CARF Working Paper

CARF-F-355

Price Impacts of Imperfect Collateralization

Kenichiro Shiraya
The University of Tokyo
Akihiko Takahashi
The University of Tokyo

November, 2014

CARF is presently supported by Bank of Tokyo-Mitsubishi UFJ, Ltd., Dai-ichi Mutual Life Insurance Company, Nomura Holdings, Inc. and Sumitomo Mitsui Banking Corporation (in alphabetical order). This financial support enables us to issue CARF Working Papers.

CARF Working Papers can be downloaded without charge from:
http://www.carf.e.u-tokyo.ac.jp/workingpaper/index.html

Working Papers are a series of manuscripts in their draft form. They are not intended for circulation or distribution except as indicated by the author. For that reason Working Papers may not be reproduced or distributed without the written consent of the author.
Price Impacts of Imperfect Collateralization

Kenichiro Shiraya, * Akihiko Takahashi †

November 10, 2014

Abstract

This paper studies impacts of imperfect collateralization on derivatives values. Firstly, we present a general framework for the analysis in a multi-dimensional diffusion setting, and then calculate pre-default values of forwards and options for the numerical experiments. In particular, we investigate no collateral posting and time-lagged collateral posting cases under a stochastic volatility model for the underlying asset prices and stochastic interest and hazard rate models for the risk-free rate and default intensities. We also derive an approximation for the density function of the CVA (Credit Value Adjustment) in the valuation of forward contract with bilateral counter party risk. Moreover, we allow a stochastic collateral asset value to depend not only on the underlying contract values, but also on other asset prices such as a currency different from the payment currency of the underlying contract. Finally, we also examine the effect of correlations on basket option values with stochastic volatility and stochastic hazard rate models.

*Graduate School of Economics, University of Tokyo
†Graduate School of Economics, University of Tokyo
1. Introduction

Since the subsequent financial crises after 2008, most financial institutions have been forced to use stringent credit risk management for derivatives in order to reduce the effects of counter parties’ defaults. For example, collateralized contracts are widely used in interbank markets, which substantially decreases the impact of the counter parties’ credit deterioration.

On the other hand, collateralized contracts are not so common in non-financial institutions, as their contracts are still uncollateralized or imperfectly collateralized. In that case, the evaluation of counter parties’ credit risks should be taken into account. For instance, credit valuation adjustments (CVAs) are charged for those contracts. As a result, there may exist significant difference in values between collateralized and the corresponding uncollateralized contracts.

Following the recent trend, many researchers in academia and industries have been considering derivatives pricing with taking counter party risks into account and CVAs. The traditional CVA in practice is roughly estimated by a default-free value of the derivatives contract multiplied by the counter party’s default probability. In order to obtain more accurate values of the derivatives contracts with default risks, a significant number of researches have investigated so-called the wrong way risk. For instance, see Redon [2006], Lipton-Sepp [2009], Brigo et al. [2011], Hull-White[2012] and Fujii-Takahashi [2012c, 2013].

However, a lot of problems still remain unsolved for the derivatives pricing. For example, a collateral is posted with time lag and/or with currencies different from the payment currency or assets such as treasuries suffering from their own price fluctuations. Although the traditional CVA in practice is estimated based on a pre-default value of the corresponding contract with default-free parties, for more accurate estimations, the credit risks of the contract parties should be taken into consideration in the pre-default value. Therefore, the traditional CVA is not always enough in the value adjustment of derivatives with the contract parties’ default risks.

In order to formulate derivatives values with default risks, one typical method is to apply backward stochastic differential equations (BSDEs). Applications of BSDEs in finance are discussed, for instance by El Karoui-Peng-Quenez [1997], Ma-Yong [2000], Carmona[2000] and Crépey [2011]. In this paper, we use Markovian BSDEs, that is forward BSDEs (FBSDEs), where the underlying variables (factors) follow diffusion processes, which are characterized by the solution of forward stochastic differential equations (FSDEs).

More concretely, we investigate the derivatives values of over-the-counter (OTC) forward contracts and European options. In particular, we suppose the underlying variables to be the following random factors: the (forwards’ and options’) underlying asset prices, their volatilities, (contract parties’) default probabilities, the risk-free interest rate, a collateral asset price and those volatilities. Under the setting, we examine the effects on the derivatives values of the changes in the various parameter values such as the correlations among the factors.

However, it is a very tough task to numerically evaluate the solutions to high di-
mensional FBSDEs as encountered in this paper. To overcome this problem, we apply a perturbative expansion method and a perturbative expansion technique with interacting particle method, a new computational scheme for FBSDEs recently developed by Fujii and Takahashi [2012a,b]. Then, it turns out to be true that in certain situations, the traditional CVAs are not enough for the price adjustment of the derivatives with the counter parties’ default risks, but more precise evaluation is necessary. Particularly, we concretely show that overestimated amounts of traditional CVAs are not to be neglected under some circumstances.

The organization of the paper is as follows: the next section briefly explains a general result for pre-default values of financial derivatives. Section 3 explains the framework of the approximation methods of the solutions to the FBSDEs. As an application, Section 4 provides an approximation for the density function of the CVA (Credit Value Adjustment) in the valuation of forward contract with bilateral counter party risk. Section 5 explains a Monte Carlo scheme to calculate approximated values of FBSDEs. Applying the scheme to the derivatives pricing with counter party risk and imperfect collateralization, Section 6 analyzes the impacts on the option values of the changes in the parameters of the underlying factors, the correlations among the factors and the times to maturities of the options. Moreover, we examine the shapes of implied volatility curves of the options. Finally, Section 7 investigates the effect of correlations on basket options between the default probability and the underlying asset prices as well as their volatilities. Section 8 concludes. Appendix provides the derivation of an expression for the pre-default value of a derivatives contract.

2. Pricing Derivatives with Default Risks under Imperfect Collateralization

This section briefly explains a general method for pricing derivatives with default risks under imperfect collateralization.

Let us define a base probability space as \((\Omega, \mathcal{F}, \mathbb{P}, Q^p)\), where \(\mathbb{P}\) is a filtration which satisfies the usual conditions, and \(Q^p\) is a risk-neutral measure under a currency \(p\). In these settings, we consider two firms, an investor \((i = 1)\) and a counter party \((i = 2)\), whose default times are defined as \(\tau^i \in [0, \infty], (i = 1, 2)\). Also, we define \(\tau = \tau^1 \wedge \tau^2 := \min\{\tau_1, \tau_2\}\). Here, \(\tau^i\) (and hence \(\tau\)) is assumed to be a totally-inaccessible \(\mathbb{F}\)-stopping time. Then, indicator functions \(H^i_t\) and \(H_t\) are defined as \(H^i_t = 1_{\{\tau^i \leq t\}}\) and \(H_t = 1_{\{\tau \leq t\}}\), respectively. Moreover, we suppose the existence of absolutely continuous compensator for each \(H^i\) and \(h^i\) is a hazard rate of \(H^i\). We also assume that there are no simultaneous defaults and hence, the hazard rate of \(H\) is given by

\[
h_t = h^1_t + h^2_t.
\] (1)

Other than the default times \(\tau^i (i = 1, 2)\), we introduce a \(\mathbb{R}^d\)-valued stochastic process, \(X = \{X_t : t \geq 0\}\) as a vector of state variables, which affects market values of assets considered in this paper. Specifically, \(X\) is the solution to the following \(\mathbb{R}^d\)-valued
stochastic differential equation defined on $(\Omega, \mathcal{F}, \mathbb{F}, Q^p)$:

\[
dX_t = \gamma_0(X_t)dt + \gamma(X_t) \cdot dW_t, \\
X_0 = x_0,
\]

where W is a n dimensional Brownian motion. (for $x, y \in \mathbb{R}^n$, we use notations $x \cdot y = \sum_{i=1}^{n} x_i y_i$.) $\gamma_0(x) : \mathbb{R}^d \to \mathbb{R}^d$ and $\gamma(x) : \mathbb{R}^d \to \mathbb{R}^{d \times n}$ satisfy conditions so that X has the unique strong solution. Moreover, we define $\mathbb{G} = (\mathcal{G}_t)_{t \geq 0} (\subset \mathbb{F})$ as the augmented filtration generated by X.

Under a bilateral collateral contract, which is a recent market convention, each contract party $i = 1$ or 2 needs to post a collateral to $j(\neq i)$ when the value of derivatives becomes a negative present value for i. Then, when it posts a cash collateral, in practice an overnight interest rate of a collateral currency is paid by a party receiving the collateral. Future values of the overnight interest rates are fixed by overnight index swaps (OISs). We note that an OIS itself is a collateralized contract.

Hereafter, we assume that p is a payment currency, q is a collateral currency, Ψ represents a maturity payoff, Γ_t represents the value process of the collateral and r_t^p (or r_t^q) represents the risk-free interest rate process under currency p (or currency q). Also, c_t^i (or c_t^q) represents the collateral rate process under currency p (or currency q) and $l_t^i(\geq 0), i \in \{1, 2\}$ represents the party i’s loss rate process.

In general, $c^p, c^q, r^p, r^q, l^{[i]}$ $(i = 1, 2)$ are assumed to be \mathbb{F} adapted processes. In this article, we also assume that c^p, c^q, r^p, r^q and Ψ are functions of X. We also suppose that under non-default states of both parties, that is conditioned on $\{\tau > t\}$, $h^{[i]}$ and $l^{[i]}$ $(i = 1, 2)$ are some functions of X. Moreover, when either an investor or counter party is default, the derivatives contract is terminated after the settlement of the present values of the collateral and derivatives.

Under these assumptions, conditioned on $\{\tau > t\}$, we consider the pre-default value V_t of a derivatives with maturity $T(> 0)$ and the payoff Ψ from the viewpoint of the investor, party 1. Under the no jump assumption which means V does not jump when one party defaults ($\Delta V_\tau := V_\tau - V_{\tau-} = 0$) \(^1\), V_t is expressed as follows. The derivation is given in Appendix.

\[
V_t = E^{Q^p}\left[e^{-\int_t^T r_u^q du} \Psi + \int_t^T e^{-\int_t^s r_u^q du} \left\{(r_u^q - c_u^q)\Gamma_u + h_u^{[1]} l^{[1]} (\Gamma_u - V_u)_+ - h_u^{[2]} l^{[2]} (V_u - \Gamma_u)_+ \right\} du \right| F_t, \]

where the first term in the right hand side of (4) is the default-free price of the original derivatives and the second term is the return from posting or posted collaterals. The

\(^1\) The condition $\Delta V_\tau = 0$ is important when we consider credit derivatives such as CDS. For example, when the reference name company of a CDS has a large dependence on a counter party, the condition is not satisfied due to a contagious effect.
third and fourth terms express the effects of over (or under) collateral when the investor
\((i = 1)\) or the counter party \((i = 2)\) defaults.

At each time \(t\), when a collateral is posted perfectly as the value of derivatives \(V_t\) by
the settlement currency of derivatives, the collateral value \(\Gamma_t\) coincides with the present
value \(V_t\) of the derivatives.

In this article, as examples of imperfect collateralization, we take a no collateral case
and a time-lag collateral case. Moreover, in Section 7 we consider a case that collateral
values are dependent on not only the original derivatives values, but also other factors.
(e.g. the collateral is posted by a currency different from the payment currency of the
original derivatives.) Hence, we suppose that the collateral value \(\Gamma\) is a function of \(X\)
as well as of \(V_{t-\Delta}\). Then, because the other variables, \(c^p, c^q, r^p, r^q, \Psi, h^{[i]}, l^{[i]} \ (i = 1, 2)\),
which determine a value \(V\) in \((4)\) on \(\{\tau > t\}\), are also some functions of \(X, V\) does not
jump at a time of default.

From \((4)\), we also remark that

\[
e^{-\int_0^t r_u^d u} V_t + \int_0^t e^{-\int_u^t r_s^d s} \times \left\{ (r_u^q - c_u^q)\Gamma_u + h_u^{[1]} l_u^{[1]} (\Gamma_u - V_u)^+ - h_u^{[2]} l_u^{[2]} (V_u - \Gamma_u)^+ \right\} du \tag{5}
\]

is a martingale, and the drift term of the stochastic differential equation which the above
equation satisfies is zero. At that time, a pair of \((V, Z)\) is the solution to the following
backward stochastic equation (BSDE). Here, \(Z\) stands for the volatility of the derivatives
value (or volatility \(\times V\)).

\[
d V_t = c_t^p V_t dt - f(t, X, V, \Gamma) dt + Z_t \cdot dW_t, \tag{6}
\]

\[
V_T = \Psi(X_T), \tag{7}
\]

\[
f(t, X, V, \Gamma) = (r_t^q - c_t^q)\Gamma_t - (r_t^p - c_t^p)V_t + h_t^{[1]} l_t^{[1]} (\Gamma_t - V_t)^+ - h_t^{[2]} l_t^{[2]} (V_t - \Gamma_t)^+ \tag{8}
\]

In this BSDE, \((7)\) shows that a payoff of the derivatives contracts with maturity \(T\)
is expressed as \(\Psi(X_T)\), which is a function of state variables \(X_T\) at time \(T\).

The first term of \((6)\), \(c_t^p V_t\) means the discount by a collateral rate of the currency
\(p\), which is the same as the payment currency of the derivatives. That is, the term
corresponds to the discount in the perfect collateralized contract with payment and
collateral currency \(p\).

Moreover, the first term in \((8)\), \((r_t^q - c_t^q)\Gamma_t\), represents a collateral cost caused
from a collateral asset whose value is \(\Gamma\). The second term, \((r_t^p - c_t^p)V_t\), stands for a cost of
the cash collateral of currency \(p\). These first and second terms, \((r_t^q - c_t^q)\Gamma_t - (r_t^p - c_t^p)V_t\),
express a funding spread between the cash of currency \(p\) and a collateral asset valued as
\(\Gamma\).

Finally, the third term in \((8)\), \(h_t^{[1]} l_t^{[1]} (\Gamma_t - V_t)^+\), shows an (instantaneous) expected
gain of the investor \(i = 1\) caused by imperfect collateralization when the investor \(i = 1\)
defaults. On the other hand, the fourth term in \((8)\), \(h_t^{[2]} l_t^{[2]} (V_t - \Gamma_t)^+\), means an (instantaneous) expected loss of the investor \(i = 1\) caused by an imperfect collateralization
when the counterparty \(i = 2\) defaults.
In general, it is difficult to solve this BSDE. Then, in this article, we approximate the solution by a perturbation method introduced in Section 3. Especially, we consider a perturbed BSDE (11), where a perturbation parameter ϵ is introduced in the driver f, and the solution of the BSDE (6)-(8) is expanded around the solution of the following equation, that is in BSDE (11) we set $\epsilon = 0$:

\[
\begin{align*}
 dV_t &= c_p V_t dt + Z_t \cdot dW_t, \\
 V_T &= \Psi(X_T)
\end{align*}
\] (9)

In other words, we propose to expand the solution around the value of the derivatives which is perfectly collateralized with currency p, the same currency as the settlement currency of the derivatives.

Moreover, in order to implement computation of this approximation, we apply Monte Carlo simulations based on an interacting particle method, which is introduced in Section 5.

3. Perturbative Expansion Method

This section summarizes an approximation method for the solution to the BSDEs (6)-(8). For the details, see Fujii-Takahahi [2012a,b].

First, we approximate the FBSDE with a perturbative expansion technique. Let us introduce the perturbation parameter ϵ as follows:

\[
\begin{align*}
 dV_t(\epsilon) &= c_p V_t(\epsilon) dt - \epsilon f(t, X, V_t(\epsilon), \Gamma_t(\epsilon)) dt + Z_t(\epsilon) \cdot dW_t \\
 V_T(\epsilon) &= \Psi(X_T),
\end{align*}
\] (11)

Here, we make Γ depend explicitly on ϵ as $\Gamma_t(\epsilon)$, since Γ is dependent on V such as $\Gamma_t = V_{t-\Delta}(\Delta > 0)$ in the analyses below.

Next, let us expand a solution of FBSDE (11) with respect to ϵ around $\epsilon = 0$. That is, when f is small enough, we suppose that $V_t(\epsilon)$ and $Z_t(\epsilon)$ are expanded as follows:

\[
\begin{align*}
 V_t(\epsilon) &= V_t(0) + \epsilon V_t(1) + \epsilon^2 V_t(2) + \cdots \quad (12) \\
 Z_t(\epsilon) &= Z_t(0) + \epsilon Z_t(1) + \epsilon^2 Z_t(2) + \cdots. \quad (13)
\end{align*}
\]

For instance, by calculating the expansions of $V_t(\epsilon)$ and $Z_t(\epsilon)$ up to the k-th order with putting $\epsilon = 1$, we obtain the k-th order approximation of V_t, Z_t as follows:

\[
\begin{align*}
 \tilde{V}_t &= \sum_{i=0}^{k} V_t^{(i)}, \quad \tilde{Z}_t = \sum_{i=0}^{k} Z_t^{(i)},
\end{align*}
\] (14)

where $V_t^{(i)}$ and $Z_t^{(i)}$ are calculated recursively using the results of the lower order approximations and X.

6
Next, we explain how to derive $V_t^{(i)}$ concretely. For the zero-th order of ϵ, one can easily derive $V_t^{(0)}$ by substituting 0 for ϵ in the equation (11), and it is expressed as follows:

$$
\begin{align*}
\frac{dV_t^{(0)}}{dt} &= c_t^pV_t^{(0)} dt + Z_t^{(0)}\cdot dW_t \\
V_T^{(0)} &= \Psi(X_T).
\end{align*}
$$

(15)
(16)

It can be integrated as

$$
V_t^{(0)} = E\left[e^{-\int_t^T c_s^p ds} \Psi(X_T) \bigg| \mathcal{F}_t \right].
$$

(17)

We remark that $V_t^{(0)}$ is equivalent to the price of a standard European contingent claim without default risks, and $V_t^{(0)}$ is a function of X_t. Then, applying Itô’s formula, we obtain $Z_t^{(0)}$ as a function of X_t.

It is clear that they can be evaluated by standard Monte Carlo simulation. However, in order to obtain the higher order approximations, it is crucial to derive an explicit or closed form approximation of $V_t^{(0)}$. For instance, the SABR formula for plain vanilla options derived by Hagan et al. [2002] is useful for an approximation of $V_t^{(0)}$, which is applied in the numerical experiments of this paper. To approximate derivatives values in general models and prices of multi-asset exotic options such as basket and average options, which are mainly traded in the energy market, it is useful to employ an asymptotic expansion method. (See Shiraya-Takahashi [2011], [2014] for the details.) In fact, it is used in Section 7 for approximations of basket option prices.

Next, $V_t^{(1)}$ is derived by differentiating (11) with respect to ϵ, and substituting 0 for ϵ.

$$
\begin{align*}
\frac{dV_t^{(1)}}{dt} &= c_t^pV_t^{(1)} dt - f(t, X_t, V_t^{(0)}, \Gamma_t^{(0)}) dt + Z_t^{(1)}\cdot dW_t, \\
V_T^{(1)} &= 0.
\end{align*}
$$

(18)
(19)

Then, we have the following by solving the above equations.

$$
V_t^{(1)} = E\left[\int_t^T e^{-\int_t^u c_s^p ds} f(u, X_u, V_u^{(0)}, \Gamma_u^{(0)}) du \bigg| \mathcal{F}_t \right].
$$

(20)

Because $V_u^{(0)}$ and $Z_u^{(0)}$ are functions of X_u, we obtain $V_t^{(1)}$ as a function of X_t, and again by Itô’s formula, we have $Z_t^{(1)}$ as a function of X_t, too. We note that this first order approximation term $V_t^{(1)}$ can be regarded as a traditional CVA (Credit Value Adjustment) which is often used in practice.\(^2\)

In the similar manner, an arbitrarily higher order correction term can be derived. For example, the second order correction term is expressed as follows:

$$
\begin{align*}
\frac{dV_t^{(2)}}{dt} &= c_t^pV_t^{(2)} dt - \frac{\partial}{\partial v} f(t, X_t, V_t^{(0)}, \Gamma_t^{(0)})V_t^{(1)} dt - \frac{\partial}{\partial \gamma} f(t, X_t, V_t^{(0)}, \Gamma_t^{(0)})\Gamma_t^{(1)} dt \\
&\quad - f_t(t, X_t, V_t^{(0)}, \Gamma_t^{(0)})V_t^{(1)} dt - f_t(t, X_t, V_t^{(0)}, \Gamma_t^{(0)})\Gamma_t^{(1)} dt.
\end{align*}
$$

\(^2\)Our convention of CVA is different from the one, which is used in practice by sign, where it is defined as the “charge” to the clients. Thus, our CVA = -CVA.
bilateral counter party risk, where both parties post their collateral perfectly with the SDE to an approximation for the density function of the CVA (Credit Value Adjustment). The first concrete example applies a perturbative expansion method in the relevant FB-

\begin{align}
V^{(2)}_T &= E \left[\int_t^T e^{-\int_t^s c_x} ds \left[\frac{\partial}{\partial \nu} f(u, X_u, V^{(0)}_u, \Gamma^{(0)}_u) V^{(1)}_u + \frac{\partial}{\partial \gamma} f(t, X_u, V^{(0)}_u, \Gamma^{(0)}_u) \Gamma^{(1)}_u \right] du \bigg| \mathcal{F}_t \right]. \\
V^{(2)}_t &= E \left[\int_t^T e^{-\int_t^s c_x} ds \left[\left(-(r^0_u - c^0_u) - h^{[1]}_u I^{[1]}_u 1_{\{V^{(0)}_u > V^{(0)}_u\}} - h^{[2]}_u I^{[2]}_u 1_{\{V^{(0)}_u < V^{(0)}_u\}} \right) V^{(1)}_u \\
& \quad \quad + \left((r^0_u - c^0_u) + h^{[1]}_u I^{[1]}_u 1_{\{V^{(0)}_u > V^{(0)}_u\}} + h^{[2]}_u I^{[2]}_u 1_{\{V^{(0)}_u < V^{(0)}_u\}} \right) \Gamma^{(1)}_u \right] du \bigg| \mathcal{F}_t \right].
\end{align}

4. First Example - Approximation of Density Function of CVA in a Multi-factor Model -

The first concrete example applies a perturbative expansion method in the relevant FBSDE to an approximation for the density function of the CVA (Credit Value Adjustment) in the valuation of a pre-default contract with bilateral counter party risk. We note that the first order expansion term in the driver of the pricing BSDE is regarded as CVA which is typically used in practice.

In particular, we take a forward contract of a foreign exchange (forex) rate with bilateral counter party risk, where both parties post their collateral perfectly with the constant time-lag (\(\Delta\)) by the same currency as the payment currency. For simplicity we also assume the constant risk-free interest rate \(r\) is equal to the collateral rate.

We consider a forward contract on the forex rate \(S^\delta\) with strike \(K\) and maturity \(T\). The relevant FBSDE for the pre-default contract value is given with perturbation parameters \(\epsilon, \delta \in (0, 1]\). In particular, the state vector consisting of the FSDE is specified as \(X^\delta = (h^{[1]}_u, h^{[2]}_u, S^\delta, \nu^\delta)\), where \(S^\delta\) is the forex rate, \(\nu^\delta\) is its volatility and \(h^{j,\delta}\), \(j = 1, 2\) stands for each counter party’s hazard rate process.

\begin{align}
dV^{(e),\delta}_t &= rV^{(e),\delta}_t dt - \epsilon f(h^{[1]}_t, h^{[2]}_t, V^{(e),\delta}_t, V^{(e),\delta}_t - \Delta) dt + Z^{(e),\delta}_t dt, \\
V^{(e),\delta}_T &= S^\delta_T - K, \\
f(h^{[1]}_t, h^{[2]}_t, V^{(e),\delta}_t, V^{(e),\delta}_t - \Delta) &= h^{[1]}_t (V^{(e),\delta}_t - V^{(e),\delta}_t - \Delta) + h^{[2]}_t (V^{(e),\delta}_t - V^{(e),\delta}_t - \Delta),
\end{align}

\begin{align}
dh^{[j]}_t &= \mu h^{[j]}_t dt + \delta \sigma h^{[j]}_t \left(\sum_{\eta=1}^j c_{j,\eta} dW^\eta_t \right), \\
dS^{\delta}_t &= (r - r^f) S^{\delta}_t dt + \delta \nu^\delta \left(\sum_{\eta=1}^\beta c_{3,\eta} dW^\eta_t \right), \\
d \nu^\delta &= \kappa (\theta - \nu^\delta) dt + \delta \xi \nu^\delta \left(\sum_{\eta=1}^4 c_{4,\eta} dW^\eta_t \right),
\end{align}

\(8\)
Here, \(W = (W^1, W^2, W^3, W^4) \) is a four dimensional Brownian motion, and \(c_{j,\eta} \) \((j = 1, 2, 3, 4, \eta = 1, \cdots, j)\), \(r, \rho_f, \kappa, \theta, \xi, \mu_{h^{[j]}}, \sigma_{h^{[j]}}, h^{[j]}_0 \) \((j = 1, 2)\), \(s_0 \) and \(\nu_0 \) are some constants.

Then, the derivative price with the bilateral counter party risk is given by

\[
V_t^{(\epsilon,\delta)} = E[e^{-r(T-t)}g(S^\delta_T)] + \epsilon E \left[\int_t^T e^{-r(u-t)} f(h_u^{[1],\delta}, h_u^{[2],\delta}, V_u^{(\epsilon,\delta)}, V_{u-\Delta}^{(\epsilon,\delta)}) du \right], \quad (30)
\]

Hereafter, we pursue an approximation of the equation above. Firstly, the equation with regard to the first order of the \(\epsilon \)-expansion is expressed as follows:

\[
dV_t^{(1),\delta} = rV_t^{(1),\delta} dt - f(h_t^{[1],\delta}, h_t^{[2],\delta}, V_t^{(0),\delta}, V_{t-\Delta}^{(0),\delta}) dt + Z_t^{(1),\delta} \cdot dW_t, \quad (31)
\]
\[
V_t^{(1),\delta} = 0. \quad (32)
\]

Then, the derivative price with the bilateral counter party risk is approximated by

\[
V_t^{(\epsilon,\delta)} \simeq V_t^{(0),\delta} + \epsilon V_t^{(1),\delta}, \quad (33)
\]

and the term \(\epsilon V_t^{(1),\delta} \) is regarded as the CVA at time \(t \) represented by the following equation:

\[
V_t^{(1),\delta} = E \left[\int_t^T e^{-r(u-t)} f(h_u^{[1],\delta}, h_u^{[2],\delta}, V_u^{(0),\delta}, V_{u-\Delta}^{(0),\delta}) du \right], \quad (34)
\]

where

\[
f(h_t^{[1],\delta}, h_t^{[2],\delta}, V_t^{(0),\delta}, V_{t-\Delta}^{(0),\delta}) = h_t^{[1],\delta} \cdot (V_t^{(0),\delta} - V_t^{(0),\delta}) + h_t^{[2],\delta} \cdot (V_{t-\Delta}^{(0),\delta} - V_t^{(0),\delta}). \quad (35)
\]

Here, \(V_{u-\Delta}^{(0),\delta} = 0 \) when \(u < t + \Delta \).

Then, \(V_u^{(0),\delta} \) and \(V_{u-\Delta}^{(0),\delta} \) are explicitly calculated as

\[
V_u^{(0),\delta} = e^{-r_f(T-u)} S_u^\delta - e^{-r(T-u)} K, \quad (36)
\]
\[
V_{u-\Delta}^{(0),\delta} = V_u^{(0),\delta} - e^{-r_f(T-u)} S_u^\delta - e^{-r_f(T-u+\Delta)} S_u^\delta - k(u; \Delta, r), \quad (37)
\]

where

\[
k(u; \Delta, r) := e^{-r(T-u)} (1 - e^{-r\Delta}) K. \quad (38)
\]

Next, we apply the asymptotic expansion method to evaluation of \(C(u; t, x) = e^{-r(u-t)} E \left[f(h_u^{[1],\delta}, h_u^{[2],\delta}, V_u^{(0),\delta}, V_{u-\Delta}^{(0),\delta}) \right] \) up to \(\delta^4 \) where \((t, x)\) represents the values of the state variables \(x = (h^{[1]}, h^{[2]}, s, \nu) \) at time \(t \), that is the third order of \(\delta \). Then, the value of CVA is approximated by

\[
\epsilon V_t^{(1),\delta} = \epsilon \int_t^T C_{AE}(u; t, x) du + O(\delta^4). \quad (39)
\]
Here, $C_{AE}(u; t, x)$ stands for the approximation of $C(u; t, x)$ based on the asymptotic expansion up to the third order.

\[
C_{AE}(u; t, x) = e^{-r(u-t)} \sum_{j=1}^{2} \left\{ \delta \left(y^j N \left(\frac{y^j}{\sqrt{\Sigma^j}} \right) + \Sigma^j n[y^j; 0, \Sigma^j] \right)
+ \delta^2 \left(-\frac{C^j_1}{\Sigma^j} y^j n[y^j; 0, \Sigma^j] + C^j_0 N \left(\frac{y^j}{\sqrt{\Sigma^j}} \right) \right)
+ \delta^3 \left(C^j_2 \left(\frac{-1}{\Sigma^j} + \frac{(y^j)^2}{(\Sigma^j)^2} \right) n[y^j; 0, \Sigma^j] + C^j_3 n[y^j; 0, \Sigma^j]
+ \left(C^j_4 \left(\frac{(y^j)^4}{(\Sigma^j)^4} \right) - \frac{6}{(\Sigma^j)^4} + \frac{3}{(\Sigma^j)^2} \right) + C^j_5 \left(\frac{(y^j)^2}{(\Sigma^j)^2} - \frac{1}{\Sigma^j} \right) + C^j_6 \right) n[y^j; 0, \Sigma^j] \right)
+ \frac{(C^j_0)^2}{2} \Sigma^j n[y^j; 0, \Sigma^j] \right) \right) \right) \right).
\] (40)

Here, $N(\cdot)$ and $n[\cdot, \mu, \Sigma]$ stand for the standard normal distribution function and the normal density function with mean μ and variance Σ, respectively. Also, C^j_i and y^j, $i = 0, 1, \cdots, 6$, $j = 1, 2$ are some constants. We emphasize that due to the analytical approximation of each $C_{AE}(u; t, x)$, we have no problem in computation of the integral in (39), which is very fast.

The parameters in the factors are set as follows with $\epsilon = \delta = 1$:

- **parameters of $h^{[1]}$**:
 $h_0^{[1]} = 0.02$, $\mu^{[1]} = -0.02$, $\sigma_{h^{[1]}} = 0.2$.

- **parameters of $h^{[2]}$**:
 $h_0^{[2]} = 0.01$, $\mu^{[2]} = 0.02$, $\sigma_{h^{[2]}} = 0.3$.

- **parameters of S**:
 $S_0 = 10,000$, $r = r_f = 0.01$, $\beta = 1$.

- **parameters of ν**:
 $\nu_0 = 0.1$, $\kappa = 1$, $\theta = 0.2$, $\xi = 0.3$.

- **correlation matrix**:

<table>
<thead>
<tr>
<th></th>
<th>$h^{[1]}$</th>
<th>$h^{[2]}$</th>
<th>S</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h^{[1]}$</td>
<td>1</td>
<td>0.5</td>
<td>-0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>$h^{[2]}$</td>
<td>0.5</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>S</td>
<td>-0.3</td>
<td>0.1</td>
<td>1</td>
<td>-0.8</td>
</tr>
<tr>
<td>ν</td>
<td>0.2</td>
<td>0.1</td>
<td>-0.8</td>
<td>1</td>
</tr>
</tbody>
</table>

In this setting, we show the density function of the approximate CVA above by the asymptotic expansion method with Monte Carlo simulations. T stands for the maturity.

3Those are given upon request.
of the forward contract, \(t \) denotes the future time when CVA is evaluated, and \(\Delta \) is the lag of the collateral posting. In addition to the the parameters above, the setup and the procedure of the calculation are summarized as follows:

- maturity (\(T \)): 5 years, evaluation date (\(t \)): 2.5 years.
- strike price (\(K \)): 10,000.
- time step size in Monte Carlo: \(\frac{1}{300} \) year.
- the number of trials in Monte Carlo: 325,000 with antithetic variates.

Procedure:

1. implement Monte Carlo simulations of the state variables \((h^{[1]}, h^{[2]}, S, \nu)\) until time \(t \) (from time 0).
2. given each realization of the state variables, compute \(C_{AE}(u; t, x) \).
3. integrate \(C_{AE}(u; t, x) \) numerically with respect to the time parameter \(u \) from \(t \) to \(T \), and plot the values and their frequencies after normalization.

The first figure shows the density functions of CVA with different time-lags.

![Density Functions of CVA with Different Time-Lags](image)

It is observed that the longer the time lag is, the wider the density is, and that the mode (or average) moves to the right when the time-lag becomes longer. Here, we recall that in the CVA equation (34), we have

\[
f(h^{[1]}, h^{[2]}, V_{u}^{(0)}, V_{u-\Delta}^{(0)}) = h^{[1]} \cdot (V_{u-\Delta}^{(0)} - V_{u}^{(0)})^+ - h^{[2]} \cdot (V_{u}^{(0)} - V_{u-\Delta}^{(0)})^+.
\] (41)
Then, we are able to see that when the first term on the right hand side increases, the CVA also increases. This is because in our parameterization the hazard rate $h^{[1],\delta}$ in the first term tends to be larger than $h^{[2],\delta}$ in the second term mainly due to $h^{[1]}_0 > h^{[2]}_0$.

The next figure shows the density functions of CVA with different evaluation dates.

![Density Functions of CVA with Different Evaluation Dates](image)

Because the CVA depends on the time to maturity $T - t$, we can see that when the evaluation date t is in the more future (0.5, 1, · · ·, 4.5), that is, the shorter the time to maturity ($T - t$) becomes, the CVA becomes smaller.

5. Interacting Particle Method

As it is still a tough task to approximate FBSDEs more than the first order values analytically, we make use of a Monte Carlo method based on a so-called *interacting particle technique*.

Hereafter, we assume that both parties post their collaterals perfectly with the constant time-lag Δ (i.e. $\Gamma_t = V_{t-\Delta}$).

To calculate the values of $V^{(1)}$ and $V^{(2)}$, we apply interacting particle method introduced by Fujii-Takahashi [2012b]. Based on Proposition 1 in Fujii-Takahashi [2012b], $V^{(1)}$ is expressed as follows:

$$ V^{(1)}_t = 1_{\{\tau > t\}}E\left[1_{\{\tau < T\}}\hat{f}_t\left(X_\tau, V^{(0)}_\tau, V^{(0)}_{\tau-\Delta}\right) | \mathcal{F}_t \right], \quad (42) $$

where τ represents an interaction time, which is drawn independently from a Poisson distribution with an arbitrary deterministic positive intensity λ, and \hat{f} is defined as follows:

$$ \hat{f}_t(X_s, V^{(0)}_s, V^{(0)}_{s-\Delta}) = \frac{1}{\lambda}e^{\lambda(s-t)}e^{-\lambda(s-t)}f(s, X_s, V^{(0)}_s, V^{(0)}_{s-\Delta}). \quad (43) $$

The above equations can be understood by intuition. That is, firstly using (18) with \(\Gamma^{(0)}_t = V^{(0)}_{t-\Delta} \), we derive a stochastic differential equation which is satisfied by \(\hat{V}^{(1)}_{t,s} := e^{\lambda(s-t)}V^{(1)}_s \). Then, noting \(V^{(1)}_t = \hat{V}^{(1)}_{t,t} \), we obtain the following equation:

\[
V^{(1)}_t = \mathbb{E} \left[\int_t^T e^{-\lambda(u-t)} \lambda \hat{f}_t \left(X_u, V^{(0)}_u, V^{(0)}_{u-\Delta} \right) du \right].
\] (44)

We remark that by standard results of credit risk models (e.g. Bielecki-Rutkowski [2000]), the right hand side in this equation is known as the present value of a contract whose maturity \(T \), hazard rate \(\lambda \) and payment \(\hat{f}_t \left(X_u, V^{(0)}_u, V^{(0)}_{u-\Delta} \right) \) at a default time \(u(> t) \). Consequently, we express \(V^{(1)}_t \) as (42).

Similarly, the expression of \(V^{(2)}_t \) is given as

\[
V^{(2)}_t = 1_{\{\tau > t\}} \mathbb{E} \left[1_{\{\tau_1 < T\}} V^{(1)}_{\tau_1} \partial_{\tau_1} \hat{f}_t \left(X_{\tau_1}, V^{(0)}_{\tau_1}, V^{(0)}_{\tau_1-\Delta} \right) + 1_{\{\tau_1 < t\}} V^{(1)}_{\tau_1-\Delta} \partial_{\tau_1-\Delta} \hat{f}_t \left(X_{\tau_1}, V^{(0)}_{\tau_1}, V^{(0)}_{\tau_1-\Delta} \right) \right].
\] (45)

Moreover, using tower property for conditional expectations, \(V^{(2)}_t \) is expressed as follows:

\[
V^{(2)}_t = 1_{\{\tau > t\}} \mathbb{E} \left[1_{\{\tau_1 < \tau_2 < T\}} \hat{f}_{\tau_1} \left(X_{\tau_2}, V^{(0)}_{\tau_2}, V^{(0)}_{\tau_2-\Delta} \right) \partial_{\tau_1} \hat{f}_t \left(X_{\tau_1}, V^{(0)}_{\tau_1}, V^{(0)}_{\tau_1-\Delta} \right) + 1_{\{\tau_1 < \tau_2 < T\}} \hat{f}_{\tau_1} \left(X_{\tau_2}, V^{(0)}_{\tau_2}, V^{(0)}_{\tau_2-\Delta} \right) \partial_{\tau_1-\Delta} \hat{f}_t \left(X_{\tau_1}, V^{(0)}_{\tau_1}, V^{(0)}_{\tau_1-\Delta} \right) \right] + \mathbb{E} \left[\frac{1}{\lambda} e^{\lambda (\tau_1-t)} e^{-\rho(\tau_1-t)} \left(-(r^{p}_{\tau_1} - c^{p}_{\tau_1}) - h^{[1]}_{\tau_1} l^{[1]}_{\tau_1} \mathbb{1}_{\{V^{(0)}_{\tau_1-\Delta} > V^{(0)}_{\tau_1}\}} - h^{[2]}_{\tau_1} l^{[2]}_{\tau_1} \mathbb{1}_{\{V^{(0)}_{\tau_1-\Delta} < V^{(0)}_{\tau_1}\}} \right) + \frac{1}{\lambda} e^{\lambda (\tau_1-t)} e^{-\rho(\tau_1-t)} \left((r^{q}_{\tau_1} - c^{q}_{\tau_1}) + h^{[1]}_{\tau_1} l^{[1]}_{\tau_1} \mathbb{1}_{\{V^{(0)}_{\tau_1-\Delta} > V^{(0)}_{\tau_1}\}} + h^{[2]}_{\tau_1} l^{[2]}_{\tau_1} \mathbb{1}_{\{V^{(0)}_{\tau_1-\Delta} < V^{(0)}_{\tau_1}\}} \right) \right] \right] \right] \right].
\] (46)

In the cases that \(\tau < \Delta \), we define \(V_{\tau-\Delta} \) and the second term of right hand side of (46) as 0.

Based on above preparations, we summarize a procedure to calculate \(V^{(i)}, \ i = 1, 2 \) by a Monte Carlo method. We set the number of discretization of \([0, T] \) as \(N \), this is, reference times are \(\{0, \frac{T}{N}, \frac{2T}{N}, \cdots, T \} \), and set the number of simulation as \(M \). Then, the procedure of calculation is follows.

1. In order to get the stopping time \(\tau \), we generate uniform random numbers \((u_i, \ i = 1, \cdots, N) \) corresponding to the reference times \(\{0, \frac{T}{N}, \frac{2T}{N}, \cdots, T \} \). Then, using the first \(i \) which satisfies \(1 - e^{-\lambda \frac{T}{N}} > u_i \), we set \(\tau_1 = \frac{T}{N} \).

Next, using the first \(j \) which is larger than \(i (i < j) \) satisfying \(1 - e^{-\lambda \frac{T}{N}} > u_j \), we set \(\tau_2 = \frac{T}{N} \).
If $0 < \tau_1 < T$ for $V^{(1)}$ ($\tau_1 < \tau_2 < T$ for $V^{(2)}$), we proceed to Step 2 below.

2. We compute the realized values of diffusion processes of the underlying asset prices, hazard rates and a collateral asset value until τ_1 (τ_2) by Monte Carlo simulations4.

3. Using values $X_{\tau_1}, V^{(0)}_{\tau_1}, V^{(0)}_{\tau_1-\Delta}$ at τ_1 (τ_2) and $X_{\tau_2}, V^{(0)}_{\tau_2}, V^{(0)}_{\tau_2-\Delta}$ at τ_2, we calculate

\[
\hat{f}_0 \left(X_{\tau_1}, V^{(0)}_{\tau_1}, V^{(0)}_{\tau_1-\Delta} \right),
\]

\[
\hat{f}_{\tau_1} \left(X_{\tau_2}, V^{(0)}_{\tau_2}, V^{(0)}_{\tau_2-\Delta} \right)
\]

\[
\times \frac{1}{\lambda} e^{(\tau_1-t)} e^{-\xi^2 (\tau_1-t)} \left(-(r^p_{\tau_1} - c^p_{\tau_1}) - h_{\tau_1}^{[1]} \int_{\tau_1}^{\tau} \mathbf{1}_{\{V^{(1)}_{\tau_1-\Delta} > V^{(1)}_{\tau_1}\}} - h_{\tau_1}^{[2]} \int_{\tau_1}^{\tau} \mathbf{1}_{\{V^{(1)}_{\tau_1-\Delta} < V^{(1)}_{\tau_1}\}} \right)
\]

\[
\times \frac{1}{\lambda} e^{(\tau_1-t)} e^{-\xi^2 (\tau_1-t)} \left((r^q_{\tau_1} - c^q_{\tau_1}) + h_{\tau_1}^{[1]} \int_{\tau_1}^{\tau} \mathbf{1}_{\{V^{(1)}_{\tau_1-\Delta} > V^{(1)}_{\tau_1}\}} + h_{\tau_1}^{[2]} \int_{\tau_1}^{\tau} \mathbf{1}_{\{V^{(1)}_{\tau_1-\Delta} < V^{(1)}_{\tau_1}\}} \right),
\]

and store these values.

4. Reiterate M times from Step 1 to Step 3, and take the average.

Finally, we note that in our models, as the driver f of the BSDE (6)-(8) does not depend on the volatility Z of the BSDE, we do not need to calculate Z.

6. Second Example - Option Pricing with Counter Party Risk and Imperfect Collateralization -

This section applies the scheme introduced in the previous section to the derivatives pricing with counter party risk and imperfect collateralization. Particularly, we analyze the impacts on the option values of the changes in the parameters of the underlying factors, the correlations among the factors and the times to maturities of the options. Moreover, we examine the shapes of implied volatility curves of the options.

6.1. Models

First, we explain the models which are used in simulations. Hereafter, W stands for an eight dimensional standard Brownian motion. For $x, y \in \mathbb{R}^n$, we use notations $x \cdot y = \sum_{i=1}^{n} x_i y_i$.

- The underlying asset price S is described by a SABR model:

\[
\begin{align*}
 dS_t &= \left(r^p_t - \delta_t \right) S_t dt + \nu_t (S_t)^{\beta} \Sigma S \cdot dW_t; \quad S_0 = s_0, \\
 d\nu_t &= \nu_t \Sigma \cdot dW_t; \quad \nu_0 = \nu_0.
\end{align*}
\]

4When the value of diffusion process is smaller than 0, we set a value as 0.
Both of the hazard rates \((h^i, i = 1, 2)\) and the risk-free rates \((r^p, r^q)\) of currencies \(p\) and \(q\) follow CIR models:

\[
dh^i_t = \kappa_i \left(\theta_i - h^i_t \right) dt + \sqrt{h^i_t} \Sigma h^i_t \cdot dW^i_t; \quad h^0_t = \hat{h}_0^i, \tag{51}
\]

\[
dr^p_t = \kappa_{rp} \left(\theta_{rp} - r^p_t \right) dt + \sqrt{r^p_t} \Sigma_{rp} \cdot dW^i_t; \quad r^0_p = \hat{r}^0_p, \tag{52}
\]

\[
dr^q_t = \kappa_{rq} \left(\theta_{rq} - r^q_t \right) dt + \sqrt{r^q_t} \Sigma_{rq} \cdot dW^i_t; \quad r^0_q = \hat{r}^0_q. \tag{53}
\]

The collateral asset price \((A)\) follows a SABR model:

\[
DA_t = \mu_A A_t dt + A_t^{\alpha_A} \nu_t^A \Sigma_A \cdot dW^i_t; \quad A_0 = a_0, \tag{54}
\]

\[
\nu_t^A = \nu_0^A + \nu_t^A \Sigma_{\nu^A} \cdot dW^i_t; \quad \nu_0^A = \hat{\nu}_0^A. \tag{55}
\]

Here, \(\Sigma_S, \Sigma_\nu, \Sigma_{h^i}(i = 1, 2), \Sigma_{rp}, \Sigma_{rq}, \Sigma_A\) and \(\Sigma_{\nu^A}\) are eight dimensional vectors, which are determined by an instantaneous correlation matrix among \(S, \nu, h^i(i = 1, 2), r^p, r^q\) and \(A\).

For simplicity, we assume that collateral rates \((c^p, c^q)\) and loss rates \((l^{[1]}, l^{[2]})\) are constants.

The payoff \(\Psi\) at maturity \(T\) of a derivatives is expressed by a function of the underlying asset price \(S\). Particularly, for the case of a European call option with strike \(K\), \(\Psi\) is given as

\[
\Psi(S_T) = (S_T - K)^+ := \max\{S_T - K, 0\}. \tag{56}
\]

Moreover, we allow a collateral asset to be different from the cash of the settlement currency of the derivatives, such as the cash of a different currency. In addition, we consider the cases that both parties post no collaterals or post collaterals by the asset with its value \(A\) and a constant time-lag \(\Delta\).

Under the setting, the state variable vector \(\{X_t : t \geq 0\}\) is specified as \(X_t = (S_t, \nu_t, h^i_t, r^p_t, r^q_t, A_t, \hat{A}_t, \nu^A_t, \hat{\nu}^A_t)\), where \(\hat{A}_t := A_{t-\Delta}\). Then, the stochastic differential equation (2) is formulated by the above stochastic differential equations (49)-(55).

Then, the driver \(f\) for the no collateral case is expressed as follows:

\[
f(t, X, V, \Gamma) = f(t, X, V) = -y^p_t V_t + h^i_t l^{[1]}(-V_t)^+ - h^q_t l^{[2]}(V_t)^+, \tag{57}
\]

where \(y^p_t = r^p_t - c^p\).

On the other hand, the driver \(f\) for the case that the collateral asset with its value \(A\) is posted with a constant time-lag \(\Delta\) is expressed as follows:

\[
f(t, X, V, \Gamma) = y^p_t V_t A_t \Delta \frac{A_t}{A_{t-\Delta}} - y^q_t V_t + h^i_t l^{[1]} \left(V_t A_t \frac{A_t}{A_{t-\Delta}} - V_t \right)^+ - h^q_t l^{[2]} \left(V_t - V_t A_t \frac{A_t}{A_{t-\Delta}} \right)^+, \tag{58}
\]

where \(\Gamma_t = V_t A_t \frac{A_t}{A_{t-\Delta}}, y^p_t = r^p_t - c^p_t\) and \(y^q_t = r^q_t - c^q_t\).
6.2. Concrete Setup in Numerical Experiments

We calculate the values of OTC (over the counter) European call options on an asset price S.

Hereafter, to avoid complexity, we assume that the investor is default-free ($h^{[1]} \equiv 0$, $h = h^{[2]}$), and the loss rate of the counter party is 1 ($l^{[2]} = 1$), that is there is no recovery at default.

Under this setup, we have the following specifications:

- The driver of the BSDE with the no collateral case is expressed as follows:

\[
 f(t, X, V, \Gamma) = -y_t^p V_t - h^{[2]}_t V_t. \quad (59)
\]

The first order approximation $V_t^{(1)}$ in (20) (the general expression of the first order approximation in Section 3) is given as follows:

\[
 V_t^{(1)} = E \left[\int_t^T e^{-\int_t^u c_s^q ds} \left(-y_u^p V_u^{(0)} - h^{[2]}_u V_u^{(0)} \right) du \biggm| \mathcal{F}_t \right]. \quad (60)
\]

- The driver f of the BSDE for the case that the collateral asset with its value A is posted with a constant time-lag Δ is expressed as follows:

\[
 f(t, X, V, \Gamma) = y_t^q V_{t-\Delta} \frac{A_t}{A_{t-\Delta}} - y_t^p V_t - h^{[2]}_t \left(V_t - V_{t-\Delta} \frac{A_t}{A_{t-\Delta}} \right)^+. \quad (61)
\]

In this case, the first order approximation $V_t^{(1)}$ in (20), is obtained as follows:

\[
 V_t^{(1)} = E \left[\int_t^T e^{-\int_t^u c_s^q ds} \left[y_u^q V_u^{(0)} \frac{A_u}{A_{u-\Delta}} - y_u^p V_u^{(0)} - h^{[2]}_u \left(V_u^{(0)} - V_{u-\Delta} \frac{A_u}{A_{u-\Delta}} \right)^+ \right] du \biggm| \mathcal{F}_t \right], \quad (62)
\]

where we use the relation that $\Gamma_u^{(1)} = V_{u-\Delta} \frac{A_u}{A_{u-\Delta}}$.

We remark that in the following tables, $h^{[2]}$ is denoted as h.

In numerical examples, we investigate the following points:

1. effects of parameters
 - no collateral
 - effects of parameters of the hazard rate
 - effects of parameters of the interest rate r^p
 - asset collateral
 - effects of parameters of the hazard rate
 * time-lags : 0.25 or 0.02
effects of parameters of the interest rate \(r_p \)
 * time-lags: 0.25 or 0.02

effects of parameters of the interest rate \(r_q \)

effects of parameters of the collateral asset \(A \)

2. effects of correlations
 - no collateral
 - effects of correlations among \(S, h \) and \(r_p \)
 - asset collateral
 - effects of correlations among \(S, h, r_p \) and \(A \)
 - effects of correlations among \(S, h, r_q \) and \(A \)

3. effects of the maturities
 - no collateral
 - asset collateral

The Monte Carlo simulations with the interacting particle method are implemented with time-step size \(1/200 \) year and 5 million sample paths, and \(V^{(0)} \) is evaluated by the formula of Hagan et al. [2002].

Hereafter, we make the following assumptions otherwise mentioned.

- We set the correlations which are not under consideration for the effects in the changes as 0.
- We set the risk free rates and the collateral rates as \(r^p = c^p = 1\% \) or \(r^q = c^q = 1\% \) when \(r^p \) or \(r^q \) is a constant.

Under these settings with no collateral posting, the driver \(f \) of the BSDE (59) is expressed as

\[
\begin{align*}
f(t, X, V, \Gamma) &= -h^2 t V_t, (r^p : constant) \\
f(t, X, V, \Gamma) &= -y^p t V_t - h^2 t V_t, (r^p : stochastic)
\end{align*}
\]

(63) \((64) \)

On the other hand, when the collateral is posted with a constant time-lag \(\Delta \) by the asset whose value is \(A \), the driver (61) is expressed as

\[
\begin{align*}
f(t, X, V, \Gamma) &= -h^2 t \left(V_t - V_{t-\Delta} \frac{A_t}{A_{t-\Delta}} \right)^+, (r^p \text{ and } r^q : \text{constant}) \\
f(t, X, V, \Gamma) &= y^q t \frac{A_t}{A_{t-\Delta}} - h^2 t \left(V_t - V_{t-\Delta} \frac{A_t}{A_{t-\Delta}} \right)^+, (r^p : constant) \\
f(t, X, V, \Gamma) &= -y^p t V_t - h^2 t \left(V_t - V_{t-\Delta} \frac{A_t}{A_{t-\Delta}} \right)^+, (r^q : constant)
\end{align*}
\]

(65) \((66) \) \((67) \)
\[f(t, X, V, \Gamma) = y^q_t V_{t-\Delta} \frac{A_t}{A_{t-\Delta}} - y^p_t V_t - h_t^{[2]} \left(V_t - V_{t-\Delta} \frac{A_t}{A_{t-\Delta}} \right)^+, \quad (r^p \text{ and } r^q : \text{stochastic}) \] (68)

- The time-lag \(\Delta \) is equal to 0.25.
- The OTC European option is ATM \((K = S_0)\) call option with 6 years maturity, where the underlying asset yields a dividend, which is equal to the risk free rate (i.e. the drift term of the risk-neutral asset price process is 0).

The underlying asset price follows the SABR model and its parameters are specified as follows:

<table>
<thead>
<tr>
<th>Table 1: Parameters of the underlying asset price (SABR model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\begin{tabular}{cccccc} s_0 & 100 & \beta & 0.5 & \nu_0 & 2 \ \text{underlying asset and its volatility} & & & & \sigma_\nu & 0.4 & \rho & 0 \end{tabular}</td>
</tr>
</tbody>
</table>

Here, \(\sigma_X := |\Sigma_X| \) where \(|x| = \sqrt{\sum_{i=1}^n x_i^2} \) for \(x \in \mathbb{R}^n\). \(\rho \) is the instantaneous correlation between \(S\) and \(\nu\). We note that the corresponding Black-Scholes volatility is about 20\%, where the Black-Scholes volatility is defined as \(\sigma\) such that \(\nu_0 S_0^\beta = \sigma S_0\).

- The parameters of the stochastic differential equation of the collateral asset value (54) are generally assumed to be a SABR model. However, otherwise mentioned, we use the following parameters, that is \(A\) follows a log-normal model.

<table>
<thead>
<tr>
<th>Table 2: Parameters of the collateral asset price</th>
</tr>
</thead>
<tbody>
<tr>
<td>\begin{tabular}{cccccc} s_0 & 1 & \mu_A & 0 & \beta & 1 \ \text{collateral asset and its volatility} & & & & \nu_0^A & 50% & \sigma_A & 0 & \rho & 0 \end{tabular}</td>
</tr>
</tbody>
</table>

\(\rho \) is the instantaneous correlation between \(A\) and \(\nu^A\).

- The parameters of the stochastic differential equation (SDE) of the hazard rate are specified as follows:

<table>
<thead>
<tr>
<th>Table 3: Parameters of Hazard Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>\begin{tabular}{cccccc} h_0 & 4% & \kappa & 1 & \theta & 4% \ \text{hazard rate} & & & & \sigma_h & 40% \end{tabular}</td>
</tr>
</tbody>
</table>
Here, the initial value of the hazard rate $h_0 = 4\%$ is taken from the results of Hull - White [2005], which is regarded as the default probability about between Ba and Baa ratings.

- When the risk free rate r^p or r^q is stochastic, the parameters of the SDE are set as follows:

<table>
<thead>
<tr>
<th>Table 4: Parameters of risk free interest rate ($r^x = r^p$ or r^q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\hat{r}_0^x}{r_0^x}$</td>
</tr>
<tr>
<td>risk free rate (r^p)</td>
</tr>
<tr>
<td>risk free rate (r^q)</td>
</tr>
</tbody>
</table>

- "0th", "1st" and "2nd" in the tables stand for the values of $V^{(0)}$, $V^{(1)}$ and $V^{(2)}$, respectively. "total" means the sum of 0th, 1st and 2nd values, that is the sum of $V^{(0)}$, $V^{(1)}$ and $V^{(2)}$ (Total = $V^{(0)} + V^{(1)} + V^{(2)}$).

6.3. Effects of Parameters

We investigate the effects of the changes in the parameters of the underlying factors with or without collateral.

6.3.1. No Collateral

Here, we change the parameters of the hazard rate h and the interest rate r^p for uncollateralized contracts.

First, we investigate the effects of the changes in the parameters of the hazard rate. The cases of the parameters of the hazard rate are given as follows:

<table>
<thead>
<tr>
<th>Table 5: Parameters of Hazard Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
</tr>
<tr>
<td>i</td>
</tr>
<tr>
<td>ii</td>
</tr>
<tr>
<td>iii</td>
</tr>
<tr>
<td>iv</td>
</tr>
<tr>
<td>iii</td>
</tr>
<tr>
<td>iv</td>
</tr>
</tbody>
</table>

From the results in Hull - White [2005], the default probability 2% is the one for a rating between A and Baa, and 4% is for a rating between Baa and Ba, and 6% is for a rating between Ba and B. Here, in order to concentrate on the effects of the parameters of h, we assume that r^p is a constant as $r^p = c^p$. The results are given as follows:
Table 6: Effects of Hazard Rate - no collateral -

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-2.26</td>
<td>-2.54</td>
<td>-4.52</td>
<td>-4.62</td>
<td>-6.79</td>
<td>-6.81</td>
</tr>
<tr>
<td>2nd</td>
<td>0.17</td>
<td>0.31</td>
<td>0.60</td>
<td>0.82</td>
<td>1.31</td>
<td>1.61</td>
</tr>
<tr>
<td>Total</td>
<td>17.60</td>
<td>17.46</td>
<td>15.77</td>
<td>15.90</td>
<td>14.21</td>
<td>14.50</td>
</tr>
</tbody>
</table>

This result shows that the level of hazard rate (\(h_0\) and \(\theta\)) has a large impact on the 1st order value \(V^{(1)}\). However, the effect of volatility of the hazard rate is small (see case i and ii, or iii and iv). In the cases of iii and iv, the volatility of the hazard rate has a larger impact on the 2nd order value \(V^{(2)}\) than on the 1st order value \(V^{(1)}\).

We also note that the sign of the 2nd order value is different from that of the 1st order value. This is because while \(V^{(1)}\) is evaluated based on the default-free price, it should be based on the value including the default risk, and \(V^{(2)}\) makes its adjustment.

In terms of call and put option’s implied volatilities, these results are expressed as follows:

Figure 3: Implied volatility of call and put option prices with no collateral posting

The result shows that is the lower the rating (high value of hazard rate), the implied volatilities become decrease more. Especially, this is the case for the deeper In-The-Money (ITM) options. In fact, for the call options the shapes of the skew curves have upward slopes, as opposed to that for the default-free case. Moreover, this results means that the put-call parity does not hold and that implied volatilities of call and put options with the same strike do not coincide.
We can understand it from the following observation: the losses become larger in the deeper ITMs when the counter party defaults, and the default probability is higher for the worse rating of the counter party. Consequently, the values of correction terms become larger. That is, the decreases in the implied volatilities become larger.

Next, we study the effects of interest rate r^p. The cases of parameters are as follows:

<table>
<thead>
<tr>
<th>r^p</th>
<th>κ</th>
<th>θ</th>
<th>σ_{r^p}</th>
<th>OIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>ii</td>
<td>1%</td>
<td>1%</td>
<td>20%</td>
<td>1%</td>
</tr>
<tr>
<td>iii</td>
<td>1%</td>
<td>1%</td>
<td>40%</td>
<td>1%</td>
</tr>
<tr>
<td>iv</td>
<td>4%</td>
<td>4%</td>
<td>20%</td>
<td>1%</td>
</tr>
<tr>
<td>v</td>
<td>4%</td>
<td>4%</td>
<td>40%</td>
<td>1%</td>
</tr>
<tr>
<td>vi</td>
<td>4%</td>
<td>4%</td>
<td>20%</td>
<td>4%</td>
</tr>
<tr>
<td>vii</td>
<td>4%</td>
<td>4%</td>
<td>40%</td>
<td>4%</td>
</tr>
</tbody>
</table>

The results are as follows:

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
<th>vi</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>-4.63</td>
<td>-4.65</td>
<td>-5.05</td>
<td>-7.92</td>
<td>-8.03</td>
<td>-3.54</td>
<td>-3.61</td>
</tr>
<tr>
<td>2nd</td>
<td>0.82</td>
<td>0.85</td>
<td>1.01</td>
<td>2.00</td>
<td>2.23</td>
<td>0.65</td>
<td>0.80</td>
</tr>
<tr>
<td>Total</td>
<td>15.89</td>
<td>15.89</td>
<td>15.65</td>
<td>13.77</td>
<td>13.90</td>
<td>13.56</td>
<td>13.64</td>
</tr>
</tbody>
</table>

The effect of the collateral cost $y^p = r^p - c^p$ is the same as that of h because of the functional form f. Hence, the results are similar to that of h in no collateral case. Although the cases ii, iii and vi, vii have the same initial and long term collateral spreads ($r^p_0 = \theta, r^p = c^p$), the difference of the interest rate level affects the level of the pre-default value. Moreover, when the initial value of the risk free rate is different from the collateral rate (see iv and v), the second order value $V^{(2)}$ affects more than 10% of the default free derivatives price. Thus, one needs to consider about the effects of interest rate, especially when the collateral cost y^p is not equal to 0.

6.3.2. Asset Collateral

Next, we investigate the cases of an asset collateralized contract.

First, we study the effects of parameters of the hazard rate for different volatilities of the asset collateral price. The parameters of the hazard rate are the same as in Table 5. We consider the cases that the time-lag of collateral posting is 0.25 years or 0.02 years.
As in the no collateral case, to concentrate on the effects of the parameter changes of \(h \), we assume that \(r^p \) and \(r^q \) are constants as \(r^p = c^p \) and \(r^q = c^q \).

The results are given as follows:

Table 9: Effects of Hazard Rate - time-lag : 0.25 years -

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-0.44</td>
<td>-0.48</td>
<td>-0.87</td>
<td>-0.89</td>
<td>-1.31</td>
<td>-1.32</td>
</tr>
<tr>
<td>2nd</td>
<td>0.002</td>
<td>0.003</td>
<td>0.006</td>
<td>0.008</td>
<td>0.012</td>
<td>0.016</td>
</tr>
<tr>
<td>Total</td>
<td>19.26</td>
<td>19.21</td>
<td>18.82</td>
<td>18.81</td>
<td>18.39</td>
<td>18.39</td>
</tr>
</tbody>
</table>

Table 10: Effects of Hazard Rate - time-lag : 0.02 years -

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>16.45</td>
</tr>
<tr>
<td>1st</td>
<td>-0.11</td>
<td>-0.12</td>
<td>-0.21</td>
<td>-0.22</td>
<td>-0.32</td>
<td>-0.32</td>
</tr>
<tr>
<td>2nd</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

The absolute values of \(V^{(1)} \) and \(V^{(2)} \) are smaller than those in the no collateral cases. The first order value \(V^{(1)} \) is mainly changed by the initial value \((h_0) \) and its long term value \((\theta) \) of the hazard rate, and the effect of the volatility on the hazard rate is small as in the no collateral case. The 2nd order value \(V^{(2)} \) is very small, even if the volatility of collateral asset price is 50%. Especially, in the case of short time-lag \((\Delta = 0.02) \), the effect of the 2nd order value is almost 0.

Next, we change parameters of the interest rate \(r^p \) or \(r^q \) for the asset collateralized contracts.

First, we study the effects of the interest rate \(r^p \) \((r^q \) is a constant as \(r^q = c^q \)). The parameters are the same as in Table 7. The results are as follows:

Table 11: Effects of Interest Rate \(r^p \) - asset collateral, time-lag : 0.25 years -

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
<th>vi</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>-0.89</td>
<td>-0.92</td>
<td>-1.32</td>
<td>-4.29</td>
<td>-4.40</td>
<td>-0.68</td>
<td>-0.76</td>
</tr>
<tr>
<td>2nd</td>
<td>0.01</td>
<td>0.03</td>
<td>0.10</td>
<td>0.46</td>
<td>0.67</td>
<td>0.05</td>
<td>0.19</td>
</tr>
<tr>
<td>Total</td>
<td>18.81</td>
<td>18.80</td>
<td>18.47</td>
<td>15.86</td>
<td>15.97</td>
<td>15.82</td>
<td>15.88</td>
</tr>
</tbody>
</table>
The absolute values of $V^{(1)}$ and $V^{(2)}$ are smaller than those in the no collateral cases, as in the results of the effect of the hazard rate case. As opposed to the no collateral case, the impact of r^p is much larger than that of hazard rate h. Under the current assumption, h affects only $\left(V_t - V_{t-\Delta} \frac{A_t}{A_{t-\Delta}} \right)^+$, which is seen from the equation (61). On the other hand, r^p_t affects V_t itself. Thus, in the collateral posted case, the change in the y^p has the larger effect on the derivatives value.

As in the Table 7, when the level of r^p is different from c^p, the second order value $V^{(2)}$ has a large impact, even if the collateral is posted (see iv and v). Thus, we cannot ignore the second order value, especially when the risk free rate is different from the collateral rate.

The Table 12 shows the results of 0.02 years time-lag:

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
<th>vi</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>-0.22</td>
<td>-0.24</td>
<td>-0.65</td>
<td>-3.61</td>
<td>-3.72</td>
<td>-0.17</td>
<td>-0.25</td>
</tr>
<tr>
<td>2nd</td>
<td>0.00</td>
<td>0.02</td>
<td>0.09</td>
<td>0.39</td>
<td>0.61</td>
<td>0.05</td>
<td>0.19</td>
</tr>
</tbody>
</table>

The short time lag makes the first order values $V^{(1)}$ decrease. However, the second order values $V^{(2)}$ are not so small. From these results, we need to consider the second order values in the cases of wide collateral spreads and the stochastic interest rate, even if the time lag of collateralization is short.

Next, we check the effects of another interest rate r^q based on the following parameters.

<table>
<thead>
<tr>
<th></th>
<th>r^q_0</th>
<th>κ</th>
<th>θ</th>
<th>σ_{r^q}</th>
<th>OIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>ii</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>20%</td>
<td>1%</td>
</tr>
<tr>
<td>iii</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>20%</td>
<td>1%</td>
</tr>
<tr>
<td>iv</td>
<td>4%</td>
<td>1%</td>
<td>4%</td>
<td>20%</td>
<td>1%</td>
</tr>
<tr>
<td>v</td>
<td>4%</td>
<td>1%</td>
<td>4%</td>
<td>40%</td>
<td>1%</td>
</tr>
<tr>
<td>vi</td>
<td>4%</td>
<td>1%</td>
<td>4%</td>
<td>20%</td>
<td>4%</td>
</tr>
<tr>
<td>vii</td>
<td>4%</td>
<td>1%</td>
<td>4%</td>
<td>40%</td>
<td>4%</td>
</tr>
</tbody>
</table>

The results are given as follows:
Table 14: Effects of Interest Rate r^q - asset collateral -

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
<th>vi</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-0.89</td>
<td>-0.86</td>
<td>-0.45</td>
<td>2.37</td>
<td>2.46</td>
<td>-0.89</td>
<td>-0.78</td>
</tr>
<tr>
<td>2nd</td>
<td>0.01</td>
<td>0.06</td>
<td>0.28</td>
<td>0.44</td>
<td>1.12</td>
<td>0.23</td>
<td>0.91</td>
</tr>
<tr>
<td>Total</td>
<td>18.81</td>
<td>18.89</td>
<td>19.53</td>
<td>22.50</td>
<td>23.28</td>
<td>19.04</td>
<td>19.83</td>
</tr>
</tbody>
</table>

It is observed that when the volatility becomes high, the first order value contributes to the plus side in the total value, as opposed to the effects of the changes in the other factors’ volatilities, where the first order values contribute to the minus sides in the total values. The reason is that the sign of the term concerning with r^q is plus that is different from the sign of another term concerning with $h^{[2]}$ (see (66)). Thus, the first order value contributes to the plus side in the total value, when the r^q moves widely or $y^q > 0$. (This phenomenon is observed in the case of $y^p < 0$, because of the sign of y^p in (67).) However, in the cases of $y^q < 0$, the first order value moves conversely.

Moreover, as in the case of r^p in Table 11, the cases that risk free rate r^q is different from collateral rate c^q have a large impact, and we need to treat carefully these cases.

Finally, we study the effects of the parameters of the collateral asset price. The cases that we consider are specified as follows:

Table 15: Parameters of the Collateral Asset Price

<table>
<thead>
<tr>
<th>Collateral Asset Price</th>
<th>A_0</th>
<th>μ_A</th>
<th>β</th>
<th>ν^A_0</th>
<th>σ_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>ii</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>iii</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>iv</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>50%</td>
<td>30%</td>
</tr>
<tr>
<td>iv</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

The risk free rates are set as a constant ($r^p = c^p$ and $r^q = c^q$). The results of collateral asset price are given as follows:

Table 16: Effects of the collateral asset price

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-0.75</td>
<td>-0.75</td>
<td>-0.89</td>
<td>-0.91</td>
<td>-0.71</td>
</tr>
<tr>
<td>2nd</td>
<td>0.001</td>
<td>0.002</td>
<td>0.008</td>
<td>0.011</td>
<td>0.000</td>
</tr>
<tr>
<td>Total</td>
<td>18.95</td>
<td>18.94</td>
<td>18.81</td>
<td>18.80</td>
<td>18.98</td>
</tr>
</tbody>
</table>
This result shows that the volatility on volatility of the collateral asset price does not have a large impact on the pre-default value. The effects of the volatility on the collateral asset price are also not so large.

6.4. Correlation Effect

In this subsection, we investigate the effects of the changes in the correlations among the state variables on the derivatives values. The rows of "X, Y" in the tables show the result for the effects of the changes in the correlation between "X" and "Y".

6.4.1. No Collateral

For the cases of contracts without collateral, we study the effects of the changes in the correlations among the underlying asset price S, the hazard rate h and the stochastic interest rate r_p (r_d is set as a constant $r_d = c_d$).

Table 17: Call option prices with no collateral

<table>
<thead>
<tr>
<th>correlation</th>
<th>-0.8</th>
<th>0</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S, h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-6.01</td>
<td>-8.04</td>
<td>-11.41</td>
</tr>
<tr>
<td>2nd</td>
<td>1.27</td>
<td>2.22</td>
<td>4.21</td>
</tr>
<tr>
<td>Total</td>
<td>14.96</td>
<td>13.88</td>
<td>12.49</td>
</tr>
<tr>
<td>S, y_p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-6.05</td>
<td>-8.04</td>
<td>-11.27</td>
</tr>
<tr>
<td>2nd</td>
<td>1.28</td>
<td>2.22</td>
<td>4.18</td>
</tr>
<tr>
<td>Total</td>
<td>14.93</td>
<td>13.88</td>
<td>12.60</td>
</tr>
<tr>
<td>h, y_p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-8.04</td>
<td>-8.04</td>
<td>-8.04</td>
</tr>
<tr>
<td>2nd</td>
<td>2.04</td>
<td>2.22</td>
<td>2.61</td>
</tr>
<tr>
<td>Total</td>
<td>13.70</td>
<td>13.88</td>
<td>14.26</td>
</tr>
</tbody>
</table>

When the correlation between S and h is high, the absolute values of the 1st ($V^{(1)}$) and the 2nd ($V^{(2)}$) become large. This is because a high correlation between S and h means that the default risk becomes high when the option value is high.

Under the assumption that r_p is stochastic, the correlation between h and $y_p = r_p - c_p$ does not affect the first order term ($V^{(1)}$): we can understand it from the functional form of $V^{(1)}$ in (60), which is dependent on $V^{(0)}$ in (17) and the driver f in (59).

The impact of the correlation between S and h is the same as that of the correlation between S and y_p when h and y_p have the same parameter values, due to the expression in (59). However, under our parameter specifications, the correlation between S and h has the larger impact on $V^{(1)}$ than the correlation between S and y_p.
In general, the lower the rating is, the higher h and its variation are. Then, the effect of the change in the correlation between S and h becomes larger. In our case, however, the initial value of the diffusion coefficient in the hazard rate’s SDE is 400bp, while that in the collateral cost is 300 bp. Hence, the impact of the correlation between S and h is larger.

Next, we compare the effects of the correlation between S and h with that of the correlation between S and y_p by implied volatilities. The parameters are specified in Table 1-4 except r^q (that is, $y^q = 0$), and the correlations are given as follows:

<table>
<thead>
<tr>
<th>Table 18: Correlations for Implied volatilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation</td>
</tr>
<tr>
<td>y_p, S</td>
</tr>
<tr>
<td>h, S</td>
</tr>
</tbody>
</table>

The results are as follows:

Figure 4: Correlations for Implied volatilities with no collateral (Call Options)
From Figure 4 and 5, it is observed that when the correlation between S and h or S and y^p becomes higher, the implied volatilities of call options become lower. This is because the default probability of the counter party increases when the underlying asset price rises (that is, the option value rises), and hence the correction terms of option values become larger. The effects of the both correlations (S and h or S and y^p) are similar in these case, because the parameters of h are the same as those of r^p.

In the case of put options, the shapes of the skew curves are reversed compared to those in the call options, because put option values become larger in the lower underlying asset prices. That is, when the correlation between S and h becomes lower (the negative correlation becomes higher), the implied volatilities of put options become lower.

6.4.2. Asset Collateral

For the case of asset collateral posting, we investigate the effects of the changes in the correlations among the underlying asset price S, the hazard rate h, the collateral cost y^p or y^q and the collateral asset value A.

First, we study the case of a stochastic y^p and a constant $y^q = 0$.

Figure 5: Correlations for Implied volatilities with no collateral (Put Options)
Table 19: Call option prices with collateral posting

<table>
<thead>
<tr>
<th>Correlation</th>
<th>-0.8</th>
<th>0</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S, h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-3.95</td>
<td>-4.40</td>
<td>-5.30</td>
</tr>
<tr>
<td>2nd</td>
<td>0.61</td>
<td>0.67</td>
<td>0.79</td>
</tr>
<tr>
<td>Total</td>
<td>16.35</td>
<td>15.97</td>
<td>15.18</td>
</tr>
<tr>
<td>S, r^p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-2.36</td>
<td>-4.40</td>
<td>-7.83</td>
</tr>
<tr>
<td>2nd</td>
<td>0.16</td>
<td>0.67</td>
<td>1.90</td>
</tr>
<tr>
<td>Total</td>
<td>17.50</td>
<td>15.97</td>
<td>13.77</td>
</tr>
<tr>
<td>h, r^p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-4.40</td>
<td>-4.40</td>
<td>-4.39</td>
</tr>
<tr>
<td>2nd</td>
<td>0.66</td>
<td>0.67</td>
<td>0.71</td>
</tr>
<tr>
<td>Total</td>
<td>15.95</td>
<td>15.97</td>
<td>16.02</td>
</tr>
<tr>
<td>A, r^p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-4.39</td>
<td>-4.40</td>
<td>-4.39</td>
</tr>
<tr>
<td>2nd</td>
<td>0.69</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>Total</td>
<td>16.00</td>
<td>15.97</td>
<td>16.02</td>
</tr>
<tr>
<td>S, A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-4.64</td>
<td>-4.40</td>
<td>-4.15</td>
</tr>
<tr>
<td>2nd</td>
<td>0.72</td>
<td>0.67</td>
<td>0.61</td>
</tr>
<tr>
<td>Total</td>
<td>15.78</td>
<td>15.97</td>
<td>16.15</td>
</tr>
<tr>
<td>h, A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0th</td>
<td>19.69</td>
<td>19.69</td>
<td>19.69</td>
</tr>
<tr>
<td>1st</td>
<td>-4.72</td>
<td>-4.40</td>
<td>-4.19</td>
</tr>
<tr>
<td>2nd</td>
<td>0.76</td>
<td>0.67</td>
<td>0.61</td>
</tr>
<tr>
<td>Total</td>
<td>15.73</td>
<td>15.97</td>
<td>16.11</td>
</tr>
</tbody>
</table>

In this setting, the effect of the correlation concerning with the collateral asset value A is not small at the first order value $V^{(1)}$. ("S, A 1st" and "h, A 1st" in Table 19) This is because the increase in the option premium (or default risk) makes the collateral value decrease when the correlation between S (or h) and A is negative, and hence the more collateral posting is required.

The correlation between h and $y^p = r^p - c^p$ does not affect the first order term ($V^{(1)}$) under our assumptions, which is seen from the functional form of $V^{(1)}$ in (62), which is dependent on $V^{(0)}$ in (17) and the driver f in (61). Moreover, the correlation between A and y^p does not affect the first term ($V^{(1)}$), which is again understood from the functional form of the equation (62) with a constant c^p and $V^{(0)}$ in (17). 5

However, the impact of the correlation between S and y^p is larger than the one between S and h, when the correlation changes from -0.8 to 0.8 because of the same reason as for the table 11.

5The differences of $V^{(1)}$ on the cases h, r^p or A, r^p in Table 19 are caused by the number of sample paths of Monte Carlo simulations.
We also compare the effects of the correlation between S and h with that of the correlation between S and y^p by using implied volatilities as in the previous figures 4 and 5. The parameters are given in Table 1 - 4 except r^q (that is, $y^q = 0$), and the correlations are the same as in Table 18. In this setting, the results are as follows:

Figure 6: Correlations for Implied volatilities with asset collateral (Call Options)

![Figure 6: Correlations for Implied volatilities with asset collateral (Call Options)](image1)

Figure 7: Correlations for Implied volatilities with asset collateral (Put Options)

![Figure 7: Correlations for Implied volatilities with asset collateral (Put Options)](image2)

It is observed in Figure 6 and 7 that contrary to the case of no collateral, the effects of
the correlation between S and y^p are larger than that of correlation between S and h. The reason is that in both of the no collateral and asset collateral cases, the terms concerning with y^p is the same form as $y^p V_t$, while the terms concerning with h is different, that is $h^2_t V_t$ in the no collateral case and $h^2_t \left(V_t - V_{t-\Delta} \frac{A_t}{A_{t-\Delta}} \right) +$ in the asset collateral case. (See (64) and (67).) Consequently, even if the collateral is posted, we need to consider the correlations between S and the collateral cost y^p.

Next, we study the stochastic y^q with the asset collateral case. We assume that r^p is a constant as $r^p = c^p$.

<table>
<thead>
<tr>
<th>Table 20: Correlation effect with asset collateral posting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>S, h</td>
</tr>
<tr>
<td>0th</td>
</tr>
<tr>
<td>1st</td>
</tr>
<tr>
<td>2nd</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>S, r^q</td>
</tr>
<tr>
<td>0th</td>
</tr>
<tr>
<td>1st</td>
</tr>
<tr>
<td>2nd</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>h, r^q</td>
</tr>
<tr>
<td>0th</td>
</tr>
<tr>
<td>1st</td>
</tr>
<tr>
<td>2nd</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>A, r^q</td>
</tr>
<tr>
<td>0th</td>
</tr>
<tr>
<td>1st</td>
</tr>
<tr>
<td>2nd</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

We observe that in the correlated S and y^q case, the first and second order absolute values do not become large simultaneously, due to the same reason as for "Effects of Interest Rate r^q - asset collateral -" in Table 14.

It is the same as in the case of stochastic y^p that the correlation between S and y^q largely affects pre-default value.

From these results, when there is a large spread between the risk free rate and the collateral rate, the effect of the risk free rate is larger than that of the hazard rate in the collateral posted case.

6.5. Maturity Effect

In this subsection we investigate the effects of the option values of the differences on the contract maturity.
First, we assume that the collateral cost y^q is set as 0, while y^p follows a stochastic process, whose parameters are in Table 4. (The driver of the BSDE is given by (64) or (67).) Maturities of options are 2, 4, 6, 8 and 10 years.

6.5.1. No Collateral

Table 21 and Figure 8 show the options prices without default risks: $V^{(0)}$ denoted by 0th, the traditional CVAs in practice $V^{(1)}$ denoted by 1st and the second order correction term $V^{(2)}$ denoted by 2nd.

<table>
<thead>
<tr>
<th></th>
<th>2 years</th>
<th>4 years</th>
<th>6 years</th>
<th>8 years</th>
<th>10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>0th</td>
<td>11.32</td>
<td>16.06</td>
<td>19.69</td>
<td>22.75</td>
<td>25.42</td>
</tr>
<tr>
<td>0th + 1st</td>
<td>9.74</td>
<td>11.61</td>
<td>11.67</td>
<td>10.71</td>
<td>9.45</td>
</tr>
<tr>
<td>0th + 1st + 2nd</td>
<td>9.90</td>
<td>12.49</td>
<td>13.90</td>
<td>14.98</td>
<td>16.16</td>
</tr>
</tbody>
</table>

This result shows that the second order value ($V^{(2)}$) largely affects the pre-default values in the long maturity such as 10 years. The effect of the second order value is increased when the maturity is longer: in the case of 2 years maturity, the second order effect ($V^{(2)}$) is less than 1% of the corresponding default-free price. However, in the case of the 10 years maturity, the second order value ($V^{(2)}$) affects more than 10%. This result also reveals that if the rating of the counter party is not good, the traditional CVA in practice could overestimate the adjustment for an option price.
6.5.2. Asset Collateral

Next, we study the case of the asset collateral posting. Table 22 and Figure 9 show the results for the collateral posting case.

<table>
<thead>
<tr>
<th></th>
<th>2 years</th>
<th>4 years</th>
<th>6 years</th>
<th>8 years</th>
<th>10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>0th</td>
<td>11.32</td>
<td>16.06</td>
<td>19.69</td>
<td>22.75</td>
<td>25.42</td>
</tr>
<tr>
<td>0th + 1st</td>
<td>10.35</td>
<td>13.55</td>
<td>15.25</td>
<td>16.19</td>
<td>16.60</td>
</tr>
<tr>
<td>0th + 1st + 2nd</td>
<td>10.41</td>
<td>13.83</td>
<td>15.92</td>
<td>17.45</td>
<td>18.62</td>
</tr>
</tbody>
</table>

Even if the collateral is posted, the effect of the second order value \(V^{(2)} \) becomes important when there exists a non negligible collateral cost \(y^p \).

7. Basket Option

In this section, we investigate the results for the basket option which consists of two assets. We assume that both asset prices follow the SABR models, the option payoff at maturity \(T \) is defined as

\[
(S_T^{(1)} + S_T^{(2)} - K)^+,
\]

and the maturity is 6 years. Parameters of both assets are listed in Table 1 and the correlations between those asset price processes are set as 0. Parameters of the hazard
rate is listed in Table 3, and the collateral spreads are set as 0. To calculate \(V^{(0)} \) analytically, we use the asymptotic expansion method in Shiraya-Takahashi [2014].

Under the setting, we study the following cases without collateral.

<table>
<thead>
<tr>
<th>Correlation</th>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
<th>vi</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1, h)</td>
<td>0</td>
<td>0.5</td>
<td>-0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(S_2, h)</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>-0.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\nu_1, h)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>(\nu_2, h)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

The results are given as follows:

<table>
<thead>
<tr>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>vi</th>
<th>viii</th>
<th>x</th>
<th>xii</th>
</tr>
</thead>
<tbody>
<tr>
<td>0th</td>
<td>30.10</td>
<td>30.10</td>
<td>30.10</td>
<td>30.10</td>
<td>30.10</td>
<td>30.10</td>
</tr>
<tr>
<td>1st</td>
<td>-6.96</td>
<td>-10.77</td>
<td>-7.14</td>
<td>-4.34</td>
<td>-8.18</td>
<td>-7.19</td>
</tr>
<tr>
<td>2nd</td>
<td>1.25</td>
<td>2.75</td>
<td>1.35</td>
<td>0.45</td>
<td>1.69</td>
<td>1.36</td>
</tr>
<tr>
<td>total</td>
<td>24.39</td>
<td>22.08</td>
<td>24.31</td>
<td>26.21</td>
<td>23.60</td>
<td>24.27</td>
</tr>
</tbody>
</table>

These results show that the effect of correlation between \(S_i \) and \(h \) is larger than that of correlation between \(\nu_i \) and \(h \), because the volatility affects the option premium smaller than the underlying asset price.

When one asset has a positive correlation, and the other has a negative correlation (case iii and vi), the effects of correlations are canceled each other and the results are similar to the result of 0 correlation (case i).

Finally, we confirm that by applying the interacting particle method with the asymptotic expansion, we can calculate the values of a nonstandard option such as a basket option with counter party’s credit risks, which is expected to be more accurate than the ones with the traditional CVAs in practice, since we take the second order correction term into account.

8. Conclusion

We have studied the impacts of imperfect collateralization on forward and option values. In particular, we examine the cases of no collateral posting and collateral posting with time-lag. We also derive an approximation for the density function of the traditional CVA (Credit Value Adjustment) in the valuation of forward contract with bilateral counter party risk. Moreover, we have considered the case that the collateral values depend not only on the underlying contract prices, but also on other asset values: for instance,
currencies different from the payment currency or assets such as treasuries suffering from their own price fluctuations. In addition, we investigate the effect of imperfect collateralization on basket options.

In the numerical experiments we have shown that in the uncollateralized cases, one needs to consider not only so-called the wrong way risk between the underlying asset prices and default probabilities, but also the effects of changes in interest rates and more accurate evaluation than in the traditional CVAs in practice. That is, for fair evaluation of derivatives contracts we should include higher order correction terms in our approximation method for the solutions to the pricing FBSDEs (forward backward stochastic differential equations). Particularly, for contracts with long maturities and low rating counter parties, the second order approximation term \(V(2) \) should not be ignored.

In addition, under the existence of default risks we have shown that the put-call parity does not hold, and that implied volatilities of call and put options with the same strike do not coincide.

In the collateralized contract cases, when the time-lag of collateral posting is long, the collateral asset value is volatile or the interest rate is stochastic, our analyses have revealed that one needs to appropriately estimate those effects through the higher order correction terms in the approximate solution to the pricing FBSDE.

More realistically, it is necessary to analyze large-scale portfolios in financial institutions that consist of various types of financial assets and derivatives, which will be one of our next research topics.

Appendix. Derivation of (4)

For a derivatives contract whose payoff is \(\Psi \) at maturity \(T(>0) \), we derive the pre-default value \(V(t) \) \((t > t)\) from the investor\((i=1)\)'s viewpoint, where \(t > t \) means that both the investor and the counter party do not default until time \(t \).

We assume that the regularity conditions necessary for the discussion are satisfied, and that \(V \) does not jump at default of the contract parties.

In addition, the discussion below can be applied to not only options, but also general derivatives including forward contracts.

We set the derivatives value as \(S_t \), and define \(S_t = 0 \) on \(\{\tau \leq t\} \). From the viewpoint of the investor \((i = 1)\), the payoffs at default of the investor and the counter party are expressed respectively as follows:

\[
\eta^{1}_{u} := \left(S_{u} - l^{1}_{u}(S_{u} - \Gamma_{u})^{+} \right) 1_{\{S_{u} < 0\}} + \left(S_{u} + l^{1}_{u}(\Gamma_{u} - S_{u})^{+} \right) 1_{\{S_{u} \geq 0\}}, \quad (70)
\]

\[
\eta^{2}_{u} := \left(S_{u} - l^{2}_{u}(S_{u} - \Gamma_{u})^{+} \right) 1_{\{S_{u} < 0\}} + \left(S_{u} + l^{2}_{u}(\Gamma_{u} - S_{u})^{+} \right) 1_{\{S_{u} \geq 0\}}. \quad (71)
\]
Thus, the value of derivatives at time $t(< \tau)$ is given as follows:

$$S_t = e^{\int_0^t r_u^0 ds} E^{Q^p} \left[e^{-\int_0^T r_u^0 ds} \Psi_1 \right] \left(\tau > T \right) + \int_t^T e^{-\int_0^u r_u^0 ds} (r_u^q - c_u^q) \Gamma_u 1_{(\tau > u)} du$$

$$+ \int_t^T e^{-\int_0^u r_u^0 ds} [1]_u 1_{(\tau > u)} du + \int_t^T e^{-\int_0^u r_u^0 ds} [2]_u 1_{(\tau > u)} du$$

$$= e^{\int_0^t r_u^0 ds} \left[e^{-\int_0^T r_u^0 ds} \Psi_1 \right] \left(\tau > T \right) + \int_0^t e^{-\int_0^u r_u^0 ds} (r_u^q - c_u^q) \Gamma_u 1_{(\tau > u)} du$$

$$+ \int_0^t e^{-\int_0^u r_u^0 ds} [1]_u 1_{(\tau > u)} du + \int_0^t e^{-\int_0^u r_u^0 ds} [2]_u 1_{(\tau > u)} du$$

$$= M_t,$$ (72)

where the first term in the right hand side stands for the value of the derivatives payoff, and the second term represents the gain (in the case of a positive sign) or the loss (in the case of a negative sign), which is generated from the collateral posting. The third and fourth terms express the payoffs at default of the investor ($i = 1$) and the counterpart party ($i = 2$), respectively.

Hereafter, we consider the pre-default value V which satisfies the relation that $S_t = V_t 1_{\{\tau > t\}}$ at $\{\tau > t\}$.

First, the next equation holds by (72):

$$S_t e^{\int_0^t r_u^0 ds} + \int_0^t e^{\int_0^u r_u^0 ds} (r_u^q - c_u^q) \Gamma_u 1_{(\tau > u)} du$$

$$+ \int_0^t e^{\int_0^u r_u^0 ds} [1]_u 1_{(\tau > u)} du + \int_0^t e^{\int_0^u r_u^0 ds} [2]_u 1_{(\tau > u)} du$$

$$= E^{Q^p} \left[e^{-\int_0^T r_u^0 ds} \Psi_1 \right] \left(\tau > T \right) + \int_0^t e^{-\int_0^u r_u^0 ds} (r_u^q - c_u^q) \Gamma_u 1_{(\tau > u)} du$$

$$+ \int_0^t e^{-\int_0^u r_u^0 ds} [1]_u 1_{(\tau > u)} du + \int_0^t e^{-\int_0^u r_u^0 ds} [2]_u 1_{(\tau > u)} du.$$ (73)

where M_t is a Q^p-martingale. If we set $H^i_t = M^i_t + \int_0^t h^i_u 1_{(\tau > s)} ds$, then

$$dM_t = e^{\int_0^t r_u^0 ds} dS_t - r_t^p e^{\int_0^t r_u^0 ds} S_t dt + e^{-\int_0^t r_u^0 ds} (r_t^q - c_t^q) \Gamma_t 1_{(\tau > t)} dt$$

$$+ e^{\int_0^t r_u^0 ds} [1]_t 1_{(\tau > t)} dH^1_t + e^{\int_0^t r_u^0 ds} [2]_t 1_{(\tau > t)} dH^2_t$$

$$= e^{\int_0^t r_u^0 ds} dS_t - r_t^p e^{\int_0^t r_u^0 ds} S_t dt + e^{-\int_0^t r_u^0 ds} (r_t^q - c_t^q) \Gamma_t 1_{(\tau > t)} dt$$

$$+ e^{\int_0^t r_u^0 ds} [1]_t 1_{(\tau > t)} dM^1_t + e^{\int_0^t r_u^0 ds} [2]_t 1_{(\tau > t)} dM^2_t$$

$$+ e^{\int_0^t r_u^0 ds} [1]_t 1_{(\tau > t)} h^1_t dt + e^{\int_0^t r_u^0 ds} [2]_t 1_{(\tau > t)} h^2_t dt.$$ (74)

When we set $dm_t = e^{-\int_0^t r_u^0 ds} dM_t + \eta_{-1}^i 1_{(\tau > t)} dM^i_t + \eta_{-2}^i 1_{(\tau > t)} dM^2_t$, m_t is also a Q^p-martingale, and we have

$$dm_t = dS_t - r_t^p S_t dt + (r_t^q - c_t^q) \Gamma_t 1_{(\tau > t)} dt + \eta_1^i 1_{(\tau > t)} h^1_t dt + \eta_2^i 1_{(\tau > t)} h^2_t dt.$$ (75)

Since $S_t = 0$ on $\{\tau \leq t\}$, it holds that

$$dS_t = 1_{(\tau > t)} \left(r_t^p S_t dt - (r_t^q - c_t^q) \Gamma_t dt + \eta_1^i 1_{(\tau > t)} h^1_t dt - \eta_2^i 1_{(\tau > t)} h^2_t dt \right) + dm_t.$$ (76)
\[\begin{align*}
&= \mathbf{1}_{\{\tau > t\}}\left(r^q \frac{dS_t}{dt} - (r^q - c^q) \Gamma_t \, dt - S_t \, d\bar{h}_t \right) \\
&\quad + \left(t^1(S_t - \Gamma_t) \mathbf{1}_{\{S_t < 0\}} - t^1(\Gamma_t - S_t) \mathbf{1}_{\{S_t > 0\}} \right) h^1_t \, dt \\
&\quad + \left(t^2(S_t - \Gamma_t) \mathbf{1}_{\{S_t < 0\}} - t^2(\Gamma_t - S_t) \mathbf{1}_{\{S_t > 0\}} \right) h^2_t \, dt + dm_t, \quad (76)
\end{align*} \]

On the other hand, if we define

\[\begin{align*}
V_t &:= E^{Q_p} \left[e^{-\int^T_t r^p_0 \, du} \Psi + \int_t^T e^{-\int^s_t r^p_0 \, ds} \varpi_u \, du \bigg| F_t \right], \\
\varpi_u &:= (r^q_u - c^q_u) \Gamma_u + \vartheta^1_u h^1_u + \vartheta^2_u h^2_u, \\
\vartheta^1_u &:= - \left(t^1_u (V_u - \Gamma_u) \mathbf{1}_{\{V_u < 0\}} + (t^1_u(\Gamma_u - V_u)) \mathbf{1}_{\{V_u > 0\}} \right), \\
\vartheta^2_u &:= - \left(t^2_u (V_u - \Gamma_u) \mathbf{1}_{\{V_u < 0\}} + (t^2_u(\Gamma_u - V_u)) \mathbf{1}_{\{V_u > 0\}} \right), \\
\end{align*} \]

and then, the similar argument derives

\[\begin{align*}
e^{-\int^T_t r^p_0 \, du} V_t + \int_t^T e^{-\int^s_t r^p_0 \, ds} \varpi_u \, du &= E^{Q_p} \left[e^{-\int^T_t r^p_0 \, du} \Psi + \int_0^T e^{-\int_0^s r^p_0 \, ds} \varpi_u \, du \bigg| F_t \right] \\
&= \tilde{M}_t, \quad (81)
\end{align*} \]

where \(\tilde{M}_t \) is a \(Q^p \)-martingale. Since \(\tilde{m}_t \) is also a \(Q \)-martingale where \(dm_t = c^q_0 \, r^q_0 \, du \, d\tilde{M}_t \), it holds that

\[dV_t = (r^q V_t - \varpi_t) \, dt + d\tilde{m}_t. \quad (82) \]

Since the assumption that \(V \) does not jump at default (\(\Delta V_\tau := V_\tau - V_{\tau^-} = 0 \)), it holds that

\[\begin{align*}
d(V_t \mathbf{1}_{\{\tau > t\}}) &= \mathbf{1}_{\{\tau > t\}} dV_t - V_t \, dH_t - \Delta V_t \Delta H_t \\
&= \mathbf{1}_{\{\tau > t\}} (r^q V_t - \varpi_t) \, dt - V_t h_t \mathbf{1}_{\{\tau > t\}} \, dt - \Delta V_t \Delta H_t + d\tilde{m}_t \\
&= \mathbf{1}_{\{\tau > t\}} (r^q V_t \, dt - (r^q - c^q) \Gamma_t \, dt - V_t \, d\bar{h}_t) \\
&\quad + \left(t^1(V_t - \Gamma_t) \mathbf{1}_{\{V_t < 0\}} - t^1(\Gamma_t - V_t) \mathbf{1}_{\{V_t > 0\}} \right) h^1_t \, dt \\
&\quad + \left(t^2(V_t - \Gamma_t) \mathbf{1}_{\{V_t < 0\}} - t^2(\Gamma_t - V_t) \mathbf{1}_{\{V_t > 0\}} \right) h^2_t \, dt + d\tilde{m}_t, \quad (83)
\end{align*} \]

where \(d\tilde{m}_t = \mathbf{1}_{\{\tau > t\}} \left(d\tilde{m}_t + V_t \, (dM_t^1 + dM_t^2) \right) \). Both of the drivers of the BSDEs in (76) and (83) are the same, and the boundary conditions are also the same because of \(S_T = \mathbf{1}_{\{\tau > T\}} \Psi = \mathbf{1}_{\{\tau > T\}} \). Thus, we can regard the solution of the BSDE \(S_t \) as that of \(\mathbf{1}_{\{\tau > t\}} \).

Finally, we note that when the derivatives is an option contract, (4) is obtained since \(V_t \geq 0 \).
References

