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This paper provides the model of endogenous stock markets crashes with
overshooting. Unlike typical macroeconomic and finance models, an
economy can experience a boom and bust without any aggregate exoge-
nous shocks nor successive idiosyncratic shocks. Under the boom, the
economy spontaneously moves toward a critical phase, exceeds the criti-
cal point and a crash with overshooting will take place. What matters for
this story is a herding behavior of irrational agents and contamination
of information of a price signal. Irrational agents take Ss-type behavior
under ambiguous situations and this makes a portion of traders escape
from a stock market, which may lead to the further escape of other traders
as well as a tremendous price drop. This highlights the new key variable
which causes the crash and would be one of the compelling explanations
of mysterious sources of the aggregate phase transitions.
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I. Introduction

Stock market crashes are fascinating events to the most of the economists as
well as practitioners. According to the efficient market hypothesis, only a dis-
closure of drastic information can cause tremendous swings of prices. In macro-
finance models, a small aggregate productivity shock can be amplified by fric-
tions and cause a huge fluctuation. However, we usually cannot specify such in-
formational shocks, or, in general, we do not know what the source of aggregate
shock would be. Whether aggregate phase transitions happen or not totally de-
pends on exogenous aggregate shocks in typical models but the source of them
is such a mystery.

This paper provides a totally different view of the market crash. Collapses of
the markets are fundamentally due to an unstable configuration of key variables
such as price informativeness. The novel point of this paper is the fact that the
economy spontaneously moves toward the critical phase and jumps into the crash
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phase. There are no exogenous aggregate shocks nor successive idiosyncratic
shocks. Only one idiosyncratic shock pushes a start button and the economy
starts moving. Once the story begins, the stock market represents stylized char-
acteristics of the booms such as herding market participation and a tremendous
increase in the asset price. Of course, the market is doomed in many cases. The
crash of the market is waiting; a huge portion of traders escape from the market
and a free fall of the asset price, which may overshoot, takes place.

Inspired by the field of Self-Organized Criticality (SOC) investigated by Bak et
al. (1987), I call this kind of crash as a self-organized market crash (SOMC) here-
after. The main purpose and the result of my model are remarkably highlighted
by the following statement about Great Depression in 1929 by Sornette (2004).

At that time (1929), a growth and prosperity on Wall Street and Main
Street ended with the crash of the market. Before the crash, the market ex-
perienced a boom which is said to be driven by the participation into the
market of largely uninformed investors.

It can be interpreted that the boom before the crash in 1929 might be caused by
the herding behavior of agents who did not have sophisticated information and
behaved irrationally based on rumors. Then, somehow the state of the informa-
tion had changed and the market collapsed. In this paper, I will make clear what
the fundamental power that causes this change in the informational state would
be.

The first key factor is informativeness of the asset price. The recognition of
the importance of the informativeness of price has been at the root of economic
thinking for a long time in the field of finance. Ever since the declaration of the
importance of price information by the seminal papers such as Grossman (1976),
Grossman and Stiglitz (1980), and Kyle (1985), literature has been working on
the asset market with noise traders to investigate what kind of information as-
set prices might transmit. These works are focusing on the informativeness of a
price under the noisy rational expectations equilibria (REE) in which the price
would reveal only imperfect information about fundamentals because of the
noise traders. The literature on market microstructure also investigated the pos-
sibility of price information under Nash equilibria as well as strategic REE. It is a
natural conjecture and actually proved in the literature that the informativeness
of the price depends on a share of informed traders in the market compared to
the noise trader, i.e., how much of the noise the informed agents can absorb.
Not only does this phenomenon bite the decision over being informed or un-
informed, it also should be a reason for inaction (non-participation) if there is
a (psychological) cost of trading. The fraction of the informed and uninformed
agents in the market are endogenously determined in most of the existing litera-
ture and also the Kyle-type models shed light on the information dynamics with
the long-lived information context. However, the consequences of the fluctua-
tions of the price informativeness in a dynamic sense have not been paid enough
attention in the context of market booms and busts.
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What should be underlined here is the fact that precision of information can
be crucial when traders decide to participate or not if they have a cost of being
active or if it takes a cost to recognize information. I attribute this role to Knigh-
tian uncertainty and ambiguity aversion in a sense of Knight (1921) and Gilboa
and Schmeidler (1989), which has been a way to represent “uncertain” situations
rather than risks in the usual sense. In the economy, aside from sophisticated
agents, there are heterogeneous ambiguity averse agents. They may not have
any sophisticated information but have a doubt about returns of the asset. It is
derived that they make a pessimistic evaluation when they make inferences1. As
a consequence, ambiguity averse agents take a Ss-type strategy; they will find it
optimal not to participate in the market under certain conditions. More precisely,
in the CARA-Normal world, their optimal portfolio is given by the form

x = α( inf
µ≥µL

E[v|y]− P)I{infµ≥µL E[v|y]>P},

where v is a return, y is a set of information, µ = E[v], and µL is the worst case
mean. I denotes an indicator function. Thus, they evaluate the expected return
by using the worst case scenario given the available information set. If the worst
case scenario is extremely good compared to the current price, they will trade
with a long position. Otherwise, they will not trade. This tells us that observing
what kind of information, y, which might include the equilibrium price signal,
would be our first concern.

The contamination of the information plays a significant role in the story. At
date t, suppose that there are a sophisticated insider who knows the persistent
fundamentals vt+1, naive traders A who can use the signal of the past price only,
and naive traders B who also have a noisy signal st+1. The price is not fully re-
vealing the information because of the noise, but I consider the situation such
that the trading of naive traders itself brings a noise into the price2. It will be
shown that the information set above implies the price at date t contains a sig-
nal of the form qt = vt+1 + γst+1, where γ represents the ratio of the measure
of trader B relative to the sophisticated insider. If the agents can use qt at date
t, then there is no informational friction because they basically do not agree to
disagree. The no-trade theorem of Milgrom and Stokey (1982) would prevail.
However, if there is a time lag and naive agent cannot analyze the price right
away as in the model of Hellwig (1982), then qt would be a noisy signal of per-
sistent fundamentals vt+2 for date t + 1 traders and the main noise comes from
st+1 with the coefficient γ. The similar arguments of Kalman filter and Kalman
gain can be applied here. Since γ is endogenously determined by the participa-
tion of naive traders B at date t, their behavior has an intertemporal effect on the
participation decision of traders A and even on the decision of B themselves in

1 This pessimistic subjective belief is not an assumption, but a derived result from the set of Savage type
axioms including ambiguity aversion analyzed by Gilboa and Schmeidler (1989).

2 See Han et al. (2016) for the detail of the endogenous noise trading.
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the next period.
If the number of naive trader B is zero in the initial period, then the signal qt

that agent at date t + 1 will use is clean and precise since γ is zero. Then, seeing
this signal, A and B at date t + 1 will decide to trade because their worst case
posterior expectation is more likely to be revised upward by using the relatively
clear signal qt = vt+1 (to infer vt+2). In turn, the participation of B precipitates in-
formation contamination, i.e., it will make qt+1 noisier because γ will be higher.
This clearly affects the participation behavior of t + 2 traders. SOMC’s implica-
tion is such that naive traders who rely on the price signal will keep trading as
long as the value of γ is low and q transmits a precise signal enough to make
naive traders confident and willing to trade.

As we can imagine, the value of γ can be endogenously time varying. What if
there are many B traders and participation of trader B1 would make other naive
traders, say B2, B3, · · · willing to invest? In this situation with cascading partici-
pation, γ would be increasing over time. This can have a positive impact on the
price as long as γ does not exceed the threshold mentioned above. If the γ hits
the critical point, however, then the all naive traders would stop trading simul-
taneously and this would make the tremendous price drop through the demand
effect. In the model, these procedures are derived from the optimization prob-
lem of each trader. Moreover, the crash is self-organized because we can cause
the sequential participation and the boom/bust only by switching the behavior
of a single agent, namely, trader B1.

The key assumption in the story is a lagged information. As discussed by
Geonka (2003) and Hellwig (1982), this timing assumption is relevant when we
think of a trading taking place in a real time. In the real economy, the inferior-
ity of information set of some traders also comes from a speed of information
processing. One of the important evidence shown by Ozsoylev et al. (2014) is
the fact that agents can have a faster access to information if they are located
close to the center of the network, and investors located around a periphery are
suffering from informational lag. As discussed in Subsection III.D, delayed in-
formation can be a source of the noise when the information set includes the
price signal and allows the economy steer clear of the no-trading theorem of
Milgrom and Stokey (1982). By making use of this property of information that
agents can refer, the evolution of the informativeness of the price is derived in
a system of closed form (though non-linear) difference equations, which have a
similar property as the typical Kalman filter. It is possible to derive the critical
value of informativeness of the price that triggers the escape of the Knightian
agents.

Moreover, the model replicates one of the most typical features of the market
crisis: the escape followed by the further escape and overshooting of asset prices.
The overshooting price is one of the most difficult phenomena to show for theo-
retical models of the financial crisis. Like Hirano and Yanagawa (Forthcoming),
in most of the macroeconomics models with stochastic asset price bubbles, asset
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prices cannot be worse than the benchmark economy, i.e., the bubble compo-
nent cannot be negative or cannot hurt fundamental part of the asset price. On
the other hand, in my model, asset prices can overshoot. A simple demand ef-
fect implies that overshooting will take place if the demand volume at the crisis
point is smaller than the demand at the initial period

In Section 2, I briefly summarize related literature. Section 3 provides the de-
scription of the model economy. We consider a simple three periods example of
escaping behavior in Section 4. Section 5 characterizes decisions and the equi-
librium in the infinite horizon economy, and dynamic properties are provided.
Section 6 puts forth some of the empirical implications (very preliminary), and
Section 7 concludes the discussions.

II. Related Literature

One of the main results of the paper is the endogenous market crash. As the
citation in Introduction, the Econ/Physics book by Sornette (2004) provides a
lot of insights. He views the market crashes in a different way from the main-
stream of macroeconomics and finance. According to his perspective, what mat-
ters for the market crashes would be accumulation and aggregation of micro-
motives/individual behaviors. It might be rational or irrational, the quality
and type of the information matters, and these micro and local movements cre-
ate chaotic phenomena through non-linear local interactions. Event hough the
mechanism I will specify in this research is different from the points he put forth,
the background of the idea is crucially alike.

In terms of the role of the price as an information intermediary, this paper is
related to the long list of papers which deal with the equilibrium implication of
noisy rational expectations equilibria and price informativeness. Seminal works
are done by Grossman (1976), Grossman and Stiglitz (1980), Hellwig (1980), Kyle
(1985) and De Long et al. (1990). Most of the literature, however, did not pay
attention to dynamic characteristics of the noise and the price informativeness.
Kyle (1985) analyzed the dynamic sequence of the one-shot auction to see how
long-lived information might be incorporated into the price in a dynamic sense.
Also, Wang (1993) provided a continuous-time dynamic model of Grossman-
Stiglitz type economy and showed that the existence of asymmetric information
can be a reason for the excess volatility, a higher risk premium, and the negative
autocorrelations, but more drastic phenomena, like market crashes, were not
analyzed.

In the field of finance as well as macroeconomics, a growing literature3 has
been analyzing the application of Knightian uncertainty. The seminal work by
Dow and da Costa Werlang (1992) is the first paper that shows Ss-type inaction

3 There are many documented evidence for irrationality and overconfidence in markets. For example,
Odean (1998) and Daniel et al. (1998) investigate effects of overconfidence on the market. The survey by
Vissing-Jorgensen (2003) summarizes behavioral and psychological interpretations of market anomalies in-
cluding non-participation behavior.
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property of the optimal portfolio under ambiguity aversion. A recent paper by
Easley and O’Hara (2009) adopted ambiguity aversion into a simple setting of a
heterogeneous traders model and provided the sharp explanation on the market
(non-) participation which I will use in my model.

Epstein and Schneider (2008) and Leippold et al. (2008) considered the in-
formation acquisition and resolution of ambiguity by learning. These papers
put forth the ambiguity as one of the explanations of puzzling facts such as
the risk premium puzzle and excess volatility but did not go through the dy-
namic characteristics of information, market participations and the price. Mele
and Sangiorgi (2010) constructed the model to investigate the effect of ambiguity
on information value in a context of Grossman-Stiglitz model and showed that
there will be information complementarity. They also considered the possibil-
ity of dramatic price swings as a result of the changes in the information value,
but the crucial parameter to get the price swing was still the degree of ambigu-
ity, which has aggregate and exogenous characteristics. Caballero and Krishna-
murthy (2005) is another paper that looked at the flight to quality as a result of
ambiguity aversion but the mechanism is not endogenized and the structure of
the crisis is totally different from my model.

Synchronization is also one of the important but mysterious phenomena ob-
served in the real market4. Abreu and Brunnermeier (2002) develops the inter-
esting model of “a synchronized risk”. In their model, the portfolio adjustment
is costly and thus moving alone to get the arbitrage is not profitable if a sin-
gle agent’s order cannot change the price. As a result, traders will wait until
enough amount of other traders start moving. The synchronization behavior
in my model is much simpler in a sense that each trader will just imitate her
neighbors’ behavior, but the fact that agents are not knowing the meaning of
the key parameter is common in two models. Also, Abreu and Brunnermeier
(2003) applied the theory of the currency attack of Obstfeld (1996) to the model
of bubbles. In their model, there is a threshold of the degree of synchronized
behavior that leads to a collapse of the bubble. Thus, arbitrageurs try to ride
the bubble until the synchronization with other agents will exceed that thresh-
old. This structure is similar to my model. In my model, agents’ (unconsciously)
coordinated participation causes the information contamination which in turn
will be the reason of escape from the market. The different point from the cur-
rency attack argument might be the fact that the accumulation of information
contamination and the threshold of the contamination which leads to the crisis
are endogenously determined as the result of optimizations of traders. Also, the
price dynamics is endogenously determined as the equilibrium consequence,

4 The imitation behavior of the traders is the well-observed phenomenon in the experimental economics
such as Boissevain (1979), Darke and Freedman (1997) and Heath and Gonzalez (1995). The literature showed
a trader is more likely to rely on the information from her neighbors and, as a result, she imitates what their
neighboring agents are doing if her private information is not reliable enough. See Orléan (1995) for the
theoretical arguments. Also, Ozsoylev, Walden, Yavuz and Bildik (2014) shows the evidence for the existence
of the network of traders’ group, and my model introduces this idea.
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while it is exogenously given in Abreu and Brunnermeier (2003). Moreover, my
model can be interpreted as an explanation of fads, fashions, and herding. The
mainstream of the discussion focuses on how information cascade takes place
as in my model. Bikhchandani et al. (1992) and Banerjee and Fudenberg (2004)
proposed the model in which each agent relies on the signal from her neigh-
bors rather than her private (and might be correct) information. Also, my model
intends to investigate how the market crash occurs due to the information con-
tamination caused by the herding behavior, while in the previous papers, fads
and fashions are the direct consequence of the information cascade. Therefore,
my focus is on the mutual reactions of information and traders’ behavior, while
the previous literature only considered one of them at most. In this sense, my
model provides more detailed discussions on what is crucial for the market to
move into the crises phase.

III. The Model

The core of the model is similar to the multi-periods Kyle (1985) model, but
the property of difference equations as well as the behavior of agents are to-
tally different from his model because there is no long-lived information and
the model is constructed by infinite horizon with OLG agents. Even though the
forward-looking insider is not assumed to exist as in Kyle-type models, lagged
information reference of each trader allows us to specify the dynamics of infor-
mation.

I consider a discrete time OLG economy5, which is characterized by three
types of (groups of) agents: there are sophisticated agents (S-agent), informed-
naive agents (I-agent) and uninformed-naive agents (U-agent). The difference
between these agents will be specified later but basically, it comes from the in-
formation they rely on and from the degree of ambiguity aversion.

Assume that these types of agents are constructing three groups respectively.
Group-J∈ {S, I, U} has a mass λJ of type-J agents and agents i ∈ J in a group-
J are connected by a network as shown in Figure 1. It will be clear that the
network matters only for group J = U and thus I will describe S and I agents
as representative OLG traders. The measure of the representative S-trader is
normalized to one and the representative I-trader is supposed to have measure
λI . Each agent lives three periods: phase I, I I and I I I, and the behavior in each
phase will be specified in the next subsection.

They are trading two types of asset. A risk free saving with constant interest
payment r = 0, and a risky asset with fixed supply x. By holding the risky asset
from date t to t + 1, it pays vt+1 = θt+1 + ut+1. The evolution of the fundamental

5 The assumption of overlapping generations model makes the analysis much easier because we can
avoid the time inconsistency problem which is a typical complication with the ambiguity aversion preference
and MEU. Also, this casts a difference from Kyle’s long-lived information model.
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FIGURE 1. HETEROGENEOUS TRADERS

component θ is given by the mean reverting AR (1) process,

(1) θt+1 = ρθt + (1− ρ)µ + εt+1, ρ ∈ (0, 1)

where µ denotes the mean component and ε represents a stochastic shock. As-
sume that u and ε follow normal distributions independently with variance σ2

u
and σ2

e . In my model, I will consider the risky asset as the sequence of one period
risky investment opportunity and thus there is no resale6. This simplification
gives us a straightforward insight into the mechanism of simultaneous escape
and allows us to derive analytically simple results. I will use the tuple notation
to denote each agent, e.g., the agent i in group-j at date t facing the phase I is
denoted by (i, I, t)j.

A. Timing and Available Information

The entire structure of the information flow and heterogeneity of an available
set of information are described in this subsection.

Information Heterogeneity

It is natural to think that there are potentially three types of information available
for naive agents: the price signal, neighbors portfolio, and some other privately
created information. I assume that S and I-agents have a costless access to the

6 There is always the problem of the possibility to resale in this literature. I follow the traditional se-
quential auction setting used in the literature of market microstructure such as Kyle (1985) and Glosten and
Milgrom (1985).
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private source of information as well as the price signal. We can also think of the
private signals as information obtained from investment brokers or information
on newspapers and so on. For i ∈ {S, I}, let yi

t be a heterogeneous information
vector at date t for trader-i. The specification of S and I says

yi
t = (si

t, qt−1)

where si
t is a private signal and qt is a information content of the price at date

t. The reason why yt contains qt−1 instead of qt is explained later. In order to
make the model as simple as possible, I assume that S-trader cannot see the
price information. This does not change the essential implication of the model,
but just makes the parameter region of the crash larger. Also, I consider the
private signal as a noisy signal about the fundamental of the risky asset,

si
t = θt+1 + zi

t+1

where zi is normally distributed noise with variance σ2
zi

, correlation ρS,I , and is
independent of other noises. Therefore, the differences between S and I-trader
come from the private signals (and also from the ambiguity aversion).

On the other hand, the distinctions between I-agent and U-agents come from
the inferior information set of U-agents. It is natural to think that there are po-
tential investors (such as households) who do not pay attention, or who cannot
interpret market signals unlike professional investors or investment bankers. I
categorize these agents by assuming that U-traders do not have any private in-
formation and cannot see (or interpret) the market price directly. According to
the general classification of the information sets mentioned above, the only sig-
nal they can use will be neighbor’s behavior. Thus, if x denotes the portfolio
order, the information set of the U-trader with index i is given by

yi
t = xU,i−1

t−1

as long as this value is non-zero, i.e., her neighbor is active.

It will be clear that the neighbor’s portfolio at date t contains the same signal
as the price at date t. Hence, the agents in group-I and S never use the neigh-
bor’s portfolio as a source of information. Therefore, even if we allow S and
I-traders to see the neighbors’ portfolio, all S and I-agents have the same set of
information within their group. Thus, each can be expressed as a representative
agent. On the other hand, there is heterogeneity among the agents in group-U.
If the agent i in group-U is making non-zero investment at date t, then the agent
j = i, i + 1 can see her neighbor’s portfolio, say xt, and thus the information set
available at date t + 1 is F j

t+1 = σ({xt}), where σ(·) represents σ−algebra. In
contrast, other agents with j 6= i, i + 1 do not have any information since their
neighbors are not active, x = 0, and cannot extract any information from inactive
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FIGURE 2. BEHAVIOR OF OLG AGENTS

behavior. Thus, F j
t+1 = σ(φ).

Timing

Note that each generation of investors will make their investment only in phase
I I, and they will consume the return of investment at the end of phase I I I. In
order to prepare for the investment, agents seek for information during phase I.
For example, let xU,i

t be the portfolio of agent i ∈ U at t, then the agents j = i, i+ 1
in their phase I observe this market order and make use of this signal when they
are in phase I I at date t + 1 to infer the return vt+2.

The fact that the information that agents- (i + 1, I I, t + 1) are using is out of
date at date t + 1 is crucial in this model. This can be interpreted as the limited
speed of information processing. Also, as discussed by Geonka (2003) and Hell-
wig (1982), this timing assumption is relevant when we think of a trading taking
place in a real time7. The flow of behavior of a typical agent is described as Fig-
ure 2. If the agent is S or I, then they do not have to observe xj

t, while if she is
U, then she needs to look up neighbor’s xj

t to extract the signal of Pt because she
cannot observe Pt nor obtain st.

Finally, the value of vt+1 is actually not observable for agents until the end of
t + 1, i.e., after all phase I I agents at t + 1 finish making their investment deci-
sions. Also, I assume that each agent does not know the history of the realized
{θt}t=−∞

8. This last assumption only makes a difference in quantitative values
and can be easily relaxed.

7 This timing assumption can also be discussed in the context of Grossman-Stiglitz paradox of REE mod-
els. Competitive agents can infer information from the equilibrium price while they do not take into account
the effect of their order on the informativeness of the price. See Dubey, Geanakoplos and Shubik (1987) about
the clear explanations and one of the solutions to the GS paradox.

8 These timing assumptions with respect to the availability of vt+1 information is crucial in my model.
If the realization of the return becomes observable before the decision making is done, then the participation
of uninformed naive agents does not bring any noise since they can back up the insider information from the
price signal (if available). However, it is unlikely that all naive agents have a real-time access to the realized
information and can back up the insider information. Thus, the naive agents who make their decision under
this assumption can be interpreted as those who do not have a sufficiently fast access to the information. Even
if we drop this assumption, we can still get our result by modifying the model so that U-agents have their own
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B. Behavior of Sophisticated Agent

I consider the representative sophisticated agent with a normalized mass of
unity. Each generation has CARA utility with the absolute risk parameter τ.
Assume that they don’t discount the future.

Let us focus on the optimization of the trader in her phase I I at date t who is
making a portfolio order xS

t . By CARA-Normal property, the certainty equivalent
level is

uS
t = (E[vt+1|sS

t ]− Pt)xS
t −

τ

2
(xS

t )
2Var(vt+1|sS

t ).

The optimal position of the S-agents is a typical MV portfolio such as

xS
t =

vS
t − Pt

τσ2
v|sS

t

,

where vS
t ≡ E[vt+1|sS

t ]. For later use, let αS ≡ 1/τσ2
v|sS , which makes

(2) xS
t = αS(vS

t − Pt).

This optimal portfolio is the case for all generations. If we relax the assumption
and allow her to see the price signal, then αS will be time varying.

C. Behavior of Naive Agents

They also have CARA utility with the same risk parameter τ. They have the
aversion toward ambiguity in the sense of Gilboa and Schmeidler (1989) and
take Max-Min expected utility (MEU) which is axiomatized in their paper.

Each naive agent has a doubt about the mean component of the dividend pro-
cess, µ, and evaluates her expected utility by the subjective belief which yields
the worst case scenario. Let Mj = [µ

j
L, µ

j
H ], j ∈ {I, U} be the set of possible

means which induces the multiple prior for each agent. Following arguments
assume that there is no heterogeneity with respect toMj but, in the later section,
I will make it heterogeneous across the groups,MI 6=MU .

The optimization problem of naive agents (i, I I, t)j is given by

sup
xj,i

t

inf
µ∈M

uj,i
t ,

where
uj,i

t = (E[vt+1|F
j
t ]− Pt)xj,i

t −
τ

2
(xj,i

t )2Var(vt+1|F
j
t )

source of information which is a noisier version of the insider information. Endogenous noise trading can be
also supported by some literature such as Huddart et al. (2001).
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is a certainty equivalence conditional on the lagged information set of type j
agents, F j

t = σ({yj
t}).

Let vj
t(Ft) ≡ infµ E[vt+1|F

j
t ] and v̄j

t(Ft) ≡ supµ E[vt+1|F
j
t ] be the worst and

best case posterior expectation conditional on information set yt (I will omit F
in v(·) if there is no fear of confusion). The optimal portfolio of an agent (t, I I, i)j

given her information set F i
t is

(3) xj,i
t =



vj
t−Pt

τσ2

v|F j
t

i f vt
j > Pt

0 i f Pt ∈ [vj
t, v̄j

t]
v̄j

t−Pt

τσ2

v|F j
t

i f v̄j
t < Pt

.

Therefore, the naive agents take the Ss-type strategy. I call the situation such
that x = 0 (resp: x 6= 0) as “being outside (inside) of the market” or “non-
participation (participation)”. This property is a typical inaction property also
shown by Dow and da Costa Werlang (1992) and Easley and O’Hara (2009), and
will take a crucial role in the following discussion.

Intuitively, they take the non-participation strategy if and only if the degree
of ambiguity is not extreme. If the worst case return is sufficiently high, they
will take a long position because the expected net return is positive even though
they are considering the ambiguity (the first line). On the other hand, if the best
case return is sufficiently low, it is optimal for them to short. If the degree of
ambiguity is moderate, it is hard for them to decide which position is profitable
and they end up with being trading zero amount.

In order to make our analysis as simple as possible, the possibility of short
selling by naive agents is eliminated by assuming µ

j
H = ∞ for all j. Under this

assumption, the third case of (3) does not happen a.s. Also, as in Mele and San-
giorgi (2010), the discussion hereafter assumes that the set of prior depends on
the information set of naive agents9. Specifically, suppose that M = R if the
agent does not have any signal, whileM shrinks toMj described above if she
has a signal. This assumption guarantees that naive traders will not participate
if they do not have any signals, while they may or may not participate, accord-
ing to (3) if they get some signals. We can relax this assumption by imposing one
additional condition as in the footnote 12 for each proposition in later sections,
but the implication of the results do not change.

9 Mele and Sangiorgi (2010) also consider the resolution of ambiguity by the signal acquisition. In their
setting, not only does the signal reduce the risk, it also resolves the ambiguity from a compact set of multiple
priors into a singleton.
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D. Filtered Worst Case Scenario, Compensation, and Noise

FILTERED WORST CASE EXPECTATION AND COMPENSATION

As shown in later section, the informativeness of the price or neighbors’ behav-
iors plays a crucial role when naive agents decide to participate or not. To see
the idea, suppose that a naive agent has a signal q = θ + ξ, ξ ∼ N(0, σ2

ξ ) when
she infer the expected value of θ. If not conditioning on the signal, her worst
case belief gives inf E[θ] = µL. On the other hand, the conditional worst case

expectation is inf E[θ|θ + ξ] = inf[µ +
σ2

θ

σ2
θ +σ2

ξ

(θ + ξ − µ)] = (1− b)µL + b(θ + ξ).

Of course, it depends on the realization of the signal, but if we have ξ = 0 and
θ = µ, then the filtered worst case expectation is a weighted average of the dis-
torted belief µL and the true value µ. Thus, the distorted worst case expectation
is compensated by the information signal. In this sense, the signal will reduce
the risk and this works as if the naive agent is compensated and gets optimistic
compared to the case with no signal. More generally, if the normally distributed
signal q is unbiased, E[q] = µ, the expected value of compensated posterior
worst case expectation is

E[inf E[v|q]] = βµ + (1− β)µL

where β = Cov(q, v)/Var(q). The key takeaway is the fact that, if the signal
is more precise, then she will get more compensated and get a higher upward
revision.

NOISE

In this model, the existence of exogenous noise traders has not been assumed
so far. In the usual context, the equilibrium notion of the economy cannot stand
the absence of noise trader because the economy will end up with being the
non-trading equilibrium of Milgrom and Stokey (1982). However, in this model,
the agents potentially agree to disagree because of the ambiguity averse agents
having the distorted subjective priors. Moreover, even though the noise traders
are not assumed, the assumption of the lagged information makes the economy
stay away from the non-trading equilibrium. Market orders do not incorporate
the current price information and the agent cannot infer the information of other
traders10. The underlying force working here is discussed more in the context of

10 The main reasoning of no-trading theorem relies on the general equilibrium notion with rational agents.
If two traders got different realizations of private information and they agree to trade at the price, the equi-
librium price reveals the private information of the opponent of each trader. Then there is no informational
friction left and incentive to trade is eroded. What is assumed here is the agents can use the information of
price right away (or even before the realization of equilibrium price!). But this is unrealistic as discussed in
Dubey, Geanakoplos and Shubik (1987). Approaches such as Nash equilibrium can steer clear of this REE
paradox. They viewed lagged reference is natural because “price formation is modeled as a process, the pooling and
transmission of information takes time as any process must. So when public information is revealed it can only be used
in the next time period”.

13
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market microstructure such as Dubey, Geanakoplos and Shubik (1987).
The assumption of lagged information makes the price signal at date t a noisy

signal of vt+1. The argument is basically same as the theory of Kalman filter.
To grasp the idea, we consider the period t = 0 and assume that there are two
traders: the informed agent with a noisy signal st = θt+1 + zt+1 (who cannot
see the current price) and the uninformed naive trader. Both can see the lagged
price information. As we can see from (1), P0 would be the linear function of s0
because the private information informed trader should be perfectly reflected in
the price. For simplicity, assume that there are no naive agents at t = 0 invest-
ing. Then the agent (·, I I, 1) will trade conditioning on q0 = θ1 + z1 which they
obtained in the previous period. Therefore, at t = 1, their inference is

E[v2|q0] = E[θ2 + u2|θ1 + z1] = E[ρθ1 + (1− ρ)µ + ε2 + u2|θ1 + z1].

First, the filtering shows that the agent cannot back up θ2 perfectly because of
ε2. Second, since z1 is not observable until the end of t = 1, then this would
add more noise. In the next period t = 1, this implies that the signal q1 would
be a linear function of θ2 + z2, which comes from insiders, and θ1, which comes
from naive traders. Then, the signal q1 is a linear function of θ2, z2, and ε2.
It can be interpreted as the noisy signal of v3, that is, the agent needs to infer
θ3 + u3 = ρθ2 + · · · given a signal which is a linear function of θ2, z2, and ε2,
because the realization of v2, z2, and θ2 is assumed to be not yet observable when
she makes her decision at date 2. Hence, the lagged information creates the noise
when it is referred before the realization of the return.

E. Pseudo-Stochastic Variables and Pseudo-Stochastic GE

Finally, the new concept of equilibria is introduced. This concept allows us to
consider the stochastic model as if it is deterministic keeping the properties of
stochastic equilibria in our hands.

Suppose that y ∼ N(ȳ, σ̂2
y ), and σ̂y is an ambiguous parameter for ambiguity

averse agents. Suppose that the set of priors is characterized by σ̂y ∈ S = [σy, σ̄y].
For simplicity assume that 0 < σy. Under these specification, even if the true
distribution of y is degenerate (σy = 0 and y = ȳ a.s.), the ambiguity averse
agent anticipates that y is non-degenerate since the worst case scenario in her
mind is achieved by the truly stochastic y.

DEFINITION 1: Consider a normal random variable. A degenerate stochastic variable
(or constant stochastic variable) y is pseudo-stochastic variable if its variance is ambigu-
ous for ambiguity averse agents and the worst case scenario is achieved by a subjective
distribution with a positive variance.

The pseudo-stochastic variables can be interpreted as the situation in which
the rational agents know that the variables are degenerate and there are no
stochastic risks, while irrational agents fear the random realization of the results

14
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since they do not know the true specification of the variables. The heterogeneous
belief of this kind depends on irrationality of the subset of agents who agree to
disagree, and if all agents are fully rational, they get rid of disagreement and
the phenomena above must be eliminated. Of course, this assumption would
be somewhat unrealistic and extreme, but yields the clear insights of the model
by making the analysis much simpler. This also helps us with separating the
effect of aggregate stochastic shocks from the fundamental effects of the idiosyn-
cratic initial trigger shock under the scenario of SOMC. The effect of information
contamination would be salient.

To get the notion of equilibrium under the pseudo-stochastic variables, I define
the following concept of the equilibrium.

DEFINITION 2: Pseudo-stochastic general equilibrium (PSGE) is the version of a
general equilibrium, in which specified random variables are degenerate in the sense
of Definition 111.

F. General Equilibrium

Given the initial condition of θ and initial trigger shock (initial information
set), which I will define later, the equilibrium with a state {θt}∞

t=0 is defined by
the sequence of the quantities {xS

t , xI
t , (xU,j

t )∞
j=0}∞

t=0, information sets y and the
price {Pt}∞

t=0 which satisfy the optimal portfolio given by (2) and (3), and clear
the market such that

x = xS
t + λI xI

t + λU ∑
i=0

xU,i
t ,

where the amount of supply is fixed and λj represents the measure of each type
of naive agents.

IV. Simple Example of Escape

I will say agents “escape” if traders have been trading positive amount up to
some point t, but they stop trading at t + 1. In this section, the mechanism of
escape is specified under PSGE.

As we saw in Introduction and (3), the informativeness of the neighbors’ port-
folio and that of the price would be our first concern. Note that, given the signal
y which is unbiased, whether an agent trades or not is totally determined in
PSGE by

(4) inf
µ≥µL

E[v|y] = βµ + (1− β)µL ≷ P.

11 In general, we need to be more precise about the learning of the distribution because it is unnatural
that people think some variables as stochastic even though they keep observing constant realization in every
period. However, considering the i.i.d property of shocks in this model and the OLG structure, it might be not
extreme to omit the arguments about the learning. Moreover, there is a possibility that the realization and an
observation of (pseudo-)stochastic variables lead to a confidence erosion of ambiguity averse agents, which
means they get confused more and the set of the possible posterior is even worse that the prior in a sense of
its size. See Nishimura and Ozaki (2008) for a learning and confidence erosion.
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Since β is determined by the past price signal and the past signal is set as a result
of previous generation’s behavior, we can see the importance of the participation
behavior pertaining to the behavior of the next generation. By specifying the
dynamics of information-related variables, we could check if naive agents are
in the market or not in each period. This section is devoted to a simple three
periods economy, where only S and U type naive agents are trading, in order
to accentuate the fundamental points of the arguments, namely, simultaneous
escape behavior. After that, we will consider an infinite horizon economy with I-
type naive agents. Because of its simplicity, this example may or may not predict
a huge price movement as in the real world. One can skip this section and go
to Section V if the mechanism of the escape and the price informativeness a la
Grossman-Stiglitz are clear enough.

A. Three periods example

The economy has three periods, t = 0, 1, 2, 3, and assume that λI = 0, i.e. there
is no I-agent. In order to investigate the dynamics of the economy, we need to
specify the idiosyncratic initial trigger shock with respect to the information set
of U-agents. Moreover, I assume that σzS = 0, i.e., S-agent has perfect informa-
tion.

Suppose that at t = 0, only agent (i = 0, I I, t = 0)U gets the noisy signal
of the risky asset before she makes her decision. Let the signal take the form
q−1 = θ0 + z, where z ∼ N(0, σ2

z ) and may be correlated with θ1. There are phase
I I of S-agent and U-agent with index i = 0 who has information at date t = 0.
Then, (3) implies

xU
0 =


v0−P0
τσ2

v|q−1

i f v0 > P0

0 o/w
v̄0−P0
τσ2

v|q−1

i f v̄0 < P0

,

with
v0 = µL(1− ρβ0) + ρβ0(θ0 + z)

(v̄0 has µH instead of µL). Let αU
0 ≡ 1/τσ2

v|q−1
. Then, we will get following

Lemma, which provides the condition for the participation of the initial agents
i = 0 who got the shock. The equilibrium price under the participation of i = 0
and non-participation of i 6= 0 agents is given by

P0 =
αS + λUαU

0

αS + λUαU
0 β0

q0 +
1

αS + λUαU
0 β0

[λUαU
0 β0(ρz− (1− ρ)µL)− x],

where q0 and β0 are given in Lemma below.

LEMMA 1: (i): Under the setting above, the initial U-naive agent i = 0 with an
idiosyncratic trigger shock trades a positive amount, i.e., participates in the market with
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long position and i 6= 0 traders do not invest iff

θ1 − x
αS − ρβ0(θ0 + z)

1− ρβ0
< µL < P0

where

β0 =
σ2

θ

σ2
θ + σ2

z
.

(ii): Under PSGE, the conditions in (i) are reduced to,

(5) µ− x
(1− ρβ0)αS < µL <

αS + λUαU
0 β0(µ− 1)

αS + λUαU
0 β0(1 + β0(1− ρ))

≡ µup.

This Lemma says the participation behavior crucially depends on the informa-
tiveness of the initial shock and thus σ2

z . Once we get the initial trigger with σz
which satisfies the condition above, then the boom/bust takes place as I will
show later. Otherwise, nothing happens. I will come back to the intuition of this
condition after I specified the analytical dynamics of the behavior in the degen-
erate case in a later section, but the inequality (4) and (5) suggest that the naive
agent will participate if and only if the compensation coefficient β0 is sufficiently
high in a degenerate case. Also (4) tells us that the degree of ambiguity −µL has
to be low enough for a naive agent with information to be compensated and start
trading (RHS of (5)).

In addition, we get the following result with respect to the price signal.

LEMMA 2: Under the condition (5) in Lemma 1, the price signal at the initial period
is given by

(6) q0 = θ1 + γ0ε1,

γ0 =
−λUαU

0 β0

αS + λUαU
0 β0

.

If there is no noise, the price must reveal the insider information. If the agents
are allowed to use the current price signal and the information acquisition is
costly, then Grossman-Stiglitz paradox would be omnipresent. However, the
best thing that agents can do is just to get the signal for the usage of the next
period. Thus, even if the price signal at t is perfect for the investment decision at
date t, it will no longer be true at date t + 1. Moreover, not only will this lagged
information be imperfect in order to infer the return in the current period, it also
brings the noise into the market. This is why we have the second term in (6).
Note that the absolute value of γ0 positively depends on λU since λU represents
the mass of the investors in the market who are relying on the noisy signal rather
than the insider information.
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Suppose that the condition (5) holds. Then at t = 1, group i = {0, 1} of U-
agents have the signal which is equivalent to q0 because the portfolio of i = 0 at
t = 0 reveals the same information as the price to her neighbors. Note that the
S-agent keeps going with (2). Then, the each agent faces the same problem, and
the optimal portfolio again takes the form of (3) with

v1 = (1− ρβ1)µL + ρβ1(θ1 + γ0ε1),

given

(7) β1 =
1 + (1− ρ2)γ0

1 + (1− ρ2)γ0(2 + γ0)
,

(same form for v̄1 with µH instead of µL). Also the price information of this pe-
riod is given by

q1 =

{
θ2 + γ1ε2 if U participate
θ2 otherwise

,

γ1 =
−2λUα1β1

αS + 2λUα1β1
, α1 = τ−1σ−2

v2|q0

because we now have i = 0, 1 agents who are investing in the market.
Compared to the previous period, the signal can be noisier because of the

larger number of uninformed agents who bring the noisy signal into the mar-
ket. The participation decision is described by

(8) (1− ρβ1)µL + ρβ1(θ1 + γ0ε1) > θ2 −
x

αS

for i = 0, 1 agents12. It is clear that the participation decision at the current
date depends on the information variables in the previous period. Also, if we
consider the PSGE, we can see the price for date t = 0 and 1 can be reduced to
Pt = P(t; λU) with

P(t; λU) =
αSµ + (t + 1)λUαU

t [µ− βt(1− ρ)µL]− x
αS + (t + 1)λUαU

t βt
.

Note that we have a recursive structure in γ, α, β. Therefore, in the final period,
t = 2, we only have to consider the same form of parameters. Suppose that the
U-agents with i = 0, 1 were trading in the previous period with a long position,

12 If we relax the assumption about M to be R for U-traders without signals, we need to impose the
following condition to make them stay away from the market,

µL < P1 =
αS + 2λUαU

1

αS + 2λUαU
1 β1

q1 −
1

αS + 2λUαU
1 β1

[2λUαU
1 β1(ργ0ε1 + (1− ρ)µL) + x].
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i.e., (5) and (8) are satisfied. Then, at t = 2, i = 0, 1 and 2 agents can use q1 =
θ2 + γ1ε2 as a signal to get the optimal portfolio. This implies U-agents at date 2
participate in the market if and only if

(9) (1− ρβ2)µL + ρβ2(θ2 + γ1ε2) > θ3 −
x

αS

for GE case and
µ− x

(1− ρβ2)αS < µL

for PSGE case, where

β2 =
1 + (1− ρ2)γ1

1 + (1− ρ2)γ1(γ1 + 2)
.

Thus, we could get the conditions such that the behavior of the U-agents at t =
(0, 1, 2) is such that (In,In,Out) for i = 0 agent, (Out,In,Out) for i = 1 agent, and
(Out,Out,Out) for other agents. This can be interpreted as herding through t =
0, 1 and escape from the market in the final period. It is clear that the aggregate
shock such as θ and ε matter in this setting. In order to get the “without aggregate
shock” property of SOMC, I have been considering the case where the most of
the stochastic variables are degenerate while keeping the model meaningful.

B. Escape in the three periods example

In order to declare the analytical result without any aggregate shock, we im-
pose the assumption that all stochastic variables except u are pseudo-stochastic
variables. Then we have θ → µ, ε → 0 a.s. By looking back on the previous
results and the conditions (4), (7) and (8), we notice the following conditions
are necessarily and sufficient conditions for U-agents to herd and escape as de-
scribed in the last subsection.

PROPOSITION 1: If there is a trigger shock specified above, index i ∈ {0, 1} of U-
agents sequentially participate in the market through t = 0, 1, and then stop trading at
t = 2 iff the following conditions are satisfied.

(10) µlow ≡ µ−min
t=0,1
{ x
(1− ρβt)αS } < µL < µup.

To understand the economic intuition of this endogenous escape, we can refer to
the informativeness of the equilibrium price, which is defined by the following
quantity in lines with a typical context of noisy REE models.

DEFINITION 3: Informativeness of the price signal q is defined as the precision of the
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signal compared to the insider information.

η(qt) = log
Var(vt+2|qt)

Var(vt+2|θt+2)
.

From the perspective of agents at date t + 1, who need to refer to the lagged
information, the variable above records the amount of risk about the realiza-
tion of the risky asset for agents who only observe the price signal qt, com-
pared to the risk remaining when one knows the insider information θt+2. The
informativeness of the price η is typically positive when q cannot resolve the
same amount of risk as the insider information due to the noise, that means
Var(vt+2|qt) > Var(vt+2|θt+1) and η > 0. As the information contents of the
price would be more precise, η goes down and converges to 0. Hereafter, I also
use the term “price informativeness” by referring σ2

uη(qt) since the dynamics of
it will be the matter of focus and the precision of the insider information is not
time varying.

Note that, in the previous example, the (normalized) price informativeness
under the condition that the U-agents are participating at t = 1 would be such
that

η(qt) = − log(ταU
t−1)− log(σ2

u).

Since we are considering the degenerated case with pseudo-stochastic vari-
ables, the U-agent will be more compensated and gets more optimistic (relative
to the worst case scenario) if the precision of the signal is higher. Thus, in the
first period, if we had a less noisy signal, then it made the U-agent with i = 0
confident enough and she decides to trade. However, in turn, this makes the
price signal to which the next generation (i = 0, 1) will refer much noisier. As
a result, under the parameter condition in (7), this effect leads to erosion of the
confidence of the U-agent and kicks her out from the market. This behavior of
the U-agent has an effect on the price and the portfolio of the S-agent.

As shown in Figure 3, the informativeness of price qt−1 decreases from t = 1
to t = 2 (note that t = 0 is given). We can see from the figure that a higher
value of λU precipitates information contamination within a period as well as
across the periods. This is consistent with the intuition that a larger number of
uninformed traders contaminates the price signal more. As a result, this leads to
the drop of the compensation coefficients and it gets more difficult for U-agents
with the price information to be compensated enough to make a trade. This
scenario holds only if the value of λU is large enough (there is no region for
µ ∈ [µlow, µup] if λU is low). Around the small value of λU , three periods are not
long enough for the participation of U-traders so that it contaminate the price
signal to make the next generation reluctant to trade.
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FIGURE 3. DYNAMICS AND COMPARATIVE STATICS

V. Full Dynamic Model of Market Crash

The basic environment is the same as the three periods example, but we as-
sume λI > 0. My goal in this section is to describe the market crash and over-
shooting of the price without any aggregate shocks nor successive idiosyncratic
shocks. Therefore, after calculating the equilibrium dynamics, I will make all
stochastic variables, except u, pseudo-random variables. The full stochastic model
can be considered as an extension and we can derive an endogenous probabil-
ity of the crash (hazard probability) as well as its dynamic property. It will be
clear that the role played by I-trader, who did not exist in the previous section,
is fundamental to replicate the realistic price movements around the crises.

The procedure of the analysis is as follows. First, I will consider the equilib-
rium where i = {0, 1, 2, 3, · · · , m} of U-agents are participating at date t. This
yields the local dynamics of the key variables and will be used to derive the crit-
ical value for escape. Next, I will show the entire dynamics of variables in the
case with an imitation behavior, i.e., if the group i was investing at date t, then
the group i + 1 also start trading in the next period. This information cascade
continues until the information is reset by the market crash.

A. Dynamics of the Economy

I focus on the PSGE. Suppose that i ∈ {0, 1, 2, · · · , m} of U-agents, I-agents
and S-agent are participating in the market at date t. We go back to the initial
setting and thus S and I-trader have the signal ss

t and sI
t . Behavior and the opti-

mal market order of each agent are given by the following proposition.
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PROPOSITION 2: Given Pt and available information sets, the optimal portfolio for
each type of trader is given by

xS
t = αS(θt+1 − Pt),

xI
t = αI

t [(1− βz
t − ρβ

q
t )µ + (βz

t + ρβ
q
t )µ

I
L − Pt]χ

I
t ,

xU,i
t = αU

t [ρβU
t µ + (1− ρβU

t )µ
U
L − Pt]χ

U
t ,

where the compensation coefficients β
j
t are determined by a typical linear filtering prob-

lem given by Proposition 3 below. Also, χ
j
t = I{j−trading} is an indicator function of

participation of trader-j. The investment coefficient α
j
t is given by

α
j
t ≡ τ−1Var(vt+1|y

j
t).

As induced from the example in the previous section, I guess the form of the
price signal at t would be

(11) qt = θt+1 + γs
t zs

t+1 + γI
t zI

t+1 + γe
t εt+1,

with some coefficient function γt : T → R. Intuitively, the first and the second
terms of the signal are noise contributions by S and I-trader respectively. The
last term is a noise brought by the traders who are relying on the past signal, i.e.,
I and U-traders.

Let A denote the entire set U-agents, and the subset At+1 ⊆ A for each t +
1 represent the subset of U-traders who have the information qt. Presumably,
we have that At = {0, 1, 2, · · · , m}. Hence, by the assumption of the signal
acquisition, we have At+1 = At ∪ {(m + 1)}.

The market clearing condition at date t is given by

x = xS
t + λI xI

t + ∑
i∈At

λUxU
t ,

and this yields the price signal of date t + 1 such that

qt+1 = θt+2 + γs
t+1zs

t+2 + γI
t+1zI

t+2 + γe
t+1εt+2.

This implies that, given (γ
j
t)j∈{s,I,e}, we can calculate the optimal portfolio and

{(β
j
t+1)j∈{q,z,U}, (α

j
t+1)j∈{I,U}}. Then, together with the market clearing condi-

tion, we can get qt+1 as well as (γj
t+1)j∈{s,e,I}. As a consequence, entire evolutions

of variables can be given by difference equations system as in Kyle (1985). The
exact specification is in Proposition 5. Now I define the “reset” or “crash” in the
following sense.
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DEFINITION 4: Consider the situation such that the no U-agents are in the market
at dates t < t0 − 1 and the idiosyncratic shock makes i = 0 trader trade in the market
at t = t0 − 1. We define the time of the “crash” or equivalently the “reset” of the market
by T∗ such that

T∗ = inf{t ≥ t0|χI
t χU,i

t = 0 ∀i ∈ A}.

Then, the initial guess (11) can be shown to be correct as long as the economy is
in the “pre-reset” periods.

PROPOSITION 3: Given the initial shock to U-trader, the information content of price
Pt takes the form such as (11).

Therefore, the informativeness of price is time dependent and this would be
critical for the economy when she moves toward the crash as we have seen in
the previous example. Moreover, the dynamics of the coefficients are given by
the following proposition.

PROPOSITION 4: For each t < T∗, given the initial conditions as well as the initial
trigger shock to i = 0 U-trader, the dynamics of the key variables are recursively given
by the following non-linear difference equations, i.e., for qt−1 as a linear function of
(γ

j
t−1)j∈{s,I,e} as in (11), we have

(
βz

t
ρβ

q
t

)
=

(
σ2

sI
t
, σsI

t ,qt−1

σsI
t ,qt−1, σq2

t−1

)−1 (
σsI

t ,vt+1

σqI t−1.vt+1

)
,(12)

βU
t =

Cov(qt−1, vt+1)

ρVar(qt−1)
,(13)

αI
t =τ−1Var(vt+1|(sI

t , qt−1)),(14)

αU
t =τ−1Var(vt+1|qt−1),(15)

γs
t =

αSβ

αSβ + λIα
I
t (βz

t + β
q
t ) + (t + 1)λUαU

t βU
t

,(16)

γI
t =

λIα
I
t βz

t

αSβ + λIα
I
t (βz

t + β
q
t ) + (t + 1)λUαU

t βU
t

(17)

γe
t =−

λIα
I
t β

q
t + (t + 1)λUαU

t βU
t

αS + λIα
I
t (βz

t + β
q
t ) + (t + 1)λUαU

t βU
t

.(18)

PROOF:
See Appendix.

Note that the result above holds under the condition that all agents are taking
a long position until the reset which is guaranteed by the assumption of µH =
∞. The difference equation system is highly non-linear and we cannot make
analytical proposals as for the property of the variables. However, numerical
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simulation of this system gives us an interesting example of booms and crises.
Note that this system does not have to be a stable one and I do not analyze the
uniqueness of the solution. We need to impose a parameter setting to make a
model stable for the S and I equilibrium, but, as we will see later, S, I and U-
traders system can be exploding.

Intuitions of difference equations are quite simple. Compensation coefficients
are determined by the linear filtering problem of Gaussian random variables
and α can be interpreted as a degree of risk each agent will be exposed after she
saw the set of information. These variables basically reflect how informative the
price would be. As for the noise coefficients γ, the denominator expresses the
total number of traders weighted by the portfolio coefficients and compensation
coefficients. The numerator of each γ is also the total number of traders who
are related to the noise. Since zS is held only by S agent, the weight γS has
αSβ, which is the coefficients of the portfolio of S trader. Note that the noise ε is
associated with both I and U-traders.

B. Herding and Escape

As in the three period example, we consider the participation behavior of the
(i, I I, t + 1)U agents with i ∈ At+1, given that agents {(i, I I, t)U ; i ∈ At} took
non-zero position. In this model, there are two possible situations as a bench-
mark scenario: an equilibrium with S and I-trader or an equilibrium with S-
trader only. I will focus on the first case to replicate the interesting and realistic
situation of a crisis.

PROPOSITION 5: Given that U-agents {(i, I I, t); i ∈ At} and I-agent took a non-
zero position at date t, U-agents {(i, I I, t + 1); i ∈ At+1} and I-agent in the next gen-
eration (i): take non-zero position if and only if

min{vI
t+1(s

I
t+1, qt), vU

t+1(qt)} > Pt+1,

(ii): I-trader stops trading while U-traders keep trading iff

vI
t+1(s

I
t+1, qt) < Pt+1 < vU

t+1(qt),

and (iii): both traders stop trading iff

max{vI
t+1(s

I
t+1, qt), vU

t+1(qt)} < Pt+1.

Intuitively, β
j
t governs how naive agents are compensated by looking at the

past price information (see (4) and Proposition 2). By construction, if the neigh-
bors were trading in the previous period, today’s phase I I agents know the past
price information. In the degenerate case, the ex-post realization of the signal
is constant µ. Thus, the signal puts the upward improvement on the prior ex-
pectation and its weight is controlled by β

j
t. Therefore, as the weight β

j
t to µ gets
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larger, the more improved the filtered worst case expectation would be. This im-
plies (as if) more optimistic expectation is formed under the precise signal and
therefore naive-agents are more likely to take a long position. Also, the effect of
the ambiguity on the posterior expectation is clear from Proposition 2.

PROPOSITION 6: If naive agents are facing a more ambiguous risky asset/ having a
higher degree of ambiguity aversion, then the escape is more likely to happen.

A lower µL (or a greater µ − µL, in a relative sense) implies a more ambigu-
ous situation or a stronger aversion toward ambiguity13. Thus, Proposition 6
is obvious from Proposition 2 and Proposition 5. The result is quite intuitive.
A lower µ− µL makes the escape more likely since the naive-agents need to be
compensated more in order to stay in the market.

If T∗ ∈ (0, ∞) a.s., then we want to think of it as a boom and bust of the
economy. Aside from the price movement, we have shown by Proposition 5 that
the number of U-agents who are trading in the market keeps growing during t <
T∗ as long as the condition (i) in Proposition 5 is satisfied. This herding behavior
is a typical characteristic of the boom we can see in the real economy. If we let
mj be the number of the j-trader trading in the market, the population of the
traders in the market is determined endogenously and evolves as the following
sequence as long as (i) in Proposition 5 keeps holding.

(mS, mI , mU)t<t0 = (1, λI , 0),
(mS, mI , mU)t=t0 = (1, λI , λU),
(mS, mI , mU)t<t0 = (1, λI , 2λU),

...
...

We know from Proposition 6 that this sequence of population of traders deter-
mines the information variables (α, β, γ) and the participation behavior of each
generation.

Also, the root of these herding and imitation are basically the lack of a reliable
information. When the irrational agents do not have credible and crude informa-
tion, they tend to imitate the neighboring agents if they are taking some actions.
These characteristics are widely observed in the laboratory experiments as well
as the real market (See the papers cited in Section II for more details).

Moreover, one of the novel points of this model is a simultaneous escape of
naive-agents from the market. During the boom, the herding behavior of un-
informed naive-agents accumulates the noise. Before the market is reset, each
naive-agent does not care about the effect of her own behavior on her neighbor,
and therefore she (her group) keeps trading until the information contamination
will be severe enough to cross the critical point. This can be thought as the net-

13 The model with MEU does not allow us to separate these two concepts, but the smooth ambiguity does.
See Klibanoff et al. (2005) for more detail of arguments about the separability.
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work externality in the sense of Acemoglu et al. (2015) and other literature of
network theory.

Proposition 5 says there are several scenarios we can consider by using this
model. Suppose that the initial trigger shock for i = 0 agent is precise enough to
make her trade at date t = t0. Then, the most interesting scenario is as follows.

DEFINITION 5: The crisis scenario is characterized by the crash time T∗ in Definition
4 which satisfies following conditions.

(i) For date t < T∗, cascade occurs and all U-traders in At and I-trader are trading,
i.e.,

Pt < min{vI
t , vU

t }.
(ii) At date t = T∗, participation of U-traders contaminates qt enough to make I-traders
stop trading, i.e.,

vI
t < Pt < vU

t .

(iii) At t = T∗ + 1, the escape of I-trader makes qt less precise and leads to escape of
U-traders, i.e.,

max{vI
t , vU

t } < Pt.

Let this scenario be labeled as the crisis scenario. Now we are in a position to think about
the role of I-trader more in details.

C. Escape Leads to the Further Escape: Overshooting

As shown in the previous section, escape behavior can be described without
I-traders. The role of I-trader is attributed to replicating the realistic price move-
ments during crises. In the real world, a market crash is defined by a huge drop
in a market price. In the model only with U-traders, however, we cannot obtain
that kind of drop. The reason is clear; as the share of U-traders, (t + 1)λU ap-
proaches to the critical point, we must have vU − P close to zero. This implies
that the portfolio order by U-traders is almost zero and has almost no effect on
the price. Even if U-traders escaped, the change in the price would be small and
there is no tremendous price drop, nor overshooting. In the real world, on the
other hand, a huge price drop is sometimes a result of sequential selling which is
caused by the previous selling by other traders. In other words, escape behavior
of some traders can lead to the further escape of other agents. To describe this
feature, I-trader plays an important role.

Note that, in the initial setting, both S and I-trader have a noisy signal. Thus
we can consider the following situation.

(i): An equilibrium price with S and I-trader is more precise than the price
formed by S-trader only. Also,

(ii): I-trader will escape from the market before U-traders will.
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Under these two conditions, information contamination caused by U-traders
kicks I-trader out first by (ii), but the escape of I-trader contaminates the price
signal further by (i). Then, this can push v of U-traders downward discretely
and U-traders will also escape in the next period. Thus, participation behavior
of U-traders would be a trigger of the escape of I-trader, and this can be a trigger
of the second round escape by U-traders themselves. Escape of I-trader does not
make much of difference in the price level following the logic above. However,
the second round escape can create a huge drop, which may overshoot compared
to the initial price level.

The situation in (ii) can be found easily if we set µI
L < µU

L , i.e., informed naive
trader is more ambiguity averse/ facing more ambiguous situation than unin-
formed naive traders. In this model, informed vs uninformed is not necessarily
associated with more ambiguous vs less ambiguous. We can think of the situ-
ation such as the agents get more confused if they get more information. Even
though the signal can resolve the risk, this cannot always reduce ambiguity in
the sense of Knight. In line with a robust control model described by Hansen
and Sargent (2001), I-trader takes more robust decision than U-traders.

As for the situation (i), we can think about the case where the noisy signal of
S-trader is not precise enough compared to the signal of I-trader, or they might
be negatively correlated. To see this, we can compare the price informativeness
under the equilibrium with S and I-trader and that with S trader only. Let a
superscript k ∈ {I, S} denote variables under each equilibrium, and define the
difference of informativeness of prices under these two equilibria by

∆t = log
Var(vt+1|qS

t−1)

Var(vt+1|qI
t−1)

,

where two equilibrium price signals are given by qS
t = θt+1 + zS

t+1 and qI
t is

identical to (11). Therefore,

(19) Var(qS
t ) = σ2

θ + σ2
zS

,

(20) Var(qI
t ) = σ2

θ + 2γe
t σ2

e + 2γS
t γI

t σzS σzI Corrs,I + ∑
i∈{S,I,e}

(γi
t)

2σ2
i .

We can check that participation of I-trader can improve the price information
(∆ > 0) or can harm it (∆ < 0). Figure 4 shows how this effect varies according
to the (relative) variance of signals, λI , and the correlation between zI and zs.

A higher ∆t implies that qt is more precise under S and I-trader’s equilibrium.
The figure shows a higher volatility of S-trader’s signal compared to I-trader’s
signal makes the participation of I-trader meaningful in the sense of price in-
formativeness. Also, if these two shocks are negatively and perfectly correlated,
these two noise components would be canceled out and the price will be more
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FIGURE 4. EFFECT OF I-TRADER ON ∆t

precise. We can find the similar patterns even if we allow U-traders to partici-
pate.

The key takeaway is the fact that there is a parameter region where the price signal
will be less precise (contaminated) if I-trader stops trading. This fact makes it pos-
sible for the crises scenario described in the previous subsection to realize, i.e.,
herding of U-traders contaminates the price signal, kicks I-trader out from the
market, and this leads to further contamination of the price signal which finally
makes U-traders inactive.

By making use of this property, the model replicates the price dynamics which
is consistent with the main characteristics of booms and busts in the real econ-
omy.

PROPOSITION 7: Let βI
t ≡ βz

t + ρβ
q
t . Under some parameter region, ∃T∗ which

describes the crises scenario in Definition 5, i.e., (i): For t < T∗,

min
j∈{I,At},

{vj
t} > Pt

(ii) At date T∗, we have
vU

t > Pt > vI
t , U = At,

which are equivalent to,

ρβU
T∗µ + (1− ρβU

T∗)µ
U
L > (1− βI

t)µ
I
L + βI

t µ,

αS(µ− vI
T∗) + (t + 1)λUαU

T∗(v
U
T∗ − vI

T∗) ≥ x,

and
αS(µ− vU

T∗) < x.
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(iii) At date T∗ + 1,
max

j∈{I,At},
{vj

t} < Pt

or equivalently,

βN
T∗+1 <

1
ρ
[1− x

αS(µ− µN
L )

],

vP
T∗+1 < PT∗+1,

where, given γ,

βU
t =


σ2

θ +γe
t−1σ2

e

σ2
θ +2γe

t−1σ2
e +2γS

t−1γI
t−1σzS σzI Corrs,I+∑i∈{S,I,e}(γ

i
t−1)

2σ2
i

i f t = T∗

σ2
θ +γe

t−1σ2
e

σ2
θ +(γS

t−1)
2σ2

zs+(γe
t−1)

2σ2
e +2γe

t−1σ2
e

i f t = T∗ + 1
.

Proposition 7 says we can find the parameter region in which the price drop will
overshoot as in Figure 5. The mechanism is clear. An initial condition for the
I-trader (if she did not participate in the previous period) makes I-trader keep
trading and the economy evolves toward the steady state with S and I-trader,
which would be the benchmark. Then the idiosyncratic shock hits the randomly
picked U-trader and the cascade takes place, making U-traders sequentially par-
ticipate. This flow contaminates the price signal and makes I-trader stop trading
at some point. Then, the price signal gets contaminated more and U-traders also
stop trading, and eventually, the economy converges to the equilibrium only
with S-trader.

PROPOSITION 8: Given T∗ in Proposition 7 and under the crises scenario with over-
shooting, the price evolves as follows.

(21) Pt =


αSµ+λI αI

t vI
t+(t+1)λUαU

t vU
t −x

αS+λI αI
t+(t+1)λUαU

t
i f t ≤ T∗

αSµ+(t+1)λUαU
t vU

t −x
αS+(t+1)λUαU

t
i f t = T∗

µ− x/αS i f t ≥ T∗ + 1.

PROOF:
See Appendix.

Figure 5 provides the illustrative example of the crises scenario. As long as all
types of traders are trading, the price would evolve according to Pall in the figure
and it keeps increasing since the demand also increases as a number of U-traders
keeps going up. This sequential participation contaminates the price signal and
therefore, compensation coefficient as well as the worst case expectations of both
I and U-traders decline14. Then, I define T∗ as the timing of the switch of vI

t >
Pt, when I-trader stops trading. As shown in Figure 4, this can contaminate

14 Note that the amount of the market order of each trader decreases as the price goes up and the worst
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FIGURE 5. CRISIS SCENARIO

FIGURE 6. SOFT-LANDING SCENARIO

the price information further and make vU
t jump down. Under some parameter

region, this drop exceeds the price drop and thus the lower price will be an
equilibrium, Pall

t → PS
t .

Also, we can think about the situation where U-traders escape faster than I-
trader as described in Figure 6. In this case, the economy goes back to the initial
steady state, and there is no tremendous price drop since U-traders stop trading
after the price decreases and becomes close to vU . Thus, we can think of this
situation as a soft-landing. Even though a boom takes place, the price does not
jump down or overshoot. It gradually goes back to the initial point drawing a
hump-shaped trajectory by construction. In this scenario, I-trader will not stop

case scenario goes down. However, the total amount of trading done by U-traders can go up if the effect of
the increase in the number of U-traders dominates the negative effects on the individual’s portfolio.
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trading because, once U-traders stop trading, the informativeness of the price
goes back to the initial level, where I-trader is compensated enough to trade.

Overall, this model could separate the two scenarios, one with a tremendous
price drop with overshooting and one with a soft-landing, by looking at how
active each type of agents might be.

VI. Empirical Implications and Discussions (preliminary)

This model provides at least two empirical implications. First, we can make a
distinction of the booms which will lead to the crises and the one which will lead
to soft-landing. Note that, in order for the model to replicate the crisis with over-
shooting price, we are more likely to have xI

t < xU
t in terms of individual level

portfolio. On the other hand, if we got xI
t > xU

t , then U-traders escape from the
market faster than I-trader, which means we will not experience the huge drop
in the price. This highlights the highly active uninformed traders described in
Sornette (2004) and the citation in Introduction of this paper. In terms of this clas-
sification, if we could measure the information trade, heterogeneous degrees of
ambiguity as well as their portfolio as in Collin-Dufresne and Fos (2015), then we
can make a distinction of overshooting scenario and soft-landing scenario. What
might be crucial here is the fact that the total investment activity by U-traders
is more likely to dominate the activity of I-trader in both cases. However, if we
could look at the individual activity or market order, then checking if each in-
formed trader is more active than individual U-trader would be a clew to know
whether the boom is harmful or not.

Moreover, this model suggests that price could be more volatile than we have
expected in the model with only rational agents or homogeneous ambiguity
averse agents. In the literature of the ambiguity aversion such as Epstein and
Schneider (2008) and Mele and Sangiorgi (2010), it is shown that the existence
of ambiguity averse trader makes the price more volatile since the price reacts
more sharply to the informational shock under the equilibrium with ambigu-
ity averse traders. Thus, ambiguity aversion itself can contribute to the volatile
price. However, in my model, it is shown that heterogeneity in terms of ambi-
guity aversion can create further price fluctuation. If we consider the heteroge-
neous ambiguity averse traders with different sets of available information, the
participation of the one type of traders can make other types of traders reluctant
to trade. Then, this escape can lead to further escape as shown in the model and
can be a source of overshooting price. In this sense, this model suggests that we
have to incorporate the feedback type of participation behavior which makes the
prices more volatile.

VII. Conclusion

Markets can crash without any aggregate nor successive idiosyncratic shocks.
This model provides one of the critical situations in which the initial idiosyn-
cratic trigger shock can create the market booms and busts. The key factors of the
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entire story are the herding participation of irrational uninformed agents, who
crucially need to have information, and the informativeness of the price signal.
If the market is completely occupied by the sophisticated agents who have an
insider information, then the price informativeness is extremely high. Thus, if
this information is accidentally leaked to one of the irrational agents (say agent
i = 0), she gets compensated (would be optimistic) and decides to start trad-
ing. This initial agent’s behavior can be seen from her neighbors i = 1, which
can be interpreted as further information leakage from the initial agent. The
participation of irrational/uninformed agents itself adds the noise to the insider
information. Therefore, up to some moment, irrational agents who get a signal
are compensated enough to trade since the number of participating irrational
agents is sufficiently small. So they start trading. However, their participation
itself contaminates the information of the price and they find the signal they will
use in the next period not reliable enough, and stop trading, i.e., simultaneously
escape from the market. This sudden escape from the market creates the crash
of the price under some parameter conditions.

This model further contributes to the discussion of overshooting as well as
escape (selling) behavior which leads to further escape (selling). As described
by Sornette (2004), uninformed traders’ participation may contaminate the price
signal, and this can make another agent feel uncomfortable to trade. If this agent
has been contributing to make precise information, her escape makes the situ-
ation worse; the price signal will be more contaminated. Then, this first round
escape can cause the second round escape by uninformed naive traders, which
induces a discrete drop of demand and can be a trigger of overshooting.

Overall, we could see how ambiguity aversion affects the booms and busts of
the market. Not only can it make the informativeness of the price a source of
the booms, but it also can be a self-fulfilling reason for the market crashes. The
Ss type portfolio strategy is the key mechanism and also makes the information
flow much more important compared to the existing literature. We can know
how the boom will end by focusing on the time trajectory of informativeness of
the price, as well as the portfolio of each type of trader.
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APPENDIX A

The following values of parameters give the examples of crises scenario and
the soft-landing scenario.

APPENDIX B
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TABLE A1—EXAMPLE PARAMETER VALUES FOR CRITICAL SCENARIOS

values
parameter crises scenario soft-landing

λI 2.30 0.01 measure of I-trader
λU 0.01 0.80 measure of U-traders
σ2

e 1.30 0.10 variance of ε
σ2

u 1.10 0.30 variance of u
σ2

zS 20.0 0.01 variance of zS

σ2
zI 20.0 0.01 variance of zI

ρ 0.78 0.90 persistence of θ
ρS,I 0.80 0.50 Corr(zS, zI)
τ 3.00 3.00 absolute RA
µ 28.0 1.50 mean of µ
µI

L 3.10 1.40 worst case µ of I
µU

L 9.50 1.20 worst case µ of U
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