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Abstract

The efficient Bayesian estimation method using Markov chain Monte Carlo is pro-
posed for a multivariate stochastic volatility model that is a natural extension of the
univariate stochastic volatility model with leverage and heavy-tailed errors, where we
further incorporate cross leverage effects among stock returns. Our method is based on
a multi-move sampler which samples a block of latent volatility vectors and is described
first in the literature for a multivariate stochastic volatility model with cross leverage
and heavy-tailed errors. Its high sampling efficiency is shown using numerical examples
in comparison with a single-move sampler which samples one latent volatility vector at
a time given other latent vectors and parameters. The empirical studies are given using
five dimensional stock return indices in Tokyo Stock Exchange.
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1 Introduction

The univariate stochastic volatility (SV) models have been well known and successful to ac-

count for the time-varying variance in financial time series (e.g. Broto and Ruiz (2004)). Ef-

ficient Bayesian estimation methods are proposed using Markov chain Monte Carlo (MCMC)

methods since the likelihood functions are difficult to evaluate in the implementation of the

maximum likelihood estimation (e.g. Shephard and Pitt (1997), Omori, Chib, Shephard, and

Nakajima (2007)).

Extending these models to the multivariate SV (MSV) model has become recently a ma-

jor concern to investigate the correlation structure of multivariate financial time series for the

purpose of the portfolio optimisation, the risk management, and the derivative pricing. Mul-

tivariate factor modelling of stochastic volatilities has been widely introduced to describe the

complex dynamic structure of the high dimensional stock returns data (Jacquier, Polson, and

Rossi (1999), Liesenfeld and Richard (2003), Pitt and Shephard (1999), Lopes and Carvalho

(2007), and several efficient MCMC algorithms have been proposed (So and Choi (2009),

Chib, Nardari, and Shephard (2006)). On the other hand, efficient estimation methods for

MSV models with cross leverage (non-zero correlation between the i-th asset return at time

t and the j-th log volatility at time t+1 for all i, j) or asymmetry have not been well investi-

gated in the literature except for simple bivariate models (see surveys by Asai, McAleer, and

Yu (2006) and Chib, Omori, and Asai (2009)). Chan, Kohn, and Kirby (2006) considered the

Bayesian estimation of MSV models with correlations between measurement errors and state

errors, but their setup did not exactly correspond to the leverage effects. Asai and McAleer

(2006) simplified the MSV model with leverage by assuming no cross leverage effects (no

correlation between the i-th asset return at time t and the j-th log volatility at time t + 1

for i ̸= j) and describe the Monte Carlo likelihood estimation method.

In this paper, we consider a general MSV model with cross leverage and heavy-tailed

errors, and propose a novel efficient MCMC algorithm using a multi-move sampler which

samples a block of many latent volatility vectors simultaneously. To the best of our knowl-

edge, this is the first efficient multi-move sampler proposed in the literature for the general

MSV model with cross leverage and heavy-tailed errors. In the MCMC implementation for

the SV models, it is critical to sample the latent volatility (or state) variables from their full

conditional posterior distributions efficiently. The single-move sampler that draws a single
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volatility variable at a time given the rest of the volatility variables and other parameters is

easy to implement, but obtained MCMC samples are known to have high autocorrelations.

This implies we need to iterate the MCMC algorithm a huge number of times to obtain accu-

rate estimates when we use a single-move sampler. Thus we propose a fast and efficient state

sampling algorithm based on the approximate linear and Gaussian state space model. Such a

model is derived by approximating the conditional likelihood function by a multivariate nor-

mal density using a Taylor expansion around the mode. Starting with the current sample of

the state variables, the mode can be obtained easily by repeatedly applying the disturbance

smoother (Koopman (1993)) to the approximate auxiliary state space model. The samples

from the posterior distribution of latent state variables are obtained by Metropolis-Hastings

(MH) algorithm in which a simulation smoother for the linear and Gaussian state space

model (de Jong and Shephard (1995), Durbin and Koopman (2002)) is used to generate a

candidate.

The rest of the paper is organised as follows. Section 2 discusses a Bayesian estimation

of the MSV model using a multi-move sampler for the latent state variables. Extension to

the model with heavy-tailed errors are also considered. In Section 3, we provide numerical

examples using simulation data, and show that our proposed method outperforms the simple

single-move sampler regarding the sampling efficiencies. Section 4 gives empirical studies

using five dimensional stock return indices. Section 5 concludes the paper.

2 MSV model with cross leverage and heavy-tailed errors

2.1 Basic MSV Model

Let yt denote a stock return at time t. The univariate SV model with leverage is given by

yt = exp(αt/2)εt, t = 1, . . . , n, (1)

αt+1 = ϕαt + ηt, t = 1, . . . , n − 1, (2)

α1 ∼ N (0, σ2
η/(1 − ϕ2)), (3)

where (
εt

ηt

)
∼ N2(0,Σ), Σ =

(
σ2

ε ρσεση

ρσεση σ2
η

)
, (4)

αt is a latent variable for the log-volatility, and Nm(µ,Σ) denotes an m-variate normal

distribution with mean µ and covariance matrix Σ. To extend it to the MSV model, we
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let yt = (y1t, . . . , ypt)’ denote a p dimensional stock returns vector and αt = (α1t, . . . , αpt)′

denote their corresponding log volatility vectors, respectively. We consider the MSV model

given by

yt = V1/2
t εt, t = 1, . . . , n, (5)

αt+1 = Φαt + ηt, t = 1, . . . , n − 1, (6)

α1 ∼ Np (0,Σ0) , (7)

where

Vt = diag (exp(α1t), . . . , exp(αpt)) , (8)

Φ = diag(ϕ1, . . . , ϕp), (9)(
εt

ηt

)
∼ N2p(0,Σ), Σ =

(
Σεε Σεη

Σηε Σηη

)
. (10)

The (i, j)-th element of Σ0 is the (i, j)-th element of Σηη divided by 1 − ϕiϕj to satisfy a

stationarity condition Σ0 = ΦΣ0Φ + Σηη such that

vec(Σ0) =
(
Ip2 − Φ ⊗ Φ

)−1 vec(Σηη).

The expected value of the volatility evolution processes αt is set equal to 0 for the identifia-

bility. Let θ = (ϕ,Σ) where ϕ = (ϕ1, . . . , ϕp)′ and 1p denote a p× 1 vector with all elements

equal to one. Then the likelihood function of the MSV model (5)–(7) is given by

f(α1|θ)
n−1∏
t=1

f(yt, αt+1|αt, θ)f(yn|αn,θ)

∝ exp

{
n∑

t=1

lt −
1
2
α′

1Σ
−1
0 α1 −

1
2

n−1∑
t=1

(αt+1 − Φαt)′Σ−1
ηη (αt+1 − Φαt)

}
×|Σ0|−

1
2 |Σ|−

n−1
2 |Σεε|−

1
2 , (11)

where

lt = const − 1
2
1′

pαt −
1
2
(yt − µt)′Σ−1

t (yt − µt), (12)

µt = V1/2
t mt, Σt = V1/2

t StV
1/2
t , (13)

and

mt =
{

ΣεηΣ−1
ηη (αt+1 − Φαt), t < n,

0 t = n,
(14)

St =
{

Σεε − ΣεηΣ−1
ηη Σηε, t < n,

Σεε t = n.
(15)
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2.2 Bayesian analysis and MCMC implementation

Since there are many latent volatility vectors αt’s, it is difficult to integrate them out to

evaluate the likelihood function of θ analytically or using a high dimensional numerical inte-

gration. In this paper, by taking a Bayesian approach, we employ a simulation method, the

MCMC method, to generate samples from the posterior distribution to conduct a statistical

inference regarding the model parameters.

For prior distributions of θ, we assume

ϕj + 1
2

∼ B(aj , bj), j = 1, . . . , p, Σ ∼ IW(n0,R0),

where B(aj , bj) and IW(n0,R0) denote Beta and inverse Wishart distributions with proba-

bility density functions

π(ϕj) ∝ (1 + ϕj)
aj−1 (1 − ϕj)

bj−1 , j = 1, 2, . . . , p, (16)

π(Σ) ∝ |Σ|−
n0+p+1

2 exp
{
−1

2
tr
(
R−1

0 Σ−1
)}

. (17)

Using Equations (11), (16) and (17), we obtain the joint posterior density function of (θ,α)

given by

π(θ,α|Yn) ∝ f(α1|θ)
n−1∏
t=1

f(yt,αt+1|αt, θ)f(yn|αn, θ)
p∏

j=1

π(ϕj)π(Σ), (18)

where α = (α′
1, . . . , α

′
n)′ and Yn = {yt}n

t=1. We implement the MCMC algorithm in three

blocks:

1. Generate α|ϕ,Σ, Yn.

2. Generate Σ|ϕ, α, Yn.

3. Generate ϕ|Σ, α, Yn.

First we discuss two methods to sample α from its conditional posterior distribution in Step

1. One is a so-called single-move sampler which samples one αt at a time given other αj ’s,

while the other method is a multi-move sampler which samples a block of state vectors, say,

(αt, . . . ,αt+k) given the rest of state vectors.
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Generation of α

Single-move sampler. A simple but inefficient method is to sample one αt at a time given

other αj ’s and parameters. The conditional posterior probability density function of αt is

π(αt|{αs}s̸=t, ϕ,Σ, Yn) ∝ exp
{
−1

2
(αt − mαt)

′Σ−1
αt

(αt − mαt) + g(αt)
}

where

mαt =


Σα1

(
−1

21p + ΦM1α2

)
, t = 1,

Σαt

(
−1

21p + ΦMtαt+1 + Mt−1Φαt−1 + Nt−1

)
, 1 < t < n,

Σαn

(
−1

21p + Mn−1Φαn−1 + Nn−1

)
, t = n,

Σαt =


(
Σ−1

0 + ΦM1Φ
)−1

, t = 1,

(Mt−1 + ΦMtΦ)−1 , 1 < t < n,

M−1
n−1, t = n,

Mt = Σ−1
ηη + Σ−1

ηη ΣηεS−1
t ΣεηΣ−1

ηη , Nt = Σ−1
ηη ΣηεS−1

t V−1/2
t yt,

and g(αt) = −1
2y′

tΣ
−1
t yt +y′

tΣ
−1
t µt. Thus, to sample from the conditional posterior distribu-

tion using Metropolis-Hastings (MH) algorithm, we generate a candidate α†
t ∼ N(mαt ,Σαt)

and accept it with probability min
{

exp{g(α†
t) − g(αt)}, 1

}
for t = 1, . . . , n.

Multi-move sampler. As an alternative method, we propose an efficient block sampler for

α to sample a block of αt’s from the posterior distribution extending Omori and Watanabe

(2008) who considered the univariate SV model with leverage (see also Takahashi, Omori, and

Watanabe (2009)). First we divide α = (α′
1, . . . ,α

′
n)′ into K + 1 blocks (α′

ki−1+1, . . . ,α
′
ki

)′

using i = 1, . . . , K + 1 with k0 = 0, kK+1 = n and ki − ki−1 ≥ 2. The K knots (k1, . . . , kK)

are generated randomly using

ki = int[n × (i + Ui)/(K + 2)], i = 1, . . . , K,

where Ui’s are independent uniform random variable on (0, 1) (see e.g., Shephard and Pitt

(1997)). These stochastic knots have an advantage to allow the points of conditioning to

change over the MCMC iterations where K is a tuning parameter to obtain less autocorrelated

MCMC samples.

Suppose that ki−1 = s and ki = s + m for the i-th block and consider sampling this

block from its conditional posterior distribution given other state vectors and parameters.

Let ξt = R−1
t ηt, where the matrix Rt denotes a Choleski decomposition of Σηη = RtR′

t for
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t = s, s+1, . . . , s+m, and Σ0 = R0R′
0 for t = s = 0. To construct a proposal distribution for

MH algorithm, we focus on the distribution of the disturbance ξ ≡ (ξ′s, . . . , ξ
′
s+m−1)

′ which

is fundamental in the sense that it derives the distribution of α ≡ (α′
s+1, . . . ,α

′
s+m)′. Then,

the logarithm of the full conditional joint density distribution of ξ excluding constant terms

is given by

log f(ξ|αs, αs+m+1,ys, . . . ,ys+m) = −1
2

s+m−1∑
t=s

ξ′sξs + L, (19)

where L =
s+m∑
t=s

ls −
1
2
(αs+m+1 − Φαs+m)′Σ−1

ηη (αs+m+1 − Φαs+m)I(s + m < n). (20)

Then using the second order Taylor expansion of (19) around the mode ξ̂, we obtain approx-

imating normal density f∗ to be used for the MH algorithm as follows

log f(ξ|αs, αs+m+1, ys, . . . ,ys+m)

≈ const. − 1
2

s+m−1∑
t=s

ξ′tξt + L̂ +
∂L

∂ξ′

∣∣∣∣∣
ξ=ξ̂

(ξ − ξ̂) +
1
2
(ξ − ξ̂)′E

(
∂2L

∂ξ∂ξ′

)
(ξ − ξ̂)

= const. − 1
2

s+m−1∑
t=s

ξ′tξt + L̂ + d̂′(α − α̂) − 1
2
(α − α̂)′Q̂(α − α̂), (21)

= const. + log f∗(ξ|αs, αs+m+1, ys, . . . ,ys+m) (22)

where Q̂ and d̂ are Q = −E(∂2L/∂α∂α′) and d = ∂L/∂α evaluated at α = α̂ (i.e.,

ξ = ξ̂). Note that Q is positive definite and invertible. However, when m is large, it is

time consuming to invert the mp × mp Hessian matrix to obtain the covariance matrix of

the mp-variate multivariate normal distribution. To overcome this difficulty, we interpret the

equation (22) as the posterior probability density derived from an auxiliary state space model

so that we only need to invert p× p matrices by using the Kalman filter and the disturbance

smoother. It can be shown that f∗ is a posterior probability density function of ξ obtained

from the state space model:

ŷt = Ztαt + Gtut, t = s + 1, . . . , s + m, (23)

αt+1 = Φαt + Htut, t = s + 1, . . . , s + m − 1, (24)

ut ∼ N2p (0, I2p) ,

where ŷt, Zt, Gt are defined in Appendix A.1, and Ht = [O,Rt]. To find a mode ξ̂, we repeat

following steps until it converges,
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1. Compute α̂ at ξ = ξ̂ using (6).

2. Obtain the approximating linear Gaussian state-space model given by (23) and (24).

3. Applying the disturbance smoother by Koopman (1993) to the approximating linear

Gaussian state-space model in Step 2, compute the posterior mode ξ̂.

since these steps are equivalent to the method of scoring to find a maximiser of the conditional

posterior density. As an initial value of ξ̂, the current sample of ξ may be used in the MCMC

implementation. If the approximate linear Gaussian state-space model is obtained using a

mode ξ̂, then we draw a sample ξ from the conditional posterior distribution by MH algorithm

as follows.

1. Propose a candidate ξ† by sampling from q(ξ†) ∝ min(f(ξ†), cf∗(ξ†)) using the Acceptance-

Rejection algorithm where c can be constructed from a constant term and L̂ of (21):

(a) Generate ξ† ∼ f∗ using a simulation smoother (e.g. de Jong and Shephard (1995),

Durbin and Koopman (2002)) based on the approximating linear Gaussian state-

space model (23) - (24).

(b) Accept ξ† with probability min{f(ξ†)/cf∗(ξ†), 1}. If it is rejected, go back to (a).

2. Given the current value ξ, accept ξ† with probability

min

{
1,

f(ξ†) min(f(ξ), cf∗(ξ))

f(ξ) min(f(ξ†), cf∗(ξ†))

}
if rejected, accept the current ξ as a sample.

We will investigate the efficiency performance of above two sampling methods in Section 3

using the simulated data.

Generation of Σ and ϕ

The sampling method for Σ and ϕ is rather straightforward as we discuss below.

Generation of Σ. The conditional posterior probability density function of Σ is

π(Σ|ϕ, α, Yn) ∝ |Σ|−
n1+2p+1

2 exp
{
−1

2
tr
(
R−1

1 Σ−1
)}

× g(Σ),

g(Σ) = |Σ0|−
1
2 |Σεε|−

1
2 exp

{
−1

2

(
α′

1Σ
−1
0 α1 + y′

nV
−1/2
n Σ−1

εε V−1/2
n yn

)}
,
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where n1 = n0 + n − 1, R−1
1 = R−1

0 +
∑n−1

t=1 vtv
′
t and

vt =

(
V−1/2

t yt

αt+1 − Φαt

)
.

Then, using MH algorithm, we propose a candidate Σ† ∼ IW(n1,R1) and accept it with

probability min{g(Σ†)/g(Σ), 1}.

Generation of ϕ. Let Σij be a p × p matrix and denote the (i, j)-th block of Σ−1. Further,

let A =
∑n−1

t=1 αtα
′
t, B =

∑n−1
t=1 {αty

′
tV

−1/2
t Σ12 + αtα

′
t+1Σ

22} and b denote a vector whose

i-th element is equal to the (i, i)-th element of B. Then the conditional posterior probability

density function of ϕ is

π(ϕ|Σ, α, Yn) ∝ h(ϕ) × exp
{
−1

2
tr(ΦΣ22ΦA) − 2tr(ΦB)

}
∝ h(ϕ) × exp

{
−1

2
(ϕ − µϕ)′Σϕ(ϕ − µϕ)

}
,

h(ϕ) = |Σ0|−
1
2

p∏
j=1

(1 + ϕj)aj−1(1 − ϕj)bj−1 exp
{
−1

2
α′

1Σ
−1
0 α1

}
,

where µϕ = Σϕb, Σ−1
ϕ = Σ22 ⊙ A and ⊙ denotes a Hadamard product. To sample ϕ from

its conditional posterior distribution using MH algorithm, we generate a candidate from a

truncated normal distribution over the region R, ϕ† ∼ T NR(µϕ,Σϕ), R = {ϕ : |ϕj | < 1, j =

1, . . . , p} and accept it with probability min{h(ϕ†)/h(ϕ), 1}.

2.3 Associated Particle filter

This subsection describes the auxiliary particle filter (see Pitt and Shephard (1999)) to com-

pute the likelihood function ordinate given the parameter θ.

Let f(αt|Yt, θ) denote the conditional probability density function of αt given (Yt,θ) and

f̂(αt|Yt, θ) denote the corresponding discrete probability mass function which approximates

f(αt|Yt, θ). We consider sampling from the conditional joint distribution of (αt+1,αt) given

(Yt+1, θ) with a probability density function given by

f(αt+1, αt|Yt+1, θ) ∝ f(yt+1|αt+1)f(αt+1|yt, αt, θ)f(αt|Yt, θ), (25)
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where

f(yt|αt) = (2π)−p/2 |V1/2
t ΣεεV

1/2
t |−1/2 exp

{
−1

2
y′

tV
−1/2
t Σ−1

εε V−1/2
t yt

}
, (26)

f(αt+1|yt, αt, θ) = (2π)−p/2 |Σα|−1/2 exp
{
−1

2
(αt+1 − µα,t+1)′Σ−1

α (αt+1 − µα,t+1)
}

,(27)

µα,t+1 = Φαt + ΣηεΣ−1
εε V−1/2

t yt, Σα = Σηη − ΣηεΣ−1
εε Σεη.

Then using the importance probability density function given by

g(αt+1, αt|Yt+1, θ) ∝ f(yt+1|µi
α,t+1)f(αt+1|yt, α

i
t, θ)f̂(αi

t|Yt, θ)

∝ f(αt+1|yt, α
i
t, θ)g(αi

t|Yt+1, θ),

where

g(αi
t|Yt+1, θ) =

f(yt+1|µi
α,t+1)f̂(αi

t|Yt, θ)∑I
i=1 f(yt+1|µi

α,t+1)f̂(αi
t|Yt, θ)

,

µi
α,t+1 = Φαi

t + ΣηεΣ−1
εε Vi −1/2

t yt, Vi
t = Vt|αt=αi

t
,

we proceed the auxiliary particle filter as follows:

Step 1. Initialise t = 1 and generate αi
1 ∼ N (0,Σ0), (i = 1, . . . , I).

(a) Compute wi = f(y1|αi
1, θ), and record w̄1 = 1

I

∑I
i=1 wi.

(b) Let f̂(αi
1|Y1, θ) = πi

1 = wi/
∑I

j=1 wj , (i = 1, . . . , I).

Step 2. For each i, generate
(
αi

t+1, α
i
t

)
from g(αt+1,αt|Yt+1, θ), (i = 1, . . . , I).

(a) Compute

wi =
f(yt+1|αi

t+1)f(αi
t+1|yt, α

i
t,θ)f̂(αi

t|Yt,θ)
g
(
αi

t+1, α
i
t|yt+1, θ

) =
f(yt+1|αi

t+1)f̂(αi
t|Yt, θ)

g(αi
t|Yt+1, θ)

,

for i = 1, . . . , I, and record wt =
∑I

i=1 wi/I.

(b) Let f̂(αi
t+1|Yt+1, θ) = πi

t+1 = wi/
∑I

j=1 wj (i = 1, . . . , I).

Step 3 Increment t and go to Step 2.

Then,
n∑

t=1

log wt
p→

n∑
t=1

log f(yt|Yt−1, θ), as I → ∞,

is a consistent estimate of the conditional log-likelihood.

10



2.4 Extension to MSV model with heavy-tailed errors

The basic MSV model can be extended to incorporate heavy-tailed errors in stock returns.

Although the jump components can also be introduced, they are not considered here for sim-

plicity and heavy-tailed errors would be sufficient to account for similar behaviours of stock

returns as discussed in Nakajima and Omori (2009). To describe the fat-tailed distributions,

two types of multivariate t distributions through a scale mixture distribution are considered.

One of them has the common degrees of freedom for all stock returns, while the other has

individual degrees of freedom for each stock return. For convenience, we refer the former to

the type-1 multivariate t distribution and the latter to the type-2 multivariate t distribution.

Both of them can be expressed as a scale mixture of normal distributions as follows.

Let G(a, b) denotes a gamma distribution with a probability density function f(λ|a, b) ∝

λa−1 exp(−bλ) (a, b are known positive constants). Using a common scalar gamma random

variable λt, the type-1 multivariate t random variable with ν degrees of freedom is obtained

as

λ
−1/2
t εt, where λt ∼ G(ν/2, ν/2), εt ∼ Np(0,Σεε). (28)

On the other hand, the type-2 multivariate t random variable is obtained as (see e.g., Harvey,

Ruiz, and Shephard (1994))

diag
(
λ
−1/2
1t , . . . , λ

−1/2
pt

)
εt, where λjt ∼ i.i.d. G(νj/2, νj/2), εt ∼ Np(0,Σεε). (29)

Thus we extend our basic model as

y∗
t = Λ−1/2

t V1/2
t εt, Λt =

{
λtIp, if type-1,
diag(λ1t, . . . , λpt), if type-2,

(30)

for t = 1, . . . , n. The prior distributions for the parameters (ν, νj) are assumed to be

ν ∼ G(mν
0 , S

ν
0 ), νj ∼ G(mν

0j , S
ν
0j), j = 1, . . . , p. (31)

We denote the prior probability density functions of (ν, νj) by π(ν), π(νj), respectively.

To implement MCMC simulation, we sample (α, ϕ,Σ) as in Section 2.2 by setting yt =

Λ1/2
t y∗

t . Thus we focus on sampling from the conditional posterior distributions for other

parameters. To illustrate the algorithm, we consider the model with the type-1 multivariate t

distribution error in this section since Yu and Meyer (2006) found that the type-1 formulation
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(28) was empirically better supported than the type-2 formulation (29) in their bivariate

models. (see Appendix B for the model of the type-2 multivariate t distribution error).

The conditional posterior probability density function is given by

π(ν, λ|ϕ,Σ,α, Y ∗
n )

∝ π(ν)

{(
ν
2

) ν
2

Γ
(

ν
2

)}n n∏
t=1

λ
p+ν
2

−1
t × exp

[
−1

2

n∑
t=1

{
νλt +

(√
λty

∗
t − µt

)′
Σ−1

t

(√
λty

∗
t − µt

)}]
.

where Y ∗
n = {y∗

t }n
t=1, λ = {λt}n

t=1,. To sample from the posterior distribution, we implement

the MCMC simulation in three blocks:

1. Generate (α, ϕ,Σ) as in Section 2.2 using yt = Λ1/2
t y∗

t .

2. Generate ν ∼ π(ν|λ).

3. Generate λt ∼ π(λt|ϕ,Σ, αt, ν, y∗
t ) for t = 1, . . . , n.

Generation of ν. The conditional posterior probability densities of ν is given by

π(ν|ϕ,Σ, λ, α, Y ∗
n ) ∝ π(ν)

{(
ν
2

) ν
2

Γ
(

ν
2

)}n( n∏
t=1

λt

) ν
2

× exp
{
−
∑n

t=1 λt

2
ν

}
. (32)

To sample from this conditional posterior distribution, we first find a conditional mode ν̂ of

π(ν|ϕ,Σ,λ, α, Y ∗
n ) numerically. Using MH algorithm, we propose a candidate from a normal

distribution truncated over the region (0,∞), ν† ∼ T N (0,∞)N(µν , σ
2
ν), where

µν = ν̂ + σ2
ν

[
∂ log π(ν|ϕ,Σ, λ,α, Y ∗

n )
∂ν

∣∣∣∣
ν=ν̂

]
, σ2

ν =
[
−∂2 log π(ν|ϕ,Σ, λ, α, Y ∗

n )
∂ν2

∣∣∣∣
ν=ν̂

]−1

.

We accept the candidate with probability

min
[
π(ν†|ϕ,Σ, λ, α, Y ∗

n )fN (ν|µν , σ
2
ν)

π(ν|ϕ,Σ, λ,α, Y ∗
n )fN (ν†|µν , σ2

ν)
, 1
]

,

where fN (ν|µ, σ2) denotes a probability density function of a normal distribution with mean

µ and variance σ2.

Generation of λ = (λ1, . . . , λn). The conditional posterior probability density function of λt

is

π(λt|ϕ,Σ, ν, α, Yn) ∝ λ
ν+p
2

−1
t exp

{
−ct

2
λt + dt

√
λt

}
,
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where ct = ν +y∗′
t Σ−1

t y∗
t and dt = y∗′

t Σ−1
t µt. To sample λt using MH algorithm, we generate

a candidate λ†
t ∼ G((ν + p)/2, ct/2) and accept it with probability,

min
[
1, exp

{
dt

(√
λ†

t −
√

λt

)}]
.

Note that we generate λn ∼ G((ν + p)/2, cn/2) (since µn = 0 implies dn = 0).

3 Illustrative example using simulated data

This section illustrates our proposed methods using simulated data, and show the efficiency of

our proposed multi-move sampler in comparison with the single-move sampler. To simulate

the data from the basic MSV model in Section 2, we set

ϕi = 0.97, σi,εε ≡
√

V ar(εit) = 1.2,

σi,ηη ≡
√

V ar(ηit) = 0.2, ρi,εη ≡ Corr(εit, ηit) = −0.2, i = 1, 2, . . . , p,

which are typical values for the corresponding parameters of the univariate SV models in past

empirical studies. The negative value of ρi,εη implies the existence of the leverage effects. For

the correlation among εit’s and ηjt’s, we set similar values to those obtained in our empirical

studies:

ρij,εε ≡ Corr(εit, εjt) = 0.6, ρij,ηη ≡ Corr(ηit, ηjt) = 0.7,

ρij,εη ≡ Corr(εit, ηjt) = −0.1, for i ̸= j,

where the negative value of ρij,εη indicates the cross leverage effects. Using these parameters,

we generated n = 2, 000 observations of five stocks returns (p = 5). For prior distributions,

we assume

ϕj + 1
2

∼ B(20, 1.5), j = 1, . . . , 5, Σ ∼ IW(10, (10Σ∗)−1),

where Σ∗ is a true covariance matrix so that E(Σ−1) = Σ∗−1. The mean and standard

deviation of the prior distribution of ϕj are set 0.86 and 0.11.

Using MCMC algorithm described in Section 2.2, we generated 110,000 samples using

the multi-move sampler and 550,000 samples using the single-move sampler, and discard first

10,000 and 50,000 samples respectively as burn-in periods.
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Tables 1 and 2 show the estimation results using the multi-move sampler (with a tun-

ing parameter K = 100) for (ϕi, σi,εε, σi,ηη, ρi,εη) and (ρij,εε, ρij,ηη, ρij,εη), respectively. The

results using the single-move sampler are omitted except the inefficiency factors (shown in

the brackets in Table 1) since they are similar to those obtained for the multi-move sampler.

The posterior means and 95% credible intervals suggest that estimates are sufficiently close

to true values. The inefficiency factor is defined as 1 + 2
∑∞

s=1 ρs where ρs is the sample

autocorrelation at lag s, and are computed to measure how well the MCMC chain mixes (see

e.g. Chib (2001)). It is the ratio of the numerical variance of the posterior sample mean to

the variance of the sample mean from uncorrelated draws. When the inefficiency factor is

equal to m, we need to draw MCMC samples m times as many as uncorrelated samples.

Table 1: Estimation results for ϕi, σi,εε, σi,ηη and ρi,εη.
Posterior means, 95% credible intervals and inefficiency factors.

True i Mean 95% interval Inefficiency
multi [single]

ϕi 0.97

1 0.972 [0.962, 0.981] 60 [486]
2 0.976 [0.967, 0.983] 55 [493]
3 0.963 [0.950, 0.974] 87 [451]
4 0.967 [0.956, 0.977] 74 [713]
5 0.967 [0.956, 0.977] 59 [506]

σi,εε 1.2

1 1.204 [1.047, 1.375] 380 [6881]
2 1.318 [1.113, 1.549] 378 [7254]
3 1.275 [1.135, 1.431] 301 [3369]
4 1.233 [1.097, 1.378] 240 [5014]
5 1.349 [1.187, 1.529] 274 [5003]

σi,ηη 0.2

1 0.203 [0.174, 0.234] 122 [384]
2 0.215 [0.186, 0.248] 97 [433]
3 0.220 [0.187, 0.256] 142 [376]
4 0.200 [0.171, 0.234] 143 [1080]
5 0.205 [0.175, 0.238] 115 [750]

ρi,εη −0.2

1 -0.251 [-0.373,-0.120] 55 [283]
2 -0.190 [-0.317,-0.058] 60 [388]
3 -0.125 [-0.257, 0.013] 80 [528]
4 -0.219 [-0.348,-0.088] 47 [307]
5 -0.114 [-0.255, 0.026] 55 [232]
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Table 2: Estimation results for ρij,εε, ρij,ηη and ρij,εη.
Posterior means, 95% credible intervals and inefficiency factors.

True ij Mean 95% interval Inefficiency
multi [single]

ρij,εε 0.6

12 0.612 [0.583, 0.640] 2 [14]
13 0.609 [0.580, 0.637] 2 [23]
14 0.608 [0.579, 0.636] 3 [29]
15 0.594 [0.564, 0.623] 1 [ 9]
23 0.586 [0.555, 0.615] 3 [10]
31 0.606 [0.577, 0.634] 2 [18]
32 0.602 [0.572, 0.631] 2 [15]
34 0.601 [0.572, 0.630] 3 [16]
35 0.603 [0.573, 0.632] 2 [16]
45 0.616 [0.587, 0.644] 3 [29]

ρij,ηη 0.7

12 0.773 [0.669, 0.856] 124 [667]
13 0.741 [0.629, 0.832] 101 [1002]
14 0.720 [0.601, 0.811] 138 [867]
15 0.685 [0.556, 0.787] 104 [459]
23 0.763 [0.645, 0.849] 159 [744]
31 0.773 [0.668, 0.852] 129 [703]
32 0.697 [0.566, 0.799] 159 [509]
34 0.758 [0.641, 0.847] 165 [716]
35 0.685 [0.548, 0.793] 137 [389]
45 0.684 [0.551, 0.789] 151 [591]

ρij,εη −0.1

12 -0.147 [-0.282,-0.011] 70 [281]
13 -0.080 [-0.218, 0.060] 48 [286]
14 -0.184 [-0.319,-0.043] 83 [493]
15 -0.046 [-0.196, 0.106] 53 [279]
21 -0.136 [-0.262,-0.003] 54 [429]
23 -0.021 [-0.155, 0.114] 44 [286]
24 -0.204 [-0.331,-0.067] 79 [453]
25 -0.035 [-0.176, 0.107] 49 [210]
31 -0.127 [-0.264, 0.015] 83 [503]
32 -0.110 [-0.247, 0.029] 64 [157]
34 -0.137 [-0.279, 0.007] 78 [500]
35 -0.015 [-0.161, 0.132] 63 [292]
41 -0.097 [-0.228, 0.040] 61 [592]
42 -0.132 [-0.260, 0.003] 61 [115]
43 -0.095 [-0.226, 0.041] 42 [205]
45 -0.061 [-0.203, 0.081] 51 [251]
51 -0.044 [-0.176, 0.091] 60 [532]
52 -0.115 [-0.243, 0.017] 41 [261]
53 -0.049 [-0.179, 0.081] 53 [335]
54 -0.192 [-0.321,-0.056] 61 [354]

The inefficiency factors of parameters obtained from the single-move sampler are much

larger (about 10 ∼ 20 times for σi,εε) larger than those from the block sampler, which implies
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our proposed algorithm using the multi-move sampler is highly efficient.
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Figure 1: Sample autocorrelation functions of σi,εε:
the single-move sampler vs. the multi-move sampler.

Figure 1 shows the sample autocorrelation functions of σi,εε (i = 1, . . . , 5) for the single-

move and the multi-move samplers. In contrast with the slow decay of the sample autocor-

relations in the single-move sampler, they vanish fairly quickly in the multi-move sampler.

This also indicates that the MCMC chain mixes well when the multi-move sampler is used.

Table 3: Maximum of inefficiency factors for K = 25, 50, 60, 100, 150
and for the single-move sampler.

K ϕj σi,εε σi,ηη ρi,εη ρij,εε ρij,ηη ρij,εη

25 322 1099 507 259 7 601 329
50 182 612 245 130 4 324 149
66 125 449 198 95 3 214 120
100 87 380 143 80 3 165 83
150 71 495 120 81 3 151 88

single-move 713 7254 1080 528 29 1002 592

Regarding a selection of a tuning parameter K, we set K = 100 in this example as follows.

Table 3 shows the maxima of inefficiency factors for ϕj ’s, σi,εε’s, σi,ηη’s, ρi,εη’s, ρij,εε’s, ρij,ηη’s

and ρij,εη’s using K = 25, 50, 66, 100 and 150 (the average block sizes n/K are 80, 40, 30,
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20 and 13). Since the maxima for K = 100 are overall smaller than those for other K’s, it

is selected as an optimal value in our MCMC simulation. If it is greater than 100 (i.e., the

number of elements in one block becomes small on an average), the Markov chain would not

move fast around in its state space due to the high correlations among adjacent αt’s. On

the other hand, if it is less than 100, the proposed states, αt’s, would be rejected too often

in the MH algorithm, which also results in the slow mixing of the chain.

4 Empirical studies

4.1 Data
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Figure 2: Returns of five sector indices and TOPIX

This section applies the MSV models to five stock returns data in Tokyo Stock Exchange.

We consider stock returns for five industry sectors defined by the log-difference of the clos-

ing values of TOPIX (Tokyo Stock Exchange Stock Price Index) sector indices: ‘Electric

appliances’ (Series 1), ‘Information and Communication’ (Series 2), ‘Machinery’ (Series 3),

‘Securities’ (Series 4) and ‘Services’ (Series 5). During the sample period from January 5,

1998 to December 30, 2004, there are 1,722 trading days. The time series plot of five re-

turn series and TOPIX are presented in Figure 2, which indicates the co-movement of the

volatility among five stock returns during this period.
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4.2 Univariate SV model

First we fit univariate SV models with leverage effects (1)-(2) to individual series. The SV

models with leverage effects and t-distributed error (SVt) are also estimated as benchmarks

for the multivariate models. The prior distributions for ϕ and Σ are assumed to be

ϕi + 1
2

∼ B(20, 1.5), Σi ∼ IW(5, (5Σ∗
i )

−1), Σ∗
i =

(
1 −0.02

−0.02 0.04

)
,

νi ∼ G(1, 0.05), i = 1, . . . , 5,

where νi’s are the degrees of freedom for the t-distributed error models. Since the posterior

estimates of νi may be sensitive to the choice of the prior distribution (see e.g. Nakajima

and Omori (2009)), we use a flat prior with mean 20 and standard deviation 20.

Table 4: Univariate SV model with leverage and t-distributed errors.
Posterior means, standard deviations and 95% credible intervals.

SV SVt
i Mean Stdev 95% interval Mean Stdev 95% interval

ϕi

1 0.973 0.009 [0.953, 0.988] 0.974 0.009 [0.955, 0.988]
2 0.969 0.010 [0.948, 0.986] 0.973 0.009 [0.954, 0.988]
3 0.940 0.016 [0.904, 0.967] 0.944 0.015 [0.911, 0.969]
4 0.955 0.014 [0.923, 0.978] 0.958 0.013 [0.927, 0.980]
5 0.976 0.007 [0.960, 0.989] 0.976 0.007 [0.961, 0.989]

σi,εε

1 1.556 0.118 [1.320, 1.788] 1.505 0.117 [1.269, 1.732]
2 2.004 0.182 [1.655, 2.366] 1.961 0.185 [1.589, 2.332]
3 1.269 0.051 [1.171, 1.372] 1.237 0.050 [1.140, 1.338]
4 2.351 0.144 [2.066, 2.632] 2.298 0.138 [2.038, 2.578]
5 1.383 0.143 [1.102, 1.676] 1.358 0.129 [1.101, 1.627]

σi,ηη

1 0.165 0.022 [0.125, 0.210] 0.159 0.021 [0.123, 0.203]
2 0.204 0.028 [0.154, 0.263] 0.188 0.026 [0.143, 0.242]
3 0.186 0.025 [0.142, 0.239] 0.173 0.023 [0.132, 0.223]
4 0.200 0.028 [0.147, 0.260] 0.189 0.028 [0.142, 0.249]
5 0.200 0.023 [0.158, 0.248] 0.195 0.023 [0.154, 0.244]

ρi,εη

1 -0.290 0.087 [-0.453,-0.114] -0.311 0.092 [-0.483,-0.124]
2 -0.260 0.084 [-0.416,-0.088] -0.262 0.087 [-0.423,-0.084]
3 -0.422 0.081 [-0.572,-0.255] -0.445 0.082 [-0.599,-0.276]
4 -0.271 0.083 [-0.425,-0.103] -0.270 0.084 [-0.426,-0.095]
5 -0.281 0.073 [-0.418,-0.131] -0.288 0.075 [-0.430,-0.136]

νi

1 41.44 21.33 [16.39, 98.93]
2 45.99 23.88 [15.70,108.69]
3 39.67 21.41 [14.25, 93.05]
4 41.66 22.54 [15.07, 98.83]
5 58.65 25.30 [22.08,119.77]

To implement the MCMC algorithm, we draw 60,000 samples and discard 10,000 samples
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as burn-in periods. Posterior means, standard deviations and 95% credible intervals are

shown in Table 4.

The estimates of ϕi’s vary from 0.940 to 0.976, and those of ρi’s vary from −0.422 to

−0.260, suggesting the strong persistences in the log volatilities and highly credible leverage

effects. These results are consistent with those in the previous empirical studies, and the

estimates of νi’s are about the same as those of TOPIX returns during this period (ν = 43.75,

more detail results for TOPIX returns using the SVt model are omitted).

4.3 MSV model

The following three MSV models are considered.

(i) MSV model: the basic MSV model.

(ii) MSVt1 model: the MSV model with type-1 multivariate t measurement errors.

(iii) MSVt2 model: the MSV model with type-2 multivariate t measurement errors.

The prior distributions are assumed to be

ϕi + 1
2

∼ B(20, 1.5), Σ ∼ IW(10, (10Σ∗)−1),

ν ∼ G(1, 0.05), νi ∼ G(1, 0.05), i = 1, . . . , 5,

where

Σ∗ =
(

Σ∗
εε Σ∗

εη

Σ∗′
εη Σ∗

ηη

)
=
(

1.52(0.5I5 + 0.5151′
5) 1.5 × 0.2 × (−0.1)I5

0.22(0.5I5 + 0.5151′
5)

)
,

and E(Σ−1) = Σ∗−1. Hyper-parameters of the prior distributions are chosen based on the

analysis of the univariate SV models. Using the MCMC algorithms described in Section

2, we draw 100,000 samples after discarding 20,000 samples as the burn-in period for the

MSV model, 150,000 samples after discarding 20,000 samples for the MSVt1 and the MSVt2

model. The tuning parameter K is set equal to 90 such that the average number of state

vectors in one block is about 20.

Table 5 shows posterior means, standard deviations, 95% credible intervals and ineffi-

ciency factors of ϕ, σi,εε, σi,ηη and ρi,εη for the MSV model (results for MSVt1 and MSVt2

models are similar and hence omitted). The estimated ϕi’s and σi,εε’s are slightly less than
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those of univariate SV or SVt models, while those of ρi,εη are found to be larger. This may

be because a part of the variation in one stock return is explained by that of other stock

returns since we found high correlations among εit’s and ηjt’s as shown later. Further, we

note that posterior standard deviations are mostly smaller than those of univariate models.

On the other hand, the magnitude of the dispersion, σi,ηη’s, in the state equations remains

about the same.

Table 5: MSV model. Posterior means, standard deviations,
95% credible intervals and inefficiency factors for (ϕ, σi,εε, σi,ηη, ρi,εη)

i Mean Stdev 95% interval Inefficiency

ϕi

1 0.956 0.008 [0.940, 0.970] 114
2 0.965 0.007 [0.951, 0.978] 177
3 0.945 0.009 [0.926, 0.961] 78
4 0.949 0.009 [0.929, 0.966] 119
5 0.967 0.005 [0.956, 0.977] 131

σi,εε

1 1.497 0.073 [1.350, 1.640] 182
2 1.844 0.128 [1.585, 2.082] 328
3 1.225 0.046 [1.136, 1.316] 133
4 2.212 0.109 [1.991, 2.420] 176
5 1.298 0.084 [1.134, 1.463] 249

σi,ηη

1 0.191 0.018 [0.158, 0.227] 147
2 0.203 0.018 [0.169, 0.240] 138
3 0.181 0.016 [0.153, 0.215] 96
4 0.211 0.020 [0.174, 0.253] 161
5 0.207 0.017 [0.174, 0.242] 118

ρi,εη

1 -0.146 0.068 [-0.277,-0.011] 38
2 -0.167 0.070 [-0.300,-0.028] 60
3 -0.230 0.066 [-0.356,-0.099] 45
4 -0.158 0.068 [-0.289,-0.023] 44
5 -0.204 0.061 [-0.321,-0.081] 32

Table 6: MSVt1 and MSVt2 models. Posterior means, standard deviations,
95% credible intervals and inefficiency factors for ν and νi (i = 1, . . . , 5).

i Mean Stdev 95% interval Inefficiency
ν 42.43 15.21 [23.69,81.55] 298

νi

1 38.75 15.05 [20.37, 76.20] 714
2 48.40 23.25 [20.25,108.03] 613
3 76.94 27.26 [36.72,143.04] 326
4 40.13 18.37 [18.20, 88.26] 372
5 88.53 30.04 [43.51,159.11] 403
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Table 7: MSV model. Posterior means, standard deviations,
95% credible intervals and inefficiency factors for (ρij,εε, ρij,ηη, ρij,εη)

ij Mean Stdev 95% interval Inefficiency

ρij,εε

12 0.688 0.013 [0.661, 0.713] 2
13 0.788 0.010 [0.768, 0.806] 4
14 0.730 0.012 [0.705, 0.752] 4
15 0.766 0.011 [0.745, 0.787] 4
23 0.633 0.015 [0.602, 0.662] 2
24 0.631 0.015 [0.601, 0.660] 2
25 0.693 0.013 [0.666, 0.718] 2
34 0.737 0.012 [0.714, 0.759] 3
35 0.748 0.011 [0.725, 0.770] 4
45 0.698 0.013 [0.672, 0.723] 3

ρij,ηη

12 0.802 0.045 [0.702, 0.876] 126
13 0.811 0.042 [0.717, 0.880] 93
14 0.820 0.042 [0.727, 0.889] 87
15 0.783 0.047 [0.680, 0.862] 67
23 0.803 0.044 [0.707, 0.876] 125
24 0.800 0.048 [0.691, 0.879] 98
25 0.816 0.040 [0.728, 0.884] 62
34 0.803 0.045 [0.705, 0.877] 109
35 0.781 0.044 [0.683, 0.856] 75
45 0.793 0.046 [0.689, 0.867] 126

ρij,εη

12 -0.203 0.067 [-0.332,-0.068] 37
13 -0.151 0.071 [-0.289,-0.009] 49
14 -0.123 0.069 [-0.255, 0.013] 51
15 -0.195 0.067 [-0.323,-0.061] 47
21 -0.106 0.075 [-0.251, 0.043] 67
23 -0.116 0.075 [-0.263, 0.034] 63
24 -0.111 0.073 [-0.252, 0.036] 56
25 -0.084 0.074 [-0.227, 0.061] 53
31 -0.159 0.066 [-0.288,-0.028] 38
32 -0.209 0.064 [-0.332,-0.080] 38
34 -0.134 0.065 [-0.260,-0.005] 35
35 -0.193 0.065 [-0.318,-0.064] 43
41 -0.127 0.071 [-0.267, 0.014] 55
42 -0.180 0.070 [-0.313,-0.040] 55
43 -0.169 0.073 [-0.309,-0.023] 52
45 -0.112 0.071 [-0.249, 0.028] 56
51 -0.133 0.065 [-0.258,-0.004] 28
52 -0.199 0.063 [-0.319,-0.073] 34
53 -0.204 0.065 [-0.330,-0.074] 55
54 -0.183 0.063 [-0.303,-0.058] 33

Regarding the degrees of freedom for the heavy-tailed errors shown in Table 6, the pos-

terior means of ν for the MSVt1 model is found to be about the average of νj ’s obtained for

the univariate SVt models. However, a couple of posterior means of those νj ’s for the MSVt2
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model are found to be much larger than those for the univariate models. These relatively

large degrees of freedom for the SVt, the MSVt1 and the MSVt2 models indicate that the

MSV model with normal errors would be appropriate to describe the dynamics of the stock

returns during this sample period.

Tables 7 shows the posterior means, standard deviations, 95% credible intervals and

inefficiency factors for ρij,εε, ρij,ηη and ρij,εη for the MSV model. The correlations among

εit’s and ηit’s, (ρij,εε’s and ρij,ηη’s) are found to be very high, suggesting the possible co-

movement among volatilities. The posterior means of ρij,εη are all negative varying from

−0.209 to −0.084 in the MSV model. The cross leverage effects from Series 1, 3, 4 & 5 to

the volatility of Series 2, and from Series 5 to the volatilities of Series 1, 2, 3 & 4 seem to be

relatively stronger and the posterior probability of negative ρi2,εη (or ρ5j,εη) is greater than

0.95 for the MSV model. We note that the cross leverages effects between series i and j

are asymmetric, i.e., ρij,εη ̸= ρji,εη for i ̸= j. For example, in Table 7, the ρi2,εη’s are from

−0.209 to −0.180, while ρ2j,εη’s are from −0.116 to −0.084. This implies the volatility of

Series 2 (Information and Communication) is influenced by other series, but the volatilities

of other series are less subject to the return of Series 2.

5 Conclusion

This paper proposes efficient MCMC algorithms using a multi-move sampler for the latent

volatility vectors for MSV models with cross leverage and heavy-tailed errors. To sample a

block of such state vectors, we construct a proposal density for MH algorithm based on the

normal approximation using Taylor expansion of the logarithm of the target likelihood and

exploit the sampling algorithms which are developed for the linear and Gaussian state space

model. We show that our proposed methods are easy to implement and that they are highly

efficient. Extensions to the models with two types of multivariate t-distributed errors are

also discussed. Illustrative examples and empirical studies are given using five stock market

indices in Tokyo Stock Exchange.
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Appendix

A Multi-move sampler for the MSV model

A.1 Derivation of the approximating state space model

First, noting that E[∂2L/∂αt∂α′
t+k] = O (k ≥ 2), define At and Bt as

At = −E

[
∂2L

∂αt∂α′
t

]
, t = s + 1, . . . , s + m, (33)

Bt = −E

[
∂2L

∂αt∂α′
t−1

]
, t = s + 2, . . . , s + m, Bs+1 = O, (34)

and let dt = ∂L/∂αt for t = s + 1, . . . , s + m. The dt,At and Bt are shown in Appendix A.2

for the MSV model. To obtain the approximating state space model, first evaluate dt,At

and Bt at the current mode, α = α̂. Using d̂t, Ât and B̂t,

1. Set bs = 0 and B̂s+m+1 = O. Compute

Dt = Ât − B̂tD−1
t−1B̂

′
t, bt = d̂t − B̂tD−1

t−1bt−1, γ̂t = α̂t + D−1
t B̂′

t+1α̂t+1,

for t = s + 1, . . . , s + m, recursively where Kt denotes a Choleski decomposition of Dt

such that Dt = KtK′
t.

2. Define auxiliary vectors and matrices

ŷt = γ̂t + D−1
t bt, Zt = Ip + D−1

t B̂′
t+1Φ, Gt = [K′−1

t ,D−1
t B̂′

t+1Rt],

for t = s + 1, . . . , s + m.

Then, we obtain the approximating linear Gaussian state-space model given by (23) and (24).
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A.2 dt, At and Bt

Matrix differentiation

We first summarise definitions of first and second derivatives of a matrix and some results

(see, Magnus and Neudecker (1999), and Magnus and Abadir (2007)). Let F be a twice

differentiable m×p matrix function of an n×q matrix X. Then the first derivative (Jacobian

matrix) of F at X is defined by the mp × nq matrix

DF (X) =
∂F (X)

∂X
=

∂vec(F (X))
∂vec(X)′

,

and the second derivative (Hessian matrix) of F at X is defined by the mnpq × nq matrix

HF (X) = D
(
(DF (X))′

)
=

∂

∂(vec(X))′
vec
((

∂vec(F (X))
∂(vec(X))′

)′)
.

Chain rule: Let S a subset of Rn×q, and assume that F : S → Rm×p is differentiable at an

interior point C of S. Let T be a subset of Rm×p such that F (X) ∈ T for all X ∈ S, and

assume that G : T → Rr×s is differentiable at an interior point B = F (C) of T . Then the

composite function H : S → Rr×s defined by H(X) = G(F (X)) is differentiable at C, and

DH(X) = (DG(F (X)))(DF (X)) =
∂vec(G(F (X)))
∂(vec(F (X)))′

∂vec(F (X))
∂(vec(X))′

. (35)

When q = 1, x ∈ Rn×1, f : Rn×1 → Rm×p, g : Rm×p → Rr×s,

∂g(f(x))
∂x′ =

∂vec(g(f(x)))
∂vec(f(x))′

∂vec(f(x))
∂vec(x)′

. (36)

Product rule: Let S a subset of Rn×q, and assume that F : S → Rm×p and G : S → Rp×r

are differentiable at an interior point C of S. Then

∂vec(FG)
∂(vec(X))′

= (G′ ⊗ Im)
∂vec(F )

∂(vec(X))′
+ (Ir ⊗ F )

∂vec(G)
∂(vec(X))′

. (37)

dt, At and Bt

Let zt = V−1/2
t yt. Then, the logarithm of the conditional posterior probability density is

given by

lt = const − 1
2
1′

pαt −
1
2
(zt − mt)′S−1

t (zt − mt).

The gradient vector dt = ∂L/∂αt is given by

dt =
∂lt
∂αt

+
∂lt−1

∂αt
+ ΦΣ−1

ηη (αt+1 − Φαt)I(t = s + m < n), t = s + 1, . . . , s + m,
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where

∂lt
∂α′

t

= −1
2
1′

p − (zt − mt)′S−1
t

∂(zt − mt)
∂α′

t

= −1
2
1′

p +
1
2
(zt − mt)′S−1

t

{
diag(zt) − 2ΣεηΣ−1

ηη ΦI(t < n)
}

, (38)

∂lt−1

∂α′
t

= (zt−1 − mt−1)′S−1
t−1

∂mt−1

∂α′
t

= (zt−1 − mt−1)′S−1
t−1ΣεηΣ−1

ηη I(t > 1), (39)

using the chain rule (36). Thus

dt = −1
2
1p +

1
2
{
diag(zt) − 2ΦΣ−1

ηη ΣηεI(t < n)
}
S−1

t (zt − mt)

+Σ−1
ηη ΣηεS−1

t−1(zt−1 − mt−1)I(t > 1) + ΦΣ−1
ηη (αt+1 − Φαt)I(t = s + m < n),

for t = s + 1, . . . , s + m.

To compute At and Bt using the product rule (37), we first obtain the Hessian matrix

∂2L

∂αt∂α′
t

=
∂2lt

∂αt∂α′
t

+
∂2lt−1

∂αt∂α′
t

− ΦΣ−1
ηη ΦI(t = s + m < n), t = s + 1, . . . , s + m,

where

∂2lt
∂αt∂α′

t

=
1
2
{
(zt − mt)′S−1

t ⊗ Ip

} ∂vec(diag(zt))
∂α′

t

−1
4
(
diag(zt) − 2ΦΣ−1

ηη ΣηεI(t < n)
)
S−1

t

(
diag(zt) − 2ΣεηΣ−1

ηη ΦI(t < n)
)
, (40)

∂2lt−1

∂αt∂α′
t

= −Σ−1
ηη ΣηεS−1

t−1ΣεηΣ−1
ηη I(t > 1). (41)

Noting that

∂vec(diag(zt))
∂α′

t

= −1
2

 z1te1e
′
1

...
zptepe

′
p

 , E [zjt(zt − mt)] = Stej , (42)

where ej is a p × 1 unit vector with j-th component equal to 1, the expected value of the

first term in (40) is

E

[{
(zt − mt)′S−1

t ⊗ Ip

} ∂vec(diag(zt))
∂α′

t

]
= −1

2

p∑
j=1

(e′
jS

−1
t )(Stej)eje

′
j = −1

2
Ip, (43)
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Further, using diag(zt)S−1
t diag(zt) = S−1

t ⊙ (ztz
′
t), the expected value of the second term in

(40) is

E
[(

diag(zt) − 2ΦΣ−1
ηη ΣηεI(t < n)

)
S−1

t

(
diag(zt) − 2ΣεηΣ−1

ηη ΦI(t < n)
)]

= S−1
t ⊙ (St + mtm

′
t) − 2

(
ΦΣ−1

ηη ΣηεS−1
t diag(mt) + diag(mt)S−1

t ΣεηΣ−1
ηη Φ

)
I(t < n)

+4ΦΣ−1
ηη ΣηεS−1

t ΣεηΣ−1
ηη ΦI(t < n). (44)

Thus, we obtain

At =
1
4
{
Ip + S−1

t ⊙ (St + mtm
′
t)
}

+ ΦΣ−1
ηη ΣηεS−1

t ΣεηΣ−1
ηη ΦI(t < n)

−1
2
(
ΦΣ−1

ηη ΣηεS−1
t diag(mt) + diag(mt)S−1

t ΣεηΣ−1
ηη Φ

)
I(t < n)

+Σ−1
ηη ΣηεS−1

t−1ΣεηΣ−1
ηη I(t > 1) + ΦΣ−1

ηη ΦI(t = s + m < n), (45)

for t = s + 1, . . . , s + m. Similarly, it is straightforward to show that

Bt = −E

[
∂2lt−1

∂αt∂α′
t−1

]
=

1
2
Σ−1

ηη ΣηεS−1
t−1

{
diag(mt−1) − 2ΣεηΣ−1

ηη Φ
}

, (46)

for t = s + 2, . . . , s + m.

B Alternative multivariate t-distributed errors

This subsection describes MCMC implementation for the MSV model with the alternative

(type-2) multivariate t-distributed errors. Since (α, ϕ,Σ) can be sampled as in Section

2, we focus on sampling parameters ν = {νj}p
j=1 and λ = ({λj1}p

j=1, . . . , {λjn}p
j=1). The

conditional posterior probability density function is given by

π(ν,λ|ϕ,Σ, α, Y ∗
n )

∝
p∏

j=1

π(νj)


(νj

2

) νj
2

Γ
(νj

2

)


n
n∏

t=1

λ
νj+1

2
−1

jt exp

[
−1

2

n∑
t=1

{
νjλjt +

(
Λ1/2

t y∗
t − µt

)′
Σ−1

t

(
Λ1/2

t y∗
t − µt

)}]
.

We implement MCMC simulation as follows.

1. Generate (α, ϕ,Σ) as in Section 2.

2. Generate νj ∼ π(νj |λj).

3. Generate λjt ∼ π(λjt|ϕ,Σ, αt, νj , y
∗
t ) for t = 1, . . . , n and j = 1, . . . , p.
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Generation of ν. The conditional posterior probability densities of ν is given by

π(ν|ϕ,Σ, ν, λ, α, Y ∗
n ) ∝

p∏
j=1

π(νj)


(νj

2

) νj
2

Γ
(νj

2

)


n
n∏

t=1

λ
νj
2

jt exp
{
−
∑n

t=1 λjt

2
νj

}
. (47)

We first find a conditional mode ν̂ of π(ν|ϕ,Σ, λ, α, Y ∗
n ) numerically. Then we propose a

candidate using a truncated normal distribution over the region Rp
+, ν† ∼ T NRp

+
(µν ,Σν)

µν = ν̂ + Σν

[
∂ log π(ν|ϕ,Σ,λ, α, Y ∗

n )
∂ν

∣∣∣∣
ν=ν̂

]
,Σν =

[
−∂2 log π(ν|ϕ,Σ, λ, α, Y ∗

n )
∂ν∂ν ′

∣∣∣∣
ν=ν̂

]−1

,

and accept it with probability

min
[
π(ν†|ϕ,Σ, λ, α, Y ∗

n )fN (ν|µν ,Σν)
π(ν|ϕ,Σ, λ, α, Y ∗

n )fN (ν†|µν ,Σν)
, 1
]

.

Generation of λjt, j = 1, . . . , p, t = 1, . . . , n. The conditional posterior probability density

function of λjt is

π(λjt|ϕ,Σ, ν, α, λ−λjt
, Y ∗

n ) ∝ λ
νj+1

2
−1

jt exp
[
−1

2

{
νjλjt +

(
Λ1/2

t y∗
t − µt

)′
Σ−1

t

(
Λ1/2

t y∗
t − µt

)}]
.

The λjt can be sampled from its posterior distribution using MH-algorithm using a proposal

distribution

λ†
jt ∼ G

(
νj + 1

2
,
1
2

[
νj + y2

jt exp(−αjt)s
j
t

])
,

where sj
t is the j-th diagonal element of S−1

t .
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