^\varepsilon \) and \(S_t^\varepsilon \), \(t \geq 0 \) with respect to the perturbation parameter \(\varepsilon \) and the initial value of the volatility \(\sigma_0 \). We remark that this lemma gives basic blocks for the proof of the main theorem in the next subsection.

Lemma 4.1

1. For \(t \in (0, T] \),
\[\frac{\partial^i}{\partial \varepsilon^i} \sigma_t^\varepsilon \in K_{i,T}^T, \quad i \geq 1. \] (44)

2. For \(t \in (0, T] \),
\[\frac{\partial^i}{\partial \varepsilon^i} S_t^\varepsilon \in K_{i+1,T}^T, \quad i \geq 1. \] (45)

3. For \(t \in (0, T] \),
\[\frac{\partial^k}{\partial \sigma_0^k} S_t^\varepsilon \in K_{1,T}^T, \quad k \geq 1. \] (46)
4. For \(t \in (0, T] \),
\[
\frac{\partial^{k+i}}{\partial \sigma_0^k \partial \varepsilon_i^i} S_t^\varepsilon \in \mathcal{K}_{i+1}^T, \ i, k \geq 1. \tag{47}
\]

Proof.

1. We make an induction argument with respect to \(i \in \mathbb{N} \) for \(\frac{\partial}{\partial \varepsilon_i} \sigma_t^\varepsilon \).

First, the differentiation of \(\sigma_t^\varepsilon \) with respect to \(\varepsilon \) is given by:
\[
\frac{\partial}{\partial \varepsilon} \sigma_t^\varepsilon = \int_0^t V_1(s, \sigma_s^\varepsilon)(\rho(s)dW_{1,s} + \sqrt{1 - \rho(s)^2}dW_{2,s}) \tag{48}
\]
\[
+ \int_0^t \sigma_t^\varepsilon \frac{\partial}{\partial \varepsilon} \sigma_s^\varepsilon ds
+ \varepsilon \int_0^t \sigma_t^\varepsilon \frac{\partial}{\partial \varepsilon} \sigma_s^\varepsilon(\rho(s)dW_{1,s} + \sqrt{1 - \rho(s)^2}dW_{2,s}),
\]
and it can be expressed as
\[
\frac{\partial}{\partial \varepsilon} \sigma_t^\varepsilon = \int_0^t \frac{\partial}{\partial \sigma_0} \sigma_t^\varepsilon \left(\frac{\partial}{\partial \sigma_0} \sigma_s^\varepsilon \right)^{-1} \sigma_s^\varepsilon V_1(s, \sigma_s^\varepsilon)(\rho(s)dW_{1,s} + \sqrt{1 - \rho(s)^2}dW_{2,s}) \tag{49}
\]
\[
- \varepsilon \int_0^t \frac{\partial}{\partial \sigma_0} \sigma_t^\varepsilon \left(\frac{\partial}{\partial \sigma_0} \sigma_s^\varepsilon \right)^{-1} \sigma_s^\varepsilon V_1(s, \sigma_s^\varepsilon)V_1(s, \sigma_s^\varepsilon)du.
\]

Since \(\frac{\partial}{\partial \sigma_0} \sigma_t^\varepsilon, \ (\frac{\partial}{\partial \sigma_0} \sigma_u^\varepsilon)^{-1} \in \mathcal{K}_0^T \), we have \(\frac{\partial}{\partial \varepsilon_i} \sigma_t^\varepsilon \in \mathcal{K}_i^T \) by (5) and (6) in Lemma 2.1.

For \(i \geq 2 \), we suppose \(\frac{\partial}{\partial \varepsilon_i} \sigma_t^\varepsilon \in \mathcal{K}_{i-1}^T \). Then, \(\frac{\partial}{\partial \varepsilon_i} \sigma_t^\varepsilon \) is the solution to the following SDE:
\[
\frac{\partial}{\partial \varepsilon_i} \sigma_t^\varepsilon = \sum_{\beta}^i \frac{i!}{\beta!} \int_0^t \left(\prod_{j=1}^{\beta} \frac{1}{l_j!} \frac{\partial^{l_j}}{\partial \varepsilon_j^{l_j}} \sigma_t^\varepsilon \right) \partial^\beta V_0(u, \sigma_u^\varepsilon)du \tag{50}
\]
\[
+ \sum_{\beta}^{(i-1)} \frac{i!}{\beta!} \int_0^t \left(\prod_{j=1}^{\beta} \frac{1}{l_j!} \frac{\partial^{l_j}}{\partial \varepsilon_j^{l_j}} \sigma_t^\varepsilon \right) \partial^\beta V_1(u, \sigma_u^\varepsilon)(\rho(u)dW_{1,u} + \sqrt{1 - \rho(u)^2}dW_{2,u})
\]
\[
+ \varepsilon \sum_{\beta}^{(i)} \frac{i!}{\beta!} \int_0^t \left(\prod_{j=1}^{\beta} \frac{1}{l_j!} \frac{\partial^{l_j}}{\partial \varepsilon_j^{l_j}} \sigma_t^\varepsilon \right) \partial^\beta V_1(u, \sigma_u^\varepsilon)(\rho(u)dW_{1,u} + \sqrt{1 - \rho(u)^2}dW_{2,u}),
\]
where
\[
\sum_{\beta}^i = \sum_{\beta=1}^{i} \sum_{I_1+\cdots+I_k=i, k \geq 1} \sum_{\beta}^{(i)} \tag{51}
\]

Since above (50) is linear SDE, we are able to represent \(\frac{\partial}{\partial \varepsilon_i} \sigma_t^\varepsilon \) explicitly. Then, the order of Kusuoka-Stroock function \(\frac{\partial}{\partial \varepsilon_i} \sigma_t^\varepsilon \) is specified inductively by the term:
\[
\sum_{\beta}^{(i-1)} \frac{i!}{\beta!} \int_0^t \frac{\partial}{\partial \sigma_0} \sigma_t^\varepsilon \left(\frac{\partial}{\partial \sigma_0} \sigma_s^\varepsilon \right)^{-1} \left(\prod_{j=1}^{\beta} \frac{1}{l_j!} \frac{\partial^{l_j}}{\partial \varepsilon_j^{l_j}} \sigma_u^\varepsilon \right) \partial^\beta V_1(u, \sigma_u^\varepsilon)(\rho(u)dW_{1,u} + \sqrt{1 - \rho(u)^2}dW_{2,u}) \in \mathcal{K}_i^T, \tag{52}
\]
since this term gives the minimum order in the terms that consist of (50), and then by Lemma 2.1-3-.(b) it determines the order of whole \(\frac{\partial}{\partial \sigma_0} \sigma_i^e \). Here, we have used the properties, \(\frac{\partial}{\partial \sigma_0} \sigma_i^e, (\frac{\partial}{\partial \sigma_0} \sigma_u^e)^{-1} \in K_0^T, \sum_{\beta} (l-1) \frac{1}{\beta_i!} \frac{\partial^{l_i}}{\partial \sigma_0^{l_i}} \sigma_u^e \in K_{i-1}^T, (6) \) (Lemma 2.1-3-.(a)) and (5) (Lemma 2.1-2-.(a)). Therefore we have \(\frac{\partial}{\partial \sigma_0} \sigma_i^e \in K_i^T \) by (6) (Lemma 2.1-3-.(b)). \(\Box \)

2. The differentiation of \(S_i^e \) with respect to \(\varepsilon \) is given by:

\[
\frac{\partial}{\partial \varepsilon} S_i^e = S_i^e \left(t \int_0^t \partial a(s, \sigma_s^e) \frac{\partial}{\partial \varepsilon} \sigma_s^e dW_{1,s} - \int_0^t a(s, \sigma_s^e) \partial a(s, \sigma_s^e) \frac{\partial}{\partial \varepsilon} \sigma_u^e ds \right).
\]

By 1. above, \(\frac{\partial}{\partial \varepsilon} \sigma_i^e \in K_i^T \) holds. Then, we have \(\frac{\partial}{\partial \varepsilon} S_i^e \in K_i^T \) by (5) and (6).

For \(i \geq 2 \), the order of Kusuoka-Stroock function \(\frac{\partial}{\partial \varepsilon} S_i^e \) is determined inductively by the term:

\[
\sum_{k=1}^i \sum_{\beta_k=1, \beta_j \geq 1} \frac{i!}{k!} S_i^e \left(t \int_0^t \partial^{k} a(s, \sigma_s^e) \prod_{l=1}^{k} \frac{1}{\beta_l!} \frac{\partial^{\beta_l}}{\partial \varepsilon^{\beta_l}} \sigma_s^e dW_{1,s} \right) \in K_{i+1}^T,
\]

since this term gives the minimum order in the terms relevant for \(\frac{\partial}{\partial \varepsilon} S_i^e \), and Lemma 2.1-3-.(b). Here, we have used the properties:

\[
\sum_{k=1}^i \sum_{\beta_k=1, \beta_j \geq 1} \frac{i!}{k!} \prod_{l=1}^{k} \frac{1}{\beta_l!} \frac{\partial^{\beta_l}}{\partial \varepsilon^{\beta_l}} \sigma_u^e \in K_i^T \quad \text{(by 1. above)},
\]

(6)(Lemma 2.1-3-.(a)) and (5)(Lemma 2.1-2-.(a)). Therefore, we have \(\frac{\partial}{\partial \varepsilon} S_i^e \in K_i^T \) by (6)(Lemma 2.1-3-.(b)). \(\Box \)

3. The differentiation of \(S_i^e \) with respect to \(\sigma_0 \) is given by

\[
\frac{\partial}{\partial \sigma_0} S_i^e = S_i^e \left(t \int_0^t \partial a(s, \sigma_s^e) \frac{\partial}{\partial \sigma_0} \sigma_s^e dW_{1,s} - \int_0^t a(s, \sigma_s^e) \partial a(s, \sigma_s^e) \frac{\partial}{\partial \sigma_0} \sigma_u^e ds \right).
\]

Since \(\sigma_i^e \in K_i^T \), we have \(\frac{\partial}{\partial \sigma_0} S_i^e \in K_i^T \) by (5) and (6).

For \(i \geq 2 \), the order of Kusuoka-Stroock function \(\frac{\partial}{\partial \sigma_0} S_i^e \) is determined inductively by the term:

\[
\sum_{k=1}^i \sum_{\beta_k=1, \beta_j \geq 1} \frac{i!}{k!} S_i^e \left(t \int_0^t \partial^{k} a(s, \sigma_s^e) \prod_{l=1}^{k} \frac{1}{\beta_l!} \frac{\partial^{\beta_l}}{\partial \sigma_0^{\beta_l}} \sigma_s^e dW_{1,s} \right) \in K_i^T,
\]

because this term gives the minimum order in the terms consisting of \(\frac{\partial}{\partial \sigma_0} S_i^e \), and Lemma 2.1-3-.(b). Here, we have used the properties:

\[
\sum_{k=1}^i \sum_{\beta_k=1, \beta_j \geq 1} \frac{i!}{k!} \prod_{l=1}^{k} \frac{1}{\beta_l!} \frac{\partial^{\beta_l}}{\partial \sigma_0^{\beta_l}} \sigma_u^e \in K_i^T,
\]

(6)(Lemma 2.1-3-.(a)) and (5)(Lemma 2.1-2-.(a)). Therefore, we have \(\frac{\partial}{\partial \sigma_0} S_i^e \in K_i^T \) by (6)(Lemma 2.1-3-.(b)). \(\Box \)
4. The order of Kusuoka-Stroock function $\frac{\partial^{i+n}}{\partial \sigma_0^i \partial \varepsilon^n} S_t^\varepsilon$, $(n \geq 1, i \geq 1)$ is determined inductively by the term:

$$\sum_{k=1}^{n+i} \prod_{\alpha_1 + \cdots + \alpha_k = n, \beta_1 + \cdots + \beta_k = i} \sum_{\alpha_j, \beta_j \geq 0, \alpha_j + \beta_j > 0} \frac{n!l!}{k!} \frac{1}{\alpha_1! \beta_1!} \frac{1}{\partial \sigma_0^{\alpha_1} \partial \varepsilon^{\beta_1}} \sigma_0^{\alpha_2} dW_{1,s} \in \mathcal{K}_{i+1}^T,$$

because this term gives the minimum order in the terms consisting of $\frac{\partial^{i+n}}{\partial \sigma_0^i \partial \varepsilon^n} S_t^\varepsilon$, and Lemma 2.1-3-(b). Here, we have used the properties: $S_t^\varepsilon \in \mathcal{K}_{0}^T$, $\frac{\partial^{i+n}}{\partial \sigma_0^i \partial \varepsilon^n} S_t^\varepsilon \in \mathcal{K}_{i+1}^T$, (6)(Lemma 2.1-3-(a)) and (5)(Lemma 2.1-2-(a)). Therefore we have $\frac{\partial^{i+n}}{\partial \sigma_0^i \partial \varepsilon^n} S_t^\varepsilon \in \mathcal{K}_{i+1}^T$ by (6)(Lemma 2.1-3-(b)).

4.2 Main Result

For $G \in D^\infty$, the Malliavin weight H_i is recursively computed as follows:

$$H_1(S_t^\varepsilon, G) = \delta \left(G \gamma S_t^\varepsilon DS_t^\varepsilon\right),$$

$$H_i(S_t^\varepsilon, G) = H_1(S_t^\varepsilon, H_{i-1}(S_t^\varepsilon, G)), \quad i \geq 2.$$

The following theorem is our main result in this paper which gives sharp error orders with respect to the time parameter $t \in (0, T]$ in expansions.

Theorem 4.1

1. For a bounded Borel measurable payoff function $f : \mathbb{R} \to \mathbb{R}$, there exists a constant $C_N > 0$ depending on N such that

$$\sup_{S_0 > 0, \sigma_0 > 0} \left| E\left[f(S_t^\varepsilon)\right] - \left\{ E[f(S_t^{BS})] + \sum_{i=1}^{N} \varepsilon^i E[f(S_t^{BS}) \pi_{i,t}]\right\} \right| \leq \|f\|_\infty C_N(\varepsilon \sqrt{T})^{N+1},$$

where the Malliavin weight $\pi_{i,t} \in \mathcal{K}_i^T$, $i \geq 1$ is given as follows:

$$\pi_{i,t} = \sum_{k=1}^{i} \sum_{\alpha_1 + \cdots + \alpha_k = i, \alpha_i \geq 1} \frac{1}{k!} H_k \left(S_t^{BS}, \prod_{j=1}^{k} \frac{\partial^{\alpha_j}}{\partial \varepsilon^{\alpha_j}} S_t^\varepsilon \mid \varepsilon = 0\right).$$

2. For a bounded Borel measurable payoff function $f : \mathbb{R} \to \mathbb{R}$, there exists a constant $C_N > 0$ depending on N, $k = 1, \ldots, n$ such that

$$\sup_{S_0 > 0, \sigma_0 > 0} \left| \frac{\partial^n}{\partial S_0^n} E\left[f(S_t^\varepsilon)\right] - \left\{ E[f(S_t^{BS}) \mathcal{N}_0^n] + \sum_{i=1}^{N} \varepsilon^i E[f(S_t^{BS}) \mathcal{N}_t^n]\right\} \right|$$

$$\leq \|f\|_\infty C_N \varepsilon^{N+1} \sum_{k=1}^{n} \sqrt{T}^{N+1-k},$$

(54)
where the Malliavin weight $N^n_{i,t} \in K^T_{i-n}$, $i \geq 0$ is recursively defined as follows:

$$N^n_{i,t} = \sum_{k=1}^{i+n} \sum_{\alpha_1 + \cdots + \alpha_k = i, \beta_1 + \cdots + \beta_k = n} \frac{n!}{k!} H_k \left(S^{BS}_t \prod_{l=1}^{k} \frac{1}{\alpha_l!\beta_l!} \frac{\partial^{\alpha_l + \beta_l}}{\partial \sigma^\alpha \partial x^\beta} S^n_{i,t} \right).$$

3. For a bounded Borel measurable payoff function $f : \mathbb{R} \to \mathbb{R}$, there exists a constant $C_N > 0$ depending on N such that

$$\sup_{S_0 > 0, \sigma_0 > 0} \left| \frac{\partial^n}{\partial \sigma_0^n} E[f(S^n_t)] - \left[E[f(S^n_t)V^n_0] + \sum_{i=1}^{N} \varepsilon_i E[f(S^n_t)\pi_i] \right] \right| \leq \|f\|_{\infty} C_N (\varepsilon \sqrt{t})^{N+1},$$

where the Malliavin weight $V^n_{i,t} \in K^T_i$, $i \geq 0$ is recursively defined as follows:

$$V^n_{i,t} = \sum_{k=1}^{i+n} \sum_{\alpha_1 + \cdots + \alpha_k = i, \beta_1 + \cdots + \beta_k = n} \frac{n!}{k!} H_k \left(S^{BS}_t \prod_{l=1}^{k} \frac{1}{\alpha_l!\beta_l!} \frac{\partial^{\alpha_l + \beta_l}}{\partial \sigma^\alpha \partial x^\beta} S^n_{i,t} \right).$$

4. For a Lipschitz payoff function $f : \mathbb{R} \to \mathbb{R}$ with a constant C_f and $|f(0)| \leq C_f$, there exists a constant $C_N > 0$ depending on N such that

$$\sup_{S_0 > 0, \sigma_0 > 0} \left| E[f(S^n_t)] - \left[E[f(S^n_t)V^n_0] + \sum_{i=1}^{N} \varepsilon_i E[f(S^n_t)\pi_i] \right] \right| \leq C_f C_N \sqrt{t} (\varepsilon \sqrt{t})^{N+1},$$

with the same weight $\pi_{i,t}$, $i \geq 1$ in (53).

5. For a Lipschitz payoff function $f : \mathbb{R} \to \mathbb{R}$ with a constant C_f and $|f(0)| \leq C_f$, there exists a constant $C_N > 0$ depending on N such that

$$\sup_{S_0 > 0, \sigma_0 > 0} \left| \frac{\partial^n}{\partial \sigma_0^n} E[f(S^n_t)] - \left[E[f(S^n_t)V^n_0] + \sum_{i=1}^{N} \varepsilon_i E[f(S^n_t)N^n_{i,t}] \right] \right| \leq C_f C_N \varepsilon^{N+1} \sum_{k=1}^{N} \sqrt{t}^{N+2-k},$$

with the same weight $N^n_{i,t}$, $i \geq 0$ in (54),

6. For a Lipschitz payoff function $f : \mathbb{R} \to \mathbb{R}$ with a constant C_f and $|f(0)| \leq C_f$, there exists a constant $C_N > 0$ depending on N such that

$$\sup_{S_0 > 0, \sigma_0 > 0} \left| \frac{\partial^n}{\partial \sigma_0^n} E[f(S^n_t)] - \left[E[f(S^n_t)V^n_0] + \sum_{i=1}^{N} \varepsilon_i E[f(S^n_t)N^n_{i,t}] \right] \right| \leq C_f C_N \sqrt{t} (\varepsilon \sqrt{t})^{N+1},$$

with the same weight $V^n_{i,t}$, $i \geq 0$ in (55).

Let us make brief comments on the theorem. Firstly, each error bound of the expansion up to the N-th order depends on the $(N+1)$-th order of the diffusion term $(\varepsilon \sqrt{t})^{N+1}$, the bounded or Lipschitz constant, that is $\|f\|_{\infty}$ or C_f, the time-to-maturity t and some constant C_N which depends on the order of the expansion N.

We also remark that there is the \sqrt{t}-order difference in the error bound between the bounded payoff (1.-3.) and the corresponding Lipschitz payoff (4.-6.): the error bound
for the Lipschitz payoff is tighter than that for the corresponding bounded payoff at the time close to the maturity. Then, our approximation is regarded as both the small parameter and short-time asymptotics.

Moreover, let us look at the error bounds of the expansions for the Greeks when the time-to-maturity is short because one may concerns about their behaviors near the expiry as stated in Introduction (due to the term $(\sqrt{t})^{-k}$ or $(\sqrt{t})^{(1-k)}$, $k = 1, \cdots, n$).

On the other hand, the order n of the Greeks with respect to the initial volatility parameter σ_0 (such as Vega) is irrelevant for the time-to-maturity effect in the error bound. Thus, it is expected that near the expiry the highest-order Greeks with respect to the initial underlying asset price would suffer the worst approximation errors. (To the best of our knowledge, these concrete results for the expansion errors of the Greeks are new.)

Finally, we remark that we can easily extend our expansions to the ones in a more general and higher-dimensional setting.

Remark 4.2 Benhamou et al. [5] (2010a) obtained a second-order vol-of-vol approximation formula for a European put option price in the time-dependent Heston model. In Theorem 2.4, of Benhamou et al. [5] (2010a), they showed that the error of their approximation formula is $O((\xi_{\text{sup}}\sqrt{t})^{3/4} \sqrt{t})$, where ξ_{sup} is the supremum of the volatility of volatility with respect to the time $s \in [0, t]$. While our approximation method differs from theirs, the error rate looks similar when the order of our price expansion is $N = 2$ (the second-order) in 4. of Theorem 4.1 above, where the Lipschitz payoff function of a European call or put is taken as f. That is, the order is $O((\varepsilon \sqrt{t})^{3/4} \sqrt{t})$, ($\varepsilon$ and t stand for are regarded as the vol-of-vol and the time-to-maturity, respectively in this case.) Moreover, on the contrary to Benhamou et al. [5], [6] (2010a,b), our method is able to automatically clarify the sharp error rates for arbitrary orders of expansions of the option price and Greeks by using Kusuoka-Stroock functions.

Remark 4.3 We have a sharp error estimate for the expansion of the option price for no.4 in the theorem as follows:

Proposition 4.1

$$C(t, K) = C_{AE,N}(t, K) + \varepsilon^{N+1/2} \sqrt{t}^{N+2} C_{N,q} \{N(d(K)) + \tilde{C}(p)\varepsilon \sqrt{t}\}^{1/p},$$

where $C(t, K)$ stand for the call price with maturity t and strike price K, and $C_{AE,N}(t, K)$ for its N-th order asymptotic expansion price. $N(d(K))$ denotes the standard normal distribution function evaluated at $d(K) = [\log (S_0/K) - (\sigma^{BS})^2/2] / \sigma^{BS}$ with $\sigma^{BS} = \left(\frac{1}{2} \int_0^t a(s, \sigma_0^2) ds\right)^{1/2}$. $C_{N,q}$ and $\tilde{C}(p)$ are some positive constants with $\frac{1}{p} + \frac{1}{q} = 1$, $p \in (1, \infty)$.

Proof. Using $\partial_a (x-K)^+ = 1_{\{x \geq K\}}$, we have the following estimate for any expansion order N;

$$\left| E \left[f(S_t) \tilde{\eta}_{N+1,t}^\varepsilon\right]\right| = \left| E \left[1_{\{S_t \geq K\}} \tilde{\eta}_{N+1,t}^\varepsilon\right]\right| \leq E \left[1_{\{S_t \geq K\}} \right]^{1/p} \tilde{\eta}_{N+1,t}^\varepsilon \|L^p\|$$

$$= E \left[1_{\{S_t \geq K\}} \right]^{1/p} \tilde{\eta}_{N+1,t}^\varepsilon \|L^p\| \leq \left\{E \left[1_{\{S_t \geq K\}} \right] + \tilde{C}(p)\varepsilon \sqrt{t}\right\}^{1/p} \tilde{\eta}_{N+1,t}^\varepsilon \|L^p\|$$

$$\leq C_{N,q} \sqrt{t}^{N+2} \{N(d(K)) + \tilde{C}(p)\varepsilon \sqrt{t}\}^{1/p}.$$
4.3 Proof of Theorem 4.1

Under the smoothness of the coefficients of the SDE and the assumption $a(t, \sigma) > 0$, the stochastic volatility model S_t^ε, $t \geq 0$ becomes a non-degenerate Wiener functional in the Malliavin sense. (See Theorem 3.1 of Takahashi and Yamada [46] (2012) for the detail.) For a smooth function f, the following Taylor formula holds:

$$f(S_t^\varepsilon) = f(S_t^{BS}) + \sum_{i=1}^{N} \varepsilon^i \frac{\partial^i}{\partial \varepsilon^i} f(S_t^\varepsilon)|_{\varepsilon=0} + \varepsilon^{N+1} \int_0^1 \frac{(1-u)^N}{N!} \frac{\partial^{N+1}}{\partial \nu^{N+1}} f(S_t^\nu)|_{\nu=\varepsilon u} du.$$ (63)

Each term of differentiation with respect to ε in (63) is calculated as follows:

$$\frac{1}{i!} \frac{\partial^i}{\partial \varepsilon^i} f(S_t^\varepsilon) = \sum_{k=1}^{i} \sum_{\alpha_1 + \cdots + \alpha_k = j, \alpha_i \geq 1} \frac{1}{k!} \partial^k f(S_t^\varepsilon) \prod_{j=1}^{k} \frac{1}{\alpha_j!} \frac{\partial^{\alpha_j}}{\partial \varepsilon^{\alpha_j}} S_t^\varepsilon,$$ (64)

where $\partial^k = \frac{\partial^k}{\partial x^k}$.

Therefore, by 2. of Lemma 4.1 and (6)(Lemma 2.1-3.-a), each term in (64) is characterized as a Kusuoka-Stroock function:

$$\left(\frac{\partial}{\partial \varepsilon} S_t^\varepsilon \right)^i \in \mathcal{K}_2^T,$$

$$\ldots,$$

$$\frac{\partial}{\partial \varepsilon} S_t^\varepsilon \frac{\partial^{i-1}}{\partial \varepsilon^{i-1}} S_t^\varepsilon \in \mathcal{K}_i^T,$$

$$\frac{\partial^i}{\partial \varepsilon^i} S_t^\varepsilon \in \mathcal{K}_{i+1}^T.$$

1. For a sequence of smooth compactly-supported functions $(f_m)_{m \in \mathbb{N}}$ that converges to f, we have the following calculation by applying Proposition 2.1.

$$E \left[\frac{1}{i!} \frac{\partial^i}{\partial \varepsilon^i} f_m(S_t^\varepsilon) \right] = C_1 E \left[f_m(S_t^\varepsilon) H_1 \left(S_t^\varepsilon, \left(\frac{\partial}{\partial \varepsilon} S_t^\varepsilon \right)^i \right) \right] + \cdots$$

$$+ C_{i-1} E \left[f_m(S_t^\varepsilon) \cdot H_2 \left(S_t^\varepsilon, \frac{\partial}{\partial \varepsilon} S_t^\varepsilon \frac{\partial^{i-1}}{\partial \varepsilon^{i-1}} S_t^\varepsilon \right) \right]$$

$$+ C_i E \left[f_m(S_t^\varepsilon) H_1 \left(S_t^\varepsilon, \frac{\partial^i}{\partial \varepsilon^i} S_t^\varepsilon \right) \right]$$ (65)

with

$$H_1 \left(S_t^\varepsilon, \left(\frac{\partial}{\partial \varepsilon} S_t^\varepsilon \right)^i \right) \in \mathcal{K}_{2i-1}^T = \mathcal{K}_i^T,$$

$$\ldots,$$

$$H_2 \left(S_t^\varepsilon, \frac{\partial}{\partial \varepsilon} S_t^\varepsilon \frac{\partial^{i-1}}{\partial \varepsilon^{i-1}} S_t^\varepsilon \right) \in \mathcal{K}_{i+2-2}^T = \mathcal{K}_i^T,$$

$$H_1 \left(S_t^\varepsilon, \frac{\partial^i}{\partial \varepsilon^i} S_t^\varepsilon \right) \in \mathcal{K}_{i+1-1}^T = \mathcal{K}_i^T.$$
Here, $C_l, l = 1, \ldots, i$ is some permutation. Then, by Lemma 2.1-3.-b:

$$
\pi_{i,t}^k = \sum_{k=1}^i \sum_{\alpha_1 + \cdots + \alpha_k = i, \alpha_j \geq 1} \frac{1}{k!} H_k \left(S^e_t, \prod_{j=1}^k \frac{1}{\alpha_j!} \frac{\partial^\alpha_j}{\partial x^\alpha_j} S^e_t \right) \in \mathcal{K}^T_{i,t}, \ i \geq 1 \quad (66)
$$

Then, as $m \to \infty$, we have

$$
|E \left[f_m(S^e_t) - f(S^e_t) \right]| \leq E \left[\| f_m(S^e_t) - f(S^e_t) \| \right] \leq \| f_m - f \|_\infty \to 0 \quad (68)
$$

$$
|E \left[\{ f_m(S^e_t) - f(S^e_t) \} \pi_{i,t}^k \right]| \leq E \left[\| f_m(S^e_t) - f(S^e_t) \| \right] \leq \| f_m - f \|_\infty \pi_{i,t}^k \to 0 \quad (69)
$$

Therefore, we obtain a formula:

$$
E[f(S^e_t)] = E[f(S^{BS}_t)] + \sum_{i=1}^N \varepsilon^i E[f(S^{BS}_t) \pi_{i,t}^k] + \varepsilon^{N+1} \int_0^1 (1 - u)^N E[f(S^{BS}_t) \pi_{i,t}^k] du
$$

where $\pi_{i,t} = \pi_{i,t}^0 \in \mathcal{K}^T_i$. The residual term is estimated by the following inequality:

$$
\left| E[f(S^e_t) \pi_{i,t}^k] \right| \leq \| f \|_\infty \| \pi_{i,t} \|_{L^1}.
$$

Since $\pi_{i,t}^k \in \mathcal{K}^T_{i+1}$, we have (53).

2. We have

$$
\frac{\partial^n}{\partial S^e_0} E \left[\frac{1}{n!} \frac{\partial^i}{\partial x^i} f_m(S^e_t) \right] = \sum_{k=1}^{i+n} \sum_{\alpha_1 + \cdots + \alpha_k = i, \beta_1 + \cdots + \beta_k = k, \alpha_j, \beta_j \geq 0, \alpha_j + \beta_j > 0} \frac{n!}{k!} E \left[\frac{\partial^k f_m(S^e_t)}{\partial x^\alpha \partial x^\beta} \prod_{l=1}^k \frac{1}{\alpha_l!} \frac{\partial^\alpha_l}{\partial x^\alpha_l} S^e_t \right].
$$

Using the integration by parts on the Wiener space, we get

$$
\frac{\partial^n}{\partial S^e_0} E \left[\frac{1}{n!} \frac{\partial^i}{\partial x^i} f_m(S^e_t) \right] = E \left[f_m(S^e_t) N_{i,t}^{e,n} \right],
$$

where

$$
N_{i,t}^{e,n} = \sum_{k=1}^{i+n} \sum_{\alpha_1 + \cdots + \alpha_k = i, \beta_1 + \cdots + \beta_k = k, \alpha_j, \beta_j \geq 0, \alpha_j + \beta_j > 0} \frac{n!}{k!} H_k \left(S^e_t, \prod_{l=1}^k \frac{1}{\alpha_l!} \frac{\partial^\alpha_l}{\partial x^\alpha_l} S^e_t \right). \quad (71)
$$

Since $S^e_t \in \mathcal{K}^T_i$ and $\frac{\partial}{\partial x} S^e_t \in \mathcal{K}^T_{i+1}$, $i \geq 1$, we have

$$
H_{i+n} \left(S^e_t, \left(\frac{\partial}{\partial S^e_0} S^e_t \right)^n \left(\frac{\partial}{\partial x} S^e_t \right)^i \right) \in \mathcal{K}^T_{2i-n},
$$

$$
H_2 \left(S^e_t, \prod_{l=1}^2 \frac{\partial^{\alpha_l+\beta_l}}{\partial S^e_0^{\alpha_l} \partial x^{\beta_l}} S^e_t \right) \in \mathcal{K}^T_{i+1-2} = \mathcal{K}^T_{i-1},
$$

$$
H_1 \left(S^e_t, \frac{\partial^{i+n}}{\partial S^e_0 \partial x^i} S^e_t \right) \in \mathcal{K}^T_{i+1-1} = \mathcal{K}^T_i.
$$
3. We have
\[N^{\varepsilon,n}_{t,i} \in \mathcal{K}_{\min\{i-n,-i-1\}}^T = \mathcal{K}_{i-n}^T. \]
(73)

Let \(\bar{N}^{\varepsilon,n}_{N+1,t} \) be
\[\bar{N}^{\varepsilon,n}_{N+1,t} = (N + 1) \sum_{k=1}^{N+1} \sum_{\alpha_1+\cdots+\alpha_k=i,\beta_1+\cdots+\beta_k=n,\alpha_j,\beta_j \geq 0,\alpha_j+\beta_j > 0} \frac{n!}{k!} H_k \left(S_t^\varepsilon, \prod_{l=1}^k \frac{1}{\alpha_l!\beta_l!} \partial^{\alpha_l+\beta_l} \partial^{\alpha_l} \partial^{\beta_l} S_t^\varepsilon \right), \]
(74)

and then \(\bar{N}^{\varepsilon,n}_{N+1,t} \in \mathcal{K}_{N+1-n}^T. \)

Therefore, we obtain a formula:
\[
\frac{\partial^n}{\partial S_0^n} E[f(S_t^\varepsilon)] = \frac{\partial^n}{\partial S_0^n} E[f(S_t^{BS})] + \sum_{i=1}^{N} \varepsilon^i \frac{\partial^n}{\partial S_0^n} E[\frac{\partial^i}{\partial \varepsilon^i} f(S_t^\varepsilon)] \bigg|_{\varepsilon=0} + \varepsilon^{N+1} \int_0^1 (1-u)^N \frac{\partial^n}{\partial S_0^n} E\left[\frac{\partial^{N+1}}{\partial \nu^{N+1}} f(S_t^\nu) \right] \bigg|_{\nu=\varepsilon u} du \\
= E[f(S_t^{BS}) N^n_{t,i}] + \sum_{i=1}^{N} \varepsilon^i E[f(S_t^{BS}) N^n_{t,i}] + \varepsilon^{N+1} \int_0^1 (1-u)^N E[f(S_t^{\varepsilon u}) \bar{N}^{\varepsilon,n}_{N+1,t}] du,
\]
(75)

where \(N^n_{t,i} = \bar{N}^{0,n}_{t,i} \in \mathcal{K}_{i-n}^T. \) The residual term is estimated by the following inequality:
\[
\left| E[f(S_t^\varepsilon) \bar{N}^{\varepsilon,n}_{N+1,t}] \right| \leq \| f \| \| \bar{N}^{\varepsilon,n}_{N+1,t} \|_{L^1}.
\]
(76)

Since, \(\bar{N}^{\varepsilon,n}_{N+1,t} \in \mathcal{K}_{N+1-n}^T, \) we have (54).

3. We have
\[
\frac{\partial^n}{\partial \sigma_0^n} E\left[\frac{1}{\nu!} \frac{\partial^\nu}{\partial \varepsilon^\nu} f_m(S_t^\varepsilon) \right] \\
= \sum_{k=1}^{i+n} \sum_{\alpha_1+\cdots+\alpha_k=i,\beta_1+\cdots+\beta_k=n,\alpha_j,\beta_j \geq 0,\alpha_j+\beta_j > 0} \frac{n!}{k!} E\left[\frac{\partial^k}{\partial \sigma_0^k} f_m(S_t^\varepsilon) \prod_{l=1}^k \frac{1}{\alpha_l!\beta_l!} \partial^{\alpha_l+\beta_l} \partial^{\alpha_l} \partial^{\beta_l} S_t^\varepsilon \right].
\]
(77)

Using the integration by parts on the Wiener space for the Vega’s direction, we get
\[
\frac{\partial^n}{\partial \sigma_0^n} E\left[\frac{1}{\nu!} \frac{\partial^\nu}{\partial \varepsilon^\nu} f_m(S_t^\varepsilon) \right] = E\left[f_m(S_t^\varepsilon) \mathcal{V}^{\varepsilon,n}_{i,t} \right]
\]
(78)

where
\[
\mathcal{V}^{\varepsilon,n}_{i,t} = \sum_{k=1}^{i+n} \sum_{\alpha_1+\cdots+\alpha_k=i,\beta_1+\cdots+\beta_k=n,\alpha_j,\beta_j \geq 0,\alpha_j+\beta_j > 0} \frac{n!}{k!} H_k \left(S_t^\varepsilon, \prod_{l=1}^k \frac{1}{\alpha_l!\beta_l!} \partial^{\alpha_l+\beta_l} \partial^{\alpha_l} \partial^{\beta_l} S_t^\varepsilon \right).
\]
(79)
and by 3. and 4. of Lemma 4.1 and Proposition 2.1 we have

\[H_{i+n} \left(S_t^i, \left(\frac{\partial}{\partial \sigma_0} S_t^i \right)^n \left(\frac{\partial}{\partial \varepsilon} S_t^i \right)^i \right) \in \mathcal{K}_{2i+n-i-n}^T = \mathcal{K}_i^T, \quad (80) \]

\[\ldots \]

\[H_2 \left(S_t^i, \prod_{l=1}^{2} \frac{\partial^{\alpha_l+b_l}}{\partial \sigma_0^{\alpha_l} \partial \varepsilon^{b_l}} S_t^i \right) \in \mathcal{K}_{i+2-2}^T = \mathcal{K}_1^T, \]

\[H_1 \left(S_t^i, \frac{\partial^{i+n}}{\partial \sigma_0^{i} \partial \varepsilon^{n}} S_t^i \right) \in \mathcal{K}_{i+1-1}^T = \mathcal{K}_1^T. \]

Then, by 2.1-3.-b:

\[\mathcal{V}_{i,t}^{\varepsilon,n} \in \mathcal{K}_i^T. \]

Let \(\mathcal{V}_{N+1,t}^{\varepsilon,n} \) be

\[\mathcal{V}_{N+1,t}^{\varepsilon,n} = (N + 1) \sum_{k=1}^{N+1+n} \sum_{\alpha_1+\ldots+\alpha_k = i, \beta_1+\ldots+\beta_k = n, \alpha_j, \beta_j \geq 0, \alpha_j + \beta_j > 0} \frac{n!}{k!} H_k \left(S_t^i, \prod_{l=1}^{k} \frac{1}{\alpha_l! \beta_l!} \frac{\partial^{\alpha_l+b_l}}{\partial \sigma_0^{\alpha_l} \partial \varepsilon^{b_l}} S_t^i \right), \quad (81) \]

and then \(\mathcal{V}_{N+1,t}^{\varepsilon,n} \in \mathcal{K}_{N+1}^T. \)

Therefore, we obtain a formula:

\[\frac{\partial^n}{\partial \sigma_0^n} E[f(S_t^i)] = \frac{\partial^n}{\partial \sigma_0^n} E[f(S_t^{\text{BS}})] + \sum_{i=1}^{N} \varepsilon^i \sum_{i=1}^{n} \frac{\partial^n}{\partial \varepsilon^{n}} E \left[\frac{\partial^{N+1}}{\partial \nu^{N+1}} f(S_t^i) \right] \bigg|_{\nu = \varepsilon u} du \]

\[= E[f(S_t^{\text{BS}}) \mathcal{V}_{0,t}^{\varepsilon,n}] + \sum_{i=1}^{N} \varepsilon^i E[f(S_t^{\text{BS}}) \mathcal{V}_{i,t}^{\varepsilon,n}] + \varepsilon^{N+1} \int_{0}^{1} (1-u)^N E[f(S_t^{\text{BS}}) \mathcal{V}_{N+1,t}^{\varepsilon,n}] du, \quad (82) \]

where \(\mathcal{V}_{i,t}^{\varepsilon,n} = \mathcal{V}_{i,t}^{\varepsilon,n} \in \mathcal{K}_i^T. \) The residual term is estimated by the following inequality:

\[|E[f(S_t^i) \mathcal{V}_{N+1,t}^{\varepsilon,n}]| \leq \|f\|_\infty \|\mathcal{V}_{N+1,t}^{\varepsilon,n}\|_{L^1}. \quad (83) \]

Since, \(\mathcal{V}_{N+1,t}^{\varepsilon,n} \in \mathcal{K}_{N+1}^T, \) we have (55).

4. Take a smooth mollifier \((f_m)_{m \in \mathbb{N}}\) converging to the Lipschitz function \(f\) such that the first derivative of \(f_m\) is uniformly bounded. Then, we have

\[E \left[\frac{\partial}{\partial \varepsilon} f_m(S_t^i) \right] = E \left[\frac{\partial f_m(S_t^i)}{\partial \varepsilon} S_t^i \right], \quad (84) \]

and for \(i \geq 2,

\[E \left[\frac{\partial^i}{\partial \varepsilon^i} f_m(S_t^i) \right] = C_1 E \left[\frac{\partial f_m(S_t^i)}{\partial \varepsilon} S_t^i \right] H_{i-1} \left(S_t^i, \left(\frac{\partial}{\partial \varepsilon} S_t^i \right)^i \right) \]

\[+ \ldots \]
Here, note that for some constant \(\eta \). Also, let \(\bar{\eta} \). Then, \(\bar{\eta} \). Therefore, we obtain a formula:

\[
E \left[f_m(S_t^e) \right] = E \left[\prod_{i=1}^{N} \left(\frac{d}{d\varepsilon} S_t^e \right)^{i} \right],
\]

with

\[
H_{i-1} \left(S_t^e, \left(\frac{d}{d\varepsilon} S_t^e \right)^{i} \right) \in K_{2i-1}^T = K_{i+1}^T,
\]

\[
\cdots
\]

\[
H_1 \left(S_t^e, \frac{d}{d\varepsilon} S_t^e \right) \in K_{2i+1}^T = K_{i+1}^T,
\]

\[
\frac{d}{d\varepsilon} S_t^e \in K_{i+1}^T.
\]

Let \(\eta_{1,t} = \frac{d}{d\varepsilon} S_t^e \) and for \(i \geq 2 \),

\[
\eta_{i,t} = C_1 H_{i-1} \left(S_t^e, \left(\frac{d}{d\varepsilon} S_t^e \right)^{i} \right) + \cdots + C_{i-1} H_1 \left(S_t^e, \frac{d}{d\varepsilon} S_t^e \right) + C_i \frac{d}{d\varepsilon} S_t^e.
\]

Then, \(\eta_{i,t} \in K_{i+1}^T, \ i \geq 1 \), and we have the following relation:

\[
E \left[f_m(S_t^e) \right] = E \left[\prod_{i=1}^{N} \left(\frac{d}{d\varepsilon} S_t^e \right)^{i} \right].
\]

Also, let \(\eta_{N+1,t} \) be \(\eta_{N+1,t} = (N+1)\eta_{N+1,t} \in K_{N+2}^T \) and then

\[
E \left[f_m(S_t^e) \right] = E \left[\prod_{i=1}^{N} \left(\frac{d}{d\varepsilon} S_t^e \right)^{i} \right].
\]

Here, note that for some constant \(L \),

\[
E \left[f_m(S_t^e) \right] = E \left[\prod_{i=1}^{N} \left(\frac{d}{d\varepsilon} S_t^e \right)^{i} \right] \leq \left\| \frac{d}{d\varepsilon} f_m \right\|_\infty \| \eta_{N+1,t} \|_{L^1} \leq L.
\]

Moreover, as \(m \to \infty \), we have

\[
\left| E \left[f_m(S_t^e) - f(S_t^e) \right] \right| \leq E \left[\left| f_m(S_t^e) - f(S_t^e) \right| \right] \leq \| f_m - f \|_\infty \to 0
\]

\[
\left| E \left[\{ f_m(S_t^e) - f(S_t^e) \} \eta_{i,t}^e \right] \right| \leq E \left[\left| \{ f_m(S_t^e) - f(S_t^e) \} \eta_{i,t}^e \right| \right] \leq \| f_m - f \|_\infty \| \eta_{i,t}^e \|_{L^1} \to 0
\]

\[
\left| E \left[\{ f_m(S_t^e) - f(S_t^e) \} \eta_{N+1,t} \right] \right| \leq E \left[\left| \{ f_m(S_t^e) - f(S_t^e) \} \eta_{N+1,t} \right| \right] \leq \| f_m - f \|_\infty \| \eta_{N+1,t} \|_{L^1} \to 0.
\]

Therefore, we obtain a formula:

\[
E[f(S_t^e)] = E[f(S_t^{BS})] + \sum_{i=1}^{N} \varepsilon_i E[f(S_t^{BS})] \eta_{i,t}^e + \varepsilon^{N+1} \int_0^1 (1-u)^N E[f(S_t^{BS})] \eta_{N+1,t}^e du.
\]
Here, its residual term is estimated by (91) as follows:

\[|E[f(S^T_{t})\bar{\pi}^{\epsilon}_{N+1,t}]| \leq C_f \|\bar{\eta}^{\epsilon}_{N+1,t}\|_{L^1}. \]

(93)

Finally, since \(\bar{\eta}^{\epsilon}_{N+1,t} \in K_{N+2}^{T} \), we have (56).

5. Following the similar manner as in the proof of 4. with the one of 2. above, we have for some \(\zeta^{\epsilon}_{i,t} \in K_{N+2}^{T} \), \(i, n \geq 1 \)

\[E \left[f_m(S^T_{i})N^{\epsilon,n}_{i,t} \right] = E \left[\partial f_m(S^T_{i})\zeta^{\epsilon}_{i,t} \right] \]

and

\[E \left[f_m(S^T_{i})\bar{N}^{\epsilon,n}_{N+1,t} \right] = E \left[\partial f_m(S^T_{i})\bar{\zeta}^{\epsilon}_{N+1,t} \right] \]

where \(\bar{\zeta}^{\epsilon}_{N+1,t} = (N + 1)\zeta^{\epsilon}_{N+1,t} \in K_{N+2}^{T} \). Therefore, we obtain a formula:

\[\frac{\partial^n}{\partial S^n_{0}} E[f(S^T_{t})] = E[f(S^T_{t})N^{n}_{0,t}] + \sum_{i=1}^{N} \epsilon^{i} E[f(S^{BS}_{i})N^{n}_{i,t}] \]

\[+ \epsilon^{N+1} \int_{0}^{1} (1-u)^N E[f(S^{c\epsilon}_{tu})\bar{N}^{\epsilon,n}_{N+1,t}] du \]

(94)

with its residual term estimate:

\[|E[f(S^T_{t})\bar{N}^{\epsilon,n}_{N+1,t}]| \leq C_f \|\bar{\zeta}^{\epsilon}_{N+1,t}\|_{L^1}. \]

(95)

Since \(\bar{\zeta}^{\epsilon}_{N+1,t} \in K_{N+2}^{T} \), we have (57).

6. Following the similar manner as in the proof of 4. with the one of 3. above, we have for some \(\zeta^{\epsilon}_{i,t} \in K_{T_{i}+1}^{T} \), \(i, n \geq 1 \)

\[E \left[f_m(S^T_{i})\psi^{\epsilon,n}_{i,t} \right] = E \left[\partial f_m(S^T_{i})\zeta^{\epsilon}_{i,t} \right] \]

and

\[E \left[f_m(S^T_{i})\bar{\psi}^{\epsilon,n}_{N+1,t} \right] = E \left[\partial f_m(S^T_{i})\bar{\zeta}^{\epsilon}_{N+1,t} \right] \]

where \(\bar{\zeta}^{\epsilon}_{N+1,t} = (N + 1)\zeta^{\epsilon}_{N+1,t} \in K_{N+2}^{T} \). Therefore, we obtain a formula:

\[\frac{\partial^n}{\partial \sigma^n_{0}} E[f(S^T_{t})] = E[f(S^{BS}_{t})\nu^{n}_{0,t}] + \sum_{i=1}^{N} \epsilon^{i} E[f(S^{BS}_{i})\nu^{n}_{i,t}] \]

\[+ \epsilon^{N+1} \int_{0}^{1} (1-u)^N E[f(S^{c\epsilon}_{tu})\bar{\psi}^{\epsilon,n}_{N+1,t}] du \]

(96)

with its residual term estimate:

\[|E[f(S^T_{t})\bar{\psi}^{\epsilon,n}_{N+1,t}]| \leq C_f \|\bar{\zeta}^{\epsilon}_{N+1,t}\|_{L^1}. \]

(97)

Since \(\bar{\zeta}^{\epsilon}_{N+1,t} \in K_{N+2}^{T} \), we have (58). □
5 Formulas

This section briefly shows how to compute option prices and their Greeks based on our method.

An example of a bounded Borel (non-smooth and non-continuous) payoff is the digital call function, $f(x) = 1_{\{x \geq K\}}$. Specifically, let us consider a digital call option on a foreign exchange rate. In this case,

$$e^{-rdt}E[f(S_{BS}^t)] = e^{-rdt}N(d),$$

where

$$N(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy,$$

and

$$d = \frac{\log(S_0/K) + (r_d - r_f)t - (\sigma_{BS})^2/2t}{\sigma_{BS} \sqrt{t}}.$$ \hspace{1cm} (98)

Here, r_d and r_f stand for domestic and foreign interest rates, respectively; S_0 denotes the time-0 spot exchange rate, that is the unit price of the foreign currency in terms of the domestic currency, and S_{BS}^t stands the time-t spot exchange rate under the Black-Scholes model.

Also, an example of the Lipschitz continuous payoff is the European call function $f(x) = (x - K)^+$. Again, for a call option on a foreign exchange rate, it is well-known under the Black-Scholes model that:

$$e^{-rdt}E[f(S_{BS}^t)] = e^{-r_ft}S_0N(d_1) - e^{-rdt}KN(d_2),$$

where

$$d_1 = \frac{\log(S_0/K) + (r_d - r_f)t + (\sigma_{BS})^2/2t}{\sigma_{BS} \sqrt{t}},$$

$$d_2 = \frac{\log(S_0/K) + (r_d - r_f)t - (\sigma_{BS})^2/2t}{\sigma_{BS} \sqrt{t}}.$$ \hspace{1cm} (101)

In both the bounded Borel and Lipschitz cases, the Malliavin weights $\pi_{i,t}, i = 1, 2, \cdots$ and $N^n_{i,t}, n = 1, 2, \cdots, i = 0, 1, 2, \cdots$ are the same. In particular, $\pi_{1,t}, N^n_{0,t}$ and $N^n_{1,t}, n = 1, 2$ are given as below.

1. The Malliavin weight for the first order approximation of the option price is obtained as follows:

$$\pi_{1,t} = \frac{\partial}{\partial \epsilon} S_t^\epsilon|_{\epsilon=0} \int_0^t \frac{D_{s,1} S_{BS}^t}{\int_0^t (D_{u,1} S_{BS}^t)^2 du} dW_{1,s}$$

$$- \int_0^t D_{s,1} \frac{\partial}{\partial \epsilon} S_t^\epsilon|_{\epsilon=0} \frac{D_{s,1} S_{BS}^t}{\int_0^t (D_{u,1} S_{BS}^t)^2 du} ds,$$

where $D_{s,1}, s \leq t$, is the Malliavin derivative with respect to the Brownian motion $W_{1,t}$.

22
Therefore, we get the approximation formula:
\[e^{-rd} E[f(S_t^i)] \simeq e^{-rd} \int_R f(y)p^{BS}(t, S_0, y)dy \\
+ \varepsilon e^{-rd} \int_R f(y)E[\pi_{1,t}|S_t^{BS} = y]p^{BS}(t, S_0, y)dy.\]

See Appendix A of Takahashi and Yamada [46] (2012) for more details of the computation.

2. The Malliavin weights for the Delta, Gamma and Vega in the Black-Scholes model are given respectively as follows:
\[N_{0,t}^1 = \frac{W_{1,t}}{S_0 \sigma^{BS} t}, \]
\[N_{0,t}^2 = \frac{1}{S_0 \sigma^{BS} t} \left(\frac{W_{1,t}}{\sigma^{BS} t} - \frac{1}{\sigma^{BS}} - W_{1,t} \right), \]
\[V_{0,t}^1 = \left(\frac{W_{1,t}}{\sigma^{BS} t} - \frac{1}{\sigma^{BS}} - W_{1,t} \right). \]

3. The Malliavin weights for the first order approximation of the Delta, Gamma and Vega are obtained as follows:
\[N_{1,t}^1 = H_2 \left(S_t^{BS}, \frac{\partial}{\partial S_0} S_t^{BS} \frac{\partial}{\partial \varepsilon} S_t^{\varepsilon} |\varepsilon = 0 \right) \\
+ H_1 \left(S_t^{BS}, \frac{\partial^2}{\partial S_0 \partial \varepsilon} S_t^{\varepsilon} |\varepsilon = 0 \right), \]
\[N_{1,t}^2 = H_3 \left(S_t^{BS}, \left(\frac{\partial}{\partial S_0} S_t^{BS} \right)^2 \frac{\partial}{\partial \varepsilon} S_t^{\varepsilon} |\varepsilon = 0 \right) \\
+ 2H_2 \left(S_t^{BS}, \frac{\partial}{\partial S_0} S_t^{BS} \frac{\partial}{\partial \varepsilon} S_t^{\varepsilon} |\varepsilon = 0 \right) \\
+ H_1 \left(S_t^{BS}, \frac{\partial^3}{\partial S_0 \partial \varepsilon \partial \varepsilon} S_t^{\varepsilon} |\varepsilon = 0 \right), \]
\[V_{1,t}^1 = H_2 \left(S_t^{BS}, \frac{\partial}{\partial S_0} S_t^{BS} \frac{\partial}{\partial \varepsilon} S_t^{\varepsilon} |\varepsilon = 0 \right) \\
+ H_1 \left(S_t^{BS}, \frac{\partial^2}{\partial S_0 \partial \varepsilon} S_t^{\varepsilon} |\varepsilon = 0 \right). \]

4. Applying the technique of Theorem 3.1 and Appendix A in Takahashi and Yamada [46] (2012), we are able to obtain the formulas as the following (closed) forms:
\[E[f(S_t^{BS})\pi_{i,t}] = \int_R f(y)E[\pi_{i,t}|S_t^{BS} = y]p^{BS}(t, S_0, y)dy, \]
\[i = 1, 2, \cdots \]
\[E[f(S^{BS}_t)N^n_{i,t}] = \int_R f(y)E[N^n_{i,t}|S^{BS}_t = y]p^{BS}(t, S_0, y)dy \\
= \int_R f(y)\frac{\partial^n}{\partial S^n_0}\{E[\pi_{i,t}|S^{BS}_t = y]p^{BS}(t, S_0, y)\}dy, \]

where \(y \rightarrow p^{BS}(t, S_0, y) \) of stands for the log-normal density \(S^{BS}_t \) under the Black-Scholes model. Therefore, each approximation term can be easily obtained based on our method developed in the previous section. We finally remark that the conditional expectations appearing in the above equations can be easily evaluated by the same technique as in Appendix A of Takahashi and Yamada [46] (2012).

6 Numerical Example

This section considers a stochastic volatility model of the Heston [18] (1993) as a numerical experiment.

\[
\begin{align*}
&dX^\varepsilon_t = -\frac{1}{2}v^\varepsilon_t dt + \sqrt{v^\varepsilon_t} dW^1_t, \quad X^\varepsilon_0 = x_0, \\
&dv^\varepsilon_t = \kappa(\theta - v^\varepsilon_t)dt + \varepsilon\sqrt{v^\varepsilon_t} (\rho dW^1_t + \sqrt{1-\rho^2} dW^2_t), \quad v^\varepsilon_0 = v_0,
\end{align*}
\]

where we set \(X^\varepsilon_t = \log S^\varepsilon_t \) and \(x_0 = \log S_0 \).

Applying the method developed in the previous sections, we obtain an approximation of a call option price with the strike \(K \) as follows:

\[
C(t, K) = E[(e^{X^\varepsilon_t} - K)^+] \\
\simeq \int_R (e^y - K)^+p^{logBS}(t, x_0, y)dy \\
+ \varepsilon \int_R (e^y - K)^+\vartheta_1(y)p^{logBS}(t, x_0, y)dy \\
+ \varepsilon^2 \int_R (e^y - K)^+\vartheta_2(y)p^{logBS}(t, x_0, y)dy,
\]

where \(y \rightarrow p^{logBS}(t, x_0, y) \) is the density of logarithm of the Black-Scholes model, that is

\[
p^{logBS}(t, x_0, y) = \frac{1}{\sqrt{2\pi\Sigma}}e^{-\frac{1}{2\Sigma}(y-\mu)^2},
\]

with

\[
\mu = x_0 - \frac{1}{2}\Sigma \quad \text{and} \quad \Sigma = \theta t + (v_0 - \theta)(1 - e^{-\kappa t})/\kappa.
\]

Here, the Malliavin weights are given by

\[
\vartheta_1(y) = E\left[H_{(1)}\left(X^0_t, \frac{\partial}{\partial \varepsilon} X^\varepsilon_t|\varepsilon=0\right) | \int_0^t \sqrt{v^\varepsilon_s} dW_s = y - \mu \right],
\]

(110)
\[
\dot{v}_2(y) = E \left[H_{(1,1)} (X_t^0, \frac{\partial}{\partial \epsilon} X_t^1|_{\epsilon=0})^2 \right] \int_0^t \sqrt{v_0^2} dW_s = y - \mu
\]

More concretely, we have the following expressions of the weights:

\[
\dot{v}_1(y) = C_1(t, v_0, \kappa, \theta, \rho) [H_3(y) - H_2(y)],
\]

\[
\dot{v}_2(y) = C_{21}(t, v_0, \kappa, \theta, \rho) [H_6(y) - 2H_5(y) + H_4(y)]
+ C_{22}(t, v_0, \kappa, \theta, \rho) [H_4(y) - 2H_3(y) + H_2(y)]
+ C_{23}(t, v_0, \kappa, \theta, \rho) [H_4(y) - H_3(y)];
\]

where

\[
C_1(t, v_0, \kappa, \theta, \rho) = \frac{\rho}{2 \kappa^2} e^{-\kappa t} \left\{ \theta - (v_0 - \theta) - (v_0 - \theta) \kappa t + e^{\kappa t} (v_0 - \theta + \theta(-1 + \kappa t)) \right\},
\]

\[
C_{21}(t, v_0, \kappa, \theta, \rho) = \frac{1}{8} \rho^2 \frac{1}{\kappa^4} (e^{-\kappa t} (1 - \kappa^2) v_0 + 2 + \kappa t + e^{\kappa t} (-2 + \kappa t) \theta)^2,
\]

\[
C_{22}(t, v_0, \kappa, \theta, \rho) = \frac{1}{16 \kappa^4} (e^{-2\kappa t} (-2v_0 + \theta + e^{2\kappa t} (2v_0 + (-5 + 2\kappa t) \theta) + 4e^{\kappa t} (\theta + \kappa t (-v_0 + \theta)))),
\]

\[
C_{23}(t, v_0, \kappa, \theta, \rho) = \frac{1}{2} \rho^2 \frac{1}{2\kappa^3} (e^{-\kappa t} (-2 + 2e^{\kappa t} - \kappa t (2 + \kappa t)) v_0 + (6 + 2e^{\kappa t} (-3 + \kappa t) + \kappa t (4 + \kappa t) \theta)),
\]

\[
H_1(y) = \frac{(y - \mu)}{\Sigma},
\]

\[
H_2(y) = \frac{(y - \mu)^2}{\Sigma^2} - \frac{1}{\Sigma},
\]

\[
H_3(y) = \frac{(y - \mu)^3}{\Sigma^3} - \frac{3(y - \mu)}{\Sigma^2},
\]

\[
H_4(y) = \frac{(y - \mu)^4}{\Sigma^4} - \frac{6(y - \mu)^2}{\Sigma^3} + \frac{3}{\Sigma^2},
\]

\[
H_5(y) = \frac{(y - \mu)^5}{\Sigma^5} - \frac{10(y - \mu)^3}{\Sigma^4} + \frac{15(y - \mu)}{\Sigma^3},
\]

\[
H_6(y) = \frac{(y - \mu)^6}{\Sigma^6} - \frac{15(y - \mu)^4}{\Sigma^5} + \frac{45(y - \mu)^2}{\Sigma^4} - \frac{15}{\Sigma^3}.
\]

Then, we have an approximation of the call price \(C(t, K) \) as follows:

\[
C(t, K) \simeq BS(S_0, K, \Sigma, t)
\]

\[
+ \varepsilon C_1(t, v_0, \kappa, \theta, \rho) \int_{\log K}^{\infty} (e^y - K) [H_3(y) - H_2(y)] P_{log BS}(t, x_0, y) dy
\]

\[
+ \varepsilon^2 C_{21}(t, v_0, \kappa, \theta, \rho, \nu) \int_{\log K}^{\infty} (e^y - K) \{ [H_6(y) - H_5(y)] - [H_5(y) - H_4(y)] \} P_{log BS}(t, x_0, y) dy
\]

\[
+ (\varepsilon \nu)^2 C_{22}(t, v_0, \kappa, \theta, \rho) \int_{\log K}^{\infty} (e^y - K) \{ [H_4(y) - H_3(y)] - [H_3(y) - H_2(y)] \} P_{log BS}(t, x_0, y) dy
\]

\[
+ (\varepsilon \nu)^2 C_{23}(t, v_0, \kappa, \theta, \rho) \int_{\log K}^{\infty} (e^y - K) [H_4(y) - H_3(y)] P_{log BS}(t, x_0, y) dy,
\]

25
where \(BS(S_0, K, \Sigma, t) \) stands for the Black-Scholes price with initial price \(S_0 \), strike \(K \), volatility \(\sqrt{\Sigma} \) and maturity \(t \). (We set the risk-free interest rate to be zero.)

Moreover, we obtain the closed form expressions for the integrals above by applying the following relations:

\[
\int_{\log \hat{K}}^{\infty} H_n(y)p^{logBS}(t, x_0, y)dy = H_{n-1}(\log \hat{K})p(\log(S_0/K) - \Sigma/2)
\]

\[
= \hat{H}_{n-1}(- \log(S_0/K) + \Sigma/2) p(\log(S_0/K) - \Sigma/2),
\]

\[
\int_{\log \hat{K}}^{\infty} e^y [H_n(y) - H_{n-1}(y)] p^{logBS}(t, x_0, y)dy = S_0 \hat{H}_{n-1}(\log \hat{K})p(\log(S_0/K) + \Sigma/2)
\]

\[
= S_0 \hat{H}_{n-1}(- \log(S_0/K) + \Sigma/2) p(\log(S_0/K) + \Sigma/2)
\]

where

\[
p(y) = \frac{1}{\sqrt{2\pi}\Sigma} e^{-\frac{y^2}{2\Sigma}}
\]

\[
\hat{H}_n(y - \mu) = H_n(y).
\]

That is, we have the next proposition.

Proposition 6.1 Under the Heston model (106), the approximate call price \(C_{AE}(t, K) \) with strike \(K \) and maturity \(t \) up to the \(\epsilon^2 \)-order is given as follows:

\[
C_{AE}(t, K) = BS(S_0, K, \Sigma, t)
\]

\[
+ \epsilon C_1(t, v_0, \kappa, \theta, \rho) \left[S_0 \hat{H}_2(-d_2) p(d_1) - K \left\{ \hat{H}_2(-d_2) - \hat{H}_1(-d_2) \right\} p(d_2) \right]
\]

\[
+ \epsilon^2 C_{21}(t, v_0, \kappa, \theta, \rho) \left[S_0 \left\{ \hat{H}_5(-d_2) - \hat{H}_4(-d_2) \right\} p(d_1) - K \left\{ \hat{H}_5(-d_2) - 2\hat{H}_4(-d_2) + \hat{H}_3(-d_2) \right\} p(d_2) \right]
\]

\[
+ \epsilon^2 C_{22}(t, v_0, \kappa, \theta, \rho) \left[S_0 \left\{ \hat{H}_3(-d_2) - \hat{H}_2(-d_2) \right\} p(d_1) - K \left\{ \hat{H}_3(-d_2) - 2\hat{H}_2(-d_2) + \hat{H}_1(-d_2) \right\} p(d_2) \right]
\]

\[
+ \epsilon^2 C_{23}(t, v_0, \kappa, \theta, \rho) \left[S_0 \hat{H}_3(-d_2) p(d_1) - K \left\{ \hat{H}_3(-d_2) - \hat{H}_2(-d_2) \right\} p(d_2) \right],
\]

where \(BS(S_0, K, \Sigma, t) \) denotes the corresponding Black-Scholes price, \(C_1(t, v_0, \kappa, \theta, \rho), C_{2i}(t, v_0, \kappa, \theta, \rho), i = 1, 2, 3 \) are defined by (116) \(\sim \) (119), respectively, \(p(y) \) is given as (129), and

\[
d_1 = \log(S_0/K) + \Sigma/2,
\]

\[
d_2 = d_1 - \Sigma.
\]

Also, \(\hat{H}_n(x) \) is defined by (139) below, in particular,

\[
\hat{H}_1(x) = \frac{x}{\Sigma},
\]

\[
\hat{H}_2(x) = \frac{x^2}{\Sigma} - \frac{1}{\Sigma},
\]

\[
\hat{H}_3(x) = \frac{x^3}{\Sigma^3} - \frac{3x}{\Sigma^2},
\]

\[
\hat{H}_4(x) = \frac{x^4}{\Sigma^4} - \frac{6x^2}{\Sigma^3} + \frac{3}{\Sigma^2}.
\]
\[\hat{H}_5(x) = x^5 - \frac{10x^3}{3} + \frac{15x}{3}, \]
\[\hat{H}_6(x) = x^6 - \frac{15x^4}{5} + \frac{45x^2}{2} - 15. \]

\[\text{Remark 6.1} \quad \text{The Hermite polynomial of degree } n \text{ with parameter } \Sigma \text{ is defined by} \]
\[H_n(x; \Sigma) = (-\Sigma)^n \exp \left(\frac{x^2}{2\Sigma} \right) \frac{d^n}{dx^n} \left[\exp \left(-\frac{x^2}{2\Sigma} \right) \right]. \quad (138) \]

Then, by setting
\[\hat{H}_n(x) := \frac{1}{\Sigma^n} H_n(x; \Sigma), \quad (139) \]
thanks to the well known properties of the Hermite polynomial, we use the following relations in the calculation above:
\[\frac{d}{dx} \hat{H}_n(x) = \frac{n}{\Sigma} \hat{H}_{n-1}(x) \quad (140) \]
\[\Sigma \hat{H}_{n+1}(x) - x \hat{H}_n(x) + n \hat{H}_{n-1}(x) = 0 \quad (141) \]
\[(-1)^n \frac{d^n}{dx^n} \left[H_n(x)p(x) \right] = \hat{H}_{n+m}(x)p(x), \quad (m \in \mathbb{Z}_+) \quad (142) \]

For instance, by (142) with \(m = 1 \), we have
\[\int_{\log K}^{\infty} H_n(y)p^{logBS}(t, x_0, y)dy = \int_{\log K - \mu}^{\infty} \hat{H}_n(x)p(x)dx \quad (143) \]
\[= \hat{H}_{n-1}(-\log(S_0/K) + \Sigma/2)p(\log(S_0/K) - \Sigma/2) \quad (144) \]
\[= \hat{H}_{n-1}(-d_2)p(d_2). \quad (145) \]

Moreover, by (140) and (141),
\[\frac{d}{dx} \left[\hat{H}_{n-1}(x)p(x - \Sigma) \right] = \left[\frac{d}{dx} \hat{H}_{n-1}(x) \right] p(x - \Sigma) + \hat{H}_{n-1}(x) \frac{d}{dx} p(x - \Sigma) \quad (146) \]
\[= \frac{(n - 1)}{\Sigma} \hat{H}_{n-2}(x)p(x - \Sigma) + \hat{H}_{n-1}(x) \left\{ \frac{-(x - \Sigma)}{\Sigma} \right\} p(x - \Sigma) \quad (147) \]
\[= \left[\hat{H}_{n-1}(x) + \left\{ \frac{(n - 1)}{\Sigma} \hat{H}_{n-2}(x) - \frac{x}{\Sigma} \hat{H}_{n-1}(x) \right\} \right] p(x - \Sigma) \quad (148) \]
\[= \left[\hat{H}_{n-1}(x) - \hat{H}_n(x) \right] p(x - \Sigma). \quad (149) \]

Thus, we obtain
\[\int_{\log K}^{\infty} e^y \left[H_n(y) - \hat{H}_{n-1}(y) \right] p^{logBS}(t, x_0, y)dy \quad (150) \]
\[= e^{(\mu + \Sigma/2)} \int_{\log K - \mu}^{\infty} \left[\hat{H}_n(x) - \hat{H}_{n-1}(x) \right] p(x - \Sigma)dx \quad (151) \]
\[= S_0 \hat{H}_{n-1}(-\log(S_0/K) + \Sigma/2)p(\log(S_0/K) + \Sigma/2) \quad (152) \]
\[= S_0 \hat{H}_{n-1}(-d_2)p(d_1). \quad (153) \]
In order to examine the accuracy of our approximation, we compare the option prices and implied volatilities computed by our asymptotic expansion method against those by the Heston’s Fourier transform method. Specifically, the parameters are set to be $x_0 = \log 100$, $v_0 = 0.4$, $\kappa = 1.15$, $\theta = 0.04$, $\rho = -0.4$ as in Forde, Jacquier and Lee [10] (2012).

First, with a fixed volatility of the volatility $\varepsilon = 0.2$, Table 1-4 show the call and the put option prices approximated by the first and second order expansions (denoted by AE 1st order and AE 2nd order, respectively) against the benchmark values based on the Fourier transform method (Exact Price).

The option maturities t are set to be 0.125, 0.25, 0.5 and 1.0 years, while the strike prices are between the 2.5% and the 97.5% Black-Scholes deltas ($\Delta=2.5\%$-$\Delta=97.5\%$) for all the maturities. (Each moneyness is calculated by the Black-Scholes delta. The range $\Delta=2.5\%$-$\Delta=97.5\%$ includes the deep In-The-Money and the deep Out-of-The-Money and is enough for practical purpose.) It is clearly observed that the second order approximations generally improve the first order ones.

Secondly, Figures 1-16 show the estimated errors (Estimated Error) of the expansions up to the first order against those true errors (denoted by True Error) for the option prices with maturities $t = 0.125, 0.25, 0.5, 1.0$ and volatilities of the volatility $\varepsilon = 0.05, 0.1, 0.15, 0.2$. Here, the estimated errors are defined as the differences of the expansions up to the first order and the ones up to the second order, that is (AE 1st order)-(AE 2nd order), since we expect that the contributions of the second order terms in the expansions are dominant in the whole residuals of the first order expansions.

Then, as expected, we observe that the estimated errors well capture the features of the true errors for all the cases, which is important under some situations in practice such that we do not have sufficient time to check the true errors of the expansion through more time-consuming numerical schemes such as Monte Carlo simulations, while our estimated errors are very quickly computed thanks to the closed form expressions of expansions. The error estimates for the second order expansions could be estimated in the similar way by the use of the third order expansion.

Further, if necessary, by employing the estimated errors (Estimated Error), we are able to estimate the constant C_N in the error bounds of (53) and (56) in Theorem 4.1 (or $C_{N,q}$ in (59) of Proposition 4.1).

Moreover, Figure 17 - 32 present the implied volatilities based on our second order expansions and the Heston’s method (denoted by Heston AE IV and Heston Exact IV, respectively) with maturities $t = 0.125, 0.25, 0.5, 1.0$ and volatilities of the volatility $\varepsilon = 0.05, 0.1, 0.15, 0.2$. Here, by inverting the Black-Scholes formula numerically, we convert the approximate prices to approximate implied volatilities. Alternatively, based on the approximate prices we could apply an implied volatility expansion formula in Theorem 3.2 of [46]. That is, the implied volatility with maturity t, $\sigma^{IV}(t,K)$ is expanded up to ε^2 as follows:

$$\sigma^{IV}(t,K) = \bar{\sigma} + \varepsilon \frac{C_1}{C^\sigma_B(\bar{\sigma})} + \varepsilon^2 \left\{ \frac{C_2}{C^\sigma_B(\bar{\sigma})} - \frac{1}{2} \frac{C_1^2}{C^\sigma_B(\bar{\sigma})^3} C^\sigma_{\sigma B}(\bar{\sigma}) \right\} + o(\varepsilon^2),$$

(154)

where $\bar{\sigma} = \sqrt{\Sigma/t}$ in (109), C_1 and C_2 are given by the coefficients of ε and ε^2 in Proposition 6.1, respectively. Also, C^σ_B denotes the Black-Scholes formula with $C^\sigma_B = BS(S_0,K,\Sigma,t)$ in Proposition 6.1, and $C^\sigma_{\sigma B}(\bar{\sigma})$ (so called Vega) and $C^\sigma_{\sigma\sigma B}(\bar{\sigma})$ (so called
Vomma, Volga and so on) are the first and second order derivatives of the Black-Scholes formula with respect to the volatility, respectively: that is,

\[C_{\sigma}^{BS}(\bar{\sigma}) := \frac{\partial}{\partial \sigma} C_{\sigma}^{BS} |_{\sigma = \bar{\sigma}} = S_0 \sqrt{\Sigma} t p(d_1), \]

\[C_{\sigma\sigma}^{BS}(\bar{\sigma}) := \frac{\partial^2}{\partial \sigma^2} C_{\sigma}^{BS} |_{\sigma = \bar{\sigma}} = S_0 t p(d_1) d_1 d_2 / \Sigma. \] (155)

We also remark that we could use an implied volatility expansion in Theorem 17 of Lorig et al. [29] (2014) in the similar manner.

The range of moneyness is determined by "Option's delta convention" (the range \(\Delta = 2.5\%-97.5\% \)), since the implied volatilities are often quoted by deltas rather than strike prices in financial markets. It is observed that the second order expansions replicate the exact implied volatilities fairly well. Especially, the approximations for the smaller value of the volatility on the volatility parameter or/and the shorter option maturities improve the accuracies, which is consistent with our theoretical results in Section 4, particularly Theorem 4.1-1. and Theorem 4.1-4.

Through these numerical analysis we confirm the effectiveness and the robustness of our method. We also expect that higher order expansions will provide better approximations.
Table 1: $T = 0.125$: Asymptotic expansions of prices in Heston model \(\varepsilon = 0.2 \)

<table>
<thead>
<tr>
<th>Moneyness</th>
<th>-0.136</th>
<th>-0.101</th>
<th>-0.067</th>
<th>-0.032</th>
<th>0.003</th>
<th>0.037</th>
<th>0.072</th>
<th>0.106</th>
<th>0.141</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta (\Delta)</td>
<td>97.5%</td>
<td>92.9%</td>
<td>83.6%</td>
<td>68.8%</td>
<td>50.0%</td>
<td>34.2%</td>
<td>16.4%</td>
<td>7.1%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Exact Price</td>
<td>0.0895(put)</td>
<td>0.2739(put)</td>
<td>0.6827(put)</td>
<td>1.5017(put)</td>
<td>2.6609(call)</td>
<td>0.8132(call)</td>
<td>0.5408(call)</td>
<td>0.1290(call)</td>
<td>0.0444(call)</td>
</tr>
<tr>
<td>AE 1st order</td>
<td>0.0048(put)</td>
<td>0.2434(put)</td>
<td>0.6557(put)</td>
<td>1.5112(put)</td>
<td>2.6598(call)</td>
<td>1.3412(call)</td>
<td>0.5410(call)</td>
<td>0.1661(call)</td>
<td>0.0669(call)</td>
</tr>
<tr>
<td>AE 2nd order</td>
<td>0.1063(put)</td>
<td>0.2769(put)</td>
<td>0.6829(put)</td>
<td>1.5014(put)</td>
<td>2.6841(call)</td>
<td>1.3123(call)</td>
<td>0.5292(call)</td>
<td>0.1270(call)</td>
<td>0.0435(call)</td>
</tr>
<tr>
<td>Error AE 1st order</td>
<td>-0.0048</td>
<td>-0.0025</td>
<td>0.0060</td>
<td>0.0095</td>
<td>0.0128</td>
<td>0.0005</td>
<td>0.0010</td>
<td>-0.0060</td>
<td>-0.0072</td>
</tr>
<tr>
<td>Error AE 2nd order</td>
<td>0.0008</td>
<td>0.0099</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0000</td>
<td>0.0002</td>
<td>-0.0007</td>
<td>-0.0013</td>
<td>-0.0006</td>
</tr>
</tbody>
</table>

Table 2: $T = 0.25$: Asymptotic expansions of prices in Heston model \(\varepsilon = 0.2 \)

<table>
<thead>
<tr>
<th>Moneyness</th>
<th>-0.191</th>
<th>-0.132</th>
<th>-0.093</th>
<th>-0.044</th>
<th>0.005</th>
<th>0.054</th>
<th>0.109</th>
<th>0.152</th>
<th>0.201</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta (\Delta)</td>
<td>97.5%</td>
<td>92.9%</td>
<td>83.6%</td>
<td>68.8%</td>
<td>50.0%</td>
<td>34.2%</td>
<td>16.4%</td>
<td>7.1%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Exact Price</td>
<td>0.1583(put)</td>
<td>0.4161(put)</td>
<td>0.9909(put)</td>
<td>2.1592(put)</td>
<td>3.7046(call)</td>
<td>1.7682(call)</td>
<td>0.7054(put)</td>
<td>0.2232(put)</td>
<td>0.0556(put)</td>
</tr>
<tr>
<td>AE 1st order</td>
<td>0.1473(put)</td>
<td>0.4110(put)</td>
<td>1.0054(put)</td>
<td>2.1838(put)</td>
<td>3.7340(call)</td>
<td>1.8119(call)</td>
<td>0.7062(put)</td>
<td>0.2856(put)</td>
<td>0.0565(put)</td>
</tr>
<tr>
<td>AE 2nd order</td>
<td>0.1611(put)</td>
<td>0.4191(put)</td>
<td>0.9977(put)</td>
<td>2.1583(put)</td>
<td>3.7517(call)</td>
<td>1.7821(call)</td>
<td>0.7024(put)</td>
<td>0.2178(put)</td>
<td>0.0541(put)</td>
</tr>
<tr>
<td>Error AE 1st order</td>
<td>-0.0110</td>
<td>-0.0051</td>
<td>0.0085</td>
<td>0.0246</td>
<td>0.0330</td>
<td>0.0237</td>
<td>0.0008</td>
<td>-0.0175</td>
<td>-0.0191</td>
</tr>
<tr>
<td>Error AE 2nd order</td>
<td>0.0027</td>
<td>0.0031</td>
<td>0.0008</td>
<td>-0.0009</td>
<td>0.0001</td>
<td>0.0002</td>
<td>-0.0031</td>
<td>-0.0045</td>
<td>-0.0015</td>
</tr>
</tbody>
</table>

Table 3: $T = 0.5$: Asymptotic expansions of prices in Heston model \(\varepsilon = 0.2 \)

<table>
<thead>
<tr>
<th>Moneyness</th>
<th>-0.267</th>
<th>-0.198</th>
<th>-0.129</th>
<th>-0.059</th>
<th>0.010</th>
<th>0.079</th>
<th>0.149</th>
<th>0.218</th>
<th>0.287</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta (\Delta)</td>
<td>97.5%</td>
<td>92.9%</td>
<td>83.6%</td>
<td>68.8%</td>
<td>50.0%</td>
<td>34.2%</td>
<td>16.4%</td>
<td>7.1%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Exact Price</td>
<td>0.2513(put)</td>
<td>0.6275(put)</td>
<td>1.4573(put)</td>
<td>3.1138(put)</td>
<td>5.0531(call)</td>
<td>2.0323(put)</td>
<td>0.9237(put)</td>
<td>0.2842(put)</td>
<td>0.0708(put)</td>
</tr>
<tr>
<td>AE 1st order</td>
<td>0.2289(put)</td>
<td>0.6195(put)</td>
<td>1.4798(put)</td>
<td>3.1724(put)</td>
<td>5.1392(call)</td>
<td>2.3437(put)</td>
<td>0.9189(put)</td>
<td>0.2934(put)</td>
<td>0.0523(put)</td>
</tr>
<tr>
<td>AE 2nd order</td>
<td>0.2593(put)</td>
<td>0.6365(put)</td>
<td>1.4999(put)</td>
<td>3.1115(put)</td>
<td>5.0340(call)</td>
<td>2.4004(put)</td>
<td>0.9119(put)</td>
<td>0.2179(put)</td>
<td>0.0686(put)</td>
</tr>
<tr>
<td>Error AE 1st order</td>
<td>-0.0224</td>
<td>-0.0081</td>
<td>0.0235</td>
<td>0.0587</td>
<td>0.0330</td>
<td>0.0237</td>
<td>0.0008</td>
<td>-0.0175</td>
<td>-0.0191</td>
</tr>
<tr>
<td>Error AE 2nd order</td>
<td>0.0062</td>
<td>0.0090</td>
<td>0.0026</td>
<td>-0.0023</td>
<td>-0.0002</td>
<td>-0.0019</td>
<td>-0.0118</td>
<td>-0.0132</td>
<td>-0.0021</td>
</tr>
</tbody>
</table>

Table 4: $T = 1.0$: Asymptotic expansions of prices in Heston model \(\varepsilon = 0.2 \)

<table>
<thead>
<tr>
<th>Moneyness</th>
<th>-0.372</th>
<th>-0.274</th>
<th>-0.176</th>
<th>-0.078</th>
<th>0.020</th>
<th>0.118</th>
<th>0.216</th>
<th>0.314</th>
<th>0.412</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta (\Delta)</td>
<td>97.5%</td>
<td>92.9%</td>
<td>83.6%</td>
<td>68.8%</td>
<td>50.0%</td>
<td>34.2%</td>
<td>16.4%</td>
<td>7.1%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Exact Price</td>
<td>0.3849(put)</td>
<td>0.9298(put)</td>
<td>2.1208(put)</td>
<td>4.5123(put)</td>
<td>6.8128(call)</td>
<td>4.1908(call)</td>
<td>1.8089(call)</td>
<td>0.8637(call)</td>
<td>0.0911(call)</td>
</tr>
<tr>
<td>AE 1st order</td>
<td>0.3479(put)</td>
<td>0.9533(put)</td>
<td>2.1738(put)</td>
<td>4.6333(put)</td>
<td>6.9034(call)</td>
<td>4.2828(call)</td>
<td>1.7142(call)</td>
<td>0.8222(call)</td>
<td>-0.0014(call)</td>
</tr>
<tr>
<td>AE 2nd order</td>
<td>0.4045(put)</td>
<td>0.9513(put)</td>
<td>2.1285(put)</td>
<td>4.5078(call)</td>
<td>6.8085(call)</td>
<td>4.1769(call)</td>
<td>1.6674(call)</td>
<td>0.4356(call)</td>
<td>0.0927(call)</td>
</tr>
<tr>
<td>Error AE 1st order</td>
<td>-0.0300</td>
<td>-0.0065</td>
<td>0.0540</td>
<td>0.1210</td>
<td>0.1546</td>
<td>0.0520</td>
<td>-0.0260</td>
<td>-0.1045</td>
<td>-0.0926</td>
</tr>
<tr>
<td>Error AE 2nd order</td>
<td>0.0196</td>
<td>0.0215</td>
<td>0.0017</td>
<td>-0.0045</td>
<td>-0.0044</td>
<td>-0.0139</td>
<td>-0.0342</td>
<td>-0.0281</td>
<td>-0.0016</td>
</tr>
</tbody>
</table>
Figure 1: $T = 0.125$: Estimated Error in Heston model with $\varepsilon = 0.05$

Figure 2: $T = 0.125$: Estimated Error in Heston model with $\varepsilon = 0.1$

Figure 3: $T = 0.125$: Estimated Error in Heston model with $\varepsilon = 0.15$

Figure 4: $T = 0.125$: Estimated Error in Heston model with $\varepsilon = 0.2$
Figure 5: $T = 0.25$: Estimated Error in Heston model with $\varepsilon = 0.05$

Figure 6: $T = 0.25$: Estimated Error in Heston model with $\varepsilon = 0.1$

Figure 7: $T = 0.25$: Estimated Error in Heston model with $\varepsilon = 0.15$

Figure 8: $T = 0.25$: Estimated Error in Heston model with $\varepsilon = 0.2$
Figure 9: $T = 0.5$: Estimated Error in Heston model with $\varepsilon = 0.05$

Figure 10: $T = 0.5$: Estimated Error in Heston model with $\varepsilon = 0.1$

Figure 11: $T = 0.5$: Estimated Error in Heston model with $\varepsilon = 0.15$

Figure 12: $T = 0.5$: Estimated Error in Heston model with $\varepsilon = 0.2$
Figure 13: $T = 1.0$: Estimated Error in Heston model with $\varepsilon = 0.05$

Figure 14: $T = 1.0$: Estimated Error in Heston model with $\varepsilon = 0.1$

Figure 15: $T = 1.0$: Estimated Error in Heston model with $\varepsilon = 0.15$

Figure 16: $T = 1.0$: Estimated Error in Heston model with $\varepsilon = 0.2$
Figure 17: $T = 0.125$: Implied volatility approximation in Heston model with $\varepsilon = 0.05$

Figure 18: $T = 0.125$: Implied volatility approximation in Heston model with $\varepsilon = 0.1$

Figure 19: $T = 0.125$: Implied volatility approximation in Heston model with $\varepsilon = 0.15$

Figure 20: $T = 0.125$: Implied volatility approximation in Heston model with $\varepsilon = 0.2$
Figure 21: $T = 0.25$: Implied volatility approximation in Heston model with $\varepsilon = 0.05$

Figure 22: $T = 0.25$: Implied volatility approximation in Heston model with $\varepsilon = 0.1$

Figure 23: $T = 0.25$: Implied volatility approximation in Heston model with $\varepsilon = 0.15$

Figure 24: $T = 0.25$: Implied volatility approximation in Heston model with $\varepsilon = 0.2$
Figure 25: $T = 0.5$: Implied volatility approximation in Heston model with $\varepsilon = 0.05$

Figure 26: $T = 0.5$: Implied volatility approximation in Heston model with $\varepsilon = 0.1$

Figure 27: $T = 0.5$: Implied volatility approximation in Heston model with $\varepsilon = 0.15$

Figure 28: $T = 0.5$: Implied volatility approximation in Heston model with $\varepsilon = 0.2$
Figure 29: $T = 1.0$: Implied volatility approximation in Heston model with $\varepsilon = 0.05$

Figure 30: $T = 1.0$: Implied volatility approximation in Heston model with $\varepsilon = 0.1$

Figure 31: $T = 1.0$: Implied volatility approximation in Heston model with $\varepsilon = 0.15$

Figure 32: $T = 1.0$: Implied volatility approximation in Heston model with $\varepsilon = 0.2$
7 Asymptotic Expansion for Expectations of Kusuoka-Stroock Functions in General Wiener Functionals

This section briefly explains an extension of the result in the previous sections to more general Wiener functionals on the Wiener space \((W, H, P)\). Particularly, the next theorem presents a general asymptotic expansion formula for the expectation of Kusuoka-Stroock functions, which is also regarded as a natural extension of Theorem 2.6 in Takahashi and Yamada [46] (2012). We note that the theorem is applicable for general Wiener functionals even when the functionals are non-diffusion as in the HJM term structure model [17] (1992).

Theorem 7.1 Consider a family of smooth Wiener functionals \(F^\varepsilon = (F^\varepsilon,1, \cdots, F^\varepsilon,n) \in K^T_0\) such that \(\varepsilon \mapsto F^\varepsilon\) is infinity differentiable with \(\frac{\partial^i}{\partial \varepsilon^i} F^\varepsilon \in K^T_{i+1}, i \in \mathbb{N}\) and \(F^\varepsilon\) has an asymptotic expansion in \(D^\infty\):

\[
F^\varepsilon \sim F_0 + \varepsilon F_1 + \varepsilon^2 F_2 + \varepsilon^3 F_3 + \cdots \text{ in } D^\infty,
\]

with \(F_i = (F^i,1, \cdots, F^i,n) \in K^T_{i+1}\). Also, \(F^\varepsilon\) satisfies the uniformly non-degenerate condition:

\[
\sup_{\varepsilon \in (0,1]} \sup_{t \in (0,T]} \left| \frac{1}{t} \left(\det \sigma F^\varepsilon_t \right)^{-1} \right|_{L^p} < \infty, \text{ for all } p < \infty.
\]

Then, for a bounded Borel function \(f\), we have an asymptotic expansion

\[
\bar{E}[f(F^\varepsilon)] - \left\{ \int_{\mathbb{R}^n} f(x)p^{F_0}(x)dx \right\} + \sum_{j=1}^N \varepsilon^j \sum_{\alpha(k), \beta(k)} \int_{\mathbb{R}^n} f(x)\bar{E}[H_{\alpha(k)}(F_0, \prod_{i=1}^k F^\alpha_{\beta_i})|F_0 = x]\theta^{F_0}(x)dx \right\} \leq \|f\|_\infty C_N(\varepsilon \sqrt{t})^{N+1},
\]

where \(p^{F_0}\) is the density of \(F_0\), and \(F^i_e := \frac{1}{F^i} \frac{\partial^i}{\partial \varepsilon^i} F^\varepsilon, i \in \mathbb{N}\). Also, \(\alpha(k)\) denotes a multi-index, \(\alpha(k) = (\alpha_1, \cdots, \alpha_k)\) and

\[
\sum_{\alpha(k), \beta(k)}^{(j)} = \sum_{k=1}^j \sum_{\beta(k) = (\beta_1, \cdots, \beta_k), \beta_1 + \cdots + \beta_k = j, \beta_i \geq 1} \sum_{\alpha(k) \in \{1, \cdots, n\}^k} \frac{1}{k!}.
\]

The Malliavin weight \(H_{\alpha(k)}\) is recursively defined as follows:

\[
H_{\alpha(k)}(F, G) = H_{(\alpha_k)}(F, H_{\alpha(k-1)}(F, G)),
\]

where

\[
H_{(1)}(F, G) = \delta \left(\sum_{i=1}^n G_{\gamma^F_i}^F D F_i \right).
\]

Here, \(\gamma^F = \{\gamma^F_{ij}\}_{1 \leq i, j \leq n}\) denotes the inverse matrix of the Malliavin covariance matrix of \(F\).
Proof.
Let \(G \in K^T_2 \) and \(Z^e_l = \sum_{i=1}^n \gamma^e_{li} DF^e_i, l = 1, \cdots, n \). We obtain
\[
H_{(j)}(F^e, G) = \delta \left(\sum_{i=1}^n G^e_{li} DF^e_i \right) = \delta (GZ^e_l) = G\delta Z^e_l - (DG, Z^e_l)_H. \tag{158}
\]
Since we have \(Z^e_l \in K^T_2 \), it holds that \(H_{(j)}(F^e, G) \in K^T_{r-2+1} = K^T_{r-1} \). For \(k \leq N + 1 \), \(\sum_{l=1}^k \beta_l = N + 1, \alpha^{(k)} \in \{ 1, \cdots, n \}^k \), we have \(\prod_{j=1}^k \frac{1}{\beta_j!} \partial^{\beta_j} F^e, \alpha_j \in K^T_{N+1+k} \) and then we obtain
\[
\sum_{\alpha^{(k)}} H_{\alpha^{(k)}} \left(F^e, \prod_{j=1}^k \frac{1}{\beta_j!} \partial^{\beta_j} F^e, \alpha_j \right) \in K^T_{N+1}.
\]
Therefore, we have the assertion. \(\square \)

Moreover, we obtain another representation for the conditional expectation of Malliavin weights \(H_{\alpha^{(k)}} \), that is \(E \left[H_{\alpha^{(k)}} \left(F_0, \prod_{l=1}^k F^\alpha_{\beta_l} \right) \mid F_0 = x \right] \).

Corollary 7.1 For \(j = 1, \cdots, N, k \leq j, \sum_{l=1}^k \beta_l = j, \alpha^{(k)} \in \{ 1, \cdots, n \}^k \),
\[
E \left[H_{\alpha^{(k)}} \left(F_0, \prod_{l=1}^k F^\alpha_{\beta_l} \right) \mid F_0 = x \right] = (-1)^k \partial^{k}_{\alpha^{(k)}} \left\{ E \left[\prod_{l=1}^k F^{\alpha_l}_{\beta_l} \mid F^0 = x \right] p^F_0(x) \right\}. \tag{159}
\]

Proof.
For \(f \in C^\infty_b(\mathbb{R}^n) \),
\[
\int_{\mathbb{R}^n} f(x) E \left[H_{\alpha^{(k)}} \left(F_0, \prod_{l=1}^k F^\alpha_{\beta_l} \right) \mid F_0 = x \right] p^F_0(x) dx \tag{160}
\]
\[
= E \left[f(F_0) H_{\alpha^{(k)}} \left(F_0, \prod_{l=1}^k F^\alpha_{\beta_l} \right) \right]
\]
\[
= E \left[\partial^{k}_{\alpha^{(k)}} f(F_0) \prod_{l=1}^k F^\alpha_{\beta_l} \right]
\]
\[
= \int_{\mathbb{R}^n} \partial^{k}_{\alpha^{(k)}} f(x) E \left[\prod_{l=1}^k F^{\alpha_l}_{\beta_l} \mid F_0 = x \right] p^F_0(x) dx
\]
\[
= \int_{\mathbb{R}^n} f(x) \partial^{k}_{\alpha^{(k)}} \left(\prod_{l=1}^k F^{\alpha_l}_{\beta_l} \mid F_0 = x \right) p^F_0(x) dx
\]
\[
= (-1)^k \int_{\mathbb{R}^n} f(x) \partial^{k}_{\alpha^{(k)}} \left(E \left[\prod_{l=1}^k F^{\alpha_l}_{\beta_l} \mid F^0 = x \right] p^F_0(x) \right) dx,
\]
where \(\partial^* \) is the divergence operator on the space \((\mathbb{R}^n, p^F_0(dx)) \) and \(\partial^*_{\alpha^{(k)}} = \partial^*_{\alpha_1} \circ \partial^*_{\alpha_2} \circ \cdots \circ \partial^*_{\alpha_k} \).
Remark 7.1 We are able to apply Theorem 7.1 with Corollary 7.1 to the HJM framework [17] (1992) that is a typical example of non-diffusion models in finance. See Kunitomo and Takahashi [21], [22] (2001, 2003) and Matsushima and Takahashi [40] (2004) for the concrete computational method and numerical examples in this framework. To the best of our knowledge, there do not exist perturbation schemes based on the PDE approach to the HJM model.

Also, even under the diffusion setting, it is very difficult to apply perturbation methods in the PDE approach to high-dimensional problems such as basket option pricing under stochastic volatility models and option pricing under Libor Market models (LMM) in order to achieve accurate approximations with practically sufficient computational speed.

In fact, for pricing plain-vanilla options under a two dimensional diffusion model with stochastic volatility as in Section 4, Section 3.2 in Takahashi-Yamada [45] (2011) derives an approximate price in a PDE’s perturbation method. However, it seems not easier to get the error estimate by the method than by our approach in this work. Particularly, in degenerate models as in the sections 3 and 4, it is difficult to estimate the errors of expansions with the standard PDE approach as in Friedman [14] (1964). On the other hand, the Malliavin approach with the Kusuoka-Stroock functions in this paper is able to automatically estimate the error rates with respect to \(\varepsilon \) and the maturity \(t \) in both degenerate and non-degenerate cases. Hence, in terms of obtaining sharper error estimates, the current work can be regarded as an extension of Takahashi-Yamada [45] (2011).

Moreover, it is a substantially tough task to establish a concrete computational scheme for the high-dimensional pricing problems mentioned above. Thus, again, there seem not exist researches based on perturbation schemes in the PDE for those important topics, which satisfy the approximation accuracies and computational speed required in financial practice.

References

