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Abstract

This study proposes a multivariate test for linear factor asset pricing models
when the number of assets, N , is larger than the time dimension of returns, T .
We extend the exact test proposed by Gibbons et al. (1989) to obtain a non-
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tics, we find that the Tokyo Stock Price Index is not mean-variance efficient most
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1 Introduction

In modern portfolio theory, which started with the seminal work of Markowitz (1952),

many academic researchers have examined the relationships between the return and

risk, or volatility, of financial assets. The most utilized and widely known asset pricing

models in academia and practice are the capital asset pricing model (CAPM) developed

by Sharpe (1964), Lintner (1965), termed the SL-CAPM hereafter, as well as arbitrage

pricing theory (APT) proposed by Ross (1976). From an academic point of view, these

models are fundamental to asset pricing theory, as the CAPM and APT are purely

derived from the partial equilibrium analysis and no-arbitrage conditions, respectively

and are used in the valuation of enterprises, evaluation of fund managers, and prediction

of stock returns in practice.

Despite the thorough theoretical conclusions presented thus far, they should always

be tested empirically. Among the statistical tests of the above asset pricing models,

one of the most successful is the exact test proposed by Gibbons et al. (1989), the GRS

test hereafter. These authors propose an exact test based on an F-distribution under

the assumption of the i.i.d. Gaussian error and T > N − k− 1, where T and N are the

number of time dimensions and assets, respectively and k is the number of factors. They

have also shown that the test is equivalent to testing if a given portfolio is mean-variance

efficient. The crucial assumption of the GRS test is that the number of time-series data

must be larger than the number of assets included in the test. If this assumption is

violated, the estimated covariance matrix of the error becomes singular and the GRS

test statistics can no longer be calculated. The assumption of T > N − k − 1 heavily

restricts the test of linear asset pricing models. Most conventional research overcomes

this problem by sorting individual securities into portfolios by using certain criteria.

Despite its popularity in financial research, however, dealing with the problem of T < N

by sorting portfolios poses several problems. Firstly, by sorting securities based on a
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criterion that might be correlated with the return, the type-1 error becomes large (see

Lo and MacKinlay (1990) and Berk (2000)). Secondly, considering the identification of

what causes the rejection of the asset pricing model between the market inefficiency and

instability of the coefficients, it is thus desirable to test with shorter T , which opposes

the assumption T > N −k−1 in the case of relatively large N . Finally, including more

assets may improve the power of the statistics, which also faces limitation due to the

assumption of T > N − k − 1.

In this study, we propose a robust test of linear factor pricing models under T < N .

We extend the GRS test statistics by applying the shrinkage estimation method to have

a non-singular covariance matrix estimation. We call our method the shrinkage-GRS

(S-GRS) test. The shrinkage estimation method proposed by Ledoit and Wolf (2003),

Ledoit and Wolf (2004a), Ledoit and Wolf (2004b), and Bodnar et al. (2014) provides

an estimator of the covariance matrix with no amplification of the error in inverting

it, and a non-singular covariance matrix even in the case of T < N . If one just needs

an invertible covariance matrix in case of T < N , putting several restrictions from the-

ory or intuition on estimation is enough. On the contrary, by applying the shrinkage

estimation to our proposed test statistics, two types of estimators of covariance ma-

trix can be incorporated: one is the sample covariance matrix estimated purely from

the data, and another is the covariance matrix estimated with several theoretical or

intuitive restrictions. Therefore, the shrinkage estimate can optimally balance between

a researcher’s intuition and the data. However, because the sampling distribution of

the proposed test statistics no longer exactly follows the F-distribution, we apply the

fixed-design wild bootstrap presented by Gonçalves and Kilian (2004) to address the

conditional heteroskedasticity and cross-sectional correlation in the idiosyncratic error.

As a result, the S-GRS test can be calculated in the case of T < N and is robust to the

non-Gaussian error distribution with a wide range of conditional heteroskedasticity.
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This study makes two main contributions. First, the proposed S-GRS test is appli-

cable in the case of T < N , where the standard GRS test cannot be calculated. Second,

to our best knowledge, this is the first study to analyze the efficiency of the Tokyo Stock

Price Index (TOPIX) with data on individual securities in the Tokyo Stock Exchange

(TSE) first section and second section, not with the portfolio data.

The remainder of this article is organized as follows. Section 2 briefly shows the

SL-CAPM as well as the GRS test and the econometric assumption behind it. Section

3 describes the shrinkage estimation method and the procedure of the proposed S-GRS

test. We analyze the empirical size and power of the S-GRS test in a Monte-Carlo

simulation in Section 4. In Section 5, we apply the S-GRS test to analyze the efficiency

of TOPIX with data on individual securities from TSE first and second section. Section

6 concludes.

2 The GRS Test

In this section, we formally derive the GRS test and review its assumptions and exten-

sion. We briefly discuss the motivation and difference of the proposed S-GRS test.

2.1 Derivation of the GRS Test

For simplicity, we discuss single factor models in this study; however, the same discus-

sion holds in the case of multi-factor linear pricing models at the cost of more complex

notation. Suppose there exists a risk-free asset whose return at time t is rf,t. In the

investment universe, there exist N assets whose return is denoted by ri,t for all i indi-

vidual assets and the return of the market portfolio at time t is rm,t. If the SL-CAPM
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exactly holds or the market portfolio is mean-variance efficient,1

E[r̃i,t] = βir̃m,t (1)

where r̃i,t = ri,t − rf,t and r̃m,t = rm,t − rf,t are the excess returns of security i and the

market portfolio, respectively. Here, beta, the return sensitivity of asset i toward the

market portfolio, can be calculated as βi =
Cov(r̃i,t,r̃m,t)

V ar(r̃m,t)
. To test equation (1), we set the

econometric model as

r̃i,t = αi + βir̃m,t + ε̃i,t (2)

or by stacking the cross-section into a vector,

r̃t = α+ r̃m,tβ + ε̃t (3)

where ε̃t
iid∼ N (0,Σ) with symmetric positive definite covariance matrix Σ, and the null

hypothesis to test equation (1) is

H0 : αi = 0 ∀i = 1, ..., N (4)

Note that this is the joint hypothesis of all the mis-pricing of the factor asset pricing

models. Thus, if there exists at least one individual asset that is not correctly priced,

this null hypothesis will be rejected. Under the assumption of the i.i.d. Gaussian

error and T > N − 2, Gibbons et al. (1989) show that the Wald-type statistics for the

hypothesis (4)

J = α̂′V ar(α̂)−1α̂ (5)

1For explicit proof that the test of the SL-CAPM is equivalent to testing the mean-variance efficiency
of the market portfolio, see Appendix A or Gibbons et al. (1989). This test can be basically understood
as comparing the sharpe ratio of a given portfolio on the right-hand side with that of the ex-post
tangency portfolio constructed from the assets on the left-hand side.
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exactly follow the F-distribution with N degrees of freedom in the numerator and

(T −N − 2) degrees of freedom in the denominator, which is known as the GRS test:

J =
T −N − 1

N

[
1 +

µ̂2
m

σ̂2
m

]−1
α̂′Σ̂−1α̂ ∼ FN,T−N−1 (6)

where α̂ and β̂ are the maximum likelihood estimates from equation (3), µ̂m = 1
T

∑T
t=1 r̃m,t,

σ̂2
m = 1

T

∑T
t=1(r̃m,t − µ̂m,t)2, and Σ̂ = 1

T

∑T
t=1(r̃t − α̂− β̂r̃m,t)(r̃t − α̂− β̂r̃m,t)′.

The simplest example in which the GRS test is employed is to check the validity

of asset pricing models. Fama and French (1993) establish the notable Fama-French

three-factor model (FF3 model hereafter) and check its explanatory power and model

fit with the GRS test. Further, Fama and French (2015) analyze the Fama–French

five-factor model. Several researchers focus on the characteristics of the GRS test as a

tool to discuss the mean-variance efficiency of a portfolio. Detzler and Wiggins (1997)

extend the GRS statistics when short-selling is restricted and evaluate the performance

of global investment funds. Grinold (1992) analyzes the efficiency of several indices

(ALLORDS, DAX, TOPIX, FTA, S&P500) and finds that none the indices except for

DAX satisfy mean-variance efficiency. He concludes that it is possible to construct

actively managed portfolios that are more efficient than indices.

2.2 Assumptions of the GRS Test

Although empirical research has adopted the GRS test, several statistical assumptions

behind it exist. In this section, we explicitly discuss those assumptions and compare

them with the empirical and intuitive facts; thereafter, we review how we can avoid

problems caused by the violation of such assumptions. The first assumption is that the

idiosyncratic error follows the i.i.d. Gaussian error and the second is T > N − k − 1,

where k is the number of factors in the model.
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In contrast to the assumption of the Gaussian i.i.d. error, it is widely known that

stock returns follow a fat-tailed distribution, which implies that the probability of a

crash is higher than that predicted by the Gaussian distribution.

Concerning the problem of the non-Gaussian error, Affleck-Graves and McDonald

(1989) show that the GRS test is robust to the typical non-normality observed in

financial markets by adopting simulation methods. Zhou (1993) expands the GRS

test in the case of elliptical distributions (e.g., Gaussian distribution, t-distribution, or

mixed Gaussian distribution). The author shows that the standard GRS test rejects the

null hypothesis in the United States, while the proposed GRS test does not. Chou and

Zhou (2006) apply bootstrapping to the standard GRS test and generalized method

of moments-based GRS test to avoid the parametric assumptions on the idiosyncratic

error.

Another inconvenient fact is the existence of volatility clustering or conditional het-

eroskedasticity of the idiosyncratic error, which violates the i.i.d. assumption. Since the

development of the autoregressive conditional heteroskedasticity (ARCH) and general-

ized ARCH (GARCH) models, empirical evidence has shown that high volatility periods

and low volatility periods exist in financial markets, which can even be asymmetric.

Regarding the conditional heteroskedasticity in the idiosyncratic error, MacKinlay

and Richardson (1991) derive the GRS test with the generalized method of moments

framework under weaker assumptions. Beaulieu et al. (2007) propose a simulation-

based GRS test when the distribution of the idiosyncratic error is completely known or

known up to the latent parameters. Gungor and Luger (2009) propose distribution-free

test statistics based on the sign statistics and Wilcoxon signed rank statistics for the

single factor model. They take the maximum or squared sum of the test statistics for

each individual equation to evaluate the joint hypothesis. They show that the proposed

statistics have higher power than the GRS test or the methods proposed in Beaulieu
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et al. (2007) by simulation.

Another problematic assumption of the GRS test is T > N−k−1. This assumption

is required to calculate the non-singular covariance matrix of the idiosyncratic error,

which usually has a cross-sectional correlation. On the contrary, in standard financial

markets, the number of individual securities is larger than the time-series data.2 One

may use intra-daily data to have large T ; however, this might provide an unstable co-

efficient estimate. Many empirical researchers have overcome this problem by sorting

individual securities based on certain criteria and constructing a portfolio. However,

grouping individual securities into portfolios may offset the positive and negative αi

of the individual security and decrease the power of the test statistics. Berk (2000)

warns researchers about using a variable that may be correlated to the expected asset

returns when sorting assets into portfolios to test asset pricing models. The author

theoretically shows that if researchers use a sorting variable assumed to be correlated

with the expected return, tests over-reject the asset pricing model even if it is true.

Lo and MacKinlay (1990) claim that data-snooping bias in the test of asset pricing

seriously distorts inferences. Thus, even if the test rejects the null hypothesis that

all the securities are priced correctly, researchers cannot identify if it is caused by the

mis-pricing of the model or just due to the larger probability of type-1 error than that

set by the researcher. From the viewpoint of portfolio managers investing in a given

investment universe, it would be preferable to judge their performance with a compar-

ison of individual securities, not with a portfolio constructed from ad-hoc criteria. As

the SL-CAPM is used to calculate the required rate of return of a firm in corporate

finance,3 it is worth checking if the linear factor pricing model is empirically supported

by individual-level data. We would also like to identify the inefficiency of the bench-

2In the case of the TSE first section, there were 2055 individual securities on December 15, 2017,
according to the Japan Exchange Group. If the data are monthly, one has to obtain more than 170
years.

3See, for instance, Firer et al. (2012, chap. 14).
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mark portfolio from the rejection of the model caused by the time-invariant coefficients

in the estimation. In this case, testing with shorter T and large N is desirable. It is

shown that, however, the power of the standard GRS test does not increase uniformly

as N increases in Gungor and Luger (2016). Thus, from the viewpoint of the standard

GRS test, short T is not desired at all.

Affleck-Graves and McDonald (1990) apply the maximum entropy estimation for the

covariance matrix of the idiosyncratic error, which can provide a non-singular covariance

matrix estimation even in the case of T < N , and obtain the distributions of the test

statistics with the bootstrap method. The approach of Gungor and Luger (2009) can

also be used for the single factor model. Gungor and Luger (2013) expand the analysis

in Gungor and Luger (2009) to multi-factor pricing models. They split the data set into

two subsamples and estimate the pricing model in the first half. They then determine

the weights for each security according to the sign of α̂i and combine all securities into

one portfolio to avoid the T < N problem. Moreover, they use the sign statistics to

have distribution-free test statistics. Pesaran and Yamagata (2012) propose asymptotic

test statistics if the error is Gaussian or not and if the cross-sectional correlation is zero

or not by applying the central limit theorem in Kelejian and Prucha (2001). Hwang

and Satchell (2014) propose averaging the squared t-statistics of αi, the intercept of

equation (3). These average F-test statistics follow the F-distribution provided that the

idiosyncratic error is not correlated in a cross-section, which is a strong assumption.

By using simulation and theory, they find that the size and power of the proposed test

statistics are distorted if a cross-sectional correlation of the idiosyncratic error exists.

Gungor and Luger (2016) expand the average F-test statistics in Hwang and Satchell

(2014) by taking several norms of the F-statistics from each equation (3). The proposed

test statistics have higher power than those of Pesaran and Yamagata (2012) when the

cross-sectional correlation is high.
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There are several differences in the approach of this study to solving the singular

covariance matrix problem when T < N . Firstly, we apply the shrinkage estimator

proposed by Ledoit and Wolf (2003), Ledoit and Wolf (2004a), Ledoit and Wolf (2004b),

and Bodnar et al. (2014), which can provide a non-singular covariance matrix with no

amplification of the estimation error in inverting. We also apply the fixed-design wild

bootstrap in Gonçalves and Kilian (2004), meaning that the S-GRS test is robust to

non-normality and a wide range of conditional heteroskedasticity, and does not ignore

the cross-sectional correlation. Thanks to this condition, the S-GRS test may increase

the power of the statistics even when T > N . Secondly, there is no crucial change in

the framework of the GRS test except for the application of the shrinkage estimator.

Thus, the estimation procedure and interpretation of the result are standard. Thirdly,

researchers can incorporate their prior information from theory or intuition about the

structure of the covariance matrix for the S-GRS test because of the shrinkage estimator,

which makes the S-GRS test take a balance between restrictions, which can be ad-hoc

in some cases just for the non-singular estimation of the covariance matrix, and the

data-sets at your hand.

3 S-GRS Test Procedure

In this section, we provide the algorithm of the proposed S-GRS test. Specifically, we

briefly discuss the shrinkage estimation and how to apply it to the S-GRS test.

3.1 Shrinkage Estimation Method

The sample covariance matrix has huge estimation errors4 when N is close to T and

it even becomes singular in the case of T < N . The idea of shrinkage estimation is

4See, for example, Frankfurter et al. (1971)
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classical in the field of statistics from the work of Stein et al. (1956). By using the

shrinkage estimation method for the covariance matrix, one can obtain a non-singular

estimate of a covariance matrix with no amplification of the estimation error when

inverting it even when T < N .

The idea of shrinkage estimation is intuitive: combine two extreme estimates and

obtain something better. More rigorously, consider two types of covariance matrix

estimators. One is S, a consistent estimator of a covariance matrix with zero bias and

large variance (i.e., the sample covariance matrix), and the other is ΣT , an estimator

of a covariance matrix with bias and small variance, which can be obtained by placing

certain restrictions on the estimator. We take a weighted average of these two and

obtain the shrinkage estimator of the covariance matrix (Σ̂s) as follows:

Σs = δTΣT + δSS (7)

Here δS and δT are the weights, called the shrinkage intensity, and ΣT is the shrinkage

target.

The next problem is how to choose the optimal intensity.5 The derivation of the

optimal shrinkage intensity generally takes two steps. First, one obtains the theoretical

shrinkage intensity from the MSE minimization problem, which contains the unknown

true parameters. Second, one shows that each element of the theoretically optimal

shrinkage intensity can be estimated consistently under general asymptotics where both

T and N can go to infinity but N is slower than T . Note that Ledoit and Wolf (2004b)

point out that those results are well approximated in finite samples through simulation

analysis. By considering the MSE, we can explicitly discuss the bias–variance trade-off.

Suppose we are interested in a scalar parameter θ and estimate it as θ̂. The MSE of

5The choice of ΣT is discussed later in this subsection and in the next subsection in more detail.
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the estimator θ̂ can be written as

MSE(θ̂) ≡ E[(θ̂ − θ)] = E[(θ̂ − Eθ̂(θ))
2] + (E(θ)− θ)2 ≡ Bias(θ̂)2 + V ar(θ̂) (8)

Think about two types of estimators. One is the unbiased estimator, θ̂u, and the other is

not unbiased but has the least variance θ̂nu. In the case of θ̂u, the first term of equation

(8) is zero, while it may have a large second term. While an unbiased estimator is

obtainable, this might lead to an over-fitting problem. In the case of θ̂nu, it may be

unable to completely explain the statistical characteristics behind the data while it has

lower estimation error by definition. Thus, considering only minimizing either the bias

or the variance may pose a practical problem. However, by minimizing the MSE, as

shown in equation (8), one can have a better estimator balancing the bias and the

variance.

Ledoit and Wolf (2004a), Ledoit and Wolf (2004b), and Ledoit and Wolf (2003) an-

alytically derive the optimal shrinkage intensity for the shrinkage target as the identity

matrix, the SL-CAPM, and constant correlation model,6 respectively. Bodnar et al.

(2014) derive the shrinkage intensity under a weaker assumption as well as specify the

shrinkage target, which does not have to be identity but rather any positive definite

matrix provided there exists supn‖ΣT‖Tr ≤ M with finite M , where ‖ · ‖Tr denotes

the trace norm calculated as ‖A‖Tr ≡ Tr(
√

(AA′)). Here, Tr(·) denotes the trace of

a matrix. Through the simulation analysis, they point out that setting the shrinkage

target as an identity matrix following Ledoit and Wolf (2004b) may be too conservative

and that replacing it with a more realistic target can improve the estimation. They also

show that their general shrinkage intensity minimizes the loss function almost surely,

while Ledoit and Wolf (2004b) achieve that with quadratic mean convergence.

6This specification is discussed in the next subsection.
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In this section, we follow the discussion in Ledoit and Wolf (2004b) to offer a general

idea of the shrinkage estimation. In the application of S-GRS in the next section, we

follow the method proposed by Ledoit and Wolf (2004b) and Schäfer and Strimmer

(2005) as their shrinkage target is the same as ours.

The MSE minimization problem we solve here is

min
δT ,δS

E[||Σs −Σ0||2F ] s.t. Σs = δTI + δSS (9)

where ‖ · ‖F denotes the Frobenius norm calculated as ‖A‖ ≡
√

Tr(AA′)/N , I

is the conformable identity matrix, and Σ0 is the true covariance matrix. Note that

the shrinkage target in the analysis of Ledoit and Wolf (2004b) is the identity matrix.

Solving the equation (9) provides the theoretical optimal shrinkage intensity, δ∗I and δ∗S

as follows:

δ∗T =
b2

d2
m (10)

δ∗S =
a2

d2
(11)

where a2 + b2 = d2 is guaranteed and m =< Σ0, I >, a
2 = ‖Σ0 −mI‖2, b2 = E‖S −

Σ0‖2, d2 = E‖S − mI‖2 and < · > is the inner product calculated as < A1,A2 >≡

Tr(A1A
′
2)/N . The scalars in equation (10) and (11) can be interpreted as follows: b2 is

the MSE of the sample covariance matrix. If this is large, estimation error of the sample

covariance matrix is high, which leads to decrease the weight on the sample covariance

matrix. a2 is the difference between the true covariance matrix and the identity matrix.

If this is small, the restriction put on the shrinkage target seems to be appropriate,

which leads to increase the weight on the shrinkage target.

The author shows that the scalars, a2, b2, d2, and m, in equation (10) and (11)

can be consistently estimated under general asymptotics. Thus, we can obtain the
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consistent optimal shrinkage estimates, δ̂∗T and δ̂∗S. Therefore, the optimal shrinkage

estimator of the covariance matrix is

Σ̂∗s = δ̂∗TI + δ̂∗SS (12)

Ledoit and Wolf (2003) calculate the shrinkage covariance matrix of asset returns by

using a theoretical covariance matrix structure from the CAPM as a shrinkage target.

They assume that asset returns follow equation (2). Then, the covariance matrix with

restriction Φ can be calculated as

Φ = σ2
mββ

′ + ∆ (13)

where σ2
m is the population variance of the excess return of the market portfolio, β is

the vector of the population beta, and ∆ is the diagonal matrix with V ar(ε̃i,t) for each

i. This can be estimated by

ΣCAPM
T = σ̂2

mβ̂β̂
′ +D (14)

where σ̂2
m is the same as in Section 2, the consistent estimator of the variance of the

market excess return, β̂ is the OLS estimate of equation (3), and D is the diagonal

matrix of the unbiased sample estimate of V ar(ε̃i,t), which can be calculated from the

residuals. They show that the out-of-sample volatility of the global minimum variance

portfolio (GMVP) optimized by using the shrinkage covariance estimation with target

ΣCAPM
T from equation (14) is lower than the other GMVP whose covariance matrix is

estimated by using the industry factor model, the principal component model, and so

forth. Note that the GMVP only uses information on the covariance matrix to determine

the optimal weight of each asset. Thus, comparing the out-of-sample volatility of several
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GMVPs can shed light on which estimation method is suitable practically.

Ledoit and Wolf (2004a) set the shrinkage target from the constant correlation

model. They optimize portfolios by employing several estimates of the covariance ma-

trix and show that the information ratio7 of a portfolio with a shrinkage covariance

matrix is at least as good as the shrinkage covariance matrix presented by Ledoit and

Wolf (2003).

If one just would like to obtain an invertible estimate of a covariance matrix, putting

several restrictions on the estimator such as sparsity is enough. However, by applying

shrinkage estimator, researchers can incorporate estimate of a covariance matrix with

theoretical or intuitive restrictions with a sample covariance matrix, which is estimated

purely from the data. These characteristics, taking an optimal balance between re-

striction and data, motivate us to apply the shrinkage estimator on our proposed test

statistics.

In the next subsection, we present several possible shrinkage targets and choose two

appropriate targets for the S-GRS test statistics.

3.2 Choice of Shrinkage Targets

Schäfer and Strimmer (2005) provide the following examples of shrinkage targets:

(A) Identity matrix (0)

(B) Homoskedastic matrix (1)

ΣT (i,j) = sii if i = j, ΣT (i,j) = 0 if i 6= j

(C) Homoskedastic and common-covariance matrix (2)

ΣT (i,j) = si,i if i = j, ΣT (i,j) = si,j if i 6= j

7The information ratio is defined as the ratio of active returns (expected excess returns from bench-
mark returns) divided by active risk (the standard deviation of active returns).

14



(D) Heteroskedastic matrix (N)

ΣT (i,j) = si,i if i = j, ΣT (i,j) = 0 if i 6= j

(E) Perfect positive correlation (N)

ΣT (i,j) = si,i if i = j, ΣT (i,j) =
√
si,isj,j if i 6= j

(F) Constant correlation (N+1)

ΣT (i,j) = si,i if i = j, ΣT (i,j) = r̄
√
si,isj,j if i 6= j

where ΣT (i,j) denotes the (i, j) element of the shrinkage target, si,j is the (i, j) element

of the sample covariance matrix, si,j is the average of si,j for all (i, j), and r̄ is the

average of sample correlations. Above, the number of parameters to be estimated is in

the parentheses.

The choice of shrinkage target depends on the researcher, but it only affects the

extent to which the MSE will be reduced, not the problem of the singular covariance

matrix in T < N . As Schäfer and Strimmer (2005) point out, (A), (B), and (D) always

provide a positive definite shrinkage estimator of the covariance matrix, while the others

do not. The simplest and most complicated targets applicable to the S-GRS test seem

to be (A) and (D), respectively.

In the S-GRS test, we apply this shrinkage estimation to the covariance matrix of the

idiosyncratic error. It may be too conservative to assume (A); it is more realistic that

we allow each security to have a different volatility of the idiosyncratic error. Thus, we

apply (A) and (D) in the S-GRS test following the analytical solution of the shrinkage

intensity proposed by Ledoit and Wolf (2004b) and Schäfer and Strimmer (2005).
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3.3 S-GRS Test Algorithm

We test the SL-CAPM described in equation (3):

r̃t = α+ r̃m,tβ + ε̃t (3)

and the null hypothesis is (4):

H0 : αi = 0 ∀i = 1, ..., N (4)

As discussed in Section 2, the estimate of the covariance matrix of the idiosyncratic

error becomes singular when T < N and the estimation accuracy worsens as N rises.

We apply the shrinkage estimator of the covariance matrix of the idiosyncratic error

to generate a singular covariance matrix estimate with no amplification of the error in

inverting. The S-GRS test can be implemented in the following algorithm:

(Js.1) Estimate r̃t = α+ r̃m,tβ + ε̃t and obtain the OLS estimate of αi and βi for each

i, and construct the residual matrix (Xr).

(Js.2) Calculate the sample variance covariance matrix (S = 1
T

∑T
t=1(r̃t−α̂−β̂r̃m,t)(r̃t−

α̂− β̂r̃m,t)′).

(Js.3) Calculate the optimal shrinkage intensity and obtain Σ̂∗s = δ̂∗TΣT + δ̂∗SS. In this

research, we follow Ledoit and Wolf (2004b) and Schäfer and Strimmer (2005) for

the case of the identity target (A) and heteroskedastic target (D), respectively.

(Js.4) The S-GRS test statistics can be calculated as follows:

Js =
T −N − 1

N

[
1 +

µ̂2
m

σ̂2
m

]−1
α̂′Σ̂∗−1s α̂ (15)
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where µ̂m = 1
T

∑T
t=1 r̃m,t, σ̂

2
m = 1

T

∑T
t=1(r̃m,t − µ̂m,t)2

(Js.5) Apply the fixed-design wild bootstrap of Gonçalves and Kilian (2004) to mimic

the sampling distribution, Js, as the asymptotic distribution of Js is unknown.

(Js.6) Use it to find the critical value and test the null hypothesis.

In this algorithm, researchers have to choose the shrinkage target ΣT . While this

choice can be ad-hoc, the choice of the shrinkage target does not affect the problem

of the singular covariance matrix in the GRS test. It only affects the reduction of

the MSE. Schäfer and Strimmer (2005) note that “in fact any target will lead to a

reduction in MSE, albeit only a minor one in case of a strongly misspecified target.”

On the contrary, as Bodnar et al. (2014) suggest, the identity matrix as a shrinkage

target may be too conservative. Thus, in this study, we try both the identity matrix (A)

and the heteroskedastic covariance matrix with zero off-diagonals (D) as a shrinkage

target. In the empirical analysis, we present the result of the former shrinkage target

and use the latter as a robustness check. We find no contradictory evidence about the

inefficiency of the market portfolio in either case.

Once the shrinkage estimate of the covariance matrix is used in equation (15), the

test statistics no longer follow an F-distribution. To obtain the unknown distribution

of the S-GRS test, in the (Js.5) we apply the fixed-design wild bootstrap in Gonçalves

and Kilian (2004). This bootstrap method is theoretically valid under a wide range of

conditional heteroskedasticities including asymmetric GARCH errors. This bootstrap

method also takes into account the non-normality and cross-sectional correlation. The

following explains the implementation of the fixed-design wild bootstrap in (Js.5) for

the S-GRS test setting.
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(WB. 1) The obtained residual matrix (Xr) is as follows:



ε̂1,1 ε̂2,1 ε̂3,1 · · · ε̂N,1

ε̂1,2 ε̂2,2 ε̂3,2 · · · ε̂N,2
...

...
...

...
...

ε̂1,T ε̂2,T ε̂3,T · · · ε̂N,T


(16)

where

ε̂i,t = r̃i,t − α̂i − β̂ir̃m,t (17)

(WB. 2) Subtract the mean of each column from the residual matrix to retain the as-

sumption of zero unconditional mean of the idiosyncratic error in the bootstrap

space.

(WB. 3) Multiply the elements of the t-th row of (16) by ζt
iid∼ N(0, 1) and construct the

bootstrap residual matrix.

(WB. 4) The (i, t) element of the bootstrap residual matrix is denoted ε∗i,t ≡ ε̂i,tζt. The

bootstrap residual matrix (X∗r ) is

X∗r ≡



ε̂∗1,1 ε̂∗2,1 ε̂∗3,1 · · · ε̂∗N,1

ε̂∗1,2 ε̂∗2,2 ε̂∗3,2 · · · ε̂∗N,2
...

...
...

...
...

ε̂∗1,T ε̂∗2,T ε̂∗3,T · · · ε̂∗N,T


=



ε̂1,1ζ1 ε̂2,1ζ1 ε̂3,1ζ1 · · · ε̂N,1ζ1

ε̂1,2ζ2 ε̂2,2ζ2 ε̂3,2ζ2 · · · ε̂N,2ζ2
...

...
...

...
...

ε̂1,T ζT ε̂2,T ζT ε̂3,T ζT · · · ε̂N,T ζT


(18)

Obtain r̃∗i,t from

r̃∗i,t = 0 + β̂ir̃m,t + ε∗i,t (19)

(WB. 5) Estimate r̃∗i,t = α∗i + β∗i r̃m,t + ε̃∗i,t and calculate bootstrap S-GRS statistics J∗1 in
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the same way as (Js.4). Note that one should use the same shrinkage parameter

when calculating the S-GRS statistics as (WB. 1)

(WB. 6) Repeat (WB. 3), (WB. 4), and (WB. 5) B times and obtain {J∗i }Bi=1

(WB. 7) Use {J∗i }Bi=1 as the sampling distribution of the S-GRS statistics from which one

can calculate the critical value.

(WB. 8) Compare the critical value with Js and determine if the null hypothesis is rejected.

4 Simulation Evidence

In this section, we provide the empirical size and power of the S-GRS test. We show

that

1. In the case of T > N , the S-GRS test performed similarly with the standard GRS

test, and it may even improve the power compared with the GRS test.

2. In the case of T < N , the S-GRS test has a satisfying size and power.

3. Researchers should basically use the identity matrix in the empirical analysis.

We design three types of data generating process for the idiosyncratic error: the

i.i.d. error, the factor error, and the heteroskedastic factor error. Our model is the

same as that in equation (3):

r̃t = α+ r̃m,tβ + ε̃t (20)

In the simulation, we generate the market excess return data from the standard

Gaussian distribution, i.e. r̃m,t
iid∼ N(0, 1) and all beta are set to one, βi = 1. In the

i.i.d. error case, the error term is generated from the multivariate Gaussian distribution
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with mean 0 and identity covariance matrix, i.e. ε̃t
iid∼ N (0, I). In the case of the error

with a factor structure, it is generated from ε̃t = ftλ + et, where et
iid∼ N (0, I),λ

iid∼

N (0, I), ft
iid∼ N(0, 1). Here, ft denotes the common factor and λ is a vector stacked

with the factor loading of each asset. In case of the heteroskedastic factor error, the

diagonal elements of the covariance matrix of et are drawn from an uniform distribution

with support from 0 to 15. In this simulation, we move αi from 0 to 0.25 in increments

of 0.05 and calculate the size and power of S-GRS. The number of simulations and

bootstraps is 1000 and 500, respectively. In the case of T < N , only S-GRS is calculated;

in the case of T > N , both the GRS and the S-GRS are calculated to allow us to compare

the results of the two tests. All the tests are conducted at the 5% significance level. We

employ two types of shrinkage targets: one is the identity matrix following Ledoit and

Wolf (2004b) and the other is the heteroskedastic matrix from Schäfer and Strimmer

(2005).

[Table 1 here]

Table 1 shows the empirical size and power of the S-GRS test as well as the standard

GRS test. In Panels A and B, both the GRS test and the S-GRS test can be calculated

as T > N . Note that the GRS test cannot be calculated in Panels C and D because of

the problem of the singular covariance matrix. For all the cases, the size of the S-GRS

test fits the 5% significance level.

In the case of the i.i.d. error with T > N , the power of the S-GRS test is higher than

that of the GRS test in Panel A because of the shrinkage effect of the covariance matrix,

which reduces the upward and downward bias of the largest and smallest eigenvalue

estimations of the covariance matrix, respectively, as shown in Figure 1. Figure 1

plots the eigenvalues of the true covariance matrix, sample covariance matrix, and

shrinkage covariance matrix with the identity target for the cases of T = 50, N = 20.
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The idiosyncratic error is i.i.d. Gaussian. The largest and smallest eigenvalues of the

sample covariance matrix have huge positive and negative deviations compared with the

true covariance matrix, respectively. On the contrary, the eigenvalues of the shrinkage

estimate have shrunk toward 1, which is the true eigenvalue.

[Figure 1 here]

The difference in the power between the two tests narrows as T rises as shown in Panel

B. This is because the sample covariance matrix approaches the true covariance matrix

and there is less gain from using the shrinkage estimation. No significant difference

between the shrinkage target is found in this case.

In case of the factor error with T > N , there is a little size distortion in the case

of the heteroskedastic target while the identity target works well. We also observe

higher power in the S-GRS with the identity target compared to the standard GRS

test. On the contrary, there exists a slight improvement in the heteroskedastic target

in comparison to the identity target in case of heteroskedastic factor error. This is

because the true covariance matrix is well captured with the heteroskedastic shrinkage

target. Note that the S-GRS test with the identity matrix and heteroskedastic matrix

can obtain higher power than the standard GRS test in this case as well. There exists

significant improvement in power compared to the standard GRS test when T is small,

which is in line with the case of the i.i.d. error.

In the case of T < N , the S-GRS test has a satisfying size and power. While the

power decreases in the case of the factor and heteroskedastic factor error compared with

the i.i.d. Gaussian error, this is observed in the case of T > N as well.

When the true covariance matrix is identity, the S-GRS test with the heteroskedastic

target has a size distortion and lower power while the identity target works better. This

is because the true covariance matrix is the identity, thus the identity matrix target
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is, fortunately, equivalent to the true covariance matrix in this case, which provides an

appropriate size and higher power. However, even though the true covariance matrix is

heteroskedastic, the S-GRS test with the identity target works better. Thus, we suggest

the identity shrinkage target should be used in empirical research.

This Monte-Carlo simulation shows that the S-GRS test statistics can work in the

case of T < N . In addition, they can improve the power in the case of T > N for

small samples. This result also suggests that researchers should use the identity target

except for the case when they believe that there exists large heteroskedasticity in the

covariance matrix of interest. This result leads this study to use the identity target in

the empirical analysis and employ the heteroskedastic target as a robustness check.

5 Empirical Illustration

In this section, we apply the S-GRS test for two linear asset pricing models in the

Japanese stock market. We first analyze the SL-CAPM in which the excess return of

a given asset is explained by its beta multiplied by the excess return of the market

portfolio as in equation (1). We also analyze the FF3 model, which includes two

additional factors to explain the variation in the excess return on assets. Fama and

French (1993) formulate their FF3 model as

ri,t − rf,t = αi + βi(rm,t − rf,t) + βSMB
i SMBt + βHML

i HMLt + εi,t (21)

where SMBt and HMLt are the size factor and value factor, respectively. The SMB

factor is calculated as the return of a portfolio consisting of small market capitalization

firms minus that of large market capitalization firms. The HML factor is calculated

as the return of a portfolio consisting of high book-to-market ratio firms minus that of

low book-to-market ratio firms. Note that those returns are all from zero-investment
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portfolios.

We use TOPIX, a representative index of the Japanese stock market, and TSE

Second Section Stock Price Index, which we call TOPIX2 in this study, when analyzing

TSE first section and second section, respectively. According to the Japan Exchange

Group website,8 “TOPIX is a free-float adjusted market capitalization-weighted index

that is calculated based on all the domestic common stocks listed on the TSE First

Section. This is a measure of the overall trend in the stock market, and is used as

a benchmark for investment in Japan stocks.” Thus, it is worth analyzing TOPIX

academically and practically for the following two main reasons. Firstly, as TOPIX is a

capitalization-weighted index, it can be used to check the theoretical conclusion of the

CAPM. Secondly, as it is widely used as a benchmark, analyzing efficiency can explain

whether active fund managers can create higher efficiency than the benchmark index

in Japan.

Our data set consists of monthly return data for all the individual securities on the

TSE first section and second section constructed by Financial Data Solutions, Inc. The

data range from November 1982 to September 2015 and from August 1993 to September

2015 for the TSE first section and second section, respectively. We use TOPIX and

TOPIX2 as a market return and the return of 10-year Japanese government bonds as

a risk-free rate.

We estimate the SL-CAPM and FF3 model by using 60-month subsamples with a

rolling window. Assuming that the parameters are stable for at least 60 months, we

can separately identify the inefficiency of TOPIX from the problem of time-invariant

coefficients in the estimation. We then iterate this procedure with all the data by

using a rolling window and observe a variation in the p-value of the S-GRS test. For

instance, the p-value we obtain in September 2000 is the p-value of the S-GRS test

8http://www.jpx.co.jp/english/markets/indices/topix/.
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from the sample between October 1995 and September 2000.

We apply two different procedures of the data construction of the individual securi-

ties: One is the method used in Pesaran and Yamagata (2012) and the other is used in

Gungor and Luger (2013) and Gungor and Luger (2016). In the former case, we exclude

securities that have at least one missing data point during the 60-month study period in

each estimation. In the latter case, we remove securities that have at least one missing

data point from the overall estimation. We call the data-set constructed following the

latter the complete data. The number of securities in our universe for the TSE first and

second sections in the complete data is now 1433 and 154, almost half of the maximum

number of the data following Pesaran and Yamagata (2012), respectively. In the latter

settings, one may intentionally drop securities that tend to move anomalously from the

sample because one excludes several securities whose returns are not observed during

the full sample (e.g., the company went bankrupt or was demoted from the TSE first

or second sections or IPOs). Thus, we expect that both the models are more likely to

be accepted in this settings.

The overall number of securities on the data-sets is 1812 and 1434 for TSE first

section and second section respectively. In case of the complete data, we have 615 and

131 securities respectively.

The results are similar in the cases of the identity and the heteroskedastic target.

Thus, we present the results with the identity target here and report the case of the

heteroskedastic target as a robustness check in the appendix. We report four main

findings from this empirical illustration. First, the CAPM and FF3 model are mostly

rejected in both sections, which means the market portfolio or market portfolio plus

factor portfolios are not mean-variance efficient. This may imply the possibility of

the active fund management. This result is in line with Grinold (1992) and Kubota

and Takehara (2017) while they conducted the GRS test with portfolios. Their result
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may suffer from larger type-1 error caused by the sorting problems as they use several

portfolios, not individual securities. This paper adds the evidence of the inefficiency of

the benchmark market portfolio from another point of view; the inefficiency compared

to the ex-post tangency portfolio constructed from individual securities. Second, while

CAPM and FF3 models are rejected in most periods, they tend to be accepted9 in

the TSE second section and marginally in the TSE first section during periods of huge

market shocks. This implies that positive or negative external large shocks affect all the

individual stocks in the market and the market return can well explain the movement of

individual stocks in Japan. Hamao et al. (2007) show that after the asset price bubble

in Japan, market volatility increases while idiosyncratic volatility decreases ,which is

opposite to the case in the U.S. This can be the logical explanation of the result in

this analysis while it requires further analysis. Third, we also observe some periods

when the CAPM has higher p-values than the FF3 model. This may sound counter-

intuitive, as the FF3 model nests CAPM. This seems to be, however, because the factor

structures captured by the FF3 models are not explicitly modeled in the CAPM, which

makes the CAPM underspecified. Thus, the error term of the CAPM incorporates

factor structures and the variance-covariance matrix becomes large, which leads to a

smaller test statistics. Finally but not less importantly, as expected, CAPM and FF3

models are more likely to be accepted in the case of ,probably due to the aforementioned

reasons.

[Figure 2 here]

We first analyze the efficiency of TOPIX compared with the TSE first section.

Figure 2 presents the p-value of the mean-variance efficiency tests of TOPIX with

9In comparison between the TSE first section and second section, both models are more likely to be
accepted in the latter. This should be interpreted with caution. The acceptance of the null hypothesis
does not guarantee that the null hypothesis is true and one should interpret it that there were no
sufficient evidence to reject it. In this setting, we have quite smaller number of securities for the TSE
second section. The acceptance of the model is more likely due to the lack of power of the test.
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the individual securities in the TSE first section by using the S-GRS test with the

identity target. The CAPM and FF3 model are rejected in all the periods, which is

in line with several previous research with a data on portfolios. Take Kubota and

Takehara (2017) for instance, who analyze the validity of multi-factor pricing models in

the Japanese stock market by using monthly data from 1978 to 2014 with 45 portfolios.

They conclude that all models are rejected by the GRS test, while the multi-factor

models have a higher p-value than the single factor model. Therefore, we confirm that

the multi-factor pricing model cannot fully explain the variation in the stock return

not only for the portfolios but also for the individual stocks. This also implies that the

TOPIX is not mean-variance efficient compared with the tangency portfolio consisting

all the individual securities on the TSE first section. This result, as well as Grinold

(1992), encourage active fund managers that they have a chance to achieve higher

efficiency than their benchmark.

[Figure 3 here]

Figure 3 presents the p-value of the mean-variance efficiency tests of TOPIX with

the complete data of the individual securities in the TSE first section by using the S-

GRS test with the identity target. The data structure follows Gungor and Luger (2013)

and Gungor and Luger (2016), thus securities that have at least one missing data point

during the full sample are excluded. The CAPM and FF3 model are rejected in most,

but not all, periods. In contrast to the result above, considering the 99% significance

level, either the CAPM or the FF3 model are not rejected around 1992, 1999, and

2008. We use “around” because we are estimating with a rolling window. Those

periods correspond to the financial shocks such as the crash after the Japanese asset

price bubble in 1991, Asia financial crisis, Russian financial crisis, and Dot-com bubble

from 1997 to 2000, and the global financial crisis in 2008.
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From those observations, we conclude that the CAPM and the FF3 models are

mostly rejected even though all the anomalistic stocks are excluded, but they are ac-

cepted during the periods of huge external shocks. This can also be interpreted as the

market portfolio is not always mean-variance efficient in the TSE first section, which

encourages the active portfolio management or smart-beta strategy.

[Figure 4 here]

We secondly analyze the efficiency of TOPIX2 compared with individual stocks in

the TSE second section. Figure 4 presents the p-value of the mean-variance efficiency

tests of TOPIX2 with the individual securities in the TSE second section by using

the S-GRS test with the identity target. In contrast to the TSE first section, the

CAPM and FF3 model are more frequently accepted while the acceptance periods are

basically same as the TSE first section with complete data. In addition, periods of

high p-value persists longer time compared to the results in the TSE first section. This

implies that the TSE second section is influenced by the external shocks more strongly

and persistently. Note that the FF3 factor model can capture the size-effect, which is

prevalent in the TSE second section. This also leads to the acceptance of the model as

well.

[Figure 5 here]

Figure 5 presents the p-value of the mean-variance efficiency tests of TOPIX2 with

the complete data of the individual securities in the TSE second section by using the S-

GRS test with the identity target. This result presents that neither the CAPM nor FF3

model are mostly rejected. In addition to this observation, the peaks of the p-values

correspond to the acceptance periods in Figure 4. This result provides the robustness

of our explanations: we cannot reject the efficiency of the market portfolio during the

periods of huge external shocks.
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6 Conclusion

In this study, we proposed a test of linear factor pricing models that is valid even in the

case of T < N where the standard GRS test cannot be calculated because of the problem

of a singular covariance matrix estimation. We employed the shrinkage estimator of the

covariance matrix to have a non-singular covariance matrix estimation and obtained

the sampling distribution of the S-GRS test statistics through the fixed-design wild

bootstrap. Thanks to this procedure, the S-GRS test is calculable even in T < N and

robust to non-normality and conditional heteroskedasticity in the idiosyncratic error.

The Monte-Carlo evidence showed that the S-GRS test has a satisfying power and size,

and may improve the power even when T > N because of the improvement in the

estimation of the covariance matrix. To our best knowledge, this study is the first to

analyze the efficiency of the Japanese stock market with individual securities. We found

strong evidence of the inefficiency of TOPIX compared with individual securities in the

TSE first section. On the contrary, we cannot reject the efficiency of the market portfolio

in the TSE second section during periods of huge financial shocks in the market such as

Asia financial crisis or the global financial crisis. This research suggests several future

research. First, by using the proposed test statistics, fund managers or index providers

can analyze if the benchmark portfolio or proposing index is mean-variance efficient in

a given investment universe beforehand. Second, the empirical illustration pointed out

that the pricing models cannot be rejected during the time of financial shocks. It is

worth analyzing this phenomenon more. For instance, it is worth analyzing if this is

truly due to the increased volatility of market index shown by Hamao et al. (2007) and

if this phenomenon can be observed in other financial markets. This result may reflect

some of the characteristics of the overall market10.

10This may be because, for instance, the probability of default is higher in TSE second section thatn
TSE first section. If this is true, one may make a subsample of the individual securities in the TSE
first section sorted by the leverage ratio and observe similar results for the high leverage ratio group.
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A Tests of Mean-variance Efficiency

In this section, we interpret the GRS test as a test of the mean-variance efficiency of the

portfolio on the right-hand side of the linear factor asset pricing models. For simplicity,

we only discuss the case of the single factor model; however, the same discussion can

be carried out for multi-factor pricing models. Suppose that our investment universe is

N assets and we have a risk-free asset whose return at time t is rf,t. The weight vector

of a given portfolio p is denoted as w, and µ is the expected return vector of N assets,

and Ω is the covariance matrix. The return and variance of a given portfolio can be

written as rp = w′µ and σ2
p = w′Ωw, respectively. A given portfolio is mean-variance

efficient provided the following holds:

E(r1)− rf
MRC1

=
E(r2)− rf
MRC2

= ... =
E(rn)− rf
MRCn

(22)

where MRCi = ∂σp
∂wi

, the marginal risk contribution of the individual asset i.

If there is an inequality in equation (22), it implies that the given portfolio can be

improved in the meaning of mean-variance efficiency by placing more weight on one

asset and decreasing the other until the inequality becomes an equality.

By stacking the marginal risk contribution of each asset into a vector, simple algebra

shows

MRC ≡ ∂σp
∂w

=
∂

∂w

√
w′Ωw =

Ωw√
w′Ωw

=



cov(r1,rp)

σp

cov(r2,rp)

σp

...

cov(rn,rp)

σp


= σp



β1

β2
...

βn


(23)
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where βi = Cov(ri,rp)

σ2
p

Thus, βi = 1
σp
MRCi holds.

From equation (22), a given portfolio p is mean-variance efficient

⇔ E(ri)− rf = MRCi × E(rp)−rf
σp

⇔ E(ri)− rf = βi(E(rp)− rf )

⇔ E(r̃i) = βi(E(r̃p))

Thus, the test of mean-variance efficiency is equivalent to the test of the CAPM:

H0 : αi = 0 ∀i = 1, ..., N

B Other Empirical Illustrations

In this section, we present the other result of the mean-variance tests of the market

portfolios. In particular, we present the case when the shrinkage target is the het-

eroskedastic matrix as a robustness check. The basic findings from the analysis in this

section support our results in Section 5. The CAPM and FF3 models are rejected

mostly while they tend to be accepted during the periods of huge external shocks. In

comparison between the TSE first section and second section, both the models are more

likely to be accepted in the TSE second section. The two additional factors in the FF3

model can explain the variation in the excess return of the individual assets better than

the CAPM.

[Figure 6 here]

Figure 6 presents the results of the mean-variance test of the TOPIX of the TSE

first section with the heteroskedastic shrinkage target. The data structure follows the

setting of Pesaran and Yamagata (2012). We exclude any security that has at least

one missing data point during the subsample in each rolling window estimation. The

33



shrinkage target is the heteroskedastic matrix. Neither the CAPM nor the FF3 model

are accepted for all the periods, which supports the results in Section 5.

[Figure 7 here]

Figure 7 presents the results of the mean-variance test of TOPIX with the complete

data set of the TSE first section and the heteroskedastic shrinkage target. The data

structure follows the setting of Gungor and Luger (2013) and Gungor and Luger (2016).

We exclude securities that have at least one missing data point during the full sample.

The CAPM is accepted after the crash of the bubble in 1991and during the global

financial crisis, in line with the results in Section 5.

[Figure 8 here]

Figure 8 presents the results of the mean-variance test of the TOPIX of the TSE

second section with the heteroskedastic shrinkage target. The data set follows the

setting of Pesaran and Yamagata (2012). As before, we exclude any security that has

at least one missing data point during the subsample in each rolling window estimation.

There are no outstanding differences from the case of the identity shrinkage target. The

only difference is that both the FF3 model and the CAPM are rejected for several years

after the global financial crisis, while they are still accepted after 2014 in the case of the

identity target. However, the acceptance of these two models are marginal, allowing us

to conclude that there is no huge difference between the choice of shrinkage target.

[Figure 9 here]

Figure 9 presents the results of the mean-variance test of TOPIX with the complete

data set of the TSE second section and the heteroskedastic shrinkage target. The data

structure follows the setting of Gungor and Luger (2013) and Gungor and Luger (2016).
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We exclude securities that have at least one missing data point during the full sample.

The FF3 model is accepted most of the time, while the CAPM is occasionally rejected

when the FF3 model is accepted. This finding implies that the two additional variables

in the FF3 model can explain the variation in the return of the TSE second section. In

addition, compared with Figure 8, the CAPM is accepted more often, which commonly

occurs when we exclude securities that have at least one missing data point in full

sample periods.
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C Tables

Panel A i.i.d Factor Heteroskedastic Factor

N20, T50 S-GRS (I) S-GRS (H) GRS S-GRS (I) S-GRS (H) GRS S-GRS (I) S-GRS (H) GRS
0 0.059 0.075 0.047 0.059 0.106 0.046 0.06 0.063 0.046

0.05 0.126 0.133 0.062 0.1 0.178 0.068 0.087 0.101 0.049
0.1 0.423 0.436 0.242 0.23 0.250 0.152 0.089 0.107 0.061
0.15 0.824 0.844 0.582 0.501 0.412 0.308 0.142 0.157 0.087
0.2 0.985 0.990 0.877 0.772 0.626 0.602 0.204 0.222 0.137
0.25 0.999 0.999 0.987 0.954 0.756 0.817 0.326 0.360 0.215

Panel B i.i.d Factor Heteroskedastic Factor

N20, T100 S-GRS (I) S-GRS (H) GRS S-GRS (I) S-GRS (H) GRS S-GRS (I) S-GRS (H) GRS
0 0.057 0.062 0.039 0.056 0.111 0.052 0.052 0.068 0.046

0.05 0.213 0.226 0.156 0.116 0.167 0.088 0.065 0.074 0.056
0.1 0.767 0.772 0.663 0.396 0.271 0.369 0.087 0.103 0.103
0.15 0.994 0.995 0.982 0.810 0.470 0.769 0.219 0.242 0.194
0.2 1.000 1.000 1.000 0.983 0.702 0.979 0.399 0.411 0.309
0.25 1.000 1.000 1.000 0.999 0.899 0.998 0.586 0.616 0.493

Panel C i.i.d Factor Heteroskedastic Factor

N120, T100 S-GRS (I) S-GRS (H) GRS S-GRS (I) S-GRS (H) GRS S-GRS (I) S-GRS (H) GRS
0 0.050 0.057 NA 0.023 0.126 NA 0.045 0.092 NA

0.05 0.573 0.213 NA 0.159 0.406 NA 0.099 0.158 NA
0.1 1.000 0.767 NA 0.918 0.973 NA 0.223 0.318 NA
0.15 1.000 0.994 NA 0.999 1.000 NA 0.601 0.703 NA
0.2 1.000 1.000 NA 1.000 1.000 NA 0.919 0.955 NA
0.25 1.000 1.000 NA 1.000 1.000 NA 0.996 0.999 NA

Panel D i.i.d Factor Heteroskedastic Factor

N150, T100 S-GRS (I) S-GRS (H) GRS S-GRS (I) S-GRS (H) GRS S-GRS (I) S-GRS (H) GRS
0 0.084 0.133 NA 0.098 0.168 NA 0.063 0.131 NA

0.05 0.655 0.793 NA 0.363 0.510 NA 0.094 0.178 NA
0.1 1.000 1.000 NA 0.970 0.995 NA 0.306 0.436 NA
0.15 1.000 1.000 NA 0.999 1.000 NA 0.684 0.801 NA
0.2 1.000 1.000 NA 1.000 1.000 NA 0.958 0.983 NA
0.25 1.000 1.000 NA 1.000 1.000 NA 1.000 1.000 NA

Note: This table reports the empirical size and power of the GRS and S-GRS tests in the case of the i.i.d. error, factor error,
and heteroskedastic factor error. In the case of i.i.d. error, the idiosyncratic error follows the i.i.d. standard normal distribution.
The factor error is the sum of one common factor and the i.i.d. Gaussian error. In case of the heteroskedastic factor error, the
diagonal elements of the covariance matrix of the idiosyncratic error are drawn from an uniform distribution with support from
0 to 15. The intercept αi moves from 0 (size) to 0.25 (power) in increments of 0.05. The S-GRS test is based on 500 bootstraps.
The parentheses next to S-GRS show the shrinkage target. (I) and (H) mean the identity target and heteroskedastic shrinkage
target, respectively. Panels A and B are for T > N and Panels C and D are for T < N . The results are based on 1000
replications. NA is used when a certain test is not computable.

Table 1: Empirical size and power of the GRS and S-GRS test
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Figure 1: Eigenvalues of the covariance matrix

Note: This figure shows the eigenvalues of the true covariance matrix, sample covariance matrix,
and shrinkage covariance matrix estimated from the residual of equation (3), the Sharpe–Lintner-type
CAPM, in the case of N = 20, T = 50 with the i.i.d. Gaussian error.
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Figure 2: Efficiency of TOPIX compared with the TSE first section individual securities
(identity target)

Note: This figure plots the time variations in the p-values for the S-GRS test estimated with a rolling
window using the 60-month data from November 1982 to September 2015 in the TSE first section.
The shrinkage target is the identity covariance matrix. The dashed line and solid line are the p-values
of the mean-variance efficiency tests of the CAPM and FF3 model, respectively. Securities that have
at least one missing data point during the 60-month window in each estimation are excluded.
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Figure 3: Efficiency of TOPIX compared with the TSE first section individual securities
with complete data (identity target)

Note: This figure plots the time variations in the p-values for the S-GRS test estimated with a rolling
window using the 60-month data from November 1982 to September 2015 in the TSE first section.
The shrinkage target is the identity covariance matrix. The dashed line and solid line are the p-values
of the mean-variance efficiency tests of the CAPM and FF3 model, respectively. Securities that have
at least one missing data point during the full sample are excluded.
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Figure 4: Efficiency of TOPIX2 compared with the TSE second section individual
securities (identity target)

Note: This figure plots the time variations in the p-values for the S-GRS test estimated with a rolling
window using the 60-month data from August 1993 to September 2015 in the TSE second section.
The shrinkage target is the identity covariance matrix. The dashed line and solid line are the p-values
of the mean-variance efficiency tests of the CAPM and FF3 model, respectively. Securities that have
at least one missing data point during the 60-month window in each estimation are excluded.
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Figure 5: Efficiency of TOPIX2 compared with the TSE second section individual
securities with complete data (identity target)

Note: This figure plots the time variations in the p-values for the S-GRS test estimated with a rolling
window using the 60-month data from August 1993 to September 2015 in the TSE second section.
The dashed line and solid line are the p-values of the mean-variance efficiency tests of the CAPM and
FF3 model, respectively. Securities that have at least one missing data point during the full sample
are excluded.
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Figure 6: Efficiency of TOPIX compared with the TSE first section individual securities
(heteroskedastic target)

Note: This figure plots the time variations in the p-values for the S-GRS test estimated with a rolling
window using the 60-month data from November 1982 to September 2015 in the TSE first section.
The shrinkage target is the heteroskedastic covariance matrix. The dashed line and solid line are the
p-values of the mean-variance efficiency tests of the CAPM and FF3 model, respectively. Securities
that have at least one missing data point during the 60-month window in each estimation are excluded.

42



Figure 7: Efficiency of TOPIX compared with the TSE first section individual securities
with complete data (heteroskedastic target)

Note: This figure plots the time variations in the p-values for the S-GRS test estimated with a rolling
window using the 60-month data from November 1982 to September 2015 in the TSE first section.
The shrinkage target is the heteroskedastic covariance matrix. The dashed line and solid line are the
p-values of the mean-variance efficiency tests of the CAPM and FF3 model, respectively. Securities
that have at least one missing data point during the full sample are excluded.
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Figure 8: Efficiency of TOPIX2 compared with the TSE second section individual
securities (heteroskedastic target)

Note: This figure plots the time variations in the p-values for the S-GRS test estimated with a rolling
window using the 60-month data from August 1993 to September 2015 in the TSE second section.
The shrinkage target is the heteroskedastic covariance matrix. The dashed line and solid line are the
p-values of the mean-variance efficiency tests of the CAPM and FF3 model, respectively. Securities
that have at least one missing data point during the 60-month window in each estimation are excluded.
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Figure 9: Efficiency of TOPIX2 compared with the TSE second section individual
securities with complete data (heteroskedastic target)

Note: This figure plots the time variations in the p-values for the S-GRS test estimated with a rolling
window using the 60-month data from August 1993 to September 2015 in the TSE second section.
The shrinkage target is the heteroskedastic covariance matrix. The dashed line and solid line are the
p-values of the mean-variance efficiency tests of the CAPM and FF3 model, respectively. Securities
that have at least one missing data point during the full sample are excluded.
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