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Abstract

An efficient Bayesian estimation using a Markov chain Monte Carlo method
is proposed in the case of a multivariate stochastic volatility model as a
natural extension of the univariate stochastic volatility model with leverage
and heavy-tailed errors. Note that we further incorporate cross-leverage
effects among stock returns. Our method is based on a multi-move sampler
that samples a block of latent volatility vectors. The method is presented
as a multivariate stochastic volatility model with cross leverage and heavy-
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1. Introduction

Univariate stochastic volatility (SV) models are well-known to success-
fully account for time-varying variance in financial time series (Broto and
Ruiz (2004)). Many efficient Bayesian estimation methods that use Markov
chain Monte Carlo (MCMC) methods are proposed, because the likelihood
functions are difficult to evaluate in the implementation of the maximum
likelihood estimation (e.g. Shephard and Pitt (1997), Omori et al. (2007)).

Extending these models to a multivariate SV (MSV) model has recently
become a major concern in the investigation of the correlation structure of
multivariate financial time series, especially with regard to portfolio opti-
mization, risk management, and derivative pricing. The multivariate factor
modeling of stochastic volatilities has been widely introduced to describe the
complex dynamic structure of high-dimensional stock returns data (Jacquier
et al. (1999), Liesenfeld and Richard (2003), Pitt and Shephard (1999),
Lopes and Carvalho (2007), and several efficient MCMC algorithms have
been proposed (So and Choi (2009), Chib et al. (2006)). However, efficient
estimation methods for MSV models with cross leverage (i.e., a non-zero
correlation between the i-th asset return at time t and the j-th log volatility
at time t+1 for all i and j) or asymmetry have not been well investigated in
the literature except for simple bivariate models; see surveys by Asai et al.
(2006) and Chib et al. (2009). Chan et al. (2006) considered the Bayesian
estimation of MSV models in which correlations existed between measure-
ment errors and state errors, but their framework did not address leverage
effects. Asai and McAleer (2006) simplified the MSV model with leverage
by assuming no cross leverage effect (i.e., no correlation between the i-th
asset return at time t and the j-th log volatility at time t+1 for i ̸= j) and
thus described a Monte Carlo likelihood estimation method.

In this paper, we consider a general MSV model with cross leverage and
heavy-tailed errors and propose a novel and efficient MCMC algorithm using
a multi-move sampler that samples a block of latent volatility vectors simul-
taneously. To the best of our knowledge, this is the first efficient multi-move
sampler proposed in the literature for the general MSV model with cross
leverage and heavy-tailed errors. In any MCMC implementation of the SV
models, it is critical to efficiently sample the latent volatility (or state) vari-
ables from their full conditional posterior distributions. The single-move
sampler that draws a single volatility variable at a time given the other
volatility variables and parameters is easy to implement, but the resulting
MCMC samples are known to have high autocorrelations. This implies that
we must iterate the MCMC algorithm a large number of times in order to
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obtain accurate estimates when using a single-move sampler. Thus, we pro-
pose a fast and efficient state-sampling algorithm based on the approximate
linear and Gaussian state space model. Such a model is derived by approxi-
mating the conditional likelihood function by a multivariate normal density
using a Taylor expansion around the mode. Starting with the current sample
of state variables, the mode can be easily obtained by repeatedly applying
the disturbance smoother (Koopman (1993)) to the approximate auxiliary
state space model. The samples from the posterior distribution of latent
state variables are obtained from the Metropolis-Hastings (MH) algorithm
in which a simulation smoother for the linear and Gaussian state space mod-
els (de Jong and Shephard (1995), Durbin and Koopman (2002)) is used to
generate a candidate variables.

The rest of the paper is organized as follows. Section 2 discusses the
Bayesian estimation of the MSV model using a multi-move sampler of latent
state variables. Extended models with heavy-tailed errors are also consid-
ered. In Section 3, we provide numerical examples using simulation data,
and show that our proposed method outperforms the simple single-move
sampler with respect to sampling efficiencies. Section 4 provides empirical
analyses based on five-dimensional stock return indices. Section 5 concludes
the paper.

2. The MSV model with cross leverage and heavy-tailed errors

2.1. MSV Model

Let yt denote a stock return at time t. The univariate SV model with
leverage is given by

yt = exp(αt/2)εt, t = 1, . . . , n, (1)

αt+1 = ϕαt + ηt, t = 1, . . . , n− 1, (2)

and

α1 ∼ N (0, σ2
η/(1− ϕ2)), (3)

where (
εt
ηt

)
∼ N2(0,Σ), Σ =

(
σ2
ε ρσεση

ρσεση σ2
η

)
, (4)

αt is a latent variable for the log-volatility, and Nm(µ,Σ) denotes an m-
variate normal distribution with mean µ and covariance matrix Σ. To
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extend this model to the MSV model, let yt = (y1t, . . . , ypt)’ denote a p-
dimensional stock returns vector, and let αt = (α1t, . . . , αpt)

′ denote the
corresponding log volatility vectors. We consider the MSV model given by

yt = V
1/2
t εt, t = 1, . . . , n, (5)

αt+1 = Φαt + ηt, t = 1, . . . , n− 1, (6)

and

α1 ∼ Np (0,Σ0) , (7)

where

Vt = diag (exp(α1t), . . . , exp(αpt)) , (8)

Φ = diag(ϕ1, . . . , ϕp), (9)

and (
εt
ηt

)
∼ N2p(0,Σ), Σ =

(
Σεε Σεη

Σηε Σηη

)
. (10)

The (i, j)-th element of Σ0 is the (i, j)-th element of Σηη divided by 1−ϕiϕj

to satisfy the stationarity condition Σ0 = ΦΣ0Φ+Σηη such that

vec(Σ0) =
(
Ip2 −Φ⊗Φ

)−1
vec(Σηη).

The expected value of the volatility evolution processes αt is set equal to
0 for identifiability. Let θ = (ϕ,Σ), where ϕ = (ϕ1, . . . , ϕp)

′, and let 1p
denote a p × 1 vector with all elements equal to one. Then the likelihood
function of the MSV model outlined in equations (5) to (7) is given by

f(α1|θ)
n−1∏
t=1

f(yt,αt+1|αt,θ)f(yn|αn,θ)

∝ exp

{
n∑

t=1

lt −
1

2
α′

1Σ
−1
0 α1 −

1

2

n−1∑
t=1

(αt+1 −Φαt)
′Σ−1

ηη (αt+1 −Φαt)

}
×|Σ0|−

1
2 |Σ|−

n−1
2 |Σεε|−

1
2 , (11)
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where

lt = const− 1

2
1′pαt −

1

2
(yt − µt)

′Σ−1
t (yt − µt), (12)

µt = V
1/2
t mt, Σt = V

1/2
t StV

1/2
t , (13)

mt =

{
ΣεηΣ

−1
ηη (αt+1 − Φαt), t < n,

0 t = n,
(14)

and

St =

{
Σεε −ΣεηΣ

−1
ηη Σηε, t < n,

Σεε t = n.
(15)

2.2. Bayesian analysis and MCMC implementation

Since there are many latent volatility vectors αts, it is difficult to inte-
grate them out in order to evaluate the likelihood function of θ analytically
or to use high-dimensional numerical integration. In this paper, we take a
Bayesian approach and we employ a simulation method, namely, the MCMC
method, to generate samples from the posterior distribution to conduct sta-
tistical inference with respect to the model parameters.

For prior distributions of θ, we assume

ϕj + 1

2
∼ B(aj , bj), j = 1, . . . , p, Σ ∼ IW(n0,R0),

where B(aj , bj) and IW(n0,R0) respectively denote Beta and inverse Wishart
distributions with probability density functions

π(ϕj) ∝ (1 + ϕj)
aj−1 (1− ϕj)

bj−1 , j = 1, 2, . . . , p, (16)

π(Σ) ∝ |Σ|−
n0+p+1

2 exp

{
−1

2
tr
(
R−1

0 Σ−1
)}

. (17)

Using Equations (11), (16), and (17), we obtain the joint posterior density
function of (θ,α) given by

π(θ,α|Yn) ∝ f(α1|θ)
n−1∏
t=1

f(yt,αt+1|αt,θ)f(yn|αn,θ)

p∏
j=1

π(ϕj)π(Σ), (18)

where α = (α′
1, . . . ,α

′
n)

′ and Yn = {yt}nt=1. We implement the MCMC
algorithm in three stages:

1. Generate α|ϕ,Σ, Yn.
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2. Generate Σ|ϕ,α, Yn.

3. Generate ϕ|Σ,α, Yn.

First, we discuss two methods used to sample α based on its conditional
posterior distribution in Step 1. One method is a so-called single-move
sampler that samples one αt at a time given the other αjs, while the other
method is a multi-move sampler that samples a block of state vectors, such
as, (αt, . . . ,αt+k), given the other state vectors.

2.2.1. The generation of α

Single-move sampler. A simple but inefficient method is to sample one
αt at a time given αjs and other parameters. The conditional posterior
probability density function of αt is

π(αt|{αs}s̸=t,ϕ,Σ, Yn) ∝ exp

{
−1

2
(αt −mαt)

′Σ−1
αt

(αt −mαt) + g(αt)

}
where

mαt =


Σα1

(
−1

21p +ΦM1α2

)
, t = 1,

Σαt

(
−1

21p +ΦMtαt+1 +Mt−1Φαt−1 +Nt−1

)
, 1 < t < n,

Σαn

(
−1

21p +Mn−1Φαn−1 +Nn−1

)
, t = n,

Σαt =


(
Σ−1

0 +ΦM1Φ
)−1

, t = 1,

(Mt−1 +ΦMtΦ)−1 , 1 < t < n,

M−1
n−1, t = n,

Mt = Σ−1
ηη +Σ−1

ηη ΣηεS
−1
t ΣεηΣ

−1
ηη , Nt = Σ−1

ηη ΣηεS
−1
t V

−1/2
t yt,

and

g(αt) = −1

2
y′
tΣ

−1
t yt + y′

tΣ
−1
t µt.

Thus, in order to sample from the conditional posterior distribution using
the Metropolis-Hastings (MH) algorithm, we generate a candidate α†

t ∼
N(mαt ,Σαt) and accept it with probability

min
{
exp{g(α†

t)− g(αt)}, 1
}
,

for t = 1, . . . , n, where αt is a current value.

Multi-move sampler. As an alternative method, we propose an efficient
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method to sample a block of αts from the posterior distribution. As such,
we extend Omori and Watanabe (2008), who considered the univariate SV
model with leverage (see also Takahashi et al. (2009)). First, we divide α =
(α′

1, . . . ,α
′
n)

′ into K + 1 blocks (α′
ki−1+1, . . . ,α

′
ki
)′ using i = 1, . . . ,K + 1,

with k0 = 0, kK+1 = n, and ki − ki−1 ≥ 2. K knots (k1, . . . , kK) are
generated randomly using

ki = int[n× (i+ Ui)/(K + 2)], i = 1, . . . ,K,

where Uis are independent uniform random variables on (0, 1) (Shephard
and Pitt (1997)). These stochastic knots have an advantage in that they
allow the points of conditioning to change over the MCMC iterations, as K
is a tuning parameter used to obtain MCMC samples with relatively low
autocorrelation.

Suppose that ki−1 = s and ki = s+m for the i-th block. Consider sam-
pling this block from its conditional posterior distribution given other state
vectors and parameters. We denote xt = R−1

t ηt, where the matrix Rt de-
notes a Choleski decomposition ofΣηη = RtR

′
t for t > 0, andΣ0 = R0R

′
0 for

t = 0. To construct a proposal distribution for the MH algorithm, we focus
on the distribution of the disturbance x ≡ (x′

s, . . . ,x
′
s+m−1)

′, which is funda-
mental in the sense that it derives the distribution of a ≡ (α′

s+1, . . . ,α
′
s+m)′.

Then, the logarithm of the full conditional joint density distribution of x,
excluding constant terms, is given by

log f(x|αs,αs+m+1,ys, . . . ,ys+m) = −1

2

s+m−1∑
t=s

x′
sxs + L, (19)

where

L =
s+m∑
t=s

ls −
1

2
(αs+m+1 −Φαs+m)′Σ−1

ηη (αs+m+1 −Φαs+m)I(s+m < n).

Using the second order Taylor expansion of (19) around the mode x̂, we
obtain the approximate normal density f∗, which is used for the Acceptance-
Rejection MH(ARMH) algorithm as follows.
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log f(x|αs,αs+m+1,ys, . . . ,ys+m)

≈ const.− 1

2

s+m−1∑
t=s

x′
txt + L̂

+
∂L

∂x′

∣∣∣∣∣
x=x̂

(x− x̂) +
1

2
(x− x̂)′E

(
∂2L

∂x∂x′

)
(x− x̂)

= const.− 1

2

s+m−1∑
t=s

x′
txt + L̂+ d̂′(a− â)− 1

2
(a− â)′Q̂(a− â) (20)

= const. + log f∗(x|αs,αs+m+1,ys, . . . ,ys+m), (21)

where Q̂ and d̂ are Q = −E(∂2L/∂a∂a′), and d = ∂L/∂a, is evaluated
at a = â (i.e., x = x̂). Note that Q is positive definite and invertible.
However, whenm is large, it is time consuming to invert themp×mp Hessian
matrix to obtain the covariance matrix of themp-variate multivariate normal
distribution. To overcome this difficulty, we interpret equation (21) as the
posterior probability density derived from an auxiliary state space model so
that we only need to invert p×p matrices by using the Kalman filter and the
disturbance smoother. It can be shown that f∗ is the posterior probability
density function of x obtained from the state space model:

ŷt = Ztαt +Gtut, t = s+ 1, . . . , s+m, (22)

αt+1 = Φαt +Htut, t = s+ 1, . . . , s+m− 1, (23)

where ut ∼ N2p (0, I2p), ŷt, Zt, and Gt are defined in Appendix A.1, and
Ht = [0,Rt]. To find a mode x̂, we repeat the following three steps until
the convergence,

1. Compute â at x = x̂ using (6).

2. Obtain the approximate linear Gaussian state space model given by
(22) and (23).

3. Applying the disturbance smoother by Koopman (1993) to the ap-
proximating linear Gaussian state space model in Step 2, compute the
posterior mode x̂.

Note that these steps are equivalent to the method of scoring used to max-
imize the conditional posterior density. As an initial value of x̂, the current
sample of x may be used in MCMC implementation. If the approximate lin-
ear Gaussian state space model is obtained using mode x̂, we draw a sample
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x from the conditional posterior distribution by the AR-MH algorithm as
follows.

1. Propose a candidate x† by sampling from q(x†) ∝ min(f(x†), cf∗(x†))
using the AR algorithm, where c can be constructed from a constant
term and L̂ from (20).

(a) Generate x† ∼ f∗ using a simulation smoother (de Jong and
Shephard (1995), Durbin and Koopman (2002)) based on the
approximate linear Gaussian state space model in (22) and (23).

(b) Accept x† with probability min
{

f(x†)
cf∗(x†)

, 1
}
. If it is rejected, re-

turn to (a).

2. Given the current value x, accept x† with probability

min

{
1,

f(x†)min(f(x), cf∗(x))

f(x)min(f(x†), cf∗(x†))

}
.

If rejected, accept the current x as a sample.

We investigate the efficiency performance of these two sampling methods in
Section 3 using simulated data.

2.2.2. The generation of Σ and ϕ

Generation of Σ. The conditional posterior probability density function of
Σ is

π(Σ|ϕ,α, Yn) ∝ |Σ|−
n1+2p+1

2 exp

{
−1

2
tr
(
R−1

1 Σ−1
)}

× g(Σ),

g(Σ) = |Σ0|−
1
2 |Σεε|−

1
2 exp

{
−1

2

(
α′

1Σ
−1
0 α1 + y′

nV
−1/2
n Σ−1

εε V
−1/2
n yn

)}
,

where n1 = n0 + n− 1, R−1
1 = R−1

0 +
∑n−1

t=1 vtv
′
t and

vt =

(
V

−1/2
t yt

αt+1 −Φαt

)
.

Using the MH algorithm, we propose a candidate Σ† ∼ IW(n1,R1) and
accept it with probability min{g(Σ†)/g(Σ), 1} where Σ is a current sample.

Generation of ϕ. Let Σij be a p × p matrix, and denote the (i, j)-th block

of Σ−1. Furthermore, let A =
∑n−1

t=1 αtα
′
t, B =

∑n−1
t=1 {αty

′
tV

−1/2
t Σ12 +

9



αtα
′
t+1Σ

22}, and b denote a vector for which the i-th element is equal to
the (i, i)-th element of B. Then the conditional posterior probability density
function of ϕ is

π(ϕ|Σ,α, Yn) ∝ h(ϕ)× exp

{
−1

2
tr(ΦΣ22ΦA)− 2tr(ΦB)

}
∝ h(ϕ)× exp

{
−1

2
(ϕ− µϕ)

′Σϕ(ϕ− µϕ)

}
,

h(ϕ) = |Σ0|−
1
2

p∏
j=1

(1 + ϕj)
aj−1(1− ϕj)

bj−1 exp

{
−1

2
α′

1Σ
−1
0 α1

}
,

where µϕ = Σϕb, Σ
−1
ϕ = Σ22 ⊙ A, and ⊙ denotes a Hadamard product.

To sample ϕ based on its conditional posterior distribution using the MH
algorithm, we generate a candidate from a truncated normal distribution
over the region R, ϕ† ∼ T NR(µϕ,Σϕ), and R = {ϕ : |ϕj | < 1, j = 1, . . . , p}
and accept it with probability min{h(ϕ†)/h(ϕ), 1} where ϕ is a current
sample.

2.3. The associated particle filter

This subsection describes the auxiliary particle filter (Pitt and Shephard
(1999)) used to compute the likelihood function ordinate given the parameter
θ, which can be used for model comparison. For more detail on the auxiliary
particle filter, see Doucet et al. (2001).

Let f(αt|Yt,θ) denote the conditional probability density function of αt

given (Yt,θ), and let f̂(αt|Yt,θ) denote the corresponding discrete proba-
bility mass function that approximates f(αt|Yt,θ). We consider sampling
from the conditional joint distribution of (αt+1,αt) given (Yt+1,θ), with a
probability density function given by

f(αt+1,αt|Yt+1,θ) ∝ f(yt+1|αt+1)f(αt+1|yt,αt,θ)f(αt|Yt,θ), (24)

where

f(yt|αt) =

(2π)−p/2 |V1/2
t ΣεεV

1/2
t |−1/2 exp

{
−1

2
y′
tV

−1/2
t Σ−1

εε V
−1/2
t yt

}
, (25)

f(αt+1|yt,αt,θ) =

(2π)−p/2 |Σα|−1/2 exp

{
−1

2
(αt+1 − µα,t+1)

′Σ−1
α (αt+1 − µα,t+1)

}
, (26)
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and

µα,t+1 = Φαt +ΣηεΣ
−1
εε V

−1/2
t yt, Σα = Σηη −ΣηεΣ

−1
εε Σεη. (27)

We use the importance probability density function given by

g(αt+1,α
i
t|Yt+1,θ) ∝ f(yt+1|µi

α,t+1)f(αt+1|yt,α
i
t,θ)f̂(α

i
t|Yt,θ)

∝ f(αt+1|yt,α
i
t,θ)g(α

i
t|Yt+1,θ),

where

g(αi
t|Yt+1,θ) =

f(yt+1|µi
α,t+1)f̂(α

i
t|Yt,θ)∑I

i=1 f(yt+1|µi
α,t+1)f̂(α

i
t|Yt,θ)

,

µi
α,t+1 = Φαi

t +ΣηεΣ
−1
εε V

i −1/2
t yt, Vi

t = Vt|αt=αi
t
.

We derive the auxiliary particle filter as follows:

Step 1. Initialize t = 1, and generate αi
1 ∼ N (0,Σ0), (i = 1, . . . , I).

(a) Compute wi = f(y1|αi
1,θ), and record w̄1 =

1
I

∑I
i=1wi.

(b) Let f̂(αi
1|Y1,θ) = πi

1 = wi/
∑I

j=1wj , (i = 1, . . . , I).

Step 2.

(a) For each i, generate
(
αi

t+1,α
i
t

)
from g(αt+1,α

j
t |Yt+1,θ), (i, j =

1, . . . , I), as follows. First, resample αi
t, i = 1, . . . , I, with prob-

ability g(αj
t |Yt+1,θ), j = 1, . . . , I. Then generate αi

t+1, i =
1, . . . , I, from the normal distribution with density function f(αt+1|yt,α

i
t,θ).

(b) Compute

wi =
f(yt+1|αi

t+1)f(α
i
t+1|yt,α

i
t,θ)f̂(α

i
t|Yt,θ)

g
(
αi

t+1,α
i
t|Yt+1,θ

)
=

f(yt+1|αi
t+1)f̂(α

i
t|Yt,θ)

g(αi
t|Yt+1,θ)

,

for i = 1, . . . , I, and record wt =
∑I

i=1wi/I.

(c) Let f̂(αi
t+1|Yt+1,θ) = πi

t+1 = wi/
∑I

j=1wj (i = 1, . . . , I).

Step 3 Increase t by one and return to Step 2.

Then,
n∑

t=1

logwt
p→

n∑
t=1

log f(yt|Yt−1,θ), as I → ∞,

is a consistent estimate of the conditional log-likelihood.
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2.4. The extension of the MSV model with multivariate-t errors (MSVt
model)

The MSV model can be extended to incorporate heavy-tailed errors in
stock returns. Although jump components can also be introduced, they are
not considered here for the reasons of simplicity. To describe the fat-tailed
distributions, we consider the multivariate-t distribution, which is a scale
mixture of normal distributions. Let G(a, b) denote a gamma distribution
with mean a/b and variance a/b2. Using a common scalar gamma random
variable λt, the multivariate-t random variable with ν degrees of freedom is
obtained as

λ
−1/2
t εt, where λt ∼ G(ν/2, ν/2), εt ∼ Np(0,Σεε). (28)

Thus, we extend the MSV model to a MSV multivariate-t errors (MSVt)
model, where the measurement equation is given by

yt = λ
−1/2
t V

1/2
t εt, (29)

for t = 1, . . . , n. The prior distribution for ν is assumed to be ν ∼ G(mν
0 , S

ν
0 ),

and we let π(ν) denote its prior probability density function.
To implement MCMC simulation, we sample (α,ϕ,Σ) as in Section

2.2, but we replace yt with λ
1/2
t yt. Thus, we focus on sampling from the

conditional posterior distributions for the other parameters (ν,λ) where
λ = {λt}nt=1. Their conditional joint posterior probability density function
is given by

π(ν,λ|ϕ,Σ,α, Yn)

∝ π(ν)

{(
ν
2

) ν
2

Γ
(
ν
2

)}n n∏
t=1

λ
p+ν
2

−1
t

× exp

[
−1

2

n∑
t=1

{
νλt +

(√
λtyt − µt

)′
Σ−1

t

(√
λtyt − µt

)}]
. (30)

To sample from the posterior distribution, we implement the MCMC simu-
lation in three blocks.

1. Generate (α,ϕ,Σ) as in Section 2.2.1, replacing yt with λ
1/2
t yt.

2. Generate ν ∼ π(ν|λ).
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3. Generate λt ∼ π(λt|ϕ,Σ,αt, ν,yt) for t = 1, . . . , n.

Generation of ν. The conditional posterior probability density of ν is given
by

π(ν|ϕ,Σ,λ,α, Yn) ∝ π(ν)

{(
ν
2

) ν
2

Γ
(
ν
2

)}n( n∏
t=1

λt

) ν
2

exp

{
−
∑n

t=1 λt

2
ν

}
. (31)

To sample from this conditional posterior distribution, we transform ν such
that ϑν = log ν and we let ϑ̂ν denote a conditional mode of π(ϑν |ϕ,Σ,λ,α, Yn).
Using the MH algorithm, we propose a candidate from the normal distribu-
tion ϑ†

ν ∼ N (µν , σ
2
ν), where

µν = ϑ̂ν + σ2
ν

[
∂ log π(ϑν |ϕ,Σ,λ,α, Yn)

∂ϑν

∣∣∣∣
ϑν=ϑ̂ν

]
,

and

σ2
ν =

[
−∂2 log π(ϑν |ϕ,Σ,λ,α, Yn)

∂ϑ2
ν

∣∣∣∣
ϑν=ϑ̂ν

]−1

.

We accept the candidate with probability

min

[
π(ϑ†

ν |ϕ,Σ,λ,α, Yn)fN (ϑν |µν , σ
2
ν)

π(ϑν |ϕ,Σ,λ,α, Yn)fN (ϑ†
ν |µν , σ2

ν)
, 1

]
,

where ϑν is a current sample, and fN (x|µ, σ2) denotes a probability density
function derived from a normal distribution with mean µ and variance σ2.

Generation of λ. The conditional posterior probability density function of
λt is

π(λt|ϕ,Σ, ν,α, Yn) ∝ λ
ν+p
2

−1
t exp

{
−ct

2
λt + dt

√
λt

}
,

where ct = ν + y′
tΣ

−1
t yt, and dt = y′

tΣ
−1
t µt. To sample λt using the MH

algorithm, we generate a candidate λ†
t ∼ G((ν + p)/2, ct/2) and accept it

13



with probability,

min

[
1, exp

{
dt

(√
λ†
t −

√
λt

)}]
,

where λt is a current sample. Note that we generate λn ∼ G((ν+p)/2, cn/2),
since µn = 0 implies dn = 0.

3. Illustrative examples using simulated data

This section illustrates our proposed method using simulated data and
shows the efficiency of our proposed multi-move sampler in comparison with
the single-move sampler. The data are simulated using the MSVt model
presented in Section 2.4, with

ϕi = 0.97, σi,εε ≡
√

V ar(εit) = 1.2, σi,ηη ≡
√
V ar(ηit) = 0.2,

ρi,εη ≡ Corr(εit, ηit) = −0.4, ν = 15, i = 1, 2, . . . , 5,

which correspond to typical values for the parameters of the univariate SV
models in past empirical studies. The negative value of ρi,εη implies the
existence of leverage effects. For the correlations among εits and ηjts, we set
similar values to those obtained in our empirical studies.

ρij,εε ≡ Corr(εit, εjt) = 0.6, ρij,ηη ≡ Corr(ηit, ηjt) = 0.7,

ρij,εη ≡ Corr(εit, ηjt) = −0.3, for i ̸= j,

where the negative value of ρij,εη indicates cross leverage effects. Using
these parameters, we generated n = 4, 000 observations with p = 5. For
prior distributions, we assume

ϕi + 1

2
∼ B(20, 1.5), Σ ∼ IW(10, (10Σ∗)−1), ν ∼ G(1, 0.05),

where Σ∗ is a true covariance matrix so that E(Σ−1) = Σ∗−1. The mean
and standard deviation of the prior distribution of ϕj are set 0.86 and 0.11
respectively, while the mean and standard deviation of ν are set 20 and 20,
respectively. Using the MCMC algorithm described in Section 2.2, we gen-
erated 120,000 samples using the multi-move sampler and 550,000 samples
using the single-move sampler, discarding the first 20,000 and 50,000 sam-
ples as burn-in periods, respectively.
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Estimation results. Tables 1 and 2 show the estimation results using the
multi-move sampler with tuning parameterK = 200 for (ϕi, σi,εε, σi,ηη, ρi,εη, ν)
and (ρij,εε, ρij,ηη, ρij,εη), respectively. The results using the single-move sam-
pler are omitted, except the inefficiency factors (shown in the brackets in
Table 1), since they are similar to those obtained for the multi-move sampler.
The posterior means and 95% credible intervals suggest that the estimates
are sufficiently close to true values, which indicates that our proposed esti-
mation algorithm works well.

The inefficiency factor is defined as 1+2
∑∞

s=1 ρs, where ρs is the sample
autocorrelation at lag s; this factor is computed to measure how well the
MCMC mixes (Chib (2001)). It is the ratio of the numerical variance of
the posterior sample mean to the variance of the sample mean based on
uncorrelated draws. When the inefficiency factor is equal to m, we must
draw m times as many as the number of uncorrelated samples.

Table 1: Estimation results for ϕi, σi,εε, σi,ηη, ρi,εη and ν.

Posterior means, 95% credible intervals, and inefficiency factors.

True i Mean 95% interval Inefficiency
multi [single]

ϕi 0.97

1 0.965 [0.956, 0.973] 79 [786]
2 0.973 [0.965, 0.980] 79 [624]
3 0.971 [0.963, 0.978] 78 [298]
4 0.964 [0.954, 0.972] 58 [563]
5 0.969 [0.960, 0.977] 111 [449]

σi,εε 1.2

1 1.191 [1.093, 1.297] 180 [4083]
2 1.177 [1.068, 1.304] 236 [6732]
3 1.195 [1.089, 1.310] 210 [6327]
4 1.261 [1.163, 1.370] 163 [2830]
5 1.187 [1.081, 1.300] 198 [4450]

σi,ηη 0.2

1 0.207 [0.181, 0.235] 128 [827]
2 0.192 [0.168, 0.218] 152 [788]
3 0.189 [0.167, 0.214] 136 [448]
4 0.208 [0.182, 0.236] 132 [901]
5 0.209 [0.183, 0.236] 181 [676]

ρi,εη −0.4

1 -0.412 [-0.503,-0.316] 58 [294]
2 -0.400 [-0.496,-0.298] 62 [266]
3 -0.335 [-0.438,-0.226] 62 [297]
4 -0.377 [-0.476,-0.275] 42 [221]
5 -0.396 [-0.490,-0.296] 81 [253]

ν 15 15.7 [13.0,19.1] 48 [151]
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Table 2: Estimation results for ρij,εε, ρij,ηη and ρij,εη.

Posterior means, 95% credible intervals and inefficiency factors.

True ij Mean 95% interval Inefficiency
multi [single]

ρij,εε 0.6

12 0.596 [0.574, 0.617] 3 [16]
13 0.606 [0.585, 0.627] 2 [18]
14 0.610 [0.589, 0.631] 2 [13]
15 0.586 [0.564, 0.608] 2 [18]
23 0.582 [0.559, 0.603] 3 [21]
31 0.586 [0.564, 0.608] 3 [27]
32 0.597 [0.575, 0.618] 3 [20]
34 0.599 [0.577, 0.620] 3 [27]
35 0.590 [0.567, 0.611] 3 [24]
45 0.607 [0.585, 0.628] 3 [24]

ρij,ηη 0.7

12 0.693 [0.599, 0.776] 114 [473]
13 0.677 [0.575, 0.765] 81 [724]
14 0.692 [0.592, 0.777] 115 [726]
15 0.727 [0.637, 0.800] 137 [686]
23 0.676 [0.576, 0.760] 113 [794]
31 0.645 [0.531, 0.738] 115 [676]
32 0.648 [0.543, 0.739] 119 [611]
34 0.659 [0.554, 0.749] 147 [882]
35 0.749 [0.656, 0.825] 160 [937]
45 0.635 [0.529, 0.729] 106 [527]

ρij,εη −0.3

12 -0.282 [-0.389,-0.170] 60 [279]
13 -0.242 [-0.351,-0.129] 68 [248]
14 -0.297 [-0.399,-0.190] 48 [236]
15 -0.253 [-0.357,-0.148] 57 [432]
21 -0.275 [-0.370,-0.174] 55 [195]
23 -0.273 [-0.377,-0.165] 66 [209]
24 -0.281 [-0.382,-0.176] 41 [217]
25 -0.229 [-0.330,-0.127] 74 [509]
31 -0.316 [-0.412,-0.214] 43 [250]
32 -0.264 [-0.372,-0.152] 74 [227]
34 -0.262 [-0.365,-0.155] 37 [268]
35 -0.237 [-0.343,-0.129] 52 [462]
41 -0.337 [-0.434,-0.236] 49 [254]
42 -0.368 [-0.467,-0.261] 57 [282]
43 -0.289 [-0.395,-0.178] 68 [254]
45 -0.237 [-0.340,-0.131] 61 [455]
51 -0.382 [-0.477,-0.283] 47 [204]
52 -0.352 [-0.457,-0.244] 67 [241]
53 -0.372 [-0.481,-0.263] 90 [190]
54 -0.280 [-0.386,-0.174] 47 [218]
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As shown in Table 1, the inefficiency factors for the parameters obtained
from the single-move sampler are much larger than those from the multi-
move sampler. Especially, for σi,εε, they are about 20 to 30 times larger for
the single-move sampler. This implies that our multi-move sampler is highly
efficient, as expected.
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Figure 1: Sample autocorrelation functions and paths of σ2,εε:

Single-move sampler versus Multi-move sampler.

Furthermore, for σ2,εε, Figure 1 shows the sample autocorrelation func-
tions and the sample paths for the single-move and the multi-move samplers.
In contrast with the very slow decay of the sample autocorrelations in the
single-move sampler, these autocorrelations vanish fairly rapidly under the
multi-move sampler. Further, the sample path of the single-move sampler
shows relatively slow movement in state space. This also indicates that the
MCMC mixes well under the multi-move sampler.

Table 3: Maximum of inefficiency factors for K = 50, 100, 140, 200, and 270

K n/(K + 1) ϕj σi,εε σi,ηη ρi,εη ρij,εε ρij,ηη ρij,εη ν
50 79 221 407 388 168 8 323 163 152
100 40 153 160 256 84 4 219 101 66
140 29 151 242 214 86 4 185 100 29
200 20 111 236 181 81 3 160 90 48
270 15 92 257 154 69 3 155 73 46

single-move 1 786 6732 901 297 27 937 509 151
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Selection of a tuning parameter K. We set K = 200 in this example as
follows. Table 3 shows the maxima of inefficiency factors for ϕjs, σi,εεs,
σi,ηηs, ρi,εηs, ρij,εεs, ρij,ηηs, ρij,εηs, and ν using K = 50, 100, 140, 200, and
270. Since the maxima for K = 200 are overall smaller than those for other
Ks, this is selected as an optimal value in our MCMC simulation. If this
value is greater than 200 (i.e., the number of elements in one block becomes
small on an average), the Markov chain would not move quickly in state
space due to high correlations among adjacent αts. However, if K is less
than 200, the proposed states, namely, αts, would be rejected too often in
the MH algorithm, which also results in the slowed mixing of the chain.

4. Empirical studies

4.1. Data
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Figure 2: Returns of five S&P500 sector indices and the S&P500 index

This section applies our proposed MSVt model to S&P500 sector indices
from January 2, 1995 to March 31, 2010. The dataset is obtained from
Thomson Reuters Datastream. We excluded the annual market holidays
and September 11-14, 2001, July 3, 2006, and January 2, 2007 since the
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same value is recorded on those days as the value from the previous day.
The returns are defined by the log-difference of each sector index multiplied
by 100 for five series, namely, ‘Materials’ (Series 1), ‘Financials’ (Series 2),
‘Consumer Staples’ (Series 3), ‘Healthcare’ (Series 4), and ‘Utilities’ (Series
5). There are 3,839 trading days, and the time series plot of the five return
series with S&P500 index returns are shown in Figure 2, which indicates the
co-movement of volatility among the five stock returns during this period.

Table 4: Univariate SV model with leverage and t-distributed errors.

Posterior means, standard deviations, and 95% credible intervals.

Param. Series Mean Stdev 95% interval

ϕi

1 0.989 0.003 [0.983, 0.994]
2 0.991 0.002 [0.987, 0.995]
3 0.984 0.003 [0.977, 0.989]
4 0.985 0.003 [0.978, 0.991]
5 0.984 0.004 [0.977, 0.991]

σi,εε

1 1.248 0.102 [1.067, 1.472]
2 1.415 0.150 [1.142, 1.728]
3 0.871 0.055 [0.765, 0.983]
4 1.051 0.074 [0.919, 1.210]
5 0.976 0.077 [0.843, 1.146]

σi,ηη

1 0.124 0.012 [0.101, 0.150]
2 0.143 0.012 [0.121, 0.167]
3 0.148 0.013 [0.124, 0.174]
4 0.144 0.014 [0.118, 0.175]
5 0.151 0.014 [0.126, 0.182]

ρi,εη

1 -0.527 0.065 [-0.644,-0.393]
2 -0.684 0.049 [-0.771,-0.579]
3 -0.608 0.056 [-0.707,-0.489]
4 -0.568 0.060 [-0.678,-0.443]
5 -0.346 0.070 [-0.482,-0.208]

νi

1 22.7 11.3 [12.1, 55.9]
2 25.0 15.4 [12.8, 69.8]
3 25.5 12.6 [13.0, 59.0]
4 16.5 5.2 [10.1, 28.7]
5 46.5 27.6 [16.4,115.3]

4.2. The univariate SV model with leverage and t-distributed errors

First, we fit the univariate SV model with leverage and t-distributed
errors to individual series as a benchmark for the MSVt model. The prior
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distributions for ϕ and Σ are assumed to be

ϕi + 1

2
∼ B(20, 1.5), νi ∼ G(0.01, 0.01),

Σi ∼ IW(5, (5Σ∗
i )

−1), Σ∗
i =

(
1 −0.1

−0.1 0.04

)
,

for i = 1, . . . , 5, where νi is the degrees of freedom for the respective t-
distribution. Since the posterior estimates of νi may be sensitive to the
choice of the prior distribution (Nakajima and Omori (2009)), we use a
relatively flat prior. To implement the MCMC algorithm, we draw 60,000
samples and discard 10,000 samples as a burn-in period. Posterior means,
standard deviations, and 95% credible intervals are shown in Table 4.

The estimates of ϕi show the high persistence of log volatilities varying
from 0.984 to 0.991; those negative values of ρi (ranging from −0.684 to
−0.346) imply the credible existence of leverage effects for all series. Fur-
thermore, the degrees of freedoms ν are relatively small (16.5 to 46.5) which
indicate distributions with heavy-tails. These results are consistent with
those found in previous empirical studies.

4.3. The MSVt model

For the MSVt model, the prior distributions are assumed to be

ϕi + 1

2
∼ B(20, 1.5), i = 1, . . . , 5,

Σ ∼ IW(10, (10Σ∗)−1), ν ∼ G(0.01, 0.01),

where

Σ∗ =

(
Σ∗

εε Σ∗
εη

Σ∗′
εη Σ∗

ηη

)
=

(
1.22(0.5I5 + 0.5151

′
5) 1.2× 0.2× (−0.1)I5

0.22(0.2I5 + 0.8151
′
5)

)
,

and E(Σ−1) = Σ∗−1. Hyper-parameters of the prior distributions are chosen
based on an analysis of univariate SV models. Using the MCMC algorithms
described in Section 2, we draw 100,000 samples after discarding 20,000
samples as a burn-in period. The tuning parameter K is set to 100 based
on an analysis similar to that presented in Table 3. This means that the
average size of one block is about 40.
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Table 5 shows posterior means, standard deviations, 95% credible inter-
vals, and inefficiency factors for ϕ, σi,εε, σi,ηη, ρi,εη, and ν. The estimated
ϕis and σi,εεs are similar to those in the univariate model, while the esti-
mated ρi,εη are smaller in absolute value. This may be because the variation
of one series is partly explained by those of other series through the high
correlations among εits and ηjts, as shown in Table 6.

The posterior mean of ν is similar to the least posterior mean (namely,
16.5 for ν4) in the univariate model; this small degree of freedom indicates
that the multivariate sector index returns follow a heavy-tailed error distri-
bution. Furthermore, we note that posterior standard deviations are rela-
tively smaller than those of univariate models.

Table 5: The MSVt model.

Posterior means, standard deviations, 95% credible
intervals, and inefficiency factors for ϕ, σi,εε, σi,ηη, ρi,εη, and ν

i Mean Stdev 95% interval Inefficiency

ϕi

1 0.987 0.002 [0.983, 0.991] 170
2 0.990 0.002 [0.987, 0.993] 109
3 0.985 0.002 [0.980, 0.989] 168
4 0.985 0.003 [0.979, 0.989] 236
5 0.987 0.002 [0.982, 0.991] 160

σi,εε

1 1.416 0.103 [1.239, 1.649] 450
2 1.580 0.134 [1.351, 1.872] 555
3 0.970 0.058 [0.871, 1.100] 404
4 1.184 0.079 [1.045, 1.358] 402
5 1.106 0.086 [0.962, 1.300] 439

σi,ηη

1 0.138 0.010 [0.120, 0.158] 181
2 0.151 0.009 [0.133, 0.170] 78
3 0.147 0.009 [0.130, 0.166] 142
4 0.155 0.011 [0.135, 0.177] 260
5 0.149 0.010 [0.130, 0.169] 158

ρi,εη

1 -0.400 0.058 [-0.509,-0.282] 90
2 -0.507 0.051 [-0.601,-0.402] 83
3 -0.475 0.050 [-0.569,-0.373] 60
4 -0.425 0.054 [-0.526,-0.313] 90
5 -0.298 0.061 [-0.414,-0.177] 78

ν 17.6 1.8 [14.5, 21.6] 75
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Table 6: The MSVt model.

Posterior means, standard deviations, 95% credible
intervals, and inefficiency factors for ρij,εε, ρij,ηη, ρij,εη

ij Mean Stdev 95% interval Inefficiency

ρij,εε

12 0.648 0.010 [0.628, 0.668] 3
13 0.565 0.012 [0.542, 0.588] 2
14 0.526 0.013 [0.500, 0.550] 3
15 0.489 0.013 [0.463, 0.515] 3
23 0.675 0.010 [0.657, 0.694] 3
24 0.662 0.010 [0.642, 0.681] 2
25 0.560 0.012 [0.537, 0.583] 3
34 0.707 0.009 [0.689, 0.723] 2
35 0.553 0.012 [0.529, 0.577] 3
45 0.509 0.013 [0.483, 0.534] 2

ρij,ηη

12 0.829 0.034 [0.755, 0.886] 191
13 0.802 0.036 [0.722, 0.862] 147
14 0.773 0.041 [0.684, 0.845] 160
15 0.792 0.041 [0.703, 0.861] 160
23 0.814 0.033 [0.742, 0.872] 152
24 0.781 0.040 [0.695, 0.851] 152
25 0.717 0.050 [0.610, 0.806] 180
34 0.878 0.024 [0.823, 0.919] 109
35 0.785 0.041 [0.698, 0.855] 200
45 0.742 0.048 [0.639, 0.823] 180

ρij,εη

12 -0.397 0.053 [-0.499,-0.289] 69
13 -0.456 0.049 [-0.550,-0.358] 70
14 -0.382 0.054 [-0.485,-0.275] 92
15 -0.353 0.060 [-0.465,-0.229] 94
21 -0.442 0.060 [-0.554,-0.316] 119
23 -0.436 0.052 [-0.534,-0.332] 77
24 -0.369 0.056 [-0.475,-0.256] 97
25 -0.415 0.062 [-0.530,-0.287] 129
31 -0.373 0.060 [-0.485,-0.250] 89
32 -0.366 0.057 [-0.474,-0.250] 69
34 -0.397 0.056 [-0.502,-0.284] 83
35 -0.359 0.064 [-0.479,-0.228] 111
41 -0.365 0.060 [-0.476,-0.240] 106
42 -0.367 0.056 [-0.473,-0.252] 80
43 -0.399 0.052 [-0.497,-0.294] 79
45 -0.367 0.064 [-0.487,-0.238] 112
51 -0.231 0.060 [-0.345,-0.111] 73
52 -0.250 0.056 [-0.356,-0.137] 70
53 -0.299 0.052 [-0.399,-0.195] 65
54 -0.252 0.055 [-0.357,-0.139] 73
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Tables 6 shows the posterior means, standard deviations, 95% credible
intervals and inefficiency factors for ρij,εε, ρij,ηη, and ρij,εη. Very high corre-
lations are found among εits (with ρij,εεs ranging from 0.489 to 0.707), and
among ηits (with ρij,ηηs ranging from 0.717 to 0.878), which may cause the
low absolute values of ρi,ϵηs as mentioned above.

The posterior means of ρij,εη are all negative and vary from −0.456 to
−0.231, and none of the 95% credible intervals for ρij,εη include zero. This is
strong evidence for the existence of cross asset leverage effects. Furthermore,
we note that the cross leverage effects between series i and j are found
to be asymmetric, i.e., ρij,εη ̸= ρji,εη for i ̸= j. For example, in Table
6, ρi5,εηs vary from −0.415 to −0.353, while ρ5j,εηs vary from −0.299 to
−0.231. This means the cross leverage effects from Series 1, 2, 3, and 4 on
the volatility of Series 5 (i.e., ‘Utilities’) are relatively stronger than vice-
versa. The volatility of the ‘Utilities’ series is more influenced by decreases
in returns of four other series, while those of the other series are less subject
to change in the returns of ‘Utilities’ series. This would suggest that market
participants do not react so sharply when a decrease in the return is limited
to ‘Utilities’ series, but they do react in a more sensitive way if decreases
occur in other series.

4.4. Model comparison

Finally, we conduct a comparison of the MSV and MSVt models using
the deviance information criterion (DIC) (Spiegelhalter et al. (2002)). The
DIC is defined by

DIC = Eθ|y[D(θ)] + pD,

where

pD = Eθ|y[D(θ)]−D(Eθ|y[θ]), D(θ) = −2 log f(Yn|θ).

To compute Eθ|y[D(θ)], we use a sample analogue, 1
M

∑M
m=1D(θ(m)), where

we set M = 100, and θ(m)s are resampled from the posterior distribution.
The numerical standard error of the estimate is obtained by repeatedly es-
timating Eθ|y[D(θ)] ten times. Regarding D(Eθ|y[θ]), which equals to D(θ)
evaluated at the posterior mean, we implement an auxiliary particle filter to
compute the likelihood ordinate log f(Yn|θ) as discussed in Section 2.3 and
set the number of particles, I = 10, 000. We repeat this ten times to obtain
the numerical standard error.
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Table 7 shows the sample means of DIC, the standard errors, and the
smallest and the largest values among one hundred DIC values computed
for two competing models. The DIC of the MSVt model much smaller than
that of the MSV model, which indicates that the MSVt models outperforms
the MSV model. This result also constitutes the evidence that the S&P500
sector index returns are heavy-tailed.

Table 7: Estimates, standard errors and the smallest and the largest values of DIC

Model DIC (s.e.) DICmax DICmin

MSV 48741.6 (1.4) 48749.9 48728.4
MSVt 48650.3 (2.6) 48664.8 48634.2

5. Conclusion

This paper proposes an efficient MCMC algorithm using a multi-move
sampler for latent volatility vectors for MSV models with cross leverage
and heavy-tailed errors. To sample a block of state vectors, we construct a
proposal density function for the MH algorithm based on the approximate
normal distribution using Taylor expansion of the logarithm of the target
likelihood. We then exploit the sampling algorithms, which are developed
for the linear and Gaussian state space models. We show that our proposed
methods are easy to implement and that they are highly efficient. Extend-
ing to the model with respect to multivariate t-distributed errors is also
discussed. Illustrative examples and empirical analyses are presented based
on five sectors of S&P500 indices.
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Appendix

A. Multi-move sampler for the MSV model

A.1. Derivation of the approximate state space model

First, noting that E[∂2L/∂αt∂α
′
t+k] = 0 (k ≥ 2), define At and Bt as

At = −E

[
∂2L

∂αt∂α′
t

]
, t = s+ 1, . . . , s+m, (32)

Bt = −E

[
∂2L

∂αt∂α′
t−1

]
, t = s+ 2, . . . , s+m, Bs+1 = 0, (33)

and let dt = ∂L/∂αt for t = s + 1, . . . , s +m. dt,At, and Bt are shown in
Appendix A.2 for the MSV model. To obtain the approximating state space
model, first evaluate dt,At, and Bt at the current mode, with αt = α̂t. Use
d̂t, Ât and B̂t in the following computations.

1. Set bs = 0 and B̂s+m+1 = 0. Compute

Dt = Ât − B̂tD
−1
t−1B̂

′
t, bt = d̂t − B̂tD

−1
t−1bt−1, γ̂t = α̂t +D−1

t B̂′
t+1α̂t+1,

for t = s + 1, . . . , s + m recursively, where Kt denotes a Choleski
decomposition of Dt such that Dt = KtK

′
t.

2. Define auxiliary vectors and matrices

ŷt = γ̂t +D−1
t bt, Zt = Ip +D−1

t B̂′
t+1Φ, Gt = [K′−1

t ,D−1
t B̂′

t+1Rt],

for t = s+ 1, . . . , s+m.

Then, derive the approximate linear Gaussian state space model given using
(22) and (23).

A.2. dt, At and Bt

Matrix differentiation

We first summarize definitions for the first and second derivatives of a
matrix and some results (Magnus and Neudecker (1999), and Magnus and
Abadir (2007)). Let F be a twice differentiable m× p matrix function of an
n × q matrix X. Then the first derivative (Jacobian matrix) of F at X is
defined by the mp× nq matrix

DF (X) =
∂F (X)

∂X
=

∂vec(F (X))

∂vec(X)′
,
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and the second derivative (Hessian matrix) of F at X is defined by the
mnpq × nq matrix

HF (X) = D
(
(DF (X))′

)
=

∂

∂(vec(X))′
vec

((
∂vec(F (X))

∂(vec(X))′

)′)
.

Chain rule: Let S a subset of Rn×q, and assume that F : S → Rm×p

is differentiable at an interior point C of S. Let T be a subset of Rm×p

such that F (X) ∈ T for all X ∈ S, and assume that G : T → Rr×s is
differentiable at an interior point B = F (C) of T . Then the composite
function H : S → Rr×s defined by H(X) = G(F (X)) is differentiable at C,
and

DH(X) = (DG(F (X)))(DF (X)) =
∂vec(G(F (X)))

∂(vec(F (X)))′
∂vec(F (X))

∂(vec(X))′
. (34)

When q = 1, x ∈ Rn×1, f : Rn×1 → Rm×p, g : Rm×p → Rr×s,

∂g(f(x))

∂x′ =
∂vec(g(f(x)))

∂vec(f(x))′
∂vec(f(x))

∂vec(x)′
. (35)

Product rule: Let S a subset of Rn×q, and assume that F : S → Rm×p

and G : S → Rp×r are differentiable at an interior point C of S. Then

∂vec(FG)

∂(vec(X))′
= (G′ ⊗ Im)

∂vec(F )

∂(vec(X))′
+ (Ir ⊗ F )

∂vec(G)

∂(vec(X))′
. (36)

dt, At, and Bt

Let zt = V
−1/2
t yt. Then, the logarithm of the conditional posterior

probability density is given by

lt = const− 1

2
1′pαt −

1

2
(zt −mt)

′S−1
t (zt −mt).

The gradient vector dt = ∂L/∂αt is given by

dt =
∂lt
∂αt

+
∂lt−1

∂αt
+ΦΣ−1

ηη (αt+1 −Φαt)I(t = s+m < n), t = s+ 1, . . . , s+m,
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where

∂lt
∂α′

t

= −1

2
1′p − (zt −mt)

′S−1
t

∂(zt −mt)

∂α′
t

= −1

2
1′p +

1

2
(zt −mt)

′S−1
t

{
diag(zt)− 2ΣεηΣ

−1
ηη ΦI(t < n)

}
,(37)

∂lt−1

∂α′
t

= (zt−1 −mt−1)
′S−1

t−1

∂mt−1

∂α′
t

= (zt−1 −mt−1)
′S−1

t−1ΣεηΣ
−1
ηη I(t > 1), (38)

using the chain rule (35). Thus

dt = −1

2
1p +

1

2

{
diag(zt)− 2ΦΣ−1

ηη ΣηεI(t < n)
}
S−1
t (zt −mt)

+Σ−1
ηη ΣηεS

−1
t−1(zt−1 −mt−1)I(t > 1)

+ΦΣ−1
ηη (αt+1 −Φαt)I(t = s+m < n),

for t = s+ 1, . . . , s+m.
To compute At and Bt using the product rule (36), we first obtain the

Hessian matrix

∂2L

∂αt∂α′
t

=
∂2lt

∂αt∂α′
t

+
∂2lt−1

∂αt∂α′
t

−ΦΣ−1
ηη ΦI(t = s+m < n),

for t = s+ 1, . . . , s+m where

∂2lt
∂αt∂α′

t

=

1

2

{
(zt −mt)

′S−1
t ⊗ Ip

} ∂vec(diag(zt))

∂α′
t

−1

4

(
diag(zt)− 2ΦΣ−1

ηη ΣηεI(t < n)
)
S−1
t

(
diag(zt)− 2ΣεηΣ

−1
ηη ΦI(t < n)

)
,

(39)

and

∂2lt−1

∂αt∂α′
t

= −Σ−1
ηη ΣηεS

−1
t−1ΣεηΣ

−1
ηη I(t > 1). (40)
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Noting that

∂vec(diag(zt))

∂α′
t

= −1

2

 z1te1e
′
1

...
zptepe

′
p

 , E [zjt(zt −mt)] = Stej , (41)

where ej is a p×1 unit vector with j-th component equal to 1, the expected
value of the first term in (39) is

E

[{
(zt −mt)

′S−1
t ⊗ Ip

} ∂vec(diag(zt))

∂α′
t

]
= −1

2

p∑
j=1

(e′jS
−1
t )(Stej)eje

′
j

= −1

2
Ip, (42)

Further, using diag(zt)S
−1
t diag(zt) = S−1

t ⊙ (ztz
′
t), the expected value of

the second term in (39) is

E
[(
diag(zt)− 2ΦΣ−1

ηη ΣηεI(t < n)
)
S−1
t

(
diag(zt)− 2ΣεηΣ

−1
ηη ΦI(t < n)

)]
= S−1

t ⊙ (St +mtm
′
t) + 4ΦΣ−1

ηη ΣηεS
−1
t ΣεηΣ

−1
ηη ΦI(t < n) (43)

−2
(
ΦΣ−1

ηη ΣηεS
−1
t diag(mt) + diag(mt)S

−1
t ΣεηΣ

−1
ηη Φ

)
I(t < n)

Thus, we obtain

At =
1

4

{
Ip + S−1

t ⊙ (St +mtm
′
t)
}
+ΦΣ−1

ηη ΣηεS
−1
t ΣεηΣ

−1
ηη ΦI(t < n)

−1

2

(
ΦΣ−1

ηη ΣηεS
−1
t diag(mt) + diag(mt)S

−1
t ΣεηΣ

−1
ηη Φ

)
I(t < n)

+Σ−1
ηη ΣηεS

−1
t−1ΣεηΣ

−1
ηη I(t > 1) +ΦΣ−1

ηη ΦI(t = s+m < n), (44)

for t = s+ 1, . . . , s+m. Similarly, it is straightforward to show that

Bt = −E

[
∂2lt−1

∂αt∂α′
t−1

]
=

1

2
Σ−1

ηη ΣηεS
−1
t−1

{
diag(mt−1)− 2ΣεηΣ

−1
ηη Φ

}
, (45)

for t = s+ 2, . . . , s+m.
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