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Abstract

In this paper, we extend the concept of rational-expectations equilibrium, from a tradi-
tional single-belief framework to a multi-belief one. In the traditional framework of single
belief, agents are supposed to know the equilibrium price “correctly.” We relax this require-
ment in the framework of multiple beliefs. While agents do not have to know the equilibrium
price exactly, they must be correct in that it must be always contained in the support of
each probability distribution they think possible. We call this equilibrium concept a multi-
belief rational-expectations equilibrium. We then show that such an equilibrium exists, that
indeterminacy and complexity of equilibria can happen even when the degree of risk aver-
sion is moderate and, in particular, that a decreasing price sequence can be an equilibrium.
The last property is highlighted in a linear-utility example where any decreasing price se-
quence is a multi-belief rational-expectations equilibrium while only possible single-belief
rational-expectations equilibrium price sequences are those which are constant over time.
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1. Introduction

This paper considers a pure-endowment nonstochastic overlapping-generations economy.

In this framework, we extend the concept of rational-expectations equilibrium, or in other words

perfect-foresight equilibrium in our setting, in which generations in the model are supposed to

know the equilibrium price “correctly.” Thus, there is no surprise in this rational-expectations

equilibrium. We relax this requirement to the one that while generations do not know the

equilibrium price exactly, they have a set of purely-subjective probability distributions of possible

prices. In addition, they must not be surprised by the realization of the equlibrium price.

That is, generations’ multi-belief expectations must be “correct” in that the equilibrium price

is always contained in the support of each probability distribution they think possible. We

call this equilibrium concept multi-belief rational-expectations equilibrium. Furthermore, the

realization of the price which clears the market never disappoints generations’ expectations

since they assign a positive (but possibly less than unity) probability to the occurrence of

that price. Thus, their expectations are “realized.” Importantly, the generations’ beliefs are

endogenously determined as a part of multi-belief rational-expectations equilibrium. This is

similar to sequential equilibrium in an extensive-form game where the probability distribution

at each information set is endogenously determined (although while a unique distribution is

determined in a sequential equilibrium, a set of distributions is determined in ours). Obviously,

single-belief rational-expectations equilibrium where generations’ expectations are singleton sets

is ordinary rational-expectations equilibrium.

In our model, each generation has only vague confidence about the “true” equilibrium

prices and that confidence is represented by a set of some plausible prices rather than a single

price. That is, they face ambiguity . Here, the ambiguity refers to the situation where infor-

mation about uncertain prospects is too imprecise to be summarized into a single probability

distribution, and hence, the belief is represented only by a set of distributions, rather than a

single distribution. Despite of the generations’ unawareness of the precise equilibrium price,

their utility-maximization problems need to be well-defined. To this end, we assume that each

generation is uncertainty-averse in the sense that they use the “worst” probability distribu-

tion in solving the utility maximization problem. Such a behavior is axiomatized by Gilboa
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and Schmeidler (1989) and well-known to be consistent with Ellsberg-type behaviors (Ellsberg,

1961). Ohtaki and Ozaki (2013) apply uncertain-averse behaviors in a pure-endowment stochas-

tic overlapping-generations economy with ambiguity. However, their model is quite different

from the one in this paper. While the endowment is given randomly and beliefs are assigned

to this randomness in their model, the endowment is nonstochastic and uncertainty is purely

subjective and with respect to equilibrium market prices in this paper.

The single-belief rational-expectations equilibrium is typically characterized by a solu-

tion to some difference equation. In contrast, the multi-belief rational-expectations equilibrium

we consider is shown to be characterized by a solution to some difference inclusion. Since a

difference inclusion has multiple solutions in general, the multi-belief rational-expectations equi-

librium is quite easy to be indeterminate. In fact, after showing the existence of multi-belief

rational-expectations equilibrium, we construct an overlapping-generations model in which each

generation has a moderate degree of risk aversion so that there exists a unique single-belief

rational-expectations equilibrium, but that there are uncountably many multi-belief rational-

expectations equilibria. This result is of some interest since it is well-known that in overlapping-

generations models with money, the indeterminacy of equilibria arises only when the degree of

risk aversion of each generation is extremely high. (See, for example, Woodford, 1984.) We also

show that some of such equilibrium prices may be very complex and that some may be steadily

decreasing.

Furthermore, we show that when each generation has a linear utility function, any de-

creasing price sequence is a multi-belief rational-expectations equilibrium while only possible

single-belief rational-expectations equilibrium price sequences are those which are constant over

time. This example is a sharp contrast to the traditional rational-expectations equilibrium in

which the equilibrium price sequence is typically constant or increasing over time. Our re-

sult shows that there could be sustained deflation in the economy when the agents have only

ambiguous beliefs about uncertain prospects of the future.

The organization of the paper is as follows. Section 2 describes the framework of the

overlapping-generation model used in this paper. In particular, we assume that each generation

is uncertainty-averse in the sense mentioned above in order to define the utility-maximization
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problem. In Section 3, we introduce three concepts of equilibria, two of which are a single-

belief rational-expectations equilibrium and a multi-belief rational-expectations equilibrium.

The other one is a kind of hybrid between these two, which we call a γ-imprecise rational-

expectations equilibrium. In Section 4, we prove the existence, indeterminacy and complexity

of multi-belief rational-expectations equilibria by means of a difference inclusion. Section 5 il-

lustrates these results by specifying generations’ utility functions: CRRA utility function and

linear utility function. Finally, Section 6 contains all proofs.

2. The Framework

2.1. Preliminaries

We start with some mathematical formulations and definitions, which are proven to be

important in the following analysis. When X is a compact subset of R, we denote by M(X)

the set of all probability measures on (X,BX), where BX is the Borel σ-algebra on X. For a

probability measure P ∈ M(X), its support , denoted supp(P ), is given by

supp(P ) ≡ X\N

where N ⊆ X is defined by

N = ∪{U ⊆ X |U is open and P (U) = 0 } .

It turns out that N is open and such that P (N) = 0,1 and hence, that supp(P ) is closed and

such that P (supp(P )) = 1. We denote by M◦(X) the set of all probability measures on (X,BX)

whose supports are equal to X. That is, P ∈ M◦(X) if and only if supp(P ) = X. Clearly, it

holds that M◦(X) ⊆ M(X).

1That N is open is immediate. To see that P (N) = 0, assume on the contrary that P (N) > 0. Then, by the
regularity of a probability measure on a compact set (Ash, 1972, p.180, Theorem 4.3.8), there exists a compact
set K ⊆ N such that P (K) > 0. By the compactness of K and the fact that K ⊂ N , there exists a finite family
of open sets, U1, . . . , Uk, such that K ⊆ ∪k

i=1Ui and (∀i) P (Ui) = 0. Therefore, 0 < P (K) ≤
∑k

i=1 P (Ui) = 0,
which is a contradiction.
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2.2. An Economy with Overlapping Generations

We assume a fairly simple and standard structure. The economy consists of a countably

infinite number of generations (the 0-th generation, the 1-st generation, the 2-nd generation,

and so on). Each generation lives for two periods. In the t-th period (t = 1, 2, . . .), the old of

the (t − 1)-th generation and the youth of the t-th generation coexist. (As usual, we assume

that only the youth of the 0-th generation lives in the 0-th period.)

The preference of the t-th generation is defined over its consumptions both in the t-th

and (t+1)-th periods and is represented by a time-separable utility function: u(cyt )+v(cot ). Here

cyt is the t-th generation’s consumption in the t-th period, cot is its consumption in the (t+1)-th

period, and u : R+ → R and v : R+ → R are the felicity function. We assume that u and v are

common for all generations. Each generation earns one unit of consumption good in its youth

and then is retired when it is old, earning no income.

The consumption good is perishable and cannot be carried over into the next period.

Thus, the old generation could not consume if there were no means of exchange. Here, the

money comes into the model. We assume that the government provides the 0-th generation

in the 1-st period with M (> 0) units of fiat money. Each generation believes that the money

circulates.

It should be noted that in our model, there is no exogenous, unpredictable shocks to the

economy. The “real structure” of the economy is certain for all generations. Thus, only relevant

uncertainty comes from each generation’s subjective evaluation about the state of the economy.2

Let Q be a set of prices that contains the supports of all possible price distributions:

Q ≡
[
q, q

]
where 0 ≤ q < q < +∞. (Thus, we implicitly assume away infinite prices.) After

observing the price qt ∈ Q in the t-th period, the t-th generation forms a belief on the price qt+1

which will be realized in the (t + 1)-th. We assume that the information the t-th generation

possesses is too imprecise to be summarized as a single probability measure. Instead, we assume

that the t-th generation’s belief is represented by a nonempty subset of M(Q), Pt(qt). Here,

Pt : Q � M(Q) is a correspondence which maps the price observed in the current period into a

belief, which itself is a set of distributions, on the price in the next period and may be called a
2In this regard, our model is similar to the one with sunspot equilibria.
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belief correspondence.

2.3. Generations’ Utility-Maximization

Suppose that the t-th generation’s belief correspondence is given by Pt. We assume that

each generation is uncertainty-averse in accordance with the preference axiomatized by Gilboa

and Schmeidler (1989). Then, after observing qt ∈ Q, the t-th (t = 1, 2, . . .) generation chooses

a current consumption, cyt ∈ R+; a consumption plan for the next period, cot : R+ → R+, which

is contingent upon the realization of qt+1; and the money amount, Mt ∈ R+, which is carried

over to the next period at the sacrifice of some of the current consumption, in order to maximize

inf

{
u(cyt ) +

∫
Q
v(cot (qt+1))P (dqt+1)

∣∣∣∣ P ∈ Pt(qt)

}
(1)

subject to Mt = qt (1− cyt ) and (∀qt+1 ∈ Q) qt+1c
o
t (qt+1) = Mt . (2)

Note that each integral is taken with respect to the next-period price qt+1. We denote the

solution to this problem, when it exists, by cy∗t (qt), c
o∗
t (qt; ·) and M∗

t (qt).

Similarly, the 0-th generation chooses a current consumption, cy0 ∈ R+ and a consumption

plan for the next period, co0 : R+ → R+, in order to maximize

inf

{
u(cy0) +

∫
Q
v(co0(q1))P (dq1)

∣∣∣∣ P ∈ P0

}
subject to cy0 = 1 and (∀q1 ∈ Q) q1c

o
0(q1) = M ,

where P0 ⊆ M(Q) represents the 0-th generation’s belief on q1, and M is the money amount

given to the 0-th generation by the government. The solution, when it exists, is denoted by cy∗0

and co∗0 (·).

3. Three Concepts of Equilibria

We consider three concepts of equilibria in this model economy. The first one corresponds

to ordinary Perfect Foresight Equilibrium, which can be called single-belief rational-expectations

equilibrium. Economic agents expect that one non-stochastic price sequence is a prevailing

market price sequence, and their expectations are realized.



6

The second equilibrium concept is a natural extension of the Perfect Foresight Equilib-

rium to multi-belief cases, and thus called multi-belief rational-expectations equilibrium. Here

economic agents expect that the true market price sequence is among several stochastic and

non-stochastic price sequences, and their expectations are realized: the market price sequence

is in fact among the supports of expected price sequences.

The third one is a hybrid of these two. It assumes an additional structure on multiple

beliefs. In particular, economic agents hold multiple beliefs about market price sequence, but

they also assume the true market price sequence is not far from the perfect-foresight sequence.

In particular, they are assumed to believe that the deviation should be no more than γ. In a

sense, they are imprecise in forming their expectations by γ. Rational expectation equilibrium in

this case is naturally defined as the state that their expectations are fulfilled: the actual market

price is in fact within γ of the perfect foresight price sequence. This equilibrium concept can be

called γ-imprecise rational-expectations equilibrium.

3.1. Single-Belief Rational-Expectations Equilibrium

Let us now start from Single-Belief Rational-Expectations Equilibrium. In this case,

the belief correspondence Pt(·) is singleton-valued and independent of the current price.

To make notation simple, we furthermore assume that there exists ⟨q′t⟩∞t=1 ⊆ R∞
+ such

that

(∀t ≥ 0)(∀qt) Pt(qt) = {δq′t+1
} .

Here, δq′t+1
denotes a point mass concentrated at q′t+1. Then, each generation’s objective function

(1) is simplified to

u(cyt ) + v(cot (q
′
t+1)) .

A quadruplet of sequences of real numbers,

(
⟨ĉyt ⟩∞t=1, ⟨ĉot ⟩∞t=0, ⟨M̂t⟩∞t=1, ⟨q′t⟩∞t=1

)
,

is a single-belief rational-expectations equilibrium of this economy if the following holds:

(∀t ≥ 1) ĉyt = cy∗t (q′t) , ĉ
o
t−1 = co∗t−1(q

′
t−1; q

′
t) , M̂t = M∗

t (q
′
t) ,
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and (∀t ≥ 1) ĉyt + ĉot−1 = 1 , M̂t = M .

Alternatively, it is easily shown that ⟨q′t⟩∞t=1 ⊆ R∞
+ is single-belief rational-expectations

equilibrium if the following holds:

(∀t ≥ 1) cy∗t (q′t) + co∗t−1(q
′
t−1; q

′
t) = 1 and M∗

t (q
′
t) = M .

3.2. Multi-Belief Rational-Expectations Equilibrium

A quadruplet of sequences of real numbers and correspondences,

(
⟨ĉyt ⟩∞t=1, ⟨ĉot ⟩∞t=0, ⟨M̂t⟩∞t=1, ⟨P̂t(·)⟩∞t=0

)
,

is a multi-belief rational-expectations equilibrium of this economy if there exists a nonstochastic

price process, ⟨q̂t⟩∞t=1, such that

(∀t ≥ 1) ĉyt = cy∗t (q̂t) , ĉ
o
t−1 = co∗t−1(q̂t−1; q̂t) , M̂t = M∗

t (q̂t) , (3)

(∀t ≥ 1) ĉyt + ĉot−1 = 1 , M̂t = M , (4)

and (∀t ≥ 0) (∀P ∈ P̂t(q̂t)) q̂t+1 ∈ supp(P ) . (5)

We call the price process ⟨q̂t⟩∞t=1 in this definition a supporting price process for the

multi-belief rational-expectations equilibrium. The equations (3) require that the consumption

allocation and the money holdings should be optimal along the equilibrium price path. (Here,

we set co∗0 (q0; q1) = co∗0 (q1).) The equations (4) are market-clearance conditions both for good

and money markets in each period.

Unlike these standard conditions, the last condition (5) is new. This equation requires

that the actual price realized in each period should be consistent with each generation’s belief

in the sense that it is in the supports of all the distributions that each generation considers

plausible. (Here, we set P0(q0) = P0.) Thus the old generation is never surprised in observing

the price since all probability distributions in P̂t(q̂t), which was formed by each generation

when it was young, have assigned a “positive” probability to that price. (In our nonstochastic

framework, this is equivalent to say that the price is not a surprise to the old, since the price is

among the old’s price expectations P̂t(q̂t).) Each generation’s expectations are thus realized.
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We make two observations about the multi-belief rational-expectations equilibrium. First,

a sequence of belief correspondences constitutes a part of the equilibrium. This means that the

belief itself is determined endogenously within the equilibrium. This property is analogous to

the property that a prior distribution over the nodes in the same information set (or an “assess-

ment”) constitutes a part of the “sequential equilibrium” of a game.

Second, each generation in the model need not be assumed to know the equilibrium “cor-

rectly.” This fact differentiates the multi-belief rational-expectations equilibrium largely from

the single-belief rational-expectations equilibrium, where the t-th generation should correctly

anticipate the equilibrium price q̂t+1 when that generation is young (that is, in the t-th period).

Perfect foresight assumes both the agents in the model and the outside observer (that

is, the economist) share the common knowledge about the model’s structure. This assumption

is admittedly strong and unrealistic. The assumption of multiple beliefs is a natural alternative

to this straight jacket assumption. Although beliefs are multiple, the utility-maximization prob-

lem is well-defined through the assumption of uncertainty aversion. Moreover, the equilibrium

concept itself is well-defined through the condition (5), even though we do not assume that each

generation shares the correct knowledge about the model’s structure with the outside observer.

3.3. γ-imprecise Rational-Expectations Equilibrium

Finally, we introduce a special kind of multi-belief rational-expectations equilibrium,

which can be viewed as a small deviation from single-belief rational-expectations equilibrium.

Let ⟨q′t⟩∞t=1 ⊆ R∞
+ be the single-belief rational-expectations equilibrium price sequence, or equiv-

alently, the perfect foresight equilibrium price sequence.3 We define Pt(·) by

(∀t ≥ 0)(∀qt) Pt(qt) = M◦([q′t+1 − γ, q′t+1 + γ])

Then, a quadruplet of sequences of real numbers,

(
⟨ĉyt ⟩∞t=1, ⟨ĉot ⟩∞t=0, ⟨M̂t⟩∞t=1, ⟨q̂t⟩∞t=1

)
,

3Theoretically, this “focal” price sequence is not necessarily the perfect foresight sequence. It can be any
sequence, including the perfect foresight one. However, since the most natural focal-price-sequence in our setting
is the perfect foresight one, we adopt the definition of the text.
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is a γ-imprecise rational-expectations equilibrium if the following holds:

(∀t ≥ 1) ĉyt = cy∗t (q̂t) , ĉ
o
t−1 = co∗t−1(q̂t−1; q̂t) , M̂t = M∗

t (q̂t) , (6)

(∀t ≥ 1) ĉyt + ĉot−1 = 1 , M̂t = M , (7)

and (∀t ≥ 0) q̂t+1 ∈ [q′t+1 − γ, q′t+1 + γ] . (8)

Obviously, when γ = 0, γ-imprecise rational-expectations equilibrium turns out to be

single-belief rational-expectations equilibrium or equivalently, perfect foresight equilibrium.

4. Existence, Multiplicity and Complexity

4.1. Difference Inclusion

Throughout this section, we assume that the felicity functions of each generation, u and

v, satisfy (i) u and v are twicely continuously differentiable; (ii) u and v are strictly increasing

and strictly concave; and (iii) limcy→0 u
′(cy) = limco→0 v

′(co) = +∞ and limcy→∞ u′(cy) =

limco→∞ v′(co) = 0.

In this section, we employ a constructive approach to show the existence of multi-belief

rational-expectations equilibrium and to characterize it. There the concept of difference inclusion

plays a crucial role.

First, given qt, qt+1 ∈ Q, consider an optimization problem given by

max
0≤Mt≤qt

u

(
1− Mt

qt

)
+ v

(
Mt

qt+1

)
. (9)

Under the stated assumptions on u, there exists a unique solution to this problem, and we denote

it by M∗(qt, qt+1). Second, consider the equation:

M∗(qt, qt+1) = M , (10)

where M is the total money supply of this economy (see Section 2.2). We can show the following

lemma:

Lemma 1. The equation (10) can be uniquely solved for qt as a function of qt+1. That is, we

may write as qt = f(qt+1), where f is some continuously differentiable function which maps

(0,+∞) into (M,+∞).
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By Lemma 1, it holds that

(∀qt+1 ∈ R++) M∗(f(qt+1), qt+1) = M . (11)

Let us now consider a (backward) difference inclusion defined by

(∀t ≥ 1) f(qt+1) ∈
[
q, qt

]
. (12)

A solution to (12) is defined as any sequence, ⟨q∗t ⟩∞t=1, which satisfies (12). Obviously, this

generalizes a (backward) difference equation:

(∀t ≥ 1) f(qt+1) = qt (13)

by replacing the equality with the inclusion. Clearly, any solution to (13) is also a solution to

(12).

4.2. Description of Equilibria

This section characterizes multi-belief rational-expectations equilibria of this economy.

Proofs are relegated to Section 6.

Theorem 1 (Existence). Suppose that there exists a solution ⟨q∗t ⟩∞t=1 to the difference inclusion

(12). Then, the quadruplet of sequences,
(
⟨ĉyt ⟩, ⟨ĉot ⟩, ⟨M̂t⟩, ⟨P̂t(·)⟩

)
, each component of which is

defined by

(∀t ≥ 1) ĉyt = 1−M/q̂t , ĉ
o
t−1 = M/q̂t , M̂t = M (14)

and (∀t ≥ 0)(∀qt) P̂t(qt) = P̂t = M◦ ([ q, q∗t+1

])
, (15)

is a multi-belief rational-expectations equilibrium with the supporting price process ⟨q̂t⟩∞t=1 given

by

(∀t) q̂t = f(q∗t+1) . (16)

The following theorem provides a sufficient condition for the existence of uncountably

many solutions to the difference inclusion (12), which we will use to show multiplicity of multi-

belief rational-expectations equilibrium. (We hereafter use a “supporting price process to equi-

librium” and an “equilibrium price process” interchangeably so long as there is no confusion.)
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Theorem 2 (Multiplicity of Solutions to Difference Inclusion). Suppose that there exists q̂ ∈

(M, q) such that f(q̂) = q̂. Also, assume that f ′(q̂) < 1. Then, there exist q̃ ∈ (q̂, q) such that

for any q∗ ∈ (q̂, q̃), the sequence ⟨q∗t ⟩∞t=1 defined by (∀t) q∗t = q∗ solves the difference inclusion

(12).

The condition that f ′(q̂) < 1 in this theorem is equivalent to the condition:

u′
(
1− M

q̂

)
− u′′

(
1− M

q̂

)
·
(
M

q̂

)
> v′

(
M

q̂

)
+ v′′

(
M

q̂

)
·
(
M

q̂

)
since

f ′(q̂) = −M∗
2 (q̂, q̂)

M∗
1 (q̂, q̂)

=

[
v′
(
M

q̂

)
+ v′′

(
M

q̂

)
·
(
M

q̂

)]/[
u′
(
1− M

q̂

)
− u′′

(
1− M

q̂

)
·
(
M

q̂

)]
,

where M∗
i denotes the partial derivative of M∗ with respect to the i-th argument. This condition

is easily verified in specific examples and we will show in the next section an example satisfying

all the assumptions of Theorem 2, by using this condition.

Under the assumptions of Theorem 2, (14) and (15) characterize a multi-belief rational-

expectations equilibrium by Theorem 1. If we assume additionally that f ′(q̂) ̸= 0 also holds, f

takes on uncountably many values on (q̂, q̃) by its continuity. Therefore, Theorems 1 and 2 yield

the following corollary.

Corollary 1 (Multiplicity). Suppose that all the assumptions of Theorem 2 hold. Then, (14) and

(15) characterize a multi-belief rational-expectations equilibrium with ⟨q∗t ⟩∞t=1 defined in Theorem

2. Furthermore, if f ′(q̂) ̸= 0 also holds, there exists uncountably many supporting prices to this

equilibrium.

Define the degree of the relative risk aversion Rv of the felicity function v by

(∀c ∈ R+) Rv(c) = −v′′(c)c

v′(c)
.

Lemma 2. Assume that (∀c) Rv(c) < 1. Then, the function f is strictly increasing.
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In Theorem 2 there are multiple solutions, but they are “simple” in the sense that they

are constant over time. In contrast, the next theorem shows that under the assumption that

the degree of relative risk aversion is mild, a very complex price process can be a solution to the

difference inclusion.

Theorem 3 (Complexity of Solutions to Difference Inclusion). Suppose that all the assumptions

of Theorem 2 hold. Further assume that (∀c) Rv(c) < 1. Then, there exists a non-degenerate

interval [q∗, q
∗] such that any sequence ⟨q∗t ⟩∞t=1 satisfying (∀t) q∗t ∈ [q∗, q

∗] solves the difference

inclusion (12).

The next corollary is immediate by the strictly increasing property of f (Lemma 2). In

contrast to Corollary 2 where equilibrium prices are constant over time, this corollary implies

that equilibrium price processes may be very complex. In particular, it implies that there exists

a multi-belief rational-expectations equilibrium with declining supporting prices.

Corollary 2 (Complexity). Suppose that all the assumptions of Theorem 3 hold. Then, (14)

and (15) characterize a multi-belief equilibrium with ⟨q∗t ⟩∞t=1 defined in Theorem 3. Furthermore,

any sequence ⟨q̂t⟩∞t=1 satisfying (∀t) q̂t ∈ [f(q∗), f(q
∗)] is a supporting price to this equilibrium.

In particular, there exists a supporting price which is steadily decreasing.

Finally, the next theorem clarifies sufficient conditions for the existence of γ-imprecise

rational-expectations equilibrium.

Theorem 4 (Existence of γ-imprecise Rational-Expectations Equilibrium). Suppose that there

exists q′ ∈ (M, q) such that f(q′) = q′ (i.e., perfect foresight equilibrium). Also, assume that

f ′(q′) < 1 and that (∀c) Rv(c) < 1. Then, there exists γ > 0 such that there exists γ-imprecise

rational-expectations equilibrium around (q′, q′, q′, . . .).

In particular, it can be shown that any γ satisfying

f(q′ + γ)− f(q′)

γ
< 1 (17)

can be γ in Theorem 4.
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5. Parametric Examples

5.1. CRRA Utility

In this subsection, we specify the preference of each generation by a time-separable utility

function with a constant relative risk aversion (CRRA). That is, we assume

(∀cy, co) u(cy) + v(co) = v(cy) + v(co)

where v : R+ → R is a function defined by

v(c) =
c1−θ

1− θ
.

Here, θ > 0 is a degree of relative risk aversion, which we suppose to be moderate by assuming

that θ ∈ (0, 1). Throughout this section, we set q = 0, and assume that q > 2M .

5.1.1. Single-Belief Rational-Expectations Equilibrium

We compute the single-belief rational-expectations equilibrium of this economy. Al-

though this is reduced to the well-known perfect foresight equilibrium, it is worthwhile to ex-

plain it in our multi-belief setting for discussions that follow. To this end, we suppose that each

generation’s belief correspondence satisfies

(∀t ≥ 0)(∀qt) Pt(qt) = {δq′t+1
} , (18)

where ⟨q′t⟩∞t=1 is an equilibrium price process and δq′t+1
is a point mass concentrated at q′t+1. The

equation (18) reflects the assumption that along the equilibrium path, each generation expects

the next period’s price perfectly.

Under (18), it can be shown that the equilibrium price process ⟨q′t⟩∞t=1 satisfies the forward

difference equation defined by4

(∀t ≥ 1) qt+1 = g(qt) ≡ qt

( qt
M

− 1
) θ

1−θ
. (19)

4This follows by solving the first-order condition for each generation’s problem:(
1− Mt

qt

)−θ (
1

qt

)
=

(
Mt

qt+1

)−θ (
1

qt+1

)
for qt+1 as a function of qt, and then by setting Mt = M .
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It can be easily verified that (i) g(M) = 0; (ii) g is strictly increasing as far as qt ≥ M ; (iii)

aside from qt = 0, g has a unique fixed point, qt = 2M ; and (iv)

g′(2M) =
1 + θ

1− θ
> 1 . (20)

By (ii), we know that (19) can be converted into the backward difference equation as (13) with

f = g−1. (See Figure 1.)

We now show that the single-belief rational-expectations equilibrium price process is

unique. First, suppose that q1 < 2M . Then, (20) shows that there exists t′ > 1 such that

qt′ < M , which contradicts the nonnegativity of cyt′ . Second, suppose that q1 > 2M . Then, (20)

shows that limt→∞ qt = +∞, which contradicts the assumption that (∀t) qt ≤ q < +∞. We thus

conclude that ⟨q̂t⟩∞t=1 such that (∀t) q̂t = 2M is the unique single-belief rational-expectations

equilibrium price process, or the perfect foresight equilibrium price process.

5.1.2. Multi-Belief Rational-Expectations Equilibrium

We now show that there are uncountably many multi-belief equilibrium prices in the

sense defined in Section 4.2. Let q∗ be any price such that q∗ > 2M . Then, ⟨q̂t⟩∞t=1 defined by

(∀t) q̂t = f(q∗) is an equilibrium price.

To see this, define a price process ⟨q∗t ⟩∞t=1 by (∀t) q∗t = q∗. We note that (20) implies

that ⟨q∗t ⟩∞t=1 solves (12) since f is the inverse function of g defined by (19). Therefore, we may

invoke Theorem 1 to conclude that ⟨q̂t⟩∞t=1 defined by (∀t) q̂t = f(q∗) is an equilibrium price.

Furthermore, since q∗ was arbitrary as long as it is greater than 2M and since f is strictly

increasing, there are uncountably many multi-belief equilibrium prices.

5.1.3. γ-imprecise Rational-Expectations Equilibrium

Let γ ∈ [0, q − 2M ]. Then, it is immediate from (20) to see that γ satisfies (17), where

q′ = 2M . By the proof of Theorem 4 (see Section 6), we know that (∀t) q̂t = f(2M + γ) is the

equilibrium: in particular, (8) is satisfied.
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5.2. Linear Utility

Throughout this section, we assume that utility function is given by a linear form5, that

is,

(∀cyt , cot ) u(cyt ) + v(cot ) = cyt + cot .

We observe that any perfect foresight equilibrium price process must be constant over

time. To see this, first assume that an equilibrium price process ⟨q′t⟩ is such that (∃t) q′t < q′t+1.

Then, it follows that M∗
t = 0, which contradicts the money-market equilibrium condition that

M∗
t = M > 0. Second, assume that (∃t) q′t > q′t+1. Then, it follows that M∗

t = q′t. Hence, the

money-market equilibrium condition implies that M∗
t+1 = M = M∗

t = q′t > q′t+1, the inequality

in which contradicts the fact that cyt+1 is nonnegative. Actually, it can easily be seen that any

constant price process ⟨q′t⟩ is a perfect foresight equilibrium price process as long as (∀t) q′t ≥ M .

The previous paragraph shows that there are uncountably many perfect foresight equi-

libria when the utility function of each generation is linear. This indeterminacy of equilibria

cannot happen when each generation is risk-averse with a moderate degree of relative risk aver-

sion as we saw in the previous section. However, only possible perfect foresight equilibrium price

processes under the linear preference are those which are constant over time. In contrast, under

the linear preference, any decreasing price process will be a multi-belief rational expectation

equilibrium price sequence as the following proposition shows.

Proposition 1. Assume that q ≤ M < q and let ⟨q̂t⟩∞t=1 be any price process such that (∀t) M ≤

q̂t+1 ≤ q̂t ≤ q. Then, the quadruplet of sequences,
(
⟨ĉyt ⟩, ⟨ĉot ⟩, ⟨M̂t⟩, ⟨P̂t(·)⟩

)
, each component of

which is defined by

(∀t ≥ 1) ĉyt = 1−M/q̂t , ĉ
o
t−1 = M/q̂t , M̂t = M (21)

5When there are time preferences, there exists no perfect foresight price process. To see this, let

u(cyt ) + v(cot ) = cyt + βcot

and β ̸= 1. Note that by a similar argument to the one in the text, it turns out that any perfect foresight price
process ⟨q′t⟩ must satisfy

(∀t) q′t+1 = βtq′1 .

When β ∈ (0, 1), there exists some t′ such that q′t′ < M , which contradicts the nonnegativity of cyt′ . When β > 1,
limt→∞ q′t = +∞, which is also a contradiction.
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and (∀t ≥ 0)(∀qt) P̂t(qt) = P̂(qt) = M◦ ([ q, qt]) , (22)

is a multi-belief rational-expectations equilibrium with ⟨q̂t⟩∞t=1 being the supporting price.

6. Proofs

Proof of Lemma 1. From the first-order condition of the problem (9), it follows that

1

qt
u′
(
1− M∗

qt

)
=

1

qt+1
v′
(
M∗

qt+1

)
,

where M∗ is the unique solution to this problem. Then, by (10), it holds that

1

qt
u′
(
1− M

qt

)
=

1

qt+1
v′
(

M

qt+1

)
.

Define a function φ : (M,+∞) → (+∞, 0) by

(∀x) φ(x) =
1

x
u′
(
1− M

x

)
.

Then, φ is strictly decreasing and hence invertible. Therefore, we have

qt = f(qt+1) ≡ φ−1 ◦ 1

qt+1
v′
(

M

qt+1

)
,

which completes the proof. �

Proof of Theorem 1. Let ⟨q∗t ⟩∞t=1 be any solution to the difference inclusion (12), let ⟨q̂t⟩t

be a price process defined by (16), and suppose that each generation’s belief is given by

P̂t = M◦ ([ q, q∗t+1

])
as in (15). This paragraph proves that the objective function (1) of each

generation is simplified as

inf

{
u(cyt ) +

∫
Q
v(cot (qt+1))P (dqt+1)

∣∣∣∣ P ∈ M◦ ([ q, q∗t+1

])}
= u

(
1− Mt

q̂t

)
+ v

(
Mt

q∗t+1

)
.

To do this, define a sequence of probability measures, ⟨Pn⟩∞n=1, by

(∀n ≥ 1) Pn =
1

n
P 0 +

(
1− 1

n

)
δq∗t+1

,
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where P 0 is the uniform distribution over
[
q, q∗t+1

]
and δq∗t+1

is a point mass concentrated at

q∗t+1. Note that for any n, Pn ∈ M◦ ([ q, q∗t+1

])
and that Pn → δq∗t+1

as n → +∞ in the weak

topology. Then,

inf

{
u(cyt ) +

∫
Q
v(cot (qt+1))P (dqt+1)

∣∣∣∣ P ∈ M◦ ([ q, q∗t+1

])}

= inf

{
u

(
1− Mt

q̂t

)
+

∫
Q
v

(
Mt

qt+1

)
P (dqt+1)

∣∣∣∣ P ∈ M◦ ([ q, q∗t+1

])}

≤ lim
n→+∞

[
u

(
1− Mt

q̂t

)
+

∫
Q
v

(
Mt

qt+1

)
Pn(dqt+1)

]

= u

(
1− Mt

q̂t

)
+ v

(
Mt

q∗t+1

)
,

where the last equality holds by the continuity of v and the fact that Pn → δq∗t+1
as n → +∞ in

the weak topology. Since the inequality of the other direction clearly holds by the strict increase

of v, the claim has been proved.

Therefore, the solution M∗
t (q̂t) to each generation’s problem as is defined in Section 2.3

exists uniquely and it satisfies that

M∗
t (q̂t) = M∗(q̂t, q

∗
t+1) ,

where the right-hand side is the solution to the problem (9) with qt now being q̂t. Furthermore,

this, the definitions of q̂t and (11) in turn imply that

M∗
t (q̂t) = M∗(q̂t, q

∗
t+1) = M∗(f(q∗t+1), q

∗
t+1) = M ,

which shows that M̂t ≡ M satisfies the last equation in the condition (3). Also, it follows from

this and the budget constraint (2) that

cy∗t (q̂t) = 1−M∗
t (q̂t)/q̂t = 1−M/q̂t and co∗t−1(q̂t−1; q̂t) = M∗

t−1(q̂t−1)/q̂t = M/q̂t ,

which shows that the first two equations in the condition (3) are also satisfied. It is immediate

from the definitions of ĉyt , ĉ
o
t−1 and M̂t in the theorem that the condition (4) is also met.

Finally, we turn to the condition (5). We observe that for any P ∈ P̂t = M◦ ([ q, q∗t+1

])
,

it holds that supp(P ) =
[
q, q∗t+1

]
by the definition of M◦. Therefore, the condition (5) is now
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met since it holds that

q̂t+1 = f(q∗t+2) ∈
[
q, q∗t+1

]
by the assumption that ⟨q∗t ⟩ solves the difference inclusion (12). �

Proof of Theorem 2. By the assumption that f ′(q̂) < 1 and the continuity of f , there exists

q̃ such that if q ∈ (q̂, q̃), then f(q) < q. Let q∗ ∈ (q̂, q̃) and let ⟨q∗t ⟩∞t=1 be a sequence such that

(∀t) q∗t = q∗. Then, (∀t) f(q∗t+1) = f(q∗) < q∗ = q∗t , and hence, ⟨q∗t ⟩∞t=1 solves the difference

inclusion (12). �

Proof of Lemma 2. By the proof of Lemma 1, it suffices to show that a function defined by

q 7→ 1

q
v′
(
M

q

)
is strictly decreasing. But, this follows from the assumption that (∀c) Rv(c) < 1 since

d

dq

[
1

q
v′
(
M

q

)]
= − 1

q2

[
v′
(
M

q

)
+

M

q
v′′

(
M

q

)]
= − 1

q2
v′
(
M

q

)[
1−Rv

(
M

q

)]
< 0 .

�

Proof of Theorem 3. By Lemma 2, there exists an inverse function of f , f−1 : (M,+∞) →

(0,+∞), which is strictly increasing. We denote it by g. By the assumptions of the theorem,

it holds that g(q̂) = q̂ and g′(q̂) > 1. Then, there exist q∗ and q∗ such that q̂ < q∗ < q∗

and g(q∗) = q∗. Let ⟨q∗t ⟩∞t=1 be any sequence satisfying (∀t) q∗t ∈ [q∗, q
∗]. We show that

(∀t) q∗t+1 ≤ g(q∗t ), which completes the proof by the strict increase of f . But, this holds because

q∗t+1 ≤ q∗ = g(q∗) ≤ g(q∗t ), where the last inequality holds by the strict increase of g. �

Proof of Theorem 4 Let ⟨q′t⟩ and ⟨q̂t⟩ be such that (∀t ≥ 1) q′t = q′ and q̂t = f(q′t+1 + γ).

By a similar argument to the proof of Theorem 1, the objective function (1) of each generation

is simplified to

u

(
1− Mt

q̂t

)
+ v

(
Mt

q′t+1 + γ

)
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under Pt(qt) = M◦([q′t+1 − γ, q′t+1 + γ]). Therefore, it follows that

M∗
t (q̂t) = M∗(q̂t, q

′
t+1 + γ) = M∗(f(q′t+1 + γ), q′t+1 + γ) = M ,

where the first equality holds by the definition of M∗, the second equality holds by the definition

of q̂t and the last equality holds by the definition of f . This shows that M̂t ≡ M satisfies the

last equation in the condition (6). Also, it follows from this and the budget constraint (2) that

cy∗t (q̂t) = 1−M∗
t (q̂t)/q̂t = 1−M/q̂t and co∗t−1(q̂t−1; q̂t) = M∗

t−1(q̂t−1)/q̂t = M/q̂t ,

which shows that the first two equations in the condition (6) are also satisfied with ĉyt = 1−M/q̂t

and ĉot−1 = M/q̂t. It is immediate that the condition (7) is also met.

In order to show (8), let γ be such that

f(q′ + γ)− f(q′)

γ
< 1 . (23)

Since f ′(q′) < 1, such a γ exists. Then, q̂t+1 ≥ q′t+1 − γ holds since q̂t+1 = f(q′t+2 + γ) ≥

f(q′t+2) = q′t+2 = q′t+1 ≥ q′t+1 − γ, where the first inequality holds by the increase of f . Also,

q̂t+1 ≤ q′t+1 + γ holds since q̂t+1 = f(q′t+2 + γ) ≤ f(q′t+2) + γ = q′t+2 + γ = q′t+1 + γ, where the

first inequality holds by (23). �

Proof of Proposition 1. Let ⟨q̂t⟩t be any price process such that (∀t) M ≤ q̂t+1 ≤ q̂t ≤ q

and suppose that each generation’s belief is given by P̂t(qt) = M◦ ([ q, qt]) as in (22). We then

observe that the objective function (1) of each generation’s problem is reduced to

inf

{
cyt +

∫
Q
(cot (qt+1)) P (dqt+1)

∣∣∣∣ P ∈ M◦ ([ q, q̂t])}

= inf

{ (
1− Mt

q̂t

)
+

∫
Q

(
Mt

qt+1

)
P (dqt+1)

∣∣∣∣ P ∈ M◦ ([ q, q̂t])}

= 1− Mt

q̂t
+

Mt

q̂t
= 1

by a similar reasoning to the one made in the proof of Theorem 1. Therefore, M̂t ≡ M is

certainly a solution to each generation’s problems since M ≤ q̂t. (Actually, any M̂t is a solution

as long as it satisfies M̂t ≤ q̂t.) This shows that the condition (3) is met. Clearly, the condition

(4) is also met.
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Finally, we turn to the condition (5). We observe that for any P ∈ P̂t(q̂t) = M◦ ([ q, q̂t]),
it holds that supp(P ) =

[
q, q̂t

]
by the definition of M◦. Therefore, the condition (5) is now met

since it holds that q̂t+1 ≤ q̂t by the assumption. �
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