Algorithmic Competition and Coordination Failure between Cryptocurrencies

October 2021

Kohei Kawaguchi (HKUST)

Shunya Noda (University of Tokyo)

Emergence of Algorithm-Driven Markets

□ **Algorithmic decision making** has increasingly been adopted.

- \rightarrow Emergence of markets that involve algorithms as players.
- Emergence of **Competition** and **coordination** between algorithms.

In this paper, we study whether and how cryptocurrencies coordinate.

Competition and Coordination b/w Cryptocurrencies

Cryptocurrency is a decentralized electronic payment system.

Anyone can work as a record-keeper, called a **miner**.

□ Each system attempts to **stabilize** the processing speed of transactions.

- Each system adjusts a parameter called "**target**" algorithmically.
- The target determines miners' expected reward (time wage).
 → Algorithmic pricing for hiring miners.

□ We focus on cryptocurrencies that use **SHA-256** for their mining puzzle.

SHA-256 Market Structure

SHA-256 Cryptocurrencies

SHA-256 Miners

Tacit Coordination

Historical log block time (daily average)

Historical log expected reward

- Currencies **do not equate** the expected reward rate directly!
- Nevertheless, the three currencies had similar expected reward rate because of algorithmic competition.
- \Box Occasional coordination failure? \rightarrow Really? How are they mitigated?

Research Question

Question 1:

Are cryptocurrencies successfully (tacitly) coordinating to stabilize the processing speed?

Question 2:

How tightly these currencies are connected in the mining market?

Question 3:

Can we resolve/mitigate the coordination failure by improving algorithms?

Method

We focus on the period where we observe a large variation in rewards.

- Halving: the mining prize is halved every 210,000 blocks (4 years)
- Agreed when Bitcoin was launched. \rightarrow Foreseeable but exogenous.
- A drastic change on the aggregate hash supply.
 - \rightarrow Can cryptocurrencies smoothly absorb the shock?
- We apply the RDD to detect the coordination failure.
- We estimate the aggregate hash supply (how miners respond to the change in the reward rate) to perform counterfactual simulations.

Result Overview

BTC's halving significantly influenced **BCH** and **BSV**'s hash supply.

- But, **BCH** and **BSV** made sophisticated algorithmic decisions. \rightarrow Quickly absorbed the **BTC** halving shock.
- **BTC**'s algorithm is less efficient than **BCH** and **BSV**'s.
 - **BTC**'s hash supply was less elastic: **BTC** has many loyal miners.
 - This explains why **BTC** could survive with the obsolete algorithm.
- Counterfactual simulations show that BCH and BSV would have collapsed if they had adopted the BTC's algorithm.

Cryptocurrency Basics

Blockchain

- Blockchain = A chain of blocks.
- □ Block = a group of newly validated transaction requests.
- A miner collects a set of (valid) pending transactions to produce a new block.

Rewards

□ **Multiple miners** work on this task, and different miners produce each block.

- Upon producing a block, the miner obtains a monetary (cryptocurrency) reward.
 - **Seigniorage** (dominant) + transaction fees

Proof-of-Work (PoW)

□ When a miner is allowed to append a new block?

Proof-of-Work (PoW) (Dwork and Naor, 1992)

- Miners are required to complete a cumbersome task to produce a block.
- □ The cryptographic **hash function** is a key part of PoW system.
- $\Box \quad Any \ data \mapsto a \ fixed-digit \ integer$
 - Block Header (with Nonce) \mapsto 256-bit number (0 ~ 2²⁵⁶ 1)
- □ The return is (virtually) **ex-ante unpredictable**.
 - We cannot infer the returned value unless we actually calculate it.
- **"Cumbersome Task":** Find a "good nonce" by **try and error**.

Hash Computation = Lottery Draw

- A miner is allowed to add a new block iff he finds a nonce that leads to a hash value smaller than the difficulty target.
 - The difficulty target is each currency's **policy variable**.
- □ The hash value is unpredictable \rightarrow Computing a hash value with one nonce (counted as **1 hash**) is equivalent to drawing one lottery.
 - iid draw from a uniform distribution.
 - Probability of success (winning rate):

The mass of the targeted range Winning Rate $w = \frac{(\text{difficulty target})}{2^{256}}$

The mass of the whole range of SHA-256

Model

Continuous time $t \in \mathbb{R}_+$

□ The set of **cryptocurrencies** $[K] = \{1, 2, ..., K\}$. (BTC, BCH, BSV) At time *t*, Currency *k*'s...

- Winning rate: w(k, t) block/hash. (Algorithmically adjusted)
- Prize: m(k, t) TKN(k)/block.
- **Exchange rate** (against fiat money): e(k, t) USD/TKN(k).
- **Expected reward rate**: $r(k,t) \coloneqq w(k,t) \cdot m(k,t) \cdot e(k,t)$ USD/hash.
- **Hash rate**: h(k, t) hash/second (unobservable).
- □ The hash rate is endogenously determined as a function of the reward rate.

Miner's Problem & Hash Rate Determination

- **Expected reward rate** (r)
 - = winning rate (w)
 - \times prize (m)
 - \times exchange rate (e)
- Each miner observes the
 expected reward rate at each
 moment and decides which
 currency to mine

- □ Currency k's hash rate $(h(k, \cdot))$
 - = **Miners' total effort** spent on currency *k*.
 - □ The hash rate should be dependent on the SHA-256 Miners profile of the expected reward rates.

- □ The winning rate w is extremely small (< 10^{-20}) and the hash rate h is extremely large.
- □ Block arrival approximately follows a non-homogeneous Poisson process with arrival rate wh. → The average block time: 1/wh.
- **BTC**, **BCH**, and **BSV** adjust the winning rate w to produce blocks every 10 minutes \Leftrightarrow attempt to achieve 1/wh = 10 minutes.
 - → Adjust the winning rate *w* algorithmically (**difficulty adjustment algorithm**)

Difficulty Adjustment Algorithms (DAA)

□ Noda, Okumura, and Hashimoto (2020):

- Original DAA fails to stabilize block time when the hash supply is elastic.
- **CW-144 performs well** even when the hash supply is highly elastic.

Original DAA

Due to the time constraint, we skip the full detail of DAAs.

Original DAA (BTC)

Periodic adjustment.

Adjust the winning rate for **every 2,016 blocks** (= 2 weeks if blocks are produced for every 10 minutes).

Average block time
of past 2,016 blocks×Old winning rateNew winning rate =Targeted block time
(10 minutes)×

CW-144

CW stands for chainworks (the firm that developed this DAA).

CW-144 (BCH, BSV)

Continuous adjustment.

Adjust the winning rate for **every single block** (= 10 minutes).

Check the time needed for producing the past 144 blocks (= 1 day).

Average block time of past 144 blocks

New winning rate =

Targeted block time
(10 minutes)Average "Work" (= 1/winning
rate) of past 144 blocks

The Impact of BTC Halving

- □ We want to look at cryptocurrencies' behavior against a large "exogenous" shock. → Focus on halving.
- **The prize** (m) of **BTC**, **BCH**, and **BSV** are halved for every 210,000 blocks.
 - Block arrivals are independent across currencies → The halving period of these three currencies arrive sequentially.
 - BCH (April 8, 2020) → BSV (April 10, 2020) → BTC (May 11, 2020)
 - We look at the largest event BTC halving.

The Impact of BTC's Halving on BTC (1)

Expected reward rate (USD/hash)

Winning rate (block/hash)

- $\square Reward \rightarrow Jumped down due to halving.$
- □ Winning Rate → Adjusted for every 2,016 blocks (2 weeks). It is not reset to an ideal level instantly, reflecting the adjustment of the prize.

The Impact of BTC's Halving on BTC (2)

Block time (second)

- Hash rate decreased, and block time increased after halving, and it took time to go back to the stationary level.
- Not critical but a significant economic problem.

The Impact of BTC's Halving on BCH

Expected reward rate (USD/hash)

Winning rate (block/hash)

- Recall: **BCH's prize** is unchanged! (We are studying **BTC's halving**.)
- **BCH**'s DAA (CW-144) quickly adjusted the winning rate to absorb the BTC halving shock.

The Impact of BTC's Halving on BSV

Difficulty

2020-05-15

Adjustment

BS

Winning rate (block/hash)

BSV also used CW-144.

2020-05-09

Expected reward rate (USD/hash)

Datetime

2.020050e-18

1.691161e-18

1.362272e-18

1.033382e-18

7.044930e-19

Expected reward (USD)

□ The observed patterns of the winning rate and reward rate of **BSV** were similar.

Estimation of the Aggregate Hash Supply

Reduced-Form of The Hash Supply

□ We measure the **reward-elasticity** of the miners' **hash supply**.

The reward rate is miners' primary concern.

We approximate the hash rate function by a log-log linear function.

$$h(k,t) = \overline{h}(t) \cdot \exp\left(\alpha_k + \sum_{k' \in [K]} \beta_{k',k} \log r(k',t)\right)$$

 $\beta_{a,b}$ is currency *b*'s hash supply elasticity of currency *a*'s reward rate.

• $\overline{h}(t)$ is the aggregate hash power (the total capacity of mining ASIC).

Sketch of Estimation Strategy

- We combine the following two data sets to produce a combined data set about the expected reward rate, winning rate, and block arrivals.
 - The full history of blockchains (BTC, BCH, BSV)
 - The exchange rate against USD (downloaded from Yahoo Finance)
- Short period: from 28 days before BCH halving to 28 days after BTC halving (≈ 3 months).
 - \rightarrow We can assume that miners' equipment (mining ASIC holding) was constant.
 - (= We can assume that \overline{h} was a constant.)
- U We use the maximum likelihood method estimate the parameter (α, β) .

Estimation Result (1)

*	р	<	0.05,	** p	<	0.01,	***	р	<	0.001
---	---	---	-------	------	---	-------	-----	---	---	-------

DTC	52.879***
DIC	(1.973)
РСЦ	49.851***
всп	(1.995)
DCV	47.764***
DSV	(1.973)

Constants

		Hash Supply (To)				
		BTC BCH BSV				
Reward (From)	DTC	0.626***	-3.981***	-3.186***		
	ыс	(0.103)	(0.113)	(0.106)		
	РСЦ	-0.240*	5.386***	-1.540***		
	рсп	(0.095)	(0.127)	(0.093)		
	PCV	-0.223*	-1.219***	4.869***		
	DJV	(0.098)	(0.076)	(0.118)		

Table of row-reward-elasticity of column

Estimation Result (2)

* p < 0.05, ** p < 0.01, *** p < 0.001

Hash Supply (To)

The hash supply is **increasing** in its own reward (diagonal elements) and **decreasing** in its rival's reward (off-diagonal elements).

Estimation Result (3)

* p < 0.05, ** p < 0.01, *** p < 0.001

		Hash Supply (To)			
		BTC	BCH	BSV	
Reward (From)	PTC	0.626***	-3.981***	-3.186***	
	ыс	(0.103)	(0.113)	(0.106)	
	РСЦ	-0.240*	5.386***	-1.540***	
	БСП	(0.095)	(0.127)	(0.093)	
	PCV	-0.223*	-1.219***	4.869***	
	DJV	(0.098)	(0.076)	(0.118)	

Constants

Table of row-reward-elasticity of column

- BTC is much larger than BCH and BSV
 - \rightarrow There are many loyal miners and its hash supply is less elastic.
 - (Could be rational. BTC-USD exchange market is much thicker.)
- □ Noda et al. (2020): (BTC's) Original DAA performs well iff elasticity < 1.

Estimation Result (4)

* p < 0.05, ** p < 0.01, *** p < 0.001

□ The hash supply of **BCH** and **BSV** was highly elastic.

Their difficulty adjustment problem is much more difficult than BTC's.

□ Noda et al. (2020): (**BCH** and **BSV's**) CW-144 is stable iff elasticity < 144.

Counterfactual Simulations

Scenario

- What would have happened if BCH and BSV had used different DAAs in the period of third BTC halving?
- □ We use the estimated hash supply to run the counterfactual simulation.
- We consider the following scenarios.

Scenario	BTC	BCH	BSV
actual	Original DAA	CW-144	CW-144
bch_uses_btc_daa	Original DAA	Original DAA	CW-144
all_use_btc_daa	Original DAA	Original DAA	Original DAA

- □ We start the simulation right before the third **BTC halving**.
- □ The exchange rate is updated according to the geometric Brownian motion.

BCH would have collapsed

Only **actual** uses CW-144. CW-144 quickly stabilizes the block arrival rate.

□ When the original DAA is used, mining is too easy after the halving (BTC is less profitable \rightarrow many miners join BCH mining). Mining becomes too difficult in the next epoch, and BCH cannot produce 2,016 blocks for the next adjustment.

BSV would also have collapsed

- □ The same analysis applies to **BSV**.
- **BSV** survives only if CW-144 is adopted.
- **BSV** is attempting to restore the original Satoshi protocol, but restoring to the original DAA seems a bad idea.

Impact on BTC

- **BCH** and **BSV** adopt CW-144 \rightarrow **BTC** is benefitted.
- □ CW-144 quickly absorbs the shock and adjusts the hash rate of **BCH** and **BSV**. \rightarrow It also stabilizes the hash power supplied to **BTC**.
- □ The influence of the halving on **BTC** would have been larger if **BCH** and **BSV** had not work as a "**shock absorber**".

Concluding Remarks

Concluding Remarks

- We studied the structure of algorithmic competition and coordination between cryptocurrencies (BTC, BCH, and BSV).
- These currencies are involved in the same miner-hiring market, and their algorithmic pricing is influencing each other.
- When a large shock (such as halving) arrives, CW-144 (BCH and BSV) performs much better than the original DAA (BTC).
 - However, this problem has not been critical for BTC because BTC has many loyal miners and the hash supply to BTC is highly inelastic.
 - In contrast, **BCH** and **BSV** had collapsed if they had used the original DAA.
- Algorithmic adjustment also has an externality. BCH and BSV's adoption of CW-144 is helping BTC to stabilize its block arrival rate.