
 

 

 

 

 

 

C A R F  W o r k i n g  P a p e r 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CARF is presently supported by Bank of Tokyo-Mitsubishi UFJ, Ltd., Dai-ichi Mutual Life 
Insurance Company, Nomura Holdings, Inc. and Sumitomo Mitsui Banking Corporation (in 
alphabetical order). This financial support enables us to issue CARF Working Papers. 

 
 

 

 

 

 

CARF Working Papers can be downloaded without charge from: 
http://www.carf.e.u-tokyo.ac.jp/workingpaper/index.html 

 

 

 

 

Working Papers are a series of manuscripts in their draft form.  They are not intended for circulation 
or distribution except as indicated by the author.  For that reason Working Papers may not be 
reproduced or distributed without the written consent of the author. 

   
CARF-F-358 

 
A weak approximation with asymptotic expansion  

and multidimensional Malliavin weights 
 

Akihiko Takahashi 
The University of Tokyo 

 
Toshihiro Yamada 

The University of Tokyo and MTEC 
 
 

First version: February 2015 
This version: April 2016 



The Annals of Applied Probability
2016, Vol. 26, No. 2, 818–856
DOI: 10.1214/15-AAP1105
© Institute of Mathematical Statistics, 2016

A WEAK APPROXIMATION WITH ASYMPTOTIC EXPANSION
AND MULTIDIMENSIONAL MALLIAVIN WEIGHTS1

BY AKIHIKO TAKAHASHI AND TOSHIHIRO YAMADA

University of Tokyo, University of Tokyo and MTEC

This paper develops a new efficient scheme for approximations of expec-
tations of the solutions to stochastic differential equations (SDEs). In partic-
ular, we present a method for connecting approximate operators based on an
asymptotic expansion with multidimensional Malliavin weights to compute a
target expectation value precisely. The mathematical validity is given based
on Watanabe and Kusuoka theories in Malliavin calculus. Moreover, numeri-
cal experiments for option pricing under local and stochastic volatility models
confirm the effectiveness of our scheme. Especially, our weak approximation
substantially improves the accuracy at deep Out-of-The-Moneys (OTMs).

1. Introduction. Developing an approximation method for expectations of
diffusion processes is an interesting topic in various research fields. In fact, it
seems so useful that a precise approximation for the expectation would lead to sub-
stantial reduction of computational burden so that the subsequent analyses could
be very easily implemented. Particularly, in finance it has drawn much attention for
more than the past two decades since fast and precise computation is so important
in terms of competition and risk management in practice such as in trading and
investment.

An example among a large number of the related researches is an asymp-
totic expansion approach, which is mathematically justified by Watanabe theory
[Watanabe (1987)] in Malliavin calculus [e.g., Malliavin (1997)]. Especially, the
asymptotic expansion have been applied to a broad class of problems in finance;
for instance, see Takahashi and Yamada (2012a, 2012b, 2013, 2015) and references
therein.

Although the asymptotic expansion up to the fifth order is known to be suffi-
ciently accurate for option pricing [e.g., Takahashi, Takehara and Toda (2012)],
the main criticism against the method would be that the approximate density func-
tion deviates from the true density at its tails that is, some region of the very deep
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Out-of-The-Money (OTM). However, there exist similar problems, at least implic-
itly in other well-known approximation methods such as Hagan et al. (2002).

On the other hand, the Monte Carlo simulation method is quite popular mainly
due to the ease of its implementation. Nevertheless, in order to achieve accuracy
sufficient enough in practice, there exists an unavoidable drawback in computa-
tional cost under the standard weak approximation schemes of SDEs such as the
Euler–Maruyama scheme.

To overcome this problem, Kusuoka (2001, 2003b, 2004) developed a high or-
der weak approximation scheme for SDEs based on Malliavin calculus and Lie
algebra, which opened the door for the possibility that the computational speed
and the accuracy in the Monte Carlo simulation satisfies stringent requirements
in financial business. Independently, Lyons and Victoir (2004) developed a cuba-
ture method on the Wiener space. Since then, there have been a large number of
researches for weak approximations and its applications to the computational fi-
nance inspired by those pioneering works. For instance, see Crisan, Manolarakis
and Nee (2013) for the Kusuoka’s method and its related works [e.g., Bayer, Friz
and Loeffen (2013)].

This paper develops a new weak approximation scheme for expectations of
functions of the solutions to SDEs. In particular, the scheme connects approxi-
mate operators constructed based on the asymptotic expansion. More concretely,
a diffusion semigroup is defined as the expectation of an appropriate function
of the solution to a certain SDE, for example, P ε

t f (x) = E[f (X
x,ε
t )] with the

solution X
x,ε
t of a SDE with perturbation parameter ε and a function f . Then

we approximate P ε
t by an operator Q

ε,m
t which is constructed based on the

asymptotic expansion up to a certain order m. Thus, given a partition of [0, T ],
π = {(t0, t1, . . . , tn) : 0 = t0 < t1 < · · · < tn = T }, we are able to approximate
P ε

T f (x) by connecting the expansion-based approximations sequentially, that is,
with sk = tk − tk−1, k = 1, . . . , n,

P ε
T f (x) � Qε,m

sn
Qε,m

sn−1
· · ·Qε,m

s1
f (x).

This paper justifies this idea by applying Malliavin calculus, particularly, theories
developed by Watanabe (1987) and Kusuoka (2001, 2003a, 2004).

Moreover, we show through numerical examples for option pricing that very
few partitions such as n = 2 is mostly enough to substantially improve the errors at
deep OTMs of expansions with order m = 1,2. For a related but different approach
with similar motivation, see Section 5 in Fujii (2014).

The organization of the paper is as follows. The next section introduces the
setup and the basic results necessary for the subsequent analysis. Section 3 shows
our main result for a new weak approximation of the expectation of diffusion pro-
cesses. Section 4 briefly describes an example for the implementation method of
our scheme, Section 5 provides numerical experiments for option pricing under
local and stochastic volatility models. Section 6 makes concluding remarks. The
Appendix gives the proofs of Theorems 1, 2 and 3 as well as Lemma 2 and its
proof.
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2. Preparation. Let (W,H,P) be the d-dimensional Wiener space, that
is, W = {w ∈ C([0, T ] → Rd);w(0) = 0} which is a real Banach space un-
der the supremum norm, H = {h ∈ W; t �→ h(t) is absolutely continuous and
‖h‖2

H = ∫ T
0 | d

dt
h(t)|2 dt < ∞} is a real Hilbert space under ‖ · ‖H called the

Cameron–Martin subspace and P is the d-dimensional Wiener measure. Let Bt =
(B1

t , . . . ,Bd
t )� be a d-dimensional Brownian motion. In this paper, we consider

the following general perturbed N -dimensional stochastic differential equation
with ε ∈ (0,1]:

X
x,ε
t = x +

∫ t

0
V0
(
ε,Xx,ε

s

)
ds + ε

d∑
j=1

∫ t

0
Vj

(
Xx,ε

s

)
dBj

s ,(2.1)

where V0 ∈ C∞
b ((0,1] × RN ;RN) and Vj ∈ C∞

b (RN ;RN), j = 1, . . . , d are
bounded. Hereafter, we will use the notation Vf (x) =∑N

i=1 V i(x)(∂f/∂xi)(x) for
V ∈ C∞

b (RN ;RN) and f a differentiable function RN into R. X
x,ε
t can be written

in the Stratonovich form:

X
x,ε
t = x +

∫ t

0
Ṽ0
(
ε,Xx,ε

s

)
ds + ε

d∑
j=1

∫ t

0
Ṽj

(
Xx,ε

s

) ◦ dBj
s ,(2.2)

where

Ṽ i
0 (ε, x) = V i

0 (ε, x) − ε2

2

d∑
j=1

VjV
i
j (x),(2.3)

εṼ i
j (x) = εV i

j (x), j = 1, . . . , d.(2.4)

Here, we consider the case V i
0 (ε, x) = εkV̂ i

0 (x), V̂0 ∈ C∞
b (RN ;RN), k = 0,1,2,

for i = 1, . . . ,N , which is useful in applications [see Takahashi and Toda (2013)
for the details]. Moreover, we assume the following condition [H] on the vector
fields, which ensures both the integration by parts on the Wiener space and the
asymptotic expansion in the next section.

[H] The matrix A(x) = (Ai,i′(x))i,i′ defined by

Ai,i′(x) =
d∑

j=1

V i
j (x)V i′

j (x) for all x ∈ RN,1 ≤ i, i ′ ≤ N(2.5)

is nondegenerate, that is, det(A(x)) > 0.

2.1. The space Kr . Let Dk,p(E), k ≥ 1, p ∈ [1,∞) be the space of k-times
Malliavin differentiable Wiener functionals F ∈ Lp(W,E), where E is a separa-
ble Hilbert space. See Watanabe (1987), Ikeda and Watanabe (1989), Malliavin
(1997), Malliavin and Thalmaier (2006) and Nualart (2006) for more details of the



WEAK APPROXIMATION WITH ASYMPTOTIC EXPANSION 821

notation. This subsection introduces the space of Wiener functionals Kr developed
by Kusuoka (2003a) and its properties. The element of Kr is called the Kusuoka–
Stroock function. See Nee (2010, 2011) and Crisan, Manolarakis and Nee (2013)
for more details of the notation and the proofs.

DEFINITION 1. Given r ∈ R and n ∈ N, we denote by Kr (E,n) the set of
functions G : (0,1] × RN → Dn,∞(E) satisfying the following:

1. G(t, ·) is n-times continuously differentiable and [∂αG/∂xα] is contin-
uous in (t, x) ∈ (0,1] × RN a.s. for any multiindex α = α(l) ∈ {1, . . . , d}l with
length |α| = l ≤ n. Here, [∂αG/∂xα] is the partial derivative of G(t, x) given by

∂l

∂xα1 ···∂xαl
G(t, x).

2. For all k ≤ n − |α|, p ∈ [1,∞),

sup
t∈(0,1],x∈RN

t−r/2
∥∥∥∥∂αG

∂xα
(t, x)

∥∥∥∥
Dk,p

< ∞.(2.6)

We write Kr for Kr (R,∞).

Next, we show the basic properties of the Kusuoka–Stroock functions.

LEMMA 1 (Properties of Kusuoka–Stroock functions). 1. The function (t, x) ∈
(0,1] × RN �→ X

x,ε
t belongs to K0.

2. Suppose G ∈ Kr (n) where r ≥ 0. Then, for i = 1, . . . , d ,

(a)
∫ ·

0
G(s, x) dBi

s ∈ Kr+1(n) and

(2.7)
(b)

∫ ·
0

G(s, x) ds ∈ Kr+2(n).

3. If Gi ∈ Kri (ni), i = 1, . . . , l, then

(a)
l∏
i

Gi ∈ Kr1+···+rl

(
min

i
ni

)
and

(2.8)

(b)
l∑

i=1

Gi ∈ Kmini ri

(
min

i
ni

)
.

Then we summarize the Malliavin’s integration by parts formula using Ku-
suoka–Stroock functions. Hereafter, for any multiindex α = α(k) := (α1, . . . , αk) ∈
{1, . . . ,N}k , k ≥ 1 with the length |α(k)| = k, we denote by ∂α(k) the partial deriva-

tive ∂α

∂xα = ∂k

∂xα1 ···∂xαk
.
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PROPOSITION 1. Suppose that condition [H] holds. Let G : (0,1] × RN →
D∞ = D∞,∞(R) be an element of Kr and let f be a function that belongs to the
space C∞

b (RN ;R). Then for any multiindex α(k) ∈ {1, . . . ,N}k , k ≥ 1, there exists
Hα(k)(X

x,ε
t ,G(t, x)) ∈ Kr−k such that

E
[
∂α(k)f

(
X

x,ε
t

)
G(t, x)

]= E
[
f
(
X

x,ε
t

)
Hα(k)

(
X

x,ε
t ,G(t, x)

)]
,

(2.9)
t ∈ (0,1],

with

sup
x∈RN

∥∥Hα(k)

(
X

x,ε
t ,G(t, x)

)∥∥
Lp ≤ t (r−k)/2C,(2.10)

where Hα(k)(X
x,ε
t ,G(t, x)) is recursively given by

H(i)

(
X

x,ε
t ,G(t, x)

)= δ

(
N∑

j=1

G(t, x)γ
X

x,ε
t

ij DX
x,ε,j
t

)
,(2.11)

Hα(k)

(
X

x,ε
t ,G(t, x)

)= H(αk)

(
X

x,ε
t ,Hα(k−1)

(
X

x,ε
t ,G(t, x)

))
,(2.12)

and a positive constant C. Here, δ is the Skorohod integral and DX
x,ε
t is the Malli-

avin derivative of X
x,ε
t ,

〈
DX

x,ε
t , h

〉
H =

d∑
k=1

∫ t

0
Ds,kX

x,ε
t

d

ds
hk(s) ds

(2.13)

= lim
λ→0

X
x,ε
t (w + λh) − X

x,ε
t (w)

λ
, h ∈ H,

and γ X
x,ε
t = (γ

X
x,ε
t

ij )1≤i,j≤N is the inverse matrix of the Malliavin covariance
of X

x,ε
t .

PROOF. By 1, 2, 3 of Lemma 1, we can see that the Malliavin covariance of
X

x,ε
t is given by

σ
X

x,ε
t

i,j =
d∑

k=1

∫ t

0
Ds,kX

x,ε,i
t Ds,kX

x,ε,j
t ds ∈ K2,(2.14)

since Ds,kX
x,ε,i
t ∈ K0, s ≤ t , k = 1, . . . , d , i = 1, . . . ,N . Under [H], it can be

shown that the nondegenerate condition of the Malliavin covariance matrix is sat-
isfied when ε > 0 (but not satisfied when ε = 0, that is, the Malliavin covariance
matrix σX

x,ε
t is not uniformly nondegenerate in ε) and then (2.9) holds [see the

proofs of Proposition 5.8, Theorems 5.9 and 6.7 of Shigekawa (2004)]. Also, we

have γ X
x,ε
t ∈ K−2 since γ X

x,ε
t = (σX

x,ε
t )−1 = adjσX

x,ε
t

detσX
x,ε
t

. Here, adjA is the adjugate
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matrix of A. By the property of the Skorohod integral [Proposition 1.3.3 of Nualart
(2006) and Lemma 5.2 of Malliavin (1997) or (4.15) of proof of Lemma 4.10 of
Malliavin and Thalmaier (2006)], we have

H(i)

(
X

x,ε
t ,G(t, x)

)

= δ

(
N∑

j=1

G(t, x)γ
Xε

t

ij DX
x,ε,j
t

)

(2.15)

=
[
G(t, x)

N∑
j=1

d∑
k=1

∫ t

0
γ

Xε
t

ij

(
J

x,ε
t

(
J x,ε

s

)−1
εVk

(
Xx,ε

s

))j
dBk

s

−
N∑

j=1

d∑
k=1

∫ t

0

[
Ds,kG(t, x)

]
γ

Xε
t

ij

(
J

x,ε
t

(
J x,ε

s

)−1
εVk

(
Xx,ε

s

))j
ds

]
.

Again, by Lemma 1, the first and the second terms in the second equality is char-
acterized by

G(t, x)

N∑
j=1

d∑
k=1

∫ t

0
γ

Xε
t

ij

(
J

x,ε
t

(
J x,ε

s

)−1
εVk

(
Xx,ε

s

))j
dBk

s ∈ Kr−1,(2.16)

∫ t

0

[
Ds,kG(t, x)

]
γ

Xε
t

ij

(
J

x,ε
t

(
J x,ε

s

)−1
εVk

(
Xx,ε

s

))j
ds ∈ Kr ,(2.17)

since J
x,ε
t , (J

x,ε
t )−1 ∈ K0, γ

Xε
t

ij ∈ K−2 and∫ t

0
γ

Xε
t

ij

(
J

x,ε
t

(
J x,ε

s

)−1
εVk

(
Xx,ε

s

))j
dBk

s ∈K−2+1 = K−1.(2.18)

Then H(i)(X
x,ε
t ,G(t, x)) ∈ Kr−1 and Hα(k)(X

x,ε
t ,G(t, x)) ∈ Kr−k . Therefore, we

have the assertion. �

3. Weak approximation with asymptotic expansion method. In the re-
mainder of the paper, we use the following norms and seminorms:

‖f ‖∞ = sup
x∈RN

∣∣f (x)
∣∣, ‖∇f ‖∞ = max

i∈{1,...,N}

∥∥∥∥ ∂f

∂xi

∥∥∥∥∞
,(3.1)

∥∥∇ if
∥∥∞ = max

j1,...,ji∈{1,...,N}

∥∥∥∥ ∂if

∂xj1 · · · ∂xji

∥∥∥∥∞
, f ∈ C∞

b

(
RN ;R

)
.(3.2)

In the first step, we give approximation results of an asymptotic expansion with
Malliavin weights for E[f (X

x,ε
t )] where

X
x,ε
t = x +

∫ t

0
V0
(
ε,Xx,ε

s

)
ds + ε

d∑
j=1

∫ t

0
Vj

(
Xx,ε

s

)
dBj

s .(3.3)
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Under the smoothness of the vector fields Vj , j = 0,1, . . . , d , X
x,ε
t is expanded as

X
x,ε
t = X

x,0
t + ε

∂

∂ε
X

x,ε
t

∣∣∣∣
ε=0

+ ε2 1

2!
∂2

∂ε2 X
x,ε
t

∣∣∣∣
ε=0

+ · · · in D∞.(3.4)

Here, the above expansion in the space D∞ is given in the sense that for all m ∈ N,

lim sup
ε↓0

1

εm+1

∥∥∥∥∥Xx,ε
t −

{
X

x,0
t +

m∑
i=1

εi 1

i!
∂i

∂εi
X

x,ε
t

∣∣∣∣
ε=0

}∥∥∥∥∥
Dk,p

< ∞
(3.5)

∀k ∈ N,∀p ∈ [1,∞).

For instance, see Watanabe (1987) and Kunitomo and Takahashi (2003) for the
details.

Let us define X̄
x,ε
t as the sum of the first two terms in the expansion (3.4) as

follows:

X̄
x,ε
t = X

x,0
t + ε

∂

∂ε
X

x,ε
t

∣∣∣∣
ε=0

.(3.6)

We remark that X
x,0
t is the solution to the following ODE:

X
x,0
t = x +

∫ t

0
V0
(
0,Xx,0

s

)
ds,(3.7)

and ∂
∂ε

Xx,ε
s |ε=0 satisfies the following linear SDE:

∂

∂ε
Xx,ε,l

s

∣∣∣∣
ε=0

=
∫ t

0

∂

∂ε
V l

0
(
ε,Xx,0

s

)∣∣∣∣
ε=0

ds +
d∑

j=1

∫ t

0
V l

j

(
Xx,0

s

)
dBj

s

(3.8)

+
N∑

k=1

∫ t

0
∂kV

l
0
(
0,Xx,ε

s

)∣∣∣∣
ε=0

∂

∂ε
Xx,ε,k

s

∣∣∣∣
ε=0

ds,

∂

∂ε
X

x,ε,l
0

∣∣∣∣
ε=0

= 0, l = 1, . . . ,N.(3.9)

The solution of ∂
∂ε

Xx,ε
s |ε=0 is given by

d∑
j=1

∫ t

0
J

x,0
t

(
J x,0

u

)−1
Vj

(
Xx,0

u

)
dBj

u

(3.10)

+
∫ t

0
J

x,0
t

(
J x,0

u

)−1 ∂

∂ε
V0
(
ε,Xx,0

u

)∣∣∣∣
ε=0

du,

where J
x,0
t = ∇xX

x,0
t [see (6.6) on page 354 of Karatzas and Shreve (1991), e.g.].

Note that ∂
∂ε

X
x,ε
t |ε=0 is a Gaussian random variable with a mean μ(t) and a co-
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variance matrix 
(t) = (
i,j (t))1≤i,j≤N

μ(t) =
∫ t

0
J

x,0
t

(
J x,0

u

)−1 ∂

∂ε
V0
(
ε,Xx,0

u

)∣∣∣∣
ε=0

du,(3.11)


i,j (t) =
d∑

k=1

∫ t

0

(
J

x,0
t

(
J x,0

s

)−1
Vk

(
Xx,0

s

))i(
J

x,0
t

(
J x,0

s

)−1
Vk

(
Xx,0

s

))j
ds.(3.12)

Here, we note that t �→ μ(t) and t �→ 
i,j (t), 1 ≤ i, j ≤ N , are deterministic func-
tions. Therefore, X̄

x,ε
t = X

x,0
t + ε ∂

∂ε
X

x,ε
t |ε=0 is a Gaussian random variable with

a mean X
x,0
t + εμ(t) and a covariance matrix ε2
(t) = (ε2
i,j (t))1≤i,j≤N .

REMARK 1. 1. When V0(ε, x) = εV0(x), X̄
x,ε
t is given by

X̄
x,ε
t = x + ε

d∑
i=0

Vi(x)

∫ t

0
dBi

s,(3.13)

where B0
t = t .

2. When V0(ε, x) = V0(x), X̄
x,ε
t is given by

X̄
x,ε
t = X

x,0
t + ε

d∑
j=1

∫ t

0
J

x,0
t

(
J x,0

u

)−1
Vj

(
Xx,0

u

)
dBj

u.(3.14)

The next theorem shows the local approximation errors for E[f (X
x,ε
t )] using

Malliavin weights.

THEOREM 1. Under condition [H], we have the following:

1. For any t ∈ (0,1] and f ∈ C∞
b (RN ;R), there exists C > 0 such that

sup
x∈RN

∣∣∣∣∣E[f (Xx,ε
t

)]−
{
E
[
f
(
X̄

x,ε
t

)]+ m∑
j=1

εjE
[
f
(
X̄

x,ε
t

)
�

j
t

]}∣∣∣∣∣
(3.15)

≤ εm+1C

(
m+1∑
k=1

t (m+1+k)/2∥∥∇kf
∥∥∞

)
,

where �
j
t , j ≥ 1, is the Malliavin weights defined by

�
j
t =

j∑
k=1

∑
β1+···+βk=j+k,βl≥2

∑
α(k)∈{1,...,N}k

1

k!
(3.16)

× Hα(k)

(
∂

∂ε
X

x,ε
t

∣∣∣∣
ε=0

,

k∏
l=1

1

βl !
∂βl

∂εβl
X

x,ε,αl
t

∣∣∣∣
ε=0

)
.
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2. For any t ∈ (0,1] and Lipschitz continuous function f : RN → R, there exists
C > 0 such that

sup
x∈RN

∣∣∣∣∣E[f (Xx,ε
t

)]−
{
E
[
f
(
X̄

x,ε
t

)]+ m∑
j=1

εjE
[
f
(
X̄

x,ε
t

)
�

j
t

]}∣∣∣∣∣
(3.17)

≤ εm+1Ct(m+2)/2,

with same weights in (3.16).
3. For any t ∈ (0,1] and bounded Borel function f : RN → R, there exists

C > 0 such that

sup
x∈RN

∣∣∣∣∣E[f (Xx,ε
t

)]−
{
E
[
f
(
X̄

x,ε
t

)]+ m∑
j=1

εjE
[
f
(
X̄

x,ε
t

)
�

j
t

]}∣∣∣∣∣
(3.18)

≤ εm+1Ct(m+1)/2,

with same weights in (3.16).

PROOF. See Appendix A. �

REMARK 2. When Ṽ0(ε, x) = εṼ0(x), X
x,ε
t has the following expansion:

X
x,ε
t = x + ε

d∑
j=0

Ṽj (x)

∫ t

0
◦dBj

s

+
m∑

k=2

εk
∑

(i1,...,ik)∈{0,1,...,d}k
(Ṽi1 · · · Ṽik )(x)

∫
0<t1<···<tk<t

◦dB
i1
t1

◦ · · · ◦ dB
ik
tk

+ εm+1R̃m(t, x, ε),

where R̃m(t, x, ε) is the residual. Here, we used the notation B0
t = t . Then

1

k!
∂k

∂εk
X

x,ε
t

∣∣∣∣
ε=0

= ∑
(i1,...,ik)∈{0,1,...,d}k

(Ṽi1 · · · Ṽik )(x)

∫
0<t1<···<tk<t

◦dB
i1
t1

◦ · · · ◦ dB
ik
tk

.

REMARK 3. �
j
t is obtained by multiple Skorohod integral and each Malli-

avin weight is concretely calculated as follows; for G(t, x) ∈ Kr and i =
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1, . . . ,N ,

H(i)

(
∂

∂ε
X

x,ε
t

∣∣∣∣
ε=0

,G(t, x)

)

= G(t, x)

N∑
j=1

d∑
k=1

[

(t)−1]

i,j

∫ t

0

(
J

x,0
t

(
J x,0

s

)−1
Vk

(
Xx,0

s

))j
dBk

s(3.19)

−
N∑

j=1

d∑
k=1

[

(t)−1]

i,j

∫ t

0
Ds,kG(t, x)

(
J

x,0
t

(
J x,0

s

)−1
Vk

(
Xx,0

s

))j
ds

with the deterministic covariance matrix (
i,j (t))1≤i,j≤N corresponds to (3.12),
that is,


i,j (t) =
d∑

k=1

∫ t

0
Ds,k

∂

∂ε
X

x,ε,i
t

∣∣∣∣
ε=0

Ds,k

∂

∂ε
X

x,ε,j
t

∣∣∣∣
ε=0

ds

(3.20)

=
d∑

k=1

∫ t

0

(
J

x,0
t

(
J x,0

s

)−1
Vk

(
Xx,0

s

))i(
J

x,0
t

(
J x,0

s

)−1
Vk

(
Xx,0

s

))j
ds.

Let (Pt )t be linear operators on f ∈ Cb(RN ;R) defined by

Ptf (x) = E
[
f
(
X

x,ε
t

)]
.(3.21)

We remark that (Pt )t is a semigroup. Also let (P̄t )t be linear operators on f ∈
Cb(RN ;R) defined by

P̄tf (x) = E
[
f
(
X̄

x,ε
t

)]
.(3.22)

Next, as an approximation of Ps we introduce a linear operator Qm
(s) below. First,

for j ≥ 1 and t ∈ (0,1], let P̄�j (t) be a linear operator defined by the following
expectation with Malliavin weight �

j
t :

P̄�j (t)f (x) = E
[
f
(
X̄

x,ε
t

)
�

j
t

]
.(3.23)

Then (Qm
(s))s∈(0,1] is defined as linear operators:

Qm
(s)f (x) = P̄sf (x) +

m∑
j=1

εj P̄�j (s)f (x).(3.24)

We remark that

P̄�j (t)f (x) =
∫

RN
f (y)E

[
�

j
t |X̄x,ε

t = y
]
pX̄ε

(t, x, y) dy(3.25)

= E
[
f
(
X̄

x,ε
t

)
M(j)

(
t, x, X̄

x,ε
t

)]
,(3.26)

where M(j)(t, x, y) = E[�j
t |X̄x,ε

t = y] and y �→ pX̄ε
(t, x, y) is the density

of X̄
x,ε
t .
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Then Qm
(s) can be written as follows:

Qm
(s)f (x) = E

[
f
(
X̄x,ε

s

)
Mm(s, x, X̄x,ε

s

)]
,(3.27)

where Mm(s, x, y) = 1 +∑m
j=1 εjM(j)(s, x, y).

Then we have the following explicit representation for the Malliavin weight
function Mm.

THEOREM 2. Under condition [H], the Malliavin weight function Mm is
given by

Mm(t, x, y)

= 1 +
m∑

j=1

εj
j∑

k=1

∑
β1+···+βk=j+k,βl≥2

∑
α(k)∈{1,...,N}k

εk

k!(3.28)

× ∂∗
αk

◦ ∂∗
αk−1

◦ · · · ◦ ∂∗
α1

E

[
k∏

l=1

1

βl !
∂βl

∂εβl
X

x,ε,αl
t

∣∣∣∣
ε=0

∣∣∣X̄x,ε
t = y

]
,

where ∂∗ is the divergence operator on the Gaussian space (RN, ν), that is,

ν(dy) = pX̄ε

(t, x, y) dy

= 1

(2πε)N/2 det(
(t))1/2

× e−(y−X
x,0
t −εμ(t))�
−1(t)(y−X

x,0
t −εμ(t))/(2ε2) dy,(3.29)

∂∗
i A(y) = −

[
∂

∂yi

logpX̄ε

(t, x, y)

]
A(y) − ∂

∂yi

A(y),

A ∈ S
(
RN

)
,1 ≤ i ≤ N.

Here, μ(t) and 
(t) = (
i,j (t))1≤i,j≤N are defined in (3.11) and (3.12), respec-
tively, that is,

μ(t) =
∫ t

0
J

x,0
t

(
J x,0

u

)−1 ∂

∂ε
V0
(
ε,Xx,0

u

)∣∣∣∣
ε=0

du,(3.30)


i,j (t) =
d∑

k=1

∫ t

0

(
J

x,0
t

(
J x,0

s

)−1
Vk

(
Xx,0

s

))i(
J

x,0
t

(
J x,0

s

)−1
Vk

(
Xx,0

s

))j
ds,(3.31)

and S(RN) is the Schwartz rapidly decreasing functions on RN .

PROOF. See Appendix B. �

REMARK 4. The term
∏k

l=1
1
βl !

∂βl

∂εβl
X

x,ε,αl
t |ε=0 in each conditional expectation

in (3.28) of Theorem 2 is generally expressed as a finite sum of iterated multiple
Wiener–Itô integrals. Hence, we are able to explicitly compute each conditional ex-
pectation, conditioned on X̄

x,ε
t that is given by the first-order Wiener–Itô integral.
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For instance, let qk = (qk,1, . . . , qk,d)�, qk,i ∈ L2([0, t]), k = 1,2,3,4, i =
1, . . . , d and hl(ξ ;v) be the (one dimensional) Hermite polynomial of degree l

with parameter v = ∫ t
0 q�

1 (s)q1(s) ds. Then the conditional expectations of the
second- and the third-order iterated multiple Wiener–Itô integrals are evaluated as
the following formulas:

E

[∫ t

0

∫ s

0
q�

2 (u) dBuq
�
3 (s) dBs

∣∣∣ ∫ t

0
q�

1 (s) dBs = ξ

]
(3.32)

=
(∫ t

0

∫ s

0
q�

2 (u)q1(u) duq�
3 (s)q1(s) ds

)
h2(ξ ;v)

v2 ,

E

[∫ t

0

∫ s

0

∫ u

0
q�

2 (r) dBrq
�
3 (u) dBuq

�
4 (s) dBs

∣∣∣ ∫ t

0
q�

1 (s) dBs = ξ

]
(3.33)

=
(∫ t

0
q�

4 (s)q1(s)

∫ s

0
q�

3 (u)q1(u)

∫ u

0
q�

2 (r)q1(r) dr duds

)
h3(ξ ;v)

v3 ,

where h2(ξ ;v) = ξ2 − v and h3(ξ ;v) = ξ3 − 3vξ .
The conditional expectations of higher order iterated multiple Wiener–Itô inte-

grals can be evaluated in the similar manner. For the details, see Takahashi (1999)
and Takahashi, Takehara and Toda (2009). In fact, we obtain the Malliavin weights
appearing in the numerical examples in Section 5 as closed forms by applying the
formulas.

Therefore, Theorem 1 is summarized as follows.

COROLLARY 1. Assume that condition [H] holds.

1. There exists C > 0 such that

∥∥Psf − Qm
(s)f

∥∥∞ ≤ εm+1C

(
m+1∑
k=1

s(m+1+k)/2∥∥∇kf
∥∥∞

)
,(3.34)

for any s ∈ (0,1] and f ∈ C∞
b (RN ;R).

2. There exists C > 0 such that∥∥Psf − Qm
(s)f

∥∥∞ ≤ εm+1Cs(m+2)/2,(3.35)

for any s ∈ (0,1] and Lipschitz continuous function f : RN → R.
3. There exists C > 0 such that∥∥Psf − Qm

(s)f
∥∥∞ ≤ εm+1Cs(m+1)/2,(3.36)

for any s ∈ (0,1] and bounded Borel function f : RN → R.

REMARK 5. The above results are obtained based on the integration by parts
argument for G(s, x) ∈Kr with time s ∈ (0,1]. However, we are able to show that
the same results hold for s ∈ (0, T ], T > 0, using the properties of the elements in
the space KT

r defined as in Crisan, Manolarakis and Nee (2013).
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Next, for T > 0, γ > 0, define a partition π = {(t0, t1, . . . , tn) : 0 = t0 < t1 <

· · · < tn = T , tk = kγ T /nγ , n ∈ N} and sk = tk − tk−1, k = 1, . . . , n. Using the
asymptotic expansion operator Qm of P , we can guess the following semigroup
approximation.

E
[
f
(
X

x,ε
T

)]= PT f (x) = PsnPsn−1 · · ·Ps1f (x) � Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f (x).

The next theorem shows our main result on the approximation error for this
scheme.

THEOREM 3. Assume that condition [H] holds. Let T > 0, γ > 0 and n ∈ N.

1. For any f ∈ C∞
b (RN ;R), there exists C > 0 such that

∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞ ≤ εm+1 C

nγ (m+2)/2 ,

(3.37)
0 < γ < m/(m + 2),

∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞ ≤ εm+1 C

nm/2 (1 + logn),

(3.38)
γ = m/(m + 2),

∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞ ≤ εm+1 C

nm/2 , γ > m/(m + 2).(3.39)

2. For any Lipschitz continuous function f : RN → R, there exists C > 0 such
that ∥∥PT f − Qm

(sn)Q
m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞ ≤ εm+1 C

nγ (m+2)/2 ,

(3.40)
0 < γ < m/(m + 2),

∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞ ≤ εm+1 C

nm/2 (1 + logn),

(3.41)
γ = m/(m + 2),

∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞ ≤ εm+1 C

nm/2 , γ > m/(m + 2).(3.42)

3. For any bounded Borel function f : RN → R, there exists C > 0 such that

∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞ ≤ εm+1 C

nγ (m+1)/2 ,

(3.43)
0 < γ < (m − 1)/(m + 1),

∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞ ≤ εm+1 C

n(m−1)/2 (1 + logn),

(3.44)
γ = (m − 1)/(m + 1),
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∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞ ≤ εm+1 C

n(m−1)/2 ,

(3.45)
γ > (m − 1)/(m + 1).

PROOF. See Appendix C. �

REMARK 6. Due to the theorem above, the higher order asymptotic expan-
sion provides the higher order weak approximation. In fact, we can mostly attain
enough accuracy even when the expansion order m is low such as m = 1,2. In
Section 5, we confirm this fact through numerical examples.

REMARK 7. When γ = 1, that is, sk = T/n for all k = 1, . . . , n, we have:

1. For any f ∈ C∞
b (RN ;R), there exists C > 0 such that

∥∥PT f − (
Qm

(T/n)

)n
f
∥∥∞ ≤ εm+1 C

nm/2 .

2. For any Lipschitz continuous function f : RN → R, there exists C > 0 such
that ∥∥PT f − (

Qm
(T/n)

)n
f
∥∥∞ ≤ εm+1 C

nm/2 .

3. For any bounded Borel function f : RN → R, there exists C > 0 such that∥∥PT f − (
Qm

(T/n)

)n
f
∥∥∞ ≤ εm+1 C

n(m−1)/2 .

4. Computation with Malliavin weights. This section illustrates computa-
tional scheme for implementation of our method.

4.1. Backward discrete-time approximation. For preparation, we describe a
backward discrete-time approximation of our method.

For s ∈ (0,1] and x, y ∈ RN , define pm(s, x, y) as

Qm
(s)f (x) =

∫
RN

f (y)pm(s, x, y) dy.(4.1)

Then pm(s, x, y) is given by using the Malliavin weight function Mm as follows:

pm(s, x, y) = Mm(s, x, y)pX̄ε

(s, x, y),(4.2)

with

pX̄ε

(s, x, y) = 1

(2πε2)N/2 det(
(s))1/2
(4.3)

× e−(y−εμ(s)−X
x,0
s )�
−1(s)(y−εμ(s)−X

x,0
s )/(2ε2),

where μ(s) and 
(s) = (
i,j (s))1≤i,j≤N are defined in (3.11) and (3.12), respec-
tively.
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Then we are able to calculate (Qm
(T/n))

nf (x) as follows:(
Qm

(T/n)

)n
f (x)(4.4)

=
∫
(RN)n

f (yn)

n−1∏
i=0

pm(si, yi, yi+1) dyn · · ·dy1(4.5)

=
∫
(RN)n−1

qn−1(yn−1)

n−2∏
i=0

pm(si, yi, yi+1) dyn−1 · · ·dy1(4.6)

=
∫
(RN)n−2

qn−2(yn−2)

n−3∏
i=0

pm(si, yi, yi+1) dyn−2 · · ·dy1(4.7)

=
∫

RN
q1(y1)p

m(s1, y0, y1) dy1,(4.8)

with y0 = x.

4.2. Example of computational scheme. We are able to compute the expecta-
tion in the various ways such as numerical integration and Monte Carlo simula-
tion. As an illustrative purpose and an example, this subsection briefly describes a
scheme based on Monte Carlo simulation.

In computation of (Qm
(T/n))

nf (x) with simulation (for the case of γ = 1), we

store X̄
x,(j)
T /n ≡ X̄

x,ε,(j)
T /n , which stands for the j th (1 ≤ j ≤ M) independent out-

come of X̄x,ε at T/n (i.e., at ti + T/n) starting from x at each grid ti = (iT )/n

(0 ≤ i ≤ n − 1).
Then we calculate an approximate semigroup at each time grid. That is,

qn−1(x), qn−2(x) are calculated as follows:

qn−1(x) =
∫

RN
f (y)pm(T /n, x, y) dy(4.9)

=
∫

RN
f (y)Mm(T /n, x, y)pX̄ε

(T /n, x, y) dy(4.10)

� 1

M

M∑
j=1

f
(
X̄

x,(j)
T /n

)
Mm(T/n, x, X̄

x,(j)
T /n

)
,(4.11)

qn−2(x) =
∫

RN
qn−1(y)pm(T /n, x, y) dy(4.12)

=
∫

RN
qn−1(y)Mm(T /n, x, y)pX̄ε

(T /n, x, y) dy(4.13)

� 1

M

M∑
j=1

qn−1
(
X̄

x,(j)
T /n

)
Mm(T/n, x, X̄

x,(j)
T /n

)
.(4.14)
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Therefore, in general,

qi−1(x) =
∫

RN
qi(y)pm(T /n, x, y) dy(4.15)

=
∫

RN
qi(y)Mm(T /n, x, y)pX̄ε

(T /n, x, y) dy(4.16)

� 1

M

M∑
j=1

qi

(
X̄

x,(j)
T /n

)
Mm(T/n, x, X̄

x,(j)
T /n

)
.(4.17)

Finally, we obtain an approximation:(
Qm

(T/n)

)n
f (x) =

∫
RN

q1(y)pm(T /n, x, y) dy(4.18)

=
∫

RN
q1(y)Mm(T /n, x, y)pX̄ε

(T /n, x, y) dy(4.19)

� 1

M

M∑
j=1

q1
(
X̄

x,(j)
T /n

)
Mm(T/n, x, X̄

x,(j)
T /n

)
.(4.20)

We also remark that if the numerical integration method is applied, the scheme is
based on equations (4.16) and (4.19).

4.3. Comparison with Kusuoka–Lyons–Victoir (KLV) cubature method. In
this subsection, we compare our method to a related work, Kusuoka–Lyons–
Victoir (KLV) cubature method on Wiener space [Kusuoka (2001, 2004), Lyons
and Victoir (2004)].

As mentioned above, we defined the operator Qm
(s) by using the asymptotic ex-

pansion with Malliavin weights, while Kusuoka (2001, 2004) and Lyons and Vic-
toir (2004) developed a construction method of a local approximation operator
Q̂m

(s) for Ps based on finite variation paths ω1, . . . ,ωl for some l ∈ N with weights
λ1, . . . , λl .

In the following, we summarize our weak approximation method and the KLV
cubature scheme.

Weak approximation with asympotic expansion and Malliavin weights. Let
X

x,ε
t be a solution to the following SDE:

dX
x,ε
t = V0

(
ε,X

x,ε
t

)
dt + ε

d∑
i=1

Vi

(
X

x,ε
t

)
dBi

t , X
x,ε
0 = x.(4.21)

For a Lipschitz continuous function f , Ptf (x) = E[f (X
x,ε
t )] is approximated by

Qm
(t)f (x) = E[f (X̄

x,ε
t )] +∑m

j=1 εjE[f (X̄
x,ε
t )�

j
t ] = E[f (X̄

x,ε
t )Mm(t, x, X̄

x,ε
t )]

as follows: ∥∥Ptf − Qm
(t)f

∥∥∞ = O
(
εm+1t (m+2)/2), t ∈ (0,1].(4.22)
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Then we have the global approximation,∥∥PT f − (
Qm

(T/n)

)n
f
∥∥∞ = O

(
εm+1n−m/2).(4.23)

It is emphasized that we are able to evaluate Malliavin weights Mm(t, x, X̄
x,ε
t )

mostly as closed forms by applying computational schemes such as conditional ex-
pectation formulas in Takahashi (1999) and Takahashi, Takehara and Toda (2009).
In fact, this is the case for the numerical examples in Section 5 of this paper.

KLV cubature scheme on Wiener space. Let Xx
t be a solution to the following

SDE:

dXx
t = V0

(
Xx

t

)
dt +

d∑
i=1

Vi

(
Xx

t

) ◦ dBi
t , Xx

0 = x.(4.24)

A set of finite variation paths ω = (ω1, . . . ,ωl) with λ = (λ1, . . . , λl) forms cuba-
ture formula on Wiener space of degree m if for any α ∈Am,

E

[∫
0<t1<···<tr<t

◦dB
α1
t1

◦ · · · ◦ dB
αr
tr

]
(4.25)

=
l∑

j=1

λj

∫
0<t1<···<tr<t

dω
α1
j,t1

· · ·dω
αr

j,tr
.

ω = (ω1, . . . ,ωl) and λ = (λ1, . . . , λl) are called the cubature paths and weights,
respectively. Here, Am is a set defined by Am = {(α1, . . . , αr) ∈ {0,1, . . . , d}r; r +
#{j |αj = 0} ≤ m,r ∈ N}. For cubature paths ω = (ω1, . . . ,ωl) and weights λ =
(λ1, . . . , λl), consider the following ODEs:

dX̂x
t (ωj ) = V0

(
X̂x

t (ωj )
)
dt +

d∑
i=1

Vi

(
X̂x

t (ωj )
)
dωi

j,t ,

(4.26)
X̂x

0 (ωj ) = x, j = 1, . . . , l.

Then, for a Lipschitz continuous function f , Ptf (x) = E[f (Xx
t )] can be approx-

imated by Q̂m
(t)f (x) =∑l

j=1 λjf (X̂x
t (ωj )) as follows:

∥∥Ptf − Q̂m
(t)f

∥∥∞ = O
(
t (m+1)/2), t ∈ (0,1].(4.27)

Then it can be shown that∥∥PT f − (
Q̂m

(T/n)

)n
f
∥∥∞ = O

(
n−(m−1)/2).(4.28)

See Kusuoka (2001, 2004) and Lyons and Victoir (2004) for the proofs. Here, we
note that the Kusuoka–Lyons–Victoir’s approximation is generally discussed in the
case of nonuniform time grids.
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Algorithm 1 Weak approximation with asympotic expansion and Malliavin
weights

Define the Malliavin weight Mm(t, x, y).
for i = 1 to n do

Simulate Gaussian random variable X̄
x,(j)
T /n , j = 1, . . . ,M .

if i = 1 then
qn−i(x) = 1

M

∑M
j=1 f (X̄

x,(j)
T /n )Mm(T /n, x, X̄

x,(j)
T /n )

else
qn−i(x) = 1

M

∑M
j=1 qn−i+1(X̄

x,(j)
T /n )Mm(T /n, x, X̄

x,(j)
T /n )

end if
end for
PT f (x) � q0(x)

In order to obtain a local approximation, we use Malliavin’s integration by
parts formula on Wiener space for a Gaussian random variable X̄

x,ε
t = X

0,x
t +

ε ∂
∂ε

X
x,ε
t |ε=0. Then the local approximation Qm

(t)f (x) is given by multiplying the

Malliavin weight function Mm(t, x, X̄
x,ε
t ) and f (X̄

x,ε
t ). As mentioned above, we

can mostly evaluate Malliavin weights Mm(t, x, X̄
x,ε
t ) as closed forms.

On the other hand, the Kusuoka–Lyons–Victoir’s approximation based on the
cubature formula on Wiener space requires to solve the ODEs (4.26) with cubature
paths and weights, and then the local approximation Q̂m

(t)f (x) is given by the

weighted sum of f (X̂x
t (ωj )) with the cubature weights λj , j = 1, . . . , l.

Finally, we summarize the algorithms of our weak approximation method and
the KLV cubature scheme on Wiener space as Algorithms 1 and 2, respectively.

5. Numerical example. This section demonstrates the effectiveness of our
method through the numerical examples for option pricing under local and stochas-
tic volatility models.

Algorithm 2 Weak approximation: KLV cubature on Wiener space
Define the cubature paths ω = (ω1, . . . ,ωl) and weights λ = (λ1, . . . , λl).
for i = 1 to n do

Solve ODE for X̂x
T /n(ωj ), j = 1, . . . , l.

if i = 1 then
q̂n−i(x) =∑l

j=1 λjf (X̂x
T/n(ωj ))

else
q̂n−i(x) =∑l

j=1 λj q̂n−i+1(X̂
x
T /n(ωj ))

end if
end for
PT f (x) � q̂0(x)
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5.1. Local volatility model. The first example takes the following local volatil-
ity model:

dS
x,ε
t = εσ

(
S

x,ε
t

)
dBt ,

(5.1)
S

x,ε
0 = S0 = x.

Then let (S̄
x,ε
t )t≥0 be the solution to the following SDE:

dS̄
x,ε
t = εσ(x) dBt ,

(5.2)
S̄

x,ε
0 = x.

In this numerical example, for the payoff function f (x) = max{x − K,0} or
f (x) = max{K − x,0} where K is a positive constant, we apply the first-order
asymptotic expansion operator, that is, m = 1;

Q1
(t)f (x) = E

[
f
(
S̄

x,ε
t

)
M1(t, x, S̄

x,ε
t

)]
(5.3)

and the second-order asymptotic expansion operator, that is, m = 2;

Q2
(t)f (x) = E

[
f
(
S̄

x,ε
t

)
M2(t, x, S̄

x,ε
t

)]
.(5.4)

The Malliavin weights M1(t, x, y) and M2(t, x, y) are given by

M1(t, x, y) = 1 + εE

[
H(1)

(
∂

∂ε
S

x,ε
t

∣∣∣∣
ε=0

,
1

2

∂2

∂ε2 S
x,ε
t

∣∣∣∣
ε=0

)∣∣∣S̄x,ε
t = y

]
,

and

M2(t, x, y) = M1(t, x, y) + ε2E

[
H(1)

(
∂

∂ε
S

x,ε
t

∣∣∣∣
ε=0

,
1

6

∂3

∂ε3 S
x,ε
t

∣∣∣∣
ε=0

)∣∣∣S̄x
t = y

]

+ 1

2
ε2E

[
H(1,1)

(
∂

∂ε
S

x,ε
t

∣∣∣∣
ε=0

,

(
1

2

∂2

∂ε2 S
x,ε
t

∣∣∣∣
ε=0

)2)∣∣∣S̄x,ε
t = y

]
.

Moreover, we remark that those Malliavin weights are obtained as closed forms.
Also, we specify the local volatility function as a log-normal scaled volatil-

ity εσ(S) = εS
1−β
0 Sβ with β = 0.5. The parameters are set to be S0 = 100

and ε = 0.4. The benchmark values are computed by Monte Carlo simulations
(Benchmark MC) with 107 trials and 1000 time steps for the 1 year maturity case
or 2000 time steps for the 10 year maturity case.

Figures 1 and 2 show the results. The vertical axis in the figures is the Error rate
defined by

Error Rate = (WeakApprox − Benchmark MC)/Benchmark MC (%).

Here, WeakApprox is our weak approximation based on the asymptotic expansion
with Malliavin weights given in previous sections. We observe that the increase
in the number of the time steps improves the approximation. (See Error rate AE
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FIG. 1. T = 1: Local volatility model, Error rates of the first- and second-order asymptotic expan-
sions and their weak approximations.

1order and Error rate AE 1order WeakApprox n = 2,3 in Figure 1.) We also note
that our scheme with the second-order expansion and two time steps (Error rate
AE 2order WeakApprox n = 2) improves the base (analytical only) second-order
expansion (Error rate AE 2order), and is able to provide an accurate approximation
across all the strikes even for the long maturity case such as the 10-year maturity
case in Figure 2.

5.2. Stochastic volatility model. The second example considers the following
stochastic volatility model, which is also known as the log-normal SABR model:

dS
(z,σ )
t = σσ

t S
(z,σ )
t dB1

t , S
(z,σ )
0 = z,(5.5)

dσσ
t = νσσ

t

(
ρ dB1

t +
√

1 − ρ2 dB2
t

)
, σ σ

0 = σ.(5.6)

FIG. 2. T = 10: Local volatility model, Error rates of the first- and second-order asymptotic ex-
pansions and the weak approximations.
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Next, let us introduce the following perturbed logarithmic SABR model:

dX
(x,σ ),ε
1,t = ε

[
−η

(σ
σ,ε
t )2

2
dt + ησ

σ,ε
t dB1

t

]
, X

(x,σ ),ε
1,0 = x,(5.7)

dσ
σ,ε
t = ε

[
σ

σ,ε
t

(
ρ dB1

t +
√

1 − ρ2 dB2
t

)]
, σ

σ,ε
0 = σ,(5.8)

with ε = ν and η = 1/ν. For some fixed T > 0 and K > 0, the target expectation
is given by

E
[
f
(
X

(x,σ),ε
1,T , σ

σ,ε
T

)]
≡ E

[
f̂
(
X

(x,σ),ε
1,T

)]
:= E

[
max

{
e
X

(x,σ),ε
1,T − K,0

}]
or E

[
max

{
K − e

X
(x,σ),ε
1,T ,0

}]
.

Next, let (X̄
(x,σ ),ε
1,t , σ̄

σ,ε
t )t≥0 be the solution to the following SDE:

dX̄
(x,σ ),ε
1,t = ε

[
−η

σ 2

2
dt + ησ dB1

t

]
, X̄

(x,σ ),ε
1,0 = x,(5.9)

dσ̄
σ,ε
t = ε

[
σ
(
ρ dB1

t +
√

1 − ρ2 dB2
t

)]
, σ̄

σ,ε
0 = σ.(5.10)

The parameters are set to be z = 100, σ = 0.3, ε = ν = 0.1, η = 1/ν and ρ = −0.5.
The benchmark values are calculated by Monte Carlo simulations with 107 trials
and 1000 time steps for the 1-year maturity case or 2000 times steps for the 2-year
maturity case.

In this example, we use the first-order two-dimensional asymptotic expansion
operator with two time steps, that is, m = 1 and n = 2. Then the calculation pro-
cedure corresponding to the one in the previous section is the following: first, set
t0 = 0, t1 = T/2, t2 = T and s = tk − tk−1 = T/2 (k = 1,2).

• For (X̄
(x1,σ1),ε
1,t1

, σ̄
σ1,ε
1,t1

) = (x1, σ1) at t = t1,

q1(x1, σ1) = E
[
f̂
(
X̄

(x1,σ1),ε
1,s

)
M1(s, (x1, σ1),

(
X̄

(x1,σ1),ε
1,s , σ̄ σ1,ε

s

))]
.(5.11)

• At t = t0 = 0,

q0(x, σ ) = E
[
q1
(
X̄

(x,σ ),ε
1,s , σ̄ σ,ε

s

)
M1(s, (x, σ ),

(
X̄

(x,σ ),ε
1,s , σ̄ σ,ε

s

))]
.(5.12)

Here, M1(t, (x, σ ), (x′, σ ′)) is the two-dimensional Malliavin weight given by

M1(t, (x, σ ),
(
x′, σ ′))

= 1 + εE

[
H(1)

((
∂

∂ε
X

(x,σ ),ε
1,t

∣∣∣∣
ε=0

,
∂

∂ε
σ

σ,ε
t

∣∣∣∣
ε=0

)
,

1

2

∂2

∂ε2 X
(x,σ),ε
1,t

∣∣∣∣
ε=0

)∣∣∣
(
X̄

(x,σ ),ε
1,t , σ̄

σ,ε
t

)= (
x′, σ ′)]
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+ εE

[
H(1)

((
∂

∂ε
X

(x,σ ),ε
1,t

∣∣∣∣
ε=0

,
∂

∂ε
σ

σ,ε
t

∣∣∣∣
ε=0

)
,

1

2

∂2

∂ε2 σ
σ,ε
t

∣∣∣∣
ε=0

)∣∣∣
(
X̄

(x,σ ),ε
1,t , σ̄

σ,ε
t

)= (
x′, σ ′)].

Moreover, we remark that those Malliavin weights are obtained as closed forms as
in the local volatility case.

Actually, at t1 we need not implement (5.11), but just compute the first-order
analytical asymptotic expansion for pricing options with the time-to-maturity T/2

and the initial value (X̄
(x1,σ1),ε
1,t1

, σ̄
σ1,0
t1

) = (x1, σ1). That is,

q̂1(x1, σ1) = E
[
f̂
(
X̄

(x1,σ1),ε
1,s

)
M̂1(s, (x1, σ1), X̄

(x1,σ1),ε
1,s

)]
,(5.13)

where M̂1(s, (x1, σ1), y) = 1 + εM̂(1)(s, (x1, σ1), y), and M̂(1)(s, (x1, σ1), y)

stands for the first-order one-dimensional Malliavin weight:

M̂(1)

(
s, (x1, σ1), y

)
(5.14)

= E

[
H(1)

(
∂

∂ε
X

(x1,σ1),ε
1,s

∣∣∣∣
ε=0

,
1

2

∂2

∂ε2 X
(x1,σ1),ε
1,s

∣∣∣∣
ε=0

)∣∣∣X̄(x1,σ1,ε)
1,s = y

]
.

On the other hand, we apply a conditional expectation formula for multidimen-
sional asymptotic expansions in Takahashi (1999) in order to evaluate the Malli-
avin weight M1 in (5.12).

Figures 3 and 4 show the results (the vertical axis in the figures is Error rate).
Again, our scheme with (5.13) and (5.12) (Error rate AE 1st order WeakApprox
n = 2) improves the base first-order expansion (Error rate AE 1st order) especially
for the deep OTM calls and puts.

FIG. 3. T = 1: Stochastic volatility model, Error rate of the first-order two-dimensional asymptotic
expansion and the weak approximation.
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FIG. 4. T = 2: Stochastic volatility model, Error rate of the first-order two-dimensional asymptotic
expansion and the weak approximation.

5.3. Error analysis. In this section, we investigate the validity of our approx-
imation by comparing the theoretical and the numerical errors.

In particular, we use the same example of our weak approximation in the local
volatility model with the maturity T = 1 in Section 5.1. Here, we remark that this
example can be regarded as the Lipschitz continuous case in Theorem 3.

Based on the results of Theorem 3, for a fixed expansion order m and a time grid
parameter γ = 1, the error of the weak approximation by the mth order asymptotic
expansion with discretization n approximately satisfies the following relation:

Error Weak Approx with Asymp Expansion (m,n + 1)

� {
Error Weak Approx with Asymp Expansion (m,n)

}
(5.15)

× (
n/(n + 1)

)m/2
.

Here, “Error Weak Approx with Asymp Expansion (m,n)” stands for the deviation
of “Weak Approximation” from “Benchmark Monte Carlo,” that is the value of
(WeakApprox) − (Benchmark MC).

Figure 5 checks the above relation in the case that m = 1 and n = 2. In the
figure, “Theoretical Error: AE 1order WeakApprox n = 3” is calculated by equa-
tion (5.15). It is observed that the order of the theoretical error is rather similar to
that of the numerical error “Error: AE 1order WeakApprox n = 3” across all the
strike prices.

Next, let us check the validity of our method from another viewpoint. For a
fixed partition number n and a time grid parameter γ = 1, the error of the weak
approximation based on (m + 1)th order asymptotic expansion with discretization
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FIG. 5. Error with respect to n of the weak approximation for fixed m.

n labeled by “Error Weak Approx with Asymp Expansion (m + 1, n),” approxi-
mately satisfies the relation:

Error Weak Approx with Asymp Expansion (m + 1, n)
(5.16)

� {
Error Weak Approx with Asymp Expansion (m,n)

}× ε/
√

n.

Figure 6 examines the above relation in the case m = 1 and n = 2 with ε = 0.4.
“Theoretical Error: AE 2order WeakApprox n = 2” in Figure 6 is calculated by

the equation (5.16). We observe that the order of the theoretical error is very close
to that of the numerical error “Error: AE 2order WeakApprox n = 2” for all the
strike prices.

Finally, we test the numerical errors by changing the parameter γ . Again, we
fix the parameter m = 1. Based on the result of the Lipschitz continuous case
in our main theorem (Theorem 3), the errors depend on the range of γ , that is,
γ < 1/3 = m/(m + 2), γ = 1/3 = m/(m + 2), γ > 1/3 = m/(m + 2).

FIG. 6. Error with respect to m of the weak approximation for fixed n.
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FIG. 7. Error of the weak approximation n = 2 with respect to time grid parameter γ .

In order to see the differences of the errors with the different values of γ , Fig-
ures 7 and 8 plot the errors for γ = 0.1, γ = 0.33, γ = 0.5, γ = 1.0, γ = 1.5 and
γ = 2.0 with n = 2 and n = 3, respectively.

We are able to find that the errors are determined by the levels of γ and the
behavior of the errors is consistent with the theoretical results in Theorem 3.

In addition, we examine which time grid parameter γ is optimal. In order to
show this, we execute a simple test for the case m = 1 and n = 2. Particularly, we
solve the following minimization problem:

γ̂ = argmin
{ ∑

K∈{50,60,...,190,200}
(5.17) (

Error Weak Approx with Asymp Expansion (m,n;γ,K)
)2}

.

FIG. 8. Error of the weak approximation n = 3 with respect to time grid parameter γ .
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We obtained a parameter γ̂ = 1.015657. That is, the value close to γ = 1 (the
uniform time grid case) is optimal in our weak approximation with asymptotic
expansion.

Therefore, we can conclude that the results of the numerical experiments of
our weak approximation are consistent with the theoretical part of this paper, and
confirmed the validity of our method.

6. Concluding remarks. In this paper, we have shown a new approximation
method for the expectations of the functions of the solutions to SDEs by applying
an asymptotic expansion with Malliavin calculus. In particular, based on Kusuoka
(2001, 2003a, 2003b, 2004), we have obtained error estimates for our new weak
approximation.

Moreover, we have confirmed the validity of our method through the numeri-
cal examples for option pricing under local and stochastic volatility models. The
scheme is simple and we can attain enough accuracy even when the expansion or-
der m is low such as m = 1,2 with a few time steps n = 2,3 as demonstrated in
the previous section.

In order to obtain more accurate numerical approximation, it is natural to use
many partitions n in the time scale. However, the computational cost becomes
exponentially larger as the number of partitions becomes larger.

To overcome this problem, some efficient tree based (discretization) techniques
can be applied. Another possible solution is to use the higher order expansion de-
veloped in Takahashi, Takehara and Toda (2012) or Violante (2012). We are con-
vinced that the higher order expansion will improve the accuracy since the higher
order mth expansion improves the error orders to O(εm+1/nm) for a Lipschitz
continuous f and O(εm+1/nm−1) for a bounded Borel f .

Further, applying our method to the higher-dimensional problems is one of the
important issues. When the dimension N of the state variables becomes higher, the
computational cost becomes larger. However, the multidimensional higher order
expansion such as in Takahashi (1999) or Takahashi, Takehara and Toda (2012) is
a tractable approach to the extension. These topics will be the main themes in our
next research.

APPENDIX A: PROOF OF THEOREM 1

First, for the preparation for the proof of the theorem, we characterize the dif-
ferentiations of the solution to the general perturbed SDEs X

x,ε
t with respect to

ε as elements in the space Kr . The following lemma plays an important rule for
estimating the order of the local approximation for E[f (X

x,ε
t )] in Theorem 1.

LEMMA 2.

1

j !
∂j

∂εj
X

x,ε
t ∈Kj , j ≥ 1.
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PROOF. We prove the assertion by induction. First, the differentiation of X
x,ε
t

with respect to ε is given by

∂

∂ε
X

x,ε,l
t =

∫ t

0

∂

∂ε
V l

0
(
ε,Xx,ε

s

)
ds +

d∑
j=1

∫ t

0
V l

j

(
Xx,ε

s

)
dBj

s

+
N∑

k=1

∫ t

0
∂kV

l
0
(
ε,Xx,ε

s

) ∂

∂ε
Xx,ε,k

s ds(A.1)

+ ε

N∑
k=1

d∑
j=1

∫ t

0
∂kV

l
j

(
Xx,ε

s

) ∂

∂ε
Xx,ε,k

s dBj
s , l = 1, . . . ,N.

The above SDE is linear and the order of the Kusuoka–Stroock function ∂
∂ε

X
x,ε
t is

determined by the following term:

d∑
j=1

∫ t

0
J

x,ε
t

(
J x,ε

u

)−1
Vj

(
Xx,ε

u

)
dBj

u ∈ K1,(A.2)

where J
x,ε
t = ∇xX

x,ε
t . Since this term gives the minimum order in the terms that

consist of (A.1). Here, we use the properties J x,ε
s , (J x,ε

s )−1 ∈ K0, s ∈ (0,1] and
the boundness of Vj , j = 1, . . . , d . We have ∂

∂ε
X

x,ε
t ∈ K1 by using the properties

2 and 3 in Lemma 1.
For i ≥ 2, 1

i!
∂i

∂εi X
x,ε
t = ( 1

i!
∂i

∂εi X
x,ε,1
t , . . . , 1

i!
∂i

∂εi X
x,ε,N
t ) is recursively determined

by the following:

1

i!
∂i

∂εi
X

x,ε,n
t

= 1

i!
∫ t

0

∂i

∂εi
V n

0
(
ε,Xx,ε

u

)
du

+
i∑

m=1

(m)∑
i(k),α(k)

1

(i − m)!
∫ t

0

(
k∏

l=1

1

il!
∂il

∂εil
Xx,ε,αl

u

)
∂α(k)

∂i−m

∂εi−m
V n

0
(
ε,Xx,ε

u

)
du

(A.3)

+
(i−1)∑

i(k),α(k)

∫ t

0

(
k∏

l=1

1

il!
∂il

∂εil
Xx,ε,αl

u

)
d∑

j=1

∂α(k)V
n
j

(
Xx,ε

u

)
dBj

u

+ ε

(i)∑
i(β),α(k)

∫ t

0

(
k∏

l=1

1

il!
∂il

∂εil
Xx,ε,αl

u

)
d∑

j=1

∂α(k)V
n
j

(
Xx,ε

u

)
dBj

u,

n = 1, . . . ,N,
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where

(i)∑
i(k),α(k)

:=
i∑

k=1

∑
i1+···+ik=i,il≥1

∑
α(k)∈{1,...,N}k

1

k! .(A.4)

The above SDE is linear and the order of the Kusuoka–Stroock function 1
i!

∂i

∂εi X
x,ε
t

is determined inductively by the term

(i−1)∑
i(k),α(k)

∫ t

0
J

x,ε
t

(
J x,ε

u

)−1
(

k∏
l=1

1

il!
∂il

∂εil
Xx,ε,αl

u

)
d∑

j=1

∂α(k)Vj

(
Xx,ε

u

)
dBj

s ∈ Ki .(A.5)

Since this term gives the minimum order in the terms that consist of (A.3). Then
1
i!

∂i

∂εi X
x,ε
t ∈ Ki by using the properties 2 and 3 in Lemma 1. �

Hereafter, we give the expansion for E[f (X
x,ε
t )] around E[f (X̄

x,ε
t )]. We re-

mark that X
x,ε
t is not uniformly nondegenerate Wiener functional in Watanabe

sense because X
x,0
t is completely degenerate as Wiener functional, that is, X

x,0
t is

the solution to ODE. Then, in order to give the expansion, we define a Wiener

functional Y ε
t given by Y ε

t = ϕ(X
x,ε
t ) = X

x,ε
t −X

x,0
t

ε
, that is, (Y

ε,1
t , . . . , Y

ε,N
t ) =

(ϕ1(X
x,ε,1
t ), . . . , ϕN(X

x,ε,N
t )), ϕi(ξ) = ξ−X

x,0,i
t

ε
, i = 1, . . . ,N . The expansion of

Y ε
t is given in the space D∞, that is, for all m ∈ N,

lim sup
ε↓0

1

εm+1

∥∥∥∥∥Y ε
t −

{
∂

∂ε
X

x,ε
t

∣∣∣∣
ε=0

+
m∑

i=1

εi 1

(i + 1)!
∂i+1

∂εi+1 X
x,ε
t

∣∣∣∣
ε=0

}∥∥∥∥∥
Dk,p

(A.6)
< ∞, ∀k ∈ N,∀p < ∞.

We note that Y 0
t = ∂

∂ε
X

x,ε
t |ε=0 and Y 0

0 = 0. Let σYε
t be the Malliavin covariance

matrix of Y ε
t and set

τ = inf
{
s; (J x,ε

s

)−1
A
(
Xx,ε

s

)((
J x,ε

s

)−1)� ≤ A(x)/2
}
.(A.7)

Then we can see

det
(
σYε

t
)≥ det

(
J

x,ε
t

)2 det
∫ min{t,τ }

0

(
J x,ε

s

)−1
A
(
Xx,ε

s

)((
J x,ε

s

)−1)�
ds

(A.8)
≥ (

1/2N )det
(
J

x,ε
t

)2 det
(
A(x)

)
min{t, τ }N,

sup
ε∈(0,1]

∥∥det
(
J

x,ε
t

)−1∥∥
Lp < ∞,(A.9)

and

P(τ < 1/n) ≤ c1 exp
(−c2n

c3
)
, n ∈ N,(A.10)
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where ci , i = 1,2,3 are positive constants [see the proofs of Theorem 3.4 of
Watanabe (1987) or Theorem 10.5 of Ikeda and Watanabe (1989) for (A.8), (A.9)
and (A.10)].

Therefore, under condition [H], we can see the nondegeneracy of the Malliavin
covariance matrix of Y ε

t

sup
ε∈(0,1]

∥∥det
(
σYε

t
)−1∥∥

Lp < ∞, p < ∞.(A.11)

Then the density ξ �→ pYε

t (ξ) of Y ε
t starting from 0 is smooth. Moreover, the Malli-

avin covariance matrix σYε
t is nondegenerate uniformly in ε:

lim sup
ε↓0

∥∥det
(
σYε

t
)−1∥∥

Lp = ∥∥det
(
σY 0

t
)−1∥∥

Lp < ∞, p < ∞.(A.12)

Then we are able to give the following Taylor formulas for ξ �→ pYε

t (ξ) and
E[f (Y ε

t )] using the Malliavin weights:

pYε

t (ξ) = pY 0

t (ξ) +
m∑

j=1

εjE
[
�

j
t |Y 0

t = ξ
]
pY 0

t (ξ)

+ εm+1
∫ 1

0
(1 − u)m(m + 1)

(A.13)

×
m+1∑

α(k),β(k)

E

[
Hα(k)

(
Y εu

t ,

k∏
l=1

1

βl !
∂βl

∂ηβl
X

x,η,αl
t

∣∣∣∣
η=εu

)∣∣∣Y εu
t = ξ

]

× pYεu

t (ξ) du,

E
[
f
(
Y ε

t

)]=
∫

RN
f (ξ)pYε

t (ξ) dξ

=
∫

RN
f (ξ)pY 0

t (ξ) dξ +
m∑

j=1

εj
∫

RN
f (ξ)E

[
�

j
t |Y 0

t = ξ
]
pY 0

t (ξ) dξ

+ εm+1
∫ 1

0
(1 − u)m(m + 1)

(A.14)

×
m+1∑

α(k),β(k)

∫
RN

f (ξ)E

[
Hα(k)

(
Y εu

t ,

k∏
l=1

1

βl !
∂βl

∂ηβl
X

x,η,αl
t

∣∣∣∣
η=εu

)∣∣∣

Y εu
t = ξ

]
pYεu

t (ξ) dξ du

= E
[
f
(
Y 0

t

)]+ m∑
j=1

εjE
[
f
(
Y 0

t

)
�

j
t

]+ εm+1rm(t, x, ε).
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Here, �
j
t is the Malliavin weight given by

�
j
t =

j∑
α(k),β(k)

Hα(k)

(
Y 0

t ,

k∏
l=1

1

βl !
∂βl

∂εβl
X

x,ε,αl
t

∣∣∣∣
ε=0

)
,(A.15)

with

j∑
α(k),β(k)

=
j∑

k=1

∑
∑k

l=1 βl=j+k,βl≥2

∑
α(k)=(α1,...,αk)∈{1,...,N}k

1

k!(A.16)

and rm(t, x, ε) is the residual:

1.

rm(t, x, ε)

=
∫ 1

0
(1 − u)m(m + 1)(A.17)

×
m+1∑

α(k),β(k)

E

[
∂α(k)f

(
Y εu

t

) k∏
l=1

1

βl !
∂βl

∂ηβl
X

x,η,αl
t

∣∣∣∣
η=εu

]
du

for f ∈ C∞
b (RN),

2.

rm(t, x, ε)

=
∫ 1

0
(1 − u)m(m + 1)

(A.18)

×
m+1∑

α(k),β(k)

E

[
∂α(1)f

(
Y εu

t

)
Hα(k−1)

(
Y εu

t ,

k∏
l=1

1

βl!
∂βl

∂ηβl
X

x,η,αl
t

∣∣∣∣
η=εu

)]
du

for f ∈ C1
b(RN),

3.

rm(t, x, ε)

=
∫ 1

0
(1 − u)m(m + 1)

(A.19)

×
m+1∑

α(k),β(k)

E

[
f
(
Y εu

t

)
Hα(k)

(
Y εu

t ,

k∏
l=1

1

βl!
∂βl

∂ηβl
X

x,η,αl
t

∣∣∣∣
η=εu

)]
du

for an arbitrary bounded continuous function f .
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Then, by the transformation X
x,ε
t = X

x,0
t + εY ε

t , the density y �→ pXε
(t, x, y)

of X
x,ε
t is given by

pXε

(t, x, y) = pYε

t

(
ϕ(y)

)
det

∣∣∣∣∂(ϕ1, . . . , ϕN)

∂(y1, . . . , yN)

∣∣∣∣(A.20)

= pYε

t

((
y − X

x,0
t

)
/ε
) 1

εN
.(A.21)

Here, we note that∫
RN

f (y)pY 0

t

((
y − X

x,0
t

)
/ε
) 1

εN
dy

=
∫

RN
f (y)

1

(2πε2)N/2 det(
(t))1/2
(A.22)

× e−(y−εμ(t)−X
x,0
t )�
−1(t)(y−εμ(t)−X

x,0
t )/(2ε2) dy

=
∫

RN
f (y)pX̄ε

(t, x, y) dy = E
[
f
(
X̄

x,ε
t

)]
,

where μ(t) and 
(t) are the mean and the covariance matrix of Y 0
t and y �→

pX̄ε
(t, x, y) is the density of X̄

x,ε
t . Also, for G(t, x) ∈ Kr , we have∫

RN
f (y)E

[
H(i)

(
Y 0

t ,G(t, x)
)|Y 0

t = (
y − X

x,0
t

)
/ε
]

× pY 0

t

((
y − X

x,0
t

)
/ε
) 1

εN
dy

(A.23)
=
∫

RN
f (y)E

[
H(i)

(
Y 0

t ,G(t, x)
)|X̄x,ε

t = y
]
pX̄ε

(t, x, y) dy

= E
[
f
(
X̄

x,ε
t

)
H(i)

(
Y 0

t ,G(t, x)
)]

,

and ∫
RN

f (y)E
[
H(i)

(
Y εu

t ,G(t, x)
)|Y εu

t = (
y − X

x,0
t

)
/ε
]

× pYεu

t

((
y − X

x,0
t

)
/ε
) 1

εN
dy(A.24)

= E
[
f
(
X̃

x,εu
t

)
H(i)

(
Y εu

t ,G(t, x)
)]

,

with X̃
x,εu
t = X

x,0
t + εY εu

t , u ∈ [0,1].
Therefore, (A.14) with (A.17), (A.18) and (A.19) can be transformed into

E
[
f
(
X

x,ε
t

)]= E
[
f
(
X̄

x,ε
t

)]+ m∑
i=1

εiE
[
f
(
X̄

x,ε
t

)
�

j
t

]+ εm+1Rm(t, x, ε),

where:
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1.

Rm(t, x, ε)

=
∫ 1

0
(1 − u)m(m + 1)(A.25)

×
m+1∑

α(k),β(k)

E

[
∂α(k)f

(
X̃

x,εu
t

) k∏
l=1

1

βl !
∂βl

∂ηβl
X

x,η,αl
t

∣∣∣∣
η=εu

]
du

for f ∈ C∞
b (RN),

2.

Rm(t, x, ε)

=
∫ 1

0
(1 − u)m(m + 1)

(A.26)

×
m+1∑

α(k),β(k)

E

[
∂α(1)f

(
X̃

x,εu
t

)
Hα(k−1)

(
Y εu

t ,

k∏
l=1

1

βl !
∂βl

∂ηβl
X

x,η,αl
t

∣∣∣∣
η=εu

)]
du

for f ∈ C1
b(RN),

3.

Rm(t, x, ε)

=
∫ 1

0
(1 − u)m(m + 1)(A.27)

×
m+1∑

α(k),β(k)

E

[
f
(
X̃

x,εu
t

)
Hα(k)

(
Y εu

t ,

k∏
l=1

1

βl !
∂βl

∂ηβl
X

x,η,αl
t

∣∣∣∣
η=εu

)]
du

for an arbitrary bounded continuous function f .

For k ≤ m+1,
∑k

l=1 βl = m+1+k, βl ≥ 2, α(k) = (α1, . . . , αk) ∈ {1, . . . ,N}k ,
the product of the higher derivative terms with respect to ε of X

x,ε
t is characterized

as
k∏

l=1

1

βl !
∂βl

∂εβl
X

x,ε,αl
t ∈ Km+1+k,(A.28)

by using Lemma 2 with Lemma 1.
For i = 1, . . . ,N and G(t, x) ∈ Kr , we are able to see the following property

for Malliavin weight as in Proposition 1:

H(i)

(
Y ε

t ,G(t, x)
)

= δ

(
N∑

j=1

G(t, x)γ
Y ε

t

ij DY
ε,j
t

)
(A.29)
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=
[
G(t, x)

N∑
j=1

d∑
k=1

∫ t

0
γ

Yε
t

ij

(
J

x,ε
t

(
J x,ε

s

)−1
Vk

(
Xx,ε

s

))j
dBk

s

−
N∑

j=1

d∑
k=1

∫ t

0

[
Ds,kG(t, x)

]
γ

Yε
t

ij

(
J

x,ε
t

(
J x,ε

s

)−1
Vk

(
Xx,ε

s

))j
ds

]

∈ Kr−1.

Here, the first and the second terms in the second equality are characterized by

G(t, x)

N∑
j=1

d∑
k=1

∫ t

0
γ

Yε
t

ij

(
J

x,ε
t

(
J x,ε

s

)−1
Vk

(
Xx,ε

s

))j
dBk

s ∈ Kr−1,(A.30)

∫ t

0

[
Ds,kG(t, x)

]
γ

Yε
t

ij

(
J

x,ε
t

(
J x,ε

s

)−1
Vk

(
Xx,ε

s

))j
ds ∈ Kr ,(A.31)

since ∫ t

0
γ

Yε
t

ij

(
J

x,ε
t

(
J x,ε

s

)−1
Vk

(
Xx,ε

s

))j
dBk

s ∈ K−2+1 =K−1.(A.32)

Then, applying (A.29) with (A.28) for (A.25), (A.26) and (A.27), we obtain the
following estimates according to the smoothness of f :

1.

sup
x∈RN

∣∣Rm(t, x, ε)
∣∣≤ C

(
m+1∑
k=1

t (m+1+k)/2∥∥∇kf
∥∥∞

)
,(A.33)

for any f ∈ C∞
b (RN),

2.

sup
x∈RN

∣∣Rm(t, x, ε)
∣∣≤ Ct(m+2)/2‖∇f ‖∞,(A.34)

for any f ∈ C1
b ,

3.

sup
x∈RN

∣∣Rm(t, x, ε)
∣∣≤ Ct(m+1)/2‖f ‖∞,(A.35)

for an arbitrary bounded continuous function f .

Then we have the assertion.

APPENDIX B: PROOF OF THEOREM 2

For f ∈ C∞
b (RN ;R), we have∫

RN
f (y)E

[
H(i)

(
∂

∂ε
X

x,ε
t

∣∣∣∣
ε=0

,G(t, x)

)∣∣∣X̄x,ε
t = y

]
ν(dy)(B.1)
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= E

[
f
(
X̄

x,ε
t

)
H(i)

(
∂

∂ε
X

x,ε
t

∣∣∣∣
ε=0

,G(t, x)

)]

= E

[
f
(
X̄

x,ε
t

)
δ

(
N∑

j=1

G(t, x)γ
Y 0

t

ij DY
0,j
t

)]

= E

[
f
(
X̄

x,ε
t

)
δ

(
N∑

j=1

εG(t, x)
1

ε2 γ
Y 0

t

ij εDY
0,j
t

)]

= E

[
f
(
X̄

x,ε
t

)
δ

(
N∑

j=1

εG(t, x)γ
X̄

x,ε
t

ij DX̄
x,ε,j
t

)]

= E
[
f
(
X̄

x,ε
t

)
H(i)

(
X̄

x,ε
t , εG(t, x)

)]
= E

[
∂if

(
X̄

x,ε
t

)
εG(t, x)

]
=
∫

RN
∂if (y)E

[
εG(t, x)|X̄x,ε

t = y
]
ν(dy)

=
∫

RN
f (y)∂∗

i E
[
εG(t, x)|X̄x,ε

t = y
]
ν(dy),(B.2)

where γ X̄
x,ε
t = (γ

X̄
x,ε
t

ij )1≤i,j≤N and γ Y 0
t = (γ

Y 0
t

ij )1≤i,j≤N are the inverse matrices of

the Malliavin covariance matrices of X̄
x,ε
t and Y 0

t , respectively. Here, we note that
Y 0

t = ∂
∂ε

X
x,ε
t |ε=0 and X̄

x,ε
t = X

x,0
t + ε ∂

∂ε
X

x,ε
t |ε=0 = X

x,0
t + εY 0

t . Also, we use the
following relations in the above equations; for k = 1, . . . , d and j = 1, . . . ,N ,

Ds,kX̄
x,ε,j
t = εDs,k

∂

∂ε
X

x,ε,j
t

∣∣∣∣
ε=0

= εDs,kY
0,j
t , s ≤ t,(B.3)

and, for i, j = 1, . . . ,N ,

γ
X̄

x,ε
t

ij = 1

ε2 γ
Y 0

t

ij .(B.4)

Formulas (B.1) and (B.2) hold for any Lipschitz and bounded Borel function f

by using mollifier arguments. We remark that in general for any G ∈ D∞ and
nondegenerate F ∈ D∞(RN), the conditional expectation can be regarded as a
map D∞ � G �→ E[G|F = ·] ∈ S(RN) by Malliavin (1997) and Malliavin and
Thalmaier (2006). Therefore, for k = 1, . . . , j ≤ m,

∑k
l=1 βl = j + k, βl ≥ 2,

α(k) = (α1, . . . , αk) ∈ {1, . . . ,N}k , we have

E

[
Hα(k)

(
∂

∂ε
X

x,ε
t

∣∣∣∣
ε=0

,

k∏
l=1

1

βl !
∂βl

∂εβl
X

x,ε,αl
t

∣∣∣∣
ε=0

)∣∣∣X̄x,ε
t = y

]

(B.5)

= εk∂∗
αk

◦ ∂∗
αk−1

◦ · · · ◦ ∂∗
α1

E

[
k∏

l=1

1

βl !
∂βl

∂εβl
X

x,ε,αl
t

∣∣∣∣
ε=0

∣∣∣X̄x,ε
t = y

]
,

and obtain the assertion.
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APPENDIX C: PROOF OF THEOREM 3

We follow the similar argument as in Kusuoka (2001, 2003b, 2004) and Chap-
ter 3 of Crisan, Manolarakis and Nee (2013).

Note first that we have the following equality:

PT f (x) − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f (x)

= PT −tn−1Ptn−1f (x) − Qm
(sn)Ptn−1f (x)

+ Qm
(sn)Ptn−1f (x) − Qm

(sn)Q
m
(sn−1)

Ptn−2f (x)

+ · · ·
+ Qm

(sn) · · ·Qm
(s2)

Pt1f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f

= PT −tn−1Ptn−1f (x) − Qm
(sn)Ptn−1f (x)

+ Qm
(sn)

(
Psn−1Ptn−2f (x) − Qm

(sn−1)
Ptn−2f (x)

)
+ · · ·
+ Qm

(sn) · · ·Qm
(s2)

(
Pt1f (x) − Qm

(s1)
f (x)

)
.

Then, since Qm is a Markov operator, we have∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞

≤ (∥∥PsnPtn−1f − Qm
(sn)Ptn−1f

∥∥∞
+ ∥∥Psn−1Ptn−2f − Qm

(sn−1)
Ptn−2f

∥∥∞
· · ·

+ ∥∥Pt1f − Qm
(s1)

f
∥∥∞

)(
1 + O(ε)

)
=
(

n∑
k=2

∥∥PskPtk−1f − Qm
(sk)

Ptk−1f
∥∥∞

+ ∥∥Pt1f − Qm
(s1)

f
∥∥∞

)(
1 + O(ε)

)
.

First, note that we can directly apply (3.34), (3.35) or (3.36) in Corollary 1 to
obtain an estimate of ‖Pt1f − Qm

(s1)
f ‖∞ for f ∈ C∞

b (RN ;R), a Lipschitz contin-
uous function or a bounded Borel function, respectively. To obtain an estimate of∑n

k=2 ‖PskPtk−1f −Qm
(sk)

Ptk−1f ‖∞, we apply the results in Corollary 1 to Ptf (in
stead of f ) as follows:

• By (3.34) in Corollary 1, for s, t ∈ (0,1] and f ∈ C∞
b (RN ;R), there exists C

such that

∥∥PsPtf − Qm
(s)Ptf

∥∥∞ ≤
m+1∑
l=1

s(m+1+l)/2C
∥∥∇ lPtf

∥∥∞(C.1)

≤
m+1∑
l=1

s(m+1+l)/2C
∥∥∇ lf

∥∥∞.(C.2)
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Hence, ∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞(C.3)

≤ C

n∑
k=2

m+1∑
l=1

s
(m+1+l)/2
k

∥∥∇ lf
∥∥∞(C.4)

+ C

m+1∑
l=1

s
(m+1+l)/2
1

∥∥∇ lf
∥∥∞.(C.5)

• By (3.35) in Corollary 1, for s, t ∈ (0,1] and f ∈ C1
b(RN ;R), there exists C

such that ∥∥PsPtf − Qm
(s)Ptf

∥∥∞ ≤ s(m+2)/2C‖∇Ptf ‖∞(C.6)

≤ s(m+2)/2C‖∇f ‖∞.(C.7)

Hence, ∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞(C.8)

≤ C

n∑
k=2

s
(m+2)/2
k ‖∇f ‖∞(C.9)

+ Cs
(m+2)/2
1 ‖∇f ‖∞.(C.10)

• By (3.36) in Corollary 1, for s, t ∈ (0,1] and bounded Borel function f on RN ,
there exists C such that∥∥PsPtf − Qm

(s)Ptf
∥∥∞ ≤ s(m+1)/2C‖Ptf ‖∞(C.11)

≤ s(m+1)/2C‖f ‖∞.(C.12)

Hence, ∥∥PT f − Qm
(sn)Q

m
(sn−1)

· · ·Qm
(s1)

f
∥∥∞(C.13)

≤ C

n∑
k=2

s
(m+1)/2
k ‖f ‖∞(C.14)

+ Cs
(m+1)/2
1 ‖f ‖∞.(C.15)

Next, we obtain more explicit and compact expressions with regard to n partic-
ularly for (C.4), (C.9) and (C.14).

First, from the definition of sk for k ∈ {2, . . . , n}, we have

sk = γ T (k − 1)γ−1

nγ

∫ k

k−1

(
u/(k − 1)

)γ−1
du.(C.16)
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For k ∈ {2, . . . , n}, (u/(k − 1))γ−1 ≤ max{(k/(k − 1))γ−1,1} ≤ max{2γ−1,1}.
Then

s
l/2
k ≤

(
γ T (k − 1)γ−1

nγ
max

{
2γ−1,1

})l/2

(C.17)

≤ C(1/n)γ l/2(k − 1)(γ−1)l/2,(C.18)

where C = C(T , γ ).
We consider the estimates for three different ranges of γ that are larger than,

equal to and less than (l − 2)/ l, respectively. [γ = (l − 2)/ l satisfies (γ − 1)l/2 =
−1.]

For 0 < γ < (l − 2)/ l,

C(1/n)γ l/2
n∑

k=2

(k − 1)(γ−1)l/2 ≤ C(1/n)γ l/2.(C.19)

For γ = (l − 2)/ l,

C(1/n)γ l/2
n∑

k=2

(k − 1)(γ−1)l/2(C.20)

= C(1/n)(l−2)/2
n∑

k=1

(k − 1)−1(C.21)

≤ C(1/n)(l−2)/2 logn.(C.22)

For γ > (l − 2)/ l,

C(1/n)γ l/2
n∑

k=2

(k − 1)(γ−1)l/2(C.23)

= C(1/n)(γ−1)l/2(1/n)l/2
n∑

k=2

(k − 1)(γ−1)l/2(C.24)

= C(1/n)(l−2)/2
n∑

k=2

(
k − 1

n

)(γ−1)l/2 1

n
(C.25)

≤ C(1/n)(l−2)/2.(C.26)

Then, by combining an estimate of ‖Pt1f − Qm
(s1)

f ‖∞ for f ∈ C∞
b (RN ;R), a

Lipschitz continuous function or a bounded Borel function, we have the assertion.
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