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1 Introduction

How to conduct monetary policy in the face of uncertainty has always been
an interest to both practitioners and academic researchers. In the day-
to-day implementation of monetary policy, policymakers must realize that
every model are a simplification, necessarily incomplete, and stuck in the
world of uncertainty. In general, they have to set their instrument without
knowing the “true model” of underlying economy or how their policy will
work on the variables which they care about. This difficulty raises the ques-
tions about how best to achieve control over uncertainty and in particular,
what constitutes the “optimal” or “robust” monetary policy in the face of
uncertainty.

One of the seminal works in this area, Brainard (1967), proposed the
common intuition that uncertainty about the impact of monetary policy
should require a more cautious policy. His result suggests that it is often
optimal for policymakers to change their instrument by less than would be
optimal if all parameters were correctly known. This result has been called
the “Brainard conservatism principle” and found wide acceptance from both
theoretical and empirical points of view.1

Recently, however, there has been a growing body of literature challeng-
ing this principle. Using backward-looking model, Söderström (2002) argues
that uncertainty about inflation persistence leads the policymakers to pur-
sue more aggressive policy. Kimura and Kurozumi (2007) has considered
the same type of uncertainty with forward looking model and found that
robust policy calls for a stronger response of the interest rate against the
demand shock. Giannoni (2002) has introduced uncertainty for the several
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structural paramters of the forward-looking model, concluded that the ro-
bust rule for the model involves a stronger response of the interest rate,
again compared to the case in the absence of uncertainty.

While Brainard’s principle is often believed to be persuasive among prac-
titioners,2 these studies imply that the opposite can also be true in the
certain settings. As pointed out by Onatski and Williams (2003), the im-
plication of parameter uncertainty seems to be very sensitive to different
assumptions about the models and uncertainty attached within. So far,
there is no clear answer to whether robust policy rules in the presence of
uncertainty generally should be aggressive or cautious.

The aim of this paper, therefore, is to clarify the true factor which de-
termines the stance of robust monetary policy under parameter uncertainty.
In other words, we attempt to reveal in what situations Brainard’s lesson
is worth listening, and vice versa. To this end, we focus on the two as-
pects which may be crucially important for the condition of robust policy
being more or less aggressive. The first element we expect to affect the
stance of robust monetary policy is the attitude of the policymaker toward
uncertainty. Previous studies have suggested the two distinct approaches
to describe the policymaker’s action against uncertaitny: the Bayesian and
the minimax approaches. In the Bayesian approach, the policymaker is
assumed to have a belief about the true value of the uncertain parame-
ter in the form of a prior distribution. By minimizing the expected loss
based on this prior distribution, it tries to obtain the average result with
the all possible cases. In the previous studies, Brainard (1967), Söderström
(2002), and Kimura and Kurozumi (2007) have adopted the Bayesian ap-
proch. In contrast, the policymaker may want to prepare for “once in a
century” crisis, whose probability of happening is very low, but once it oc-
curs, brings serious damage to the economy. In this situation, the more
realistic action may be to give up considering all possbilities and conduct
the policy that works reasonably well only in the worst possible case. This
is called the minimax approach, which has been used in Giannoni (2002),
Giannoni (2007), Hansen and Sargent (2002), Hansen and Sargent (2012).
While which approach the real policymakers will find appealing depends on
their preferences, analyzing whether or not the difference between these two
approaches make their policy recommendations different is important.

As the second aspect, we focus on the role of the uncertain parameters in
the model. Which parameters are uncertain and in what route the parame-
ters contribute to the overall uncertainty in the model must mirror the part
of underlying economy which the policymaker concerns about. We divide

2For example, Alan Blinder has written that the Brainard result was “never far from
my mind when I occupied the Vice Chairman’s office at the Federal Reserve.” and “Still, I
find these new anti-Brainard results both puzzling and troubling. Though my confidence
in the conclusion has been shaken by recent research, my gut still tells me that Brainard
was right in practice.” See Blinder (1998) and Blinder (2000).
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the source of uncertainty in the reference model into the two categories: the
policy impact unvertainty and the dynamics uncertainty. The first category
is what Brainard (1967) originally considered, uncertainty about the degree
to which monetary policy instrument can stabilize the target variables. An-
other type of uncertainty, the dynamics uncertainty, is related to how long
the effect of demand or supply disturbances on the target variables survive.
By classifying uncertainty based on the role of parameters in this way, we
succeed to understand the essential reason why different papers make dif-
ferent conclusions about the property of robust policy against parameter
uncertainty.

To characterize how these two factors affect the stance of robust mone-
tary policy, this paper prepares three dynamic macroeconomic models. All
of which are appropriately designed to include either (or both) of the two cat-
egories of parameter uncertainty. The first model is a simple New Keynesian
model, which does not involve any intrinsic inertia of the target variables.
By introducing parameter uncertainty into this model, we can investigate
the effect of the policy impact uncertainty independently. The second model
is an ad-hoc hybrid New Keynesian model, which is constructed to include
the persistence of the key variables and to see the dynamics uncertainty
independently. Finally, for the third model, we turn to examine the micro-
founded hybrid New Keynesian model. Since structural parameters in this
model are tied to the move of a single deep parameter, uncertainty of one
deep parameter spreads to the several parameters simultaneously. This fea-
ture allows us to deal with a very rich structure of uncertainty, which affects
both the policy impact and the dynamics of target variables, even though
we focus on every single deep parameter separately. Compared to the sec-
ond ad-hoc model, the two categories of parameter uncertainty are mixed
in the “natural” way that can withstand the Lucas critique thanks to the
micro-foundations, so we can analyze which categories crucially determines
the stance of robust monetary policy when the policymaker faces the policy
impact and the dynamics uncertainty at the same time.

Our results are threefold. First, the property of robust monetary policy
critically depends on the role of uncertain parameters in the policymaker’s
model. In particular, when the uncertain parameter is related to the policy
impact, cautious policy should be conducted. In contrast, if it is related to
the inertia or dynamics of the key variables, then the policymaker will benefit
from aggressive policy. Second, the Bayesian and the minimax approaches
lead to quite similar policy recommendations with the same category of un-
certainty, even with the complex micro-founded model. Third, considering
the micro-foundation of parameter uncertainty is important. When we con-
sider the mixed effect of the policy impact and the dynamics uncertainty,
the relative importance between the two sources will be the key determinant
of the policy’s stance. In the micro-founded model, it is naturally controlled
by the relative influence of the uncertain deep parameter on each struc-
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tural parameter in the model. In somewhat surprisingly, the Bayesian and
the minimax policy show the similar performance with the micro-founded
mixed uncertainty, compared to the case with the single category of uncer-
tainty. The Bayesian policy works well even with the extreme value of the
uncertain parameter which is targeted by the minimax policymaker. The
minimax policy shows the average performance even when the target param-
eter value does not realize. While we tend to consider the policymaker can
deal with uncertainty from the single factor more easily rather than from
the complexly mixed factors, our simulation implies the opposite intuitons.
Against the mixed uncertainty based on the micro-foundations, policymak-
ers can conduct the policy which succeeds to generate the average result
with the broader range of the economy, with doing a certain level of damage
control.

The paper is broadly related to the literature which examines the prop-
erty of robust monetary policy under parameter uncertainty. In contrast to
the previous studies which limit their focus to the particular source of uncer-
tainty and the particular approach to derive the policy, our work successfully
integrate the various results of them to reveal why and how Brainard’s wis-
dom seems to decrease effectiveness and should be re-evaluated.

The rest of the paper is organized as follows. Section 2 reviews the two
approaches for finding robust policy and introduces the two categories of
parameter uncertainty. Section 3 conducts several numerical simulations
with the three dynamic models, to find the true factor which determines
the stance of robust monetary policy under parameter uncertainty. Finally,
Section 4 concludes.

2 Robust Policy for Parameter Uncertainty: Two
Approaches and Two Categories of Uncertainty

This section introduces the two factors that may affect a property of ro-
bust monetary policy for parameter uncertainty. First, we review two ap-
proaches for finding robust monetary policy: the Bayesian and the minimax
approaches. Then as the second factor, the possibility that the different
source of uncertainty may call for the different policy will be discussed.

2.1 Bayesian and Minimax Approaches

Recent studies have considered two approaches, the Bayesian and the min-
imax approaches, for modeling the polciymaker’s action to make its policy
be “robust” against parameter uncertainty. To illustrate how each approach
defines the “robustness” of monetary policy in an intuitive way, we consider
the problem of deriving the Bayesian and the minimax Taylor rule with a
standard New Keynesian model.

4



In what follows, we adopt the conventional notations: πt denotes inflation
rate at time t, xt denotes output at time t, it denotes the short term nominal
interest rate at time t, ε··· ,t denotes an error term where ‘···’ part is replaced
by “d” or “s” corresponding to the demand or supply shock, and Et[·] denotes
expectations conditional on the information set at time t. All variables with
lower case letters denote percent deviations from the zero-inflationary steady
state of the model.

The standard New Keynesian model is typically represented by three
equations: an IS curve, a Phillips curve and a monetary policy rule. The IS
equation, which relates spending decisions to the real interest rate, is given
by

xt = Etxt+1 − σ(it − Etπt+1 − rnt ), (2.1)

and the Phillips curve is given by

πt = κxt + βEtπt+1 + εs,t, (2.2)

where the natural rate of interest rnt represents the real interest rate that
equates output to its flexible price equilibrium level. To simplify the discus-
sion, here we consider the case where the natural rate is fixed at the steady
state level, so the policymaker needs to worry about only the supply distur-
bance, εs,t. For ease of exposition, we assume that this supply disturbance
is i.i.d. with its variance σ2s .

In the following analysis, we will generally focus on a simple Taylor-type
rule such as

it = ψππt + ψxxt, (2.3)

and consider the policymaker’s problem to determine the policy coefficients
ψπ and ψx with the loss function given by

L0 = E0

∞∑
t=0

βt[π2t + λxx
2
t + λii

2
t ], (2.4)

where λx and λi are positive weights on the output gap and interest rate
deviation, respectively. However, in this section, we follow Woodford (1999)
and Giannoni (2002) to directly derive the coefficient ϕ in the reduced-form
equation of the equilibrium interest rate, which can be expressed as

it = ϕεs,t. (2.5)

While we can determine the values of Taylor rule coefficents ψπ and ψx from
ϕ easily, the reduced form coefficient is informative enough to characterize
the difference between the Bayesian and the minimax approaches.

Given the absence of any intrinsic inertia in the model, the reduced-form
solution of the rational expectation equilibrium will only involve the current
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shock εs,t, which implies Etπt+1 = Etxt+1 = 0. Thus, the reduced form
solution can be expressed as

it = ϕεs,t, (2.6)

xt = −σϕεs,t, (2.7)

πt = (1− κσϕ)εs,t. (2.8)

When the all model parameters are known with certainty, the policymaker
directly minimize the reduced-form loss calculated as

E[π2t + λxx
2
t + λii

2
t ] = σ2s

[
1− 2κσϕ+

{
(κ2 + λx)σ

2 + λi
}
ϕ2

]
, (2.9)

and the optimal policy coefficient is derived as

ϕ∗ =
κσ

(κ2 + λx)σ2 + λi
. (2.10)

Next, we consider the case where the policymaker cannot observe the
true value of the parameter σ. In this situation, the policymaker will give
up finding the optimal policy for the model and instead, seek to the robust
monetary policy, i.e., the policy whose result is not much influenced by
parameter uncertainty. Although the robust monetary policy may not be
optimal for the true economy the policymaker lives in, it may avoid seriously
bad outcomes under any rational expectation equilibrium. In this sense, the
robust policy can be the second best choice for the policymaker who faces
such kind of parameter uncertainty. With the New Keynesian model above,
we now consider how the Bayesian and the minimax approaches deal with
σ’s uncertainty.

2.1.1 The Bayesian Approach

Under the Bayesian approach, the policymaker is assumed to have a prior
belief about the true value of uncertain parameter in the form of a distribu-
tion. Then the Bayesian policymaker determines its policy by minimizing
the average loss, whose weight is based on the prior distribution.

We assume here that the policymaker has the prior distribution of un-
known parameter σ in its mind, as its mean is E[σ] and its variance is
V [σ]. Then, under the Bayesian approach, the objective function of the
policymaker is given by

EB[L0] = EB

{
E0

∞∑
t=0

βt[π2t + λxx
2
t + λii

2
t ]

}
, (2.11)

where EB[·] denotes expectations based on the prior distribution of the
policymaker. The reduced-form loss (2.9) is repalced by

EB[π2t+λxx
2
t+λii

2
t ] = σ2s

[
1− 2κE[σ]ϕ+

{
(κ2 + λx)(E[σ]2 + V [σ]) + λi

}
ϕ2

]
,

(2.12)
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and the Bayesian policy coefficient ϕB can be expressed as

ϕB =
κE[σ]

(κ2 + λx)(E[σ]2 + V [σ]) + λi
. (2.13)

As it is clear from (2.13), the Bayesian policy is critically affected by the
prior distribution of the policymaker. As the degree of subjective uncertainty
about σ increases (i.e., V [σ] increases), ϕB will decrease, which implies the
policymaker will respond less aggressively to the supply shock.

The reason why the Bayesian approach recommends more cautious policy
for σ’s uncertainty becomes clear from the reduced form solutions (2.6) -
(2.8). The subjective expectations about squared deviation of each variable
is written as

EB[x2t ] = EB[σ2]ϕ2σ2s = (E[σ]2 + V [σ])ϕ2σ2s ,

EB[π2t ] = EB[(1− κσϕ)2]σ2s =
{
1− 2κE[σ]ϕ+ κ2(E[σ]2 + V [σ])ϕ2

}
σ2s .

The above equations imply that the uncertainty about σ, which is repre-
sented by V [σ], increases the subjective variances of output and inflation.
The more aggressive policy (i.e., the bigger ϕ) will amplify the uncertainty
effect which V [σ] has on the subjective variances. If there is no uncer-
tainty about σ, there is no gain for the policymaker from suppressing the
response of its policy to the disturbance. However, when the policymaker
faces substantial uncertainty about σ, the Bayesian policymaker will succeed
to dampen the uncertainty effect by conducting cautious policy compared
with the case of no parameter uncertainty.

The above example illustrates how the “robustness” of monetary policy is
defined under the Bayesian approach. For the Bayesian policy maker, robust
monetary policy is the policy which succeeds to reduce the uncertainty effect
arised from parameter uncertainty. When a response of interest rate to
exogenous shocks amplifies the uncertainty effect, more cautious policy will
be conducted and vice versa.

2.1.2 The Minimax Approach

Another approach is the minimax policy, which is based on the idea that the
objective of the policymaker under parameter uncertainty is to minimize the
maximum loss in its concern. When the policymaker adopts the minimax
approach, it needs not to have well-defined prior beliefs about the uncertain
parameter. Instead, the policymaker is supposed to have an assumption
about the conceivable range of the value which uncertain parameter can
take. About the uncertain parameter σ, we assume that the policymaker’s
concern can be represented as the range

σ ∈ [σ, σ̄]. (2.14)
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Given the specific policy coefficent, the policymaker can search the worst
case parameter, which will cause the maximum loss within the concerned
range. Then it selects the policy that will be optimal for the model with
this worst case parameter. With the New Keynesian model above, such
procedure can be expressed as the minimax problem like

min
ϕ

max
σ∈[σ,σ̄]

E

{
E0

∞∑
t=0

βt[π2t + λxx
2
t + λii

2
t ]

}
. (2.15)

First, we have to search the worst case parameter as a solution of the max-
imization problem given by

max
σ∈[σ,σ̄]

σ2s
[
1− 2κσϕ+

{
(κ2 + λx)σ

2 + λi
}
ϕ2

]
, (2.16)

where ϕ is fixed at the specific value. While there are two cases about the
solution of (2.16) since it is a quadratic function of σ, under the standard
calibration, the minimum σ in (2.16) causes the worst case for the policy-
maker.3 Then the minimax policy coefficient ϕM is calculated as

ϕM =
κσ

(κ2 + λx)(σ)2 + λi
. (2.17)

Whether (2.17) indicates more cautious or aggressive policy is rather com-
plex compared with the Bayesian case. In the later section, we confirm that
(2.17) becomes an increasing function of σ under the standard calibration,
so more cautious policy is generally selected.

For the minimax policymaker, dealing with the worst case is the most
important issue and any information about the likelihood of uncertain pa-
rameter values, whether or not it is subjective or objective, is not relevant
for determining its policy. Indeed, the above procedure and (2.17) imply
that only the worst case parameter is at the heart of the minimax approach.
A value of the worst case parameter depends on the functional form of loss
function about the uncertain parameter, or more fundamentally, the model
itself.

2.2 Policy Impact and Dynamics Uncertainty

In the preceding part, the difference between the two approaches to find
robust monetary policy are reviewed. We now turn our attention to the role
of uncertain parameter which it plays in the economic model. In particu-
lar, we categorize model parameters into the two types: the policy impact
parameter and the dynamics parameter. Even under the same approach, in-
troducing uncertainty into the different parameter may call for the different
policy.

3When σ < κ
(κ2+λx)ϕ

, σ will maximize (2.16).
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2.2.1 Policy Impact Uncertainty

In the previous part, we introduce the parameter σ’s uncertainty into the
New Keynesian model. While the parameter σ represents the intertem-
poral elasticity of substitution, from the policymaker’s perspective, it also
represents the slope of the IS curve, which critically affects the ability of
the policymaker’s instrument (i.e., the nominal interest rate) to control the
output gap. In the remainder of this paper, we call the parameters which de-
termine the effect of policy instrument on the target variables as the “policy
impact parameters”, and uncertainty about such parameters as the “policy
impact uncertainty”.

Under the Bayesian approach, the parameter σ’s uncertainty results in
the more cautious policy because it reduces the uncertainty effect arised from
the policy impact uncertainty. On the other hand, the minimax policymaker
generally concerns about the case where the policy impact is extremely weak.
Its concern affects trade-off facing the policymaker by increasing the weight
given to interest rate stabilization relative to inflation and output gap sta-
bilization, makes the policymaker conduct the more cautious policy.

In summary, while the reasons are different, the both approaches recom-
mend the policymaker to reduce a response of interest rate to the supply
shock under the simple New Keyenesian model. In the later section, we
verify that the result applies to more general cases.

2.2.2 Dynamics Uncertainty

To characterize the second category of parameter uncertainty, that is, the
“dynamics uncertainty”, we introduce the new model which can be consid-
ered as an alternative version of the New Keynesian model.

First, to simplify the discussion, we temporary apparts from the forward-
looking expectaions and transforms the Phillips curve (2.2) as

πt = κxt + γπt−1 + εs,t, (2.18)

where we change the notation of the coefficient on the expectation of inflation
rate to avoid confusion. Furthermore, we adopt the output gap xt as the
instrument variable. In other words, we assume that the policymaker can
completely control the output gap by moving interest rates. Then the policy
rule can be expressed as

xt = −ϕεs,t, (2.19)

and the policymaker’s loss function is reduced to

L0 = E0

∞∑
t=0

βt[π2t + λxx
2
t ]. (2.20)

Since the model involves intrinsic inertia of the inflation rate, the policy-
maker has to take into account how the past supply shocks until today affect
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inflation in the current period. By solving the model, the inflation rate πt is
represented as the moving average of the current and past exogenous shocks
as

πt = (1− κϕ)

∞∑
j=0

γjεs,t−j . (2.21)

We consider the case where the parameter γ is uncertain to examine how
the “dynamics uncertainty” affects the policy stance.

Under the Bayesian approach, the policymaker is assumed to have the
prior distribution about the value of γ and its target can be expressed as

EB[π2t ] ≃
(1− κϕ)2σ2s

1− (E[γ]2 + V [γ])
, (2.22)

where E[γ] and V [γ] are the mean and variance of the prior distribution,
respectively. When uncertainty about the persistence of the inflation rate
(i.e., V [γ]) increases, (2.22) indicates that conducting the more aggressive
policy is better for choking down the uncertainty effect.

On the other hand, the variance of inflation rate

E[π2t ] =
(1− κϕ)2σ2s

1− γ2
(2.23)

becomes the highest level when the value of γ is the highest, that is, in the
case with the highest inflation persistence. In other words, for the minimax
policymaker, the highest priority task is dealing with the case where the
inflationary or deflationary shocks survive long and control of inflation via
monetary policy becomes severely difficult. As is clear from (2.23), making
the interest rate respond stronger against the shock is the best way to do it.

In summary, against the dynamics uncertainty, the policymaker tends to
place more weight on the stabilization of the target variables and relatively
less weight on the stabilization of the instrument, then conduct more aggres-
sive policy. We confirm whether or not it can become the general statement
in the next section.

3 Numerical Simulations with Three Models

This section conducts several numerical simulations with the three models
we prepare below, to investigate the effects of the two approaces and the
two categories of parameter uncertainty on the stance of robust monetary
policy.

3.1 Common settings

Before presenting the details about our models, we outline here the settings
which are common between all simulations.
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As in many studies of monetary policy, we assume that the objective of
the policymaker is to minimize the mean-squared deviation of inflation and
the output gap from the targets. The loss function of the policymaker is
given as

E0

∞∑
t=0

βt[π2t + λxx
2
t + λii

2
t ], (3.24)

which is exactly the same as in Section 2. Note that this loss function
implicitly assumes that the target levels of three variables are the steady
steate values, 0.

When we consider that the policymaker’s fundamental objective is to
maximize households’ welfare, we should interpret such a loss function as
a second-order approximation to the expected utility of the representative
household as in Woodford (1999). In such a case, the weights λx and λi are
derived as the functions of deep parameters, and uncertain deep parameters
make the policymaker face uncertainty about the loss function’s weights as
well as about the structural parameters of the model. In the present paper,
however, we assume that the preference parameters of the policymaker are
kept fixed regardless of the values of deep parameters, and also correctly
known to the all agents in the model even if they face parameter uncertainty
on the structural equations. While the assumption here is put for simplicity,
it is still consistent with the situation in reality that policymakers like the
central bank have a policy target independent of the true social welfare.4

The policymaker controls a short term nominal interest rate as a policy
instrument. To make the analysis as simple as possible, we assume that the
policymaker credibly commits to the simple Taylor-type rule such as

it = ψππt + ψxxt. (3.25)

Therefore, if the values of all parameters in the model are publicly known,
the policymaker’s problem is to determine the coefficients ψπ and ψx to
minimize the unconditional expectation of the loss (3.24) subject to the
structural equations. When the policymaker has ambiguity about the true
values of parameters in the model, it gives up conducting the optimal policy
in the usual manner, and instead conducts the Bayesian or minimax policy
introduced in the previous section.

The main objective of our simulations is to analyze how the two ap-
proaches and the two categories of parameter uncertainty affect the stance
of robust monetary policy. To examine this, we want to see the changes of
the policies which are derived by the two approaches as uncertainty about

4In contrast, Kimura and Kurozumi (2007) explicitly consider the effect of deep pa-
rameter uncertainty on the loss functional weights and show that the effect makes the
Bayesain robust policy more responsive to the exogenous shock. However, their result
also implies that even without this effect, the Bayesian policy requires aggressive response
to the deep parameter uncertainty.
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unknown parameter increases. The simple method is to assume the poli-
cymaker’s prior distribution in some form, increase the variance of the dis-
tribution, and check the shifts of Taylor rule coefficients of each policy.
However, as pointed out in Section 2, the minimax method does not reflect
such changes of the distribution since the minimax policymaker concerns
about only the worst case and does not care the likelihood of the value of
the uncertain parameter.

To see the changes of both the Bayesian and the minimax policy un-
der the same condition, we try to replicate the increase of uncertainty by
spreading the support of the subjective distribution. In particular, in our
simulations, the policymaker is assumed to have a uniform distributed prior
belief about the uncertain parameter which can be expressed as

θ ∼ U(E[θ]−∆, E[θ] + ∆), (3.26)

where θ denotes the uncertain parameter and E[θ] is the mean of distri-
bution. When the policymaker’s belief is based on the above uniform dis-
tribution, expanding the interval ∆ has the same meaning as the variance
of the prior distribution increases. By considering symmetric expansion of
the support with fixing the middle value of the interval, we can successfully
analyze the effect of the mean preserving spread of the distribution on the
robust optimal policies under the two approaches.

For the Bayesian policymaker, the widen canditate interval indicates that
ambiguity about the exact parameter value increases. On the other hand,
the minimax policymaker will worry about the risk that the damege from
the mistaken policy becomes more critical. Such difference in a view about
increasing uncertainty may or may not generate interesting divergence of the
policy’s response against the mean preserving spread exercise. Each robust
policy is compared to the optimal policy when there is no uncertainty and
the value of uncertain parameter is fixed to be the mean of the subjective
distribution. All comparisons between the policies are conducted in the
Taylor coefficients of each policy.

In our simulations, we prepare the three alternatives of New Keynesian
model: a simple, an ad-hoc hybrid, and a micro-founded hybrid New Keyne-
sian model. All of the three models are designed to include either (or both)
of the two categories of parameter uncertainty introduced in Section 2.

The first model is a simple New Keynesian model, which does not in-
volve any intrinsic inertia of the target variables. By introducing parameter
uncertainty into this model, we can investigate the effect of the policy im-
pact uncertainty independently. The second model is an ad-hoc hybrid New
Keynesian model, which is constructed to include the persistence of the key
variables and to see the dynamics uncertainty independently. Finally, for
the third model, we turn to examine the micro-founded hybrid New Keyne-
sian model. Since structural parameters in this model are tied to the move
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of a single deep parameter, uncertainty of one deep parameter spreads to
the several parameters simultaneously. This feature allows us to deal with
a very rich structure of uncertainty, which affects both the policy impact
and the dynamics of target variables, even though we focus on every single
deep parameter separately. Compared to the second ad-hoc model, the two
categories of parameter uncertainty are mixed in the “natural” way that
can withstand the Lucas critique thanks to the micro-foundations, so we
can analyze which categories crucially determines the stance of robust mon-
etary policy when the policymaker faces the policy impact and the dynamics
uncertainty at the same time.

3.2 Simple New Keynesian Model

For the first simulation, we consider a simple New Keynesian model with
the white noise shocks as

xt = Etxt+1 − σ(it − Etπt+1) + εd,t,

πt = κxt + βEtπt+1 + εs,t,

where the shocks εd,t and εs,t are i.i.d. processes with thier variance σ2d and
σ2s . In these equations, σ denotes the elasticity of substitution, β denotes
the discount factor, and κ denotes the slope of the Phillips curve.

We introduce uncertainty into the parameter σ as the exercise in Sec-
tion 2. The parameter σ affects the ability of the nominal interest rate to
control the target variables. A smaller value of σ weakens the direct impact
of the interest rate to the output gap. Since the model does not involve any
inertial dyanamics of inflation and the output gap, we can see the effect of
the policy impact uncertainty independently. If we consider explicit micro-
foundations of the model, the uncertain σ also makes the parameter κ un-
certain since κ is the decreasing function of σ. For ease of exposition, we
postpone the discussion of such micro-founded uncertainty until the third
model and consider the independent uncertainty on the paramter σ.

About the baseline parameters, we calibrate the model using the pa-
rameter values estimated by Levin et al. (2005). The calibration result is
reported in Table 1. About the weight on the output gap and the inter-
est rate deviations in the policymaker’s loss function, we follow Rudebusch
(2001) and Williams (2006) to set the λx = 1 and λi = 0.1.
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Parameter Description Value

Structural

β discount factor 0.99

κ slope of NKPC 0.13

Shock process

σ2d variance of demand shock 1.0

σ2s variance of supply shock 1.0

Loss function

λx weight on output gap 1.0

λi weight on nominal interest rate 0.1

Table 1: Calibrated parameter values

In the numerical example considered here, the policymaker is assumed to
have the prior distribution over the interval [1.0−∆, 1.0+∆], which implies
the mean of the prior distribution is set to 0.1. Figure 1 shows the Taylor
rule coefficients of the robust monetary policies under the two approaches as
a function of uncertainty, ∆. The candidate interval of σ is spreading from
[1.0, 1.0] to [0.8, 1.2]. In the Figure 1, the left-hand graph depicts the Taylor
coefficient on the inflation rate, and the right-hand graph draws it on the
output gap. The dotted lines represent the optimal policy coefficient when
σ is fixed at 1.0, while the solid and chain lines correspond to the Bayesian
and the minimax policy, respectively. On the other hand, Figures 2 shows
the relative losses with the two robust policies when uncertainty about σ is
maximam (i.e., ∆ = 0.2), to the optimal policy for the model with σ = 1.0.

As is clear from Figure 1, when uncertainty of σ increases, both the
Bayesian and the minimax policy become less and less aggressive. This figure
is consistent with the “Brainard uncertainty principle”, that is, the effect of
monetary policy is uncertain, it is optimal for policymakers to change their
instrument by less than would be optimal if all parameters were correctly
known.
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Figure 1: Robust policy rules as the fuction of uncertainty, ∆
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Figure 2: Relative (percentage) loss with robust policy rules

The intuition for the result is rather simple. As pointed out in Section
2, for the Bayesian policymaker, the more cautious policy is better for re-
ducing the uncertainty effect, that is, the policy impact uncertainty makes
the policymaker’s subjective uncertainty about inflation and the output gap
larger. As Figure 2 shows, the Bayesian policymaker can obtain the aver-
age result with any realizations of the paramter σ by conducting moderate
policy. On the other hand, the target for the minimax policymaker is the
case where the policy impact is extremely weak, i.e, the parameter σ takes
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0.8. Figure 2 shows that the minimax policy gives the best performance in
such situations at the risk of relatively large loss when σ takes larger values
than 0.9.

3.3 Ad-hoc Hybrid New Keynesian Model

For the next simulation, we consider an ad-hoc hybrid New Keynesian model
as

xt = ϕxt−1 + (1− ϕ)Etxt+1 − σ(it − Etπt+1) + εd,t,

πt = θπt−1 + (1− θ)Etπt+1 + κxt + εs,t,

where the setting about the shocks is the same as in the previous model.
In this model, the parameters ϕ and θ determine the degree of the tar-
get variables depending on their own past values. Since the model has no
micro-foundations and there are no correlations between the structural pa-
rameters, uncertainty can be introduced separately. To see the effect of
uncertainty about the dynamics of the target variables independently, we
consider uncertainty only about the two parameters.

The parameter setting is almost the same as in the previous model.
The baseline calibration is summrized in Table 1. About the uncertain
paramters ϕ and θ, we assume that the mean of the prior distribution for
each parameter is 0.5, and the maximal ∆ is 0.2.

Figure 3 shows the changes of the Bayesian and the minimax policy
while the candidate intervals of ϕ are spreading from [0.5, 0.5] to [0.3, 0.7].
In contrast to the case where the policy impact parameter is uncertain,
increasing uncertainty about the dynamics of the output gap makes both
of the robust policies be more and more aggressive. By taking relatively
aggressive policy, the Bayesian policymaker tries to dampen the current
fluctuations of the output gap and inflation rate to decrease uncertainty in
the future. On the other hand, as Figure 4 shows, the minimax policymaker
always prepares for the non-inertial economy (i.e., the lower bound of ϕ).
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Figure 3: Robust policy rules as the fuction of uncertainty, ∆
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Figure 4: Relative (percentage) loss with robust policy rules

Figure 5 shows both of the robust policy rules while the candidate in-
tervals of θ are spreading from [0.5, 0.5] to [0.3, 0.7]. As the case where ϕ is
uncertain, increasing uncertainty about the dynamics of inflation calls for
more and more aggressive policy. However, the intuition for the result is
entirely different, especially about the minimax policy. Figure 6 shows that
the minimax policymaker’s target is the maximum θ, which represents the
economy with extremely inertial inflation. The strategy of the Bayesian and
the minimax policymaker is to take aggressive policy and dampen the fluc-
tuation as soon as possible to avoid the damage from the prolonged effect
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of the demand and supply disturbances.
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Figure 5: Robust policy rules as the fuction of uncertainty, ∆

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
θ

-6

-4

-2

0

2

4

6

8

10

12

R
el

at
iv

e 
Lo

ss

Certainty
Bayesian
Minimax

Figure 6: Relative (percentage) loss with robust policy rules
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3.4 Micro-founded Hybrid New Keynesian Model

As the final simulation, we consider uncertainty about a deep parameter
of the micro-founded hybrid New Keynesian model. The model is a sim-
plified version of Smets and Wouters (2003), Smets and Wouters (2007) or
Christiano et al. (2005), which involves the household’s habit formation and
firm’s rule of thumb pricing. The structural equations of the model are given
as

xt =
h

1 + h
xt−1 +

1

1 + h
Etxt+1 −

1− h

(1 + h)σc
(it − Etπt+1) + εd,t, (3.27)

πt =
ω

ϕ+ ω[1− ϕ(1− β)]
πt−1 +

βϕ

ϕ+ ω[1− ϕ(1− β)]
Etπt+1

+
(1− ω)(1− βϕ)(1− ϕ)

ϕ+ ω[1− ϕ(1− β)]

(
σl +

σc
1− h

)
xt

− (1− ω)(1− βϕ)(1− ϕ)

ϕ+ ω[1− ϕ(1− β)]

σch

1− h
xt−1 + εs,t, (3.28)

where h denotes the degree of the representative household’s habit persis-
tence, ω dentoes the ratio of backward looking firms, and σc is the intertem-
poral elasticity of substitution.5

We introduce uncertainty into these three deep parameters, h, ω and σc.
About the policy impact, the larger values of the deep parameters h and σc
make the IS curve be flatter, i.e., weaken the effect of the nominal interest on
the output gap. In addition, the slope of the Phillips curve, which is related
to the trade-off between inflation and the output gap, is affected by ω. On
the other hand, the dynamics of the ouput gap and the inflation rate are
affected by h and ω, respectively. As the deep parameters act on the several
structural parameters complexly, we can not clearly distinguish the role of
the parameters into the two categories as with the first and second model.
All results in the simulation with this micro- founded model are the products
of the mixed effect of uncertainty about the policy impact and the dynamics
of the target variables. This feature allows us to analyze which categories
can be the crucial factor to determine the stance of robust monetary policy
when the policymaker faces the two types of uncertainty at the same time.

Table 2 summerizes the calibrated parameter settings which is fixed and
known to both the policymaker and the private agents. Table 3 shows the
setup about the uncertain deep parameters h, ω, and σ.

5The derivations of the all structural equations of the model are summerized in the
Appendix A.
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Parameter Description Value

Deep parameter

β discount factor 0.99

σl inverse of elasticity of labor supply 1.5

ϕ probability of no price revision 0.8

Shock process

σ2d variance of demand shock 1

σ2s variance of supply shock 1

Loss function

λx weight on output gap 1

λi weight on nominal interest rate 0.1

Table 2: Calibrated parameter values

Parameter Description Mean and ∆

h degree of habit persistence E[h] = 0.5,∆ = 0.3

ω ratio of backward looking firms E[ω] = 0.5,∆ = 0.3

σ inverse of elasticity of substitution E[σ] = 1.0,∆ = 0.3

Table 3: Uncertain deep parameters
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Figures below report the change of robust optimal policies while the
candidate interval of each unknown parameter are expanding, i.e., the vari-
ance of each parameter are increasing. As the previous part, the horizontal
dotted lines denote the optimal Taylor rule’s coefficient for the model when
the values of the uncertain parameter is equal to the mean of the prior dis-
tributuion. The solid and chain lines correspond to the Bayesian and the
minimax policy coefficients, respectively.

Figure 7 indicates that both of the robust policy rules become less and
less aggressive when uncertainty of h increases. In the micro-founded model,
the deep parameter h affects the policy effectiveness by moving the slope of
IS curve and the Phillips curve. At the same time, it affects the dynamics
of the output gap by changing the coefficient on the past and future output
gaps. The results so far imply that for the Bayeisan and minimax poli-
cymakers, it is better to select moderate policy when the policy impact is
uncertain, and aggressive policy when the dynamics of the key variables is
uncertain. Then the result in Figure 7 implies that at least for h, the effect
of policy impact uncertainty dominates that of the uncertainty about the
dynamics of the output gap.
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Figure 7: Robust policy rules as the fuction of uncertainty, ∆

About the minimax policymaker’s target, Figure 8 shows the interesting
result. When we consider the ad-hoc hybrid model, the policymaker’s con-
cern is the possibility of non-inertial, i.e., highly forward-looling, IS curve.
In contrast, the minimax policy here shows the best performance for the
upper bound of h, which implies the policymaker’s target is opposed to the
case with the ad-hoc model. The point is that under the micro-founded
model, the higher h also implies the flatter IS curve, which indicates the
weaker impact of monetary policy. The minimax policymaker here places
emphasis on coping with the environment where the power of monetary pol-
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icy is weak, at the risk of being hurt by the realization of non-inertial IS
curve.
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Figure 8: Relative (percentage) loss with robust policy rules

In Figure 9, as ω’s uncertainty increases, both of the robust policy rules
initially show stronger and stronger reponse against the inflation rate. How-
ever, when the uncertainty of ω becomes significantly large, the minimax
policy changes its direction to make the response weaker. On the other
hand, the Taylor coefficient on the output gap becomes smaller and smaller
under the same condition.

When ω becomes uncertain, the dynamics of inflation and the trade
off between inflation and the output gap become uncertain at the same
time. Against the demand or supply disturbance, the policymaker tries to
indirectly control the output gap to influence the inflation rate. In the New
Keynesian model, the impact of this output control is represented by the
slope of the Phillips curve. In this sense, the slope of the Phillips curve can
be viewed as the policy impact parameter and the parameter ω’s uncertainty
can make the policy impact uncertain.

As pointed above, the reponses of the robust policies vary with the key
variables, so we have to devide the discussion by the type of the shock. If the
policymaker wants to put down the demand shock, the effect of uncertain
slope of the Phillips curve is more important than that of the inflation
dynamics. It is the reason why the Bayesian and minimax policy show the
weaker response against the move of the output gap. In contrast, to control
the damage of the supply shock, the policymaker has to concern about the
dynamics of inflation rate because it directly reflects the behavior of the
disturbance. Then it is natural for the Bayesian policymaker to select the
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aggressive policy and try to kill the uncertain effect on the inflation dynamics
quickly. In contrast, when the possibility of the parameter ω’s realization
becomes significantly broad, the minimax policymaker starts to consider
the possibility of the extremely flattening Phillips curve, which implies that
monetary policy through the control of the output gap has totally no power.
Then it partially gives up dealing with the supply disturbance, makes the
policy reponse a bit weaker.
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Figure 9: Robust policy rules as the fuction of uncertainty, ∆
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Figure 10: Relative (percentage) loss with robust policy rules

The result of the parameter σc’s uncertainty supports the intuition which
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we have accumulated so far. With our model, the uncertainty of σc is related
to only the policy impact, so both the Bayesian and minimax policymaker
choose the more cautious policy in Figure 11. As we check with the first
model, the minimax policy’s target is the highest realized value of σc, which
represents the weakest policy impact situation.
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Figure 11: Robust policy rules as the fuction of uncertainty, ∆
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Figure 12: Relative (percentage) loss with robust policy rules
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3.5 Discussions

Our simulations with the three New Keynesian model shows the interesting
implications about the factor of determining the stance of robust monetary
policy. When we examine the Bayesian and the minimax policy with the
same category of parameter uncertainty, their responses always coincide,
even under the complex micro-founded model. It implies that the policy
stance is generally determined by the point about which the policymaker
faces uncertainty in the economy, and irrelevant to whether its object is
to obtain the average result or to prepare the disastrous case. When pol-
icymakers faces uncertainty about the effect of monetary policy, the more
cautious policy should be conducted, as the “Brainard uncertainty princi-
ple” said. On the other hand, when the dynamics of the key variables such
as the inflation rate or the output gap is uncertain, policymakers should
select the more aggressive policy compared to the case without uncertainty.

How about the situation where the two categories of uncertainty are
concerned at the same time? With the simulation about uncertainty of the
deep paramters h and ω under the micro-founded model, we can see the
naturally mixed effect of the policy impact and the dynamics uncertainty.
Compared to the results with the single uncertainty which are depicted
by Figure 2, 4, 6, and 12, we notice that the Bayesian and the minimax
policy show the similar performance with this mixed uncertainty, see Figure
8 and 10. The Bayesian policy works well even with the extreme value
of the uncertain parameter which is targeted by the minimax policymaker.
The minimax policy shows the average performance even when the target
parameter value does not realize. It is somewhat surprising result, because
we tend to consider the policymaker can deal with uncertainty from the
single factor more easily rather than from the complexly mixed factors. Our
simulation with the third model implies that when the several factors of
uncertainty is mixed in the micro-founded fashion, policymakers can conduct
the policy which succeeds to generate the average result with the broader
range of the economy, with doing a certain level of damage control.
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4 Concluding Remarks

To find the true factor which determines the stance of robust monetary
policy under parameter uncertainty, this paper has focused on the two as-
pects, the two approaches for finding robsut policy and the two categories of
paramter uncertainty. We have conducted the numerical simulations with
the three types of New Keynesian models, which are designed to include
the policy impact and the dynamics uncertainty. When there is only the
former type of uncertainty, both the Bayesian and the minimax policy show
less aggressive responce, consistent with “Brainard uncertainty principle”.
In contrast, against the latter type of uncertainty, the robust policymakers
persue more aggressive policy. The result implies that the policy stance is
generally determined by the point about which the policymaker faces un-
certainty in the economy, and irrelevant to whether the policymaker takes
the Bayesian or the minimax approach.

When the two categories of uncertainty are mixed, the relative impor-
tance between the two sources will be the key determinant of the policy’s
stance. In the micro-founded model, it is naturally controlled by the relative
influence of the uncertain deep parameter on each structural parameter in
the model. In somewhat surprisingly, the Bayesian and the minimax policy
show the similar performance with the micro-founded mixed uncertainty,
compared to the case with the single category of uncertainty. The Bayesian
policy works well even with the extreme value of the uncertain parameter
which is targeted by the minimax policymaker. The minimax policy shows
the average performance even when the target parameter value does not re-
alize. The result brings a good news for the real policymakers that concern
about the complexly mixtured uncertainty, because it implies that if the
mixed uncertainty is based on the micro-foundations, they can conduct the
policy which succeeds to generate the average result with the broader range
of the economy, with doing a certain level of damage control.
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Appendix

A Micro-founded Hybrid New Keynesian Model

About this section, we mainly refer to Gaĺı and Gertler (1999), Amato and Laubach
(2003) and Smets and Wouters (2007).

A.1 Households

The representative household derives utility from consumption Ct and disu-
tility from hours worked Nt. In particular, the household seeks to maximize
the following utility function;

max
Ct,Nt,Bt+1,Mt

E0

∞∑
t=0

βt

{
(Ct −Ht)

1−σc

1− σc
− N1+σl

t

1 + σl

}
,

where β is the discount factor, σc is the inverse of the intertemporal elsticity
of substitution, and σl is the inverse of Frish elasticity.

The only thing we depart from the standard purely forward looking
problem is inclusion of habit formation setting. In this utility function, Ht

denotes a external habit stock, which is exogenously given to the household.
We additionally asuume that this external habit stock is propotonal to the
aggregate past consumption as Ht = hCt−1. When the habit persistence
parameter h is high, the household gives much weight to smoothing between
current and past consumption.

The household has access to a domestic bond market where nominal
government bonds Bt are traded that pay (net) interest it. Furthermore, it
receives nominal wage Wt and aggregate residual nominal profits Πt from
the firms. Thus, the household’s budget constraint is of the form

PtCt +Bt ≤WtNt +Πt + (1 + it−1)Bt−1. (A-29)

Given the budget constraint (A-29), a lagrangian function associated
with the dynamic optimization problem for the representative household
can be formulated as follows.

L = E0

∞∑
t=0

βt
[(Ct −Ht)

1−σc

1− σc
− N1+σl

t

1 + σl

+ λt{WtNt +Πt + (1 + it−1)Bt−1 − PtCt −Bt}
]
.
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where λ is a Lagrange multiplier. The first order necessary conditions are
given by

λt = (Ct −Ht)
−σc , (A-30)

λt = βEt

[
(1 + it)

Pt

Pt+1
λt+1

]
, (A-31)

Nσl
t = λt

Wt

Pt
, (A-32)

The household’s behavior is restricted by these conditions and budget con-
straint (A-29) in each period t.

A.2 Firms

Final Good Producer

A representative firm aggregates intermediate goods Yt(j) and produce final
goods Yt according to the production function

Yt =

(∫ 1

0
Yt(j)

ϵ−1
ϵ dj

) ϵ
ϵ−1

, (A-33)

where ϵ is the elasticity of substitution between intermediate goods.
Final good firm solves profit maximization problem to choose a combi-

nation of intermediate goods as

max
Yt(j)

Pt

(∫ 1

0
Yt(j)

ϵ−1
ϵ dj

) ϵ
ϵ−1

−
∫ 1

0
Pt(j)Yt(j)dj.

Under this profit maximizing problem, the relative demand function for each
intermediate good is given by

Yt(j) =

(
Pt(j)

Pt

)−ϵ

Yt. (A-34)

With the production function (A-33) and the demand function (A-34), the
aggregate price index can be represented as

Pt =

(∫ 1

0
Pt(j)

1−ϵdj

) 1
1−ϵ

. (A-35)

Intermediate Good Producers

There exists a continuum of intermediate firms indexed by j ∈ [0, 1]. Each
intermediate firm hires labor from the household and produces the interme-
diate good according to a constant returns to scale production as

Yt(j) = AtNt(j),
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where At is a productivity factor which is common between all intermediate
firms.

Whether firms can adjust their prices freely or not, once the price is
given, they solve the cost minimization problem subject to the demand
function (A-34). Then their cost minimization problem can be written as

min
Nt(j)

WtNt(j) s.t. AtNt(j) ≥
(
Pt(j)

Pt

)−ϵ

Yt.

Under these settings, the real marginal cost of the intermediate firms is

mct =
Wt

Pt

1

At
, (A-36)

and the real profit for the firm j is given by

Πt(j)

Pt
=
Pt(j)

Pt

(
Pt(j)

Pt

)−ϵ

Yt −mct

(
Pt(j)

Pt

)−ϵ

Yt.

If the firms can adjust their price flexibly, all firms set the price as a constant
markup over current marginal cost as

Pt(j)

Pt
=

ϵ

ϵ− 1
mct.

About the price setting of the intermediate firms, we follow Amato and Laubach
(2003) and Gaĺı and Gertler (1999) in adapting modified Calvo price setting.
In each period, only a fixed fraction 1− ϕ of the intermediate firms can re-
optimize their prices, while remaining ϕ must keep them. The firms who
are offered the price changing opportunity are drawn independent of the
time and their pricing history. Of these firms, a share (1− ω) is a ’forward
looking’ type, who sets prices optimally in standard Calvo fashion. The
remaining ’backward looking’ type, of measure ω, follows a rule-of-thumb
which is based on the aggregate price index in previous period.

The firms who get the chance to update and actually update their prices
try to maximize expected future profit as

max
Pt(j)

Et

∞∑
s=0

(βϕ)s
λt+s

λt

[
Pt(j)

Pt+s

(
Pt(j)

Pt+s

)−ϵ

Yt −mct

(
Pt(j)

Pt+s

)−ϵ

Yt

]
.

The solution to this maximization problem is given by

P f
t =

ϵ

ϵ− 1

Et

∞∑
s=0

(βϕ)sλt+smct+sP
ϵ
t+sYt+s

Et

∞∑
s=0

(βϕ)sλt+smct+sP
ϵ−1
t+s Yt+s

. (A-37)
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On the other hand, rule-of-thumb price setters adjust their prices to

P b
t = P ∗

t−1

Pt−1

Pt−2
, (A-38)

where P ∗
t−1 is the aggregate index of the price chosen by fraction ϕ of firms,

who receives price-change signal in period t − 1. This newly chosen price
index is expressed as

P ∗
t = (1− ω)P f

t + ωP b
t . (A-39)

Finally, under the index equation (A-35), aggregate price dynamics evolves
as

Pt =
{
(1− ϕ)(P ∗

t )
1−ϵ + ϕP 1−ϵ

t−1

} 1
1−ϵ . (A-40)

A.3 Market Clearing Condition

We impose the market clearing condition for the final good market. It
requires the supply of final goods to be equal to the demand of it, which
in this simple model, is only for the household’s consumption. Thus, the
market clearing condition can be written as follows.

Yt = Ct. (A-41)

A.4 Log-linearization

Marginal utility of consumption

λt = (Ct − hCt−1)
−σc

log linearization:

λ̃t = −σc
(

1

1− h
c̃t −

h

1− h
c̃t−1

)
(A-1)

Bond demand

λt = βEt(1 + it)
Pt

Pt+1
λt+1

log linearization:
λ̃t = ĩt + Et(λ̃t+1 − π̃t+1) (A-2)

Labor supply

Nσl
t = λt

Wt

Pt

log linearization:
σlÑt = λ̃t + w̃t (A-3)
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A.5 Firms

Final good production

Yt =

(∫ 1

0
Yt(j)

ϵ−1
ϵ dj

) ϵ
ϵ−1

log linearization:

ỹt =

∫ 1

0
ỹt(j)dj (A-4)

Intermediate good production

Yt(j) = AtNt(j),

log linearization:
ỹt(j) = Ãt + Ñt(j) (A-5)

Marginal cost of intermediate production

mct =
Wt

Pt

1

At

log linearization:
m̃ct = w̃t − Ãt (A-6)

Forward-looking firm’s price setting

P f
t =

ϵ

ϵ− 1

Et

∞∑
s=0

(βϕ)sλt+smct+sP
ϵ
t+sYt+s

Et

∞∑
s=0

(βϕ)sλt+smct+sP
ϵ−1
t+s Yt+s

.

log linearization:

p̃ft = (1− βϕ)Et

∞∑
s−0

(βϕ)s(m̃ct+s + p̃t+s)

quasi differencing:

p̃ft = (1− βϕ)(m̃ct + p̃t) + βϕEtp̃
f
t+1 (A-7)

Backward-looking (rule-of-thumb) firm’s price setting

P b
t = P ∗

t−1

Pt−1

Pt−2
,

log linearization:
p̃bt = p̃∗t−1 + π̃t−1 (A-8)
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Newly chosen price index

P ∗
t = (1− ω)P f

t + ωP b
t .

log linearization:
p̃∗t = (1− ω)p̃ft + ωp̃bt (A-9)

Aggregate price dynamics

Pt =
{
(1− ϕ)(P ∗

t )
1−ϵ + ϕP 1−ϵ

t−1

} 1
1−ϵ .

log linearization:
ϕ

1− ϕ
π̃t = p̃∗t − p̃t (A-10)

Market clearing condition

Yt = Ct.

log linearization:
ỹt = c̃t (A-11)

A.6 Derivation of linear structural equations

A.6.1 Intertemporal IS Curve

Inserting (A-1) into (A-2),

c̃t =
h

1 + h
c̃t−1 +

1

1 + h
Etc̃t+1 −

1− h

(1 + h)σc
(it − Etπt+1).

With the market clearing condition,

ỹt =
h

1 + h
ỹt−1 +

1

1 + h
Etỹt+1 −

1− h

(1 + h)σc
(it − Etπt+1).

By subtracting the log-deviation of natural output ỹft from both sides, we
obtain

xt =
h

1 + h
xt−1 +

1

1 + h
Etxt+1 −

1− h

(1 + h)σc
(it − Etπt+1). (A-12)

where xt = ỹt − ỹft .
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Hybrid New Keynesian Phillips Curve

Combining (A-10) and (A-9), we get

ϕ

1− ϕ
π̃t = (1− ω)(p̃ft − p̃t) + ω(p̃bt − p̃t). (A-13)

Plugging (A-9) into (??),

p̃bt − p̃t = −π̃t +
1

1− ϕ
π̃t−1 (A-14)

From (A-7),

p̃ft − p̃t = (1− βϕ)m̃ct − βϕp̃t + βϕEtp̃
f
t+1.

By leading the equation (A-13) one period and inserting (A-14),

Etp̃
f
t+1 =

ϕ+ ω(1− ϕ)

(1− ϕ)(1− ω)
Etπ̃t+1 −

ω

(1− ϕ)(1− ω)
π̃t + Etp̃t+1 (A-15)

Substituting for (A-15) into (A.6.1),

p̃ft − p̃t =

[
1 +

ϕ+ ω(1− ϕ)

(1− ϕ)(1− ω)

]
βϕEtπ̃t+1 −

βϕω

(1− ϕ)(1− ω)
π̃t + (1− βϕ)m̃ct

Inserting (A-14) and (A-15) into (A-13),

π̃t =
ω

ϕ+ ω[1− ϕ(1− β)]
π̃t−1+

βϕ

ϕ+ ω[1− ϕ(1− β)]
Etπ̃t+1+

(1− ω)(1− βϕ)(1− ϕ)

ϕ+ ω[1− ϕ(1− β)]
m̃ct

(A-16)
At the flexible price equilibrium, the intermediate firm will set the price as

pt(j)

Pt
=

ϵ

ϵ− 1
mct,

and since all firms set the same price,

1 =
ϵ

ϵ− 1
mct

must hold. Combining this and the FOC of household, we get

(Nf
t )

σl

λt
=
ϵ− 1

ϵ
At. (A-17)

By combining log-linearization of (A-17)

σlÑ
f
t − λ̃t = Ãt,
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(A-1) and the market clearing condition, we obtain

σlÑ
f
t + σc

(
1

1− h
ỹft − h

1− h
ỹft−1

)
= Ãt.

At the flexible price equilibrium, the intermediate firm’s production function
can be expressed as follows.

ỹft = Ãt + Ñf
t

Then (A.6.1) can be transformed as(
σl +

σc
1− h

)
ỹft − σc

h

1− h
ỹft−1 = (1 + σl)Ãt. (A-18)

On the other hand, marginal cost of the firm under the ordinary (i.e., not
flexible price) equilibrium can be written as

m̃ct = σlÑt − λ̃t − Ãt

and again by using the intermediate ans final good firm’s production func-
tion, we obtain

ỹt = Ãt + Ñt.

By combining these equations and (A-1), we get

m̃ct =

(
σl +

σc
1− h

)
ỹt − σc

h

1− h
ỹt−1 − (1 + σl)Ãt. (A-19)

By inserting (A-18) into (A-19),

m̃ct =

(
σl +

σc
1− h

)
xt − σc

h

1− h
xt−1. (A-20)

Finally, by combining (A-16) and (A-20), hybrid New Keynesian Phillips
Curve can be derived.
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