東京大学金融教育研究センター
Japanese
English
Center for Advanced Research in Finance
お問い合わせ
サイトマップ
サイト検索
CARFホーム
センター紹介
ファカルティ
ワーキングペーパー
リサーチ
世界からのメッセージ
アクセス・マップ
リンク集
ワーキングペーパー
分類番号: CARF-F-391
発表時期: 2016 09
タイトル: A Return Prediction-based Investment with Particle Filtering and Anomaly Detection
著者: Masafumi Nakano, Akihiko Takahashi, Soichiro Takahashi
Abstract:

This paper proposes a new stochastic volatility model with time-varying expected return, which enables us to predict returns based on exponential moving averages of the past returns frequently used in practice. Particularly, exploiting a particle filter in a self-organizing state space framework, we demonstrate that a simple return prediction- based strategy is superior to well-known strategies such as equally-weighted, minimum-variance and risk parity portfolios, which do not depend on return prediction. In addition, we develop three types of anomaly detectors that are easily implemented in the algorithm of the particle filter and apply them to investment decision. As a result, our model robustly outperforms the exponential moving average. Our dataset is monthly total returns of global assets such as stocks, bonds and REITs, and investment performances are evaluated with various statistics such as compound returns, Sharpe ratios, Sortino ratios or drawdowns.

ファイル(PDF): full paper
ワーキングペーパー トップ
Copyright (C) Center for Advanced Research in Finance (CARF)