UNIVERSITY OF TOKYO 1st Finance Junior Workshop Program

Monetary Policy and Welfare Issues in the Economy with Shifting Trend Inflation

Le Thanh Ha (GRIPS) (30th March 2017)

1. Introduction Exercises

- This paper studies a standard New Keynesian model with <u>Calvo price</u> setting, <u>shifting trend</u> inflation and without full price indexation
- Two assumptions: Central Bank
 - Set a positive inflation target
 - But lack commitment to a fixed inflation target (trend inflation behaves as a shock)

• Objectives:

 Quantify the welfare cost and inefficiency sources of shifting trend inflation using the U.S data

Rationales

Necessities of Study on Trend Inflation

- Trend Inflation: Central Bank's inflation target and private sector's long run expectation.
- **Restrictive assumptions:** inflation target must be zero and full price indexation
- → empirically unrealistic because
 - Exceedingly rare (the authority always sets the positive inflation target)
 - Misleading conclusions (e.g. "divine coincidence", a highly non-linear and positive slope of the long-run NKPC...)
 - Washing out implications of micro-foundations (price dispersion, marginal markup, discounting)
 - Welfare's issue: Inappropriateness of standard welfare function (Woodford, 2003)

Rationales

Necessities of Study on Shifting Trend Inflation

- Shifting Trend Inflation: the authority lacks a commitment to pursue a fixed inflation target → target can change (Policy Implementation Inconsistency)
- Few papers pay attentions to time-varying property of trend inflation to indicate its necessities:
 - Cogley (2008): a fitting data problem from monetary regimes.
 - Nakata (2014): changes in welfare of representative agents.
 - Consistent to reality

Research Questions

- How does the Policy Implementation Inconsistency (shifting trend inflation) affects the economy and brings about consequences?
- What are components causing economy to deviate from its efficiency (the inefficient sources) and how they magnify the welfare cost?

Limitations of Closely Related Papers

- Woodford (2003): the approach is not consistent
 - Curvature of loss function (small as of zero inflation) sharply increase as trend inflation grows
 - Steady-state variable are still dynamic, while exogenous shocks remain stable at their mean

 \rightarrow thus the standard welfare loss function underestimates welfare under positive trend inflation.

- Alves (2012, 2014): find new approach but abstract the property of shifting trend inflation
- Nakata (2014): successes in computing the welfare function But not control <u>the radius of convergence</u> and <u>the</u> <u>appropriateness of local approximation</u> is wholly problem specific

Contributions

- Show the exact magnitude of persistence for trend inflation
- Indicate different channels that shifting trend inflation affects the economy
- Find a new approach to derive the inefficiency sources

2. Overview of the Model

- 4 sectors:
 - Household
 - Intermediate Producers
 - Final Producers
 - Monetary Authority
- structural shocks
 - Technology(ϵ_{zt}), Cost-push (ϵ_{θ_t}), government expenditure (ϵ_{gt}), interest rate (ϵ_{Rt}), or money growth(ϵ_{mt}), and shock to trend inflation($\epsilon_{\overline{n,t}}$).

Household sector

Households solve a problem that how they maximize their utility with respect to a given budget constraint

$$\max_{B_{t},M_{t},C_{t},h_{t}} E_{o} \sum_{t=0}^{\infty} \beta^{t} \left[\ln(C_{t} - \gamma C_{t-1}) + \ln\left(\frac{M_{t}}{P_{t}}\right) - \frac{\omega}{1+\nu} H_{t}^{1+\nu} \right]$$

Such that: $P_{t}C_{t} + \frac{B_{t}}{r_{t}} + M_{t} = M_{t-1} - P_{t}T_{t} + B_{t-1} + W_{t}h_{t} + D_{t}$

Final goods-producing firm

The competitive final good producing firms solve a problem that how they maximize their profit with a given technology

- θ_t : price elasticity of demand for intermediate goods.
- The cost-push shock: $\ln(\theta_t) = (1 p_\theta) \ln(\theta) + p_\theta \ln(\theta_{t-1}) + \epsilon_{\theta_t}$
- The competitive final good producing firms maximize the profit:

$$\operatorname{Max} \pi_t^I = P_t \left[\int_0^1 Y_t(i)^{\frac{\theta_t - 1}{\theta_t}} di \right]^{\frac{\theta_t}{\theta_t - 1}} - \int_0^1 P_t(i) Y_t(i) di$$

The constant-return-to scale technology: $\left[\int_{0}^{1} Y_{t}(i)^{\frac{\theta_{t}-1}{\theta_{t}}} di\right]^{\frac{\theta_{t}}{\theta_{t}-1}} \ge Y_{t}$

Intermediate Goods-Producing Firms A positive steady state inflation

- A monopolistic competitive firm produces an intermediate good using a linear production technology: $Z_t h_t(i) \ge Y_t(i)$
- The aggregate technology shock: $\ln(Z_t) = \ln(z) + p_z \ln(Z_{t-1}) + \epsilon_{zt}$
- A Calvo Model: a fraction η of firms cannot optimize prices, but can update it

 $P_t(i) = \left(\pi_{t-1}^{\mu} \bar{\pi}_{t-1}^{1-\mu}\right)^{\chi} P_{t-1}(i), \text{ where } \bar{\pi}_t: \text{ Authority's inflation target}$

• $(1 - \eta)$ Intermediate-goods producing firms set the price P_t^* to optimize profit

$$\max_{Y_{i,t},P_{i,t}} E_{t} \sum_{j=0}^{\infty} \frac{\lambda_{t+j}}{\lambda_{t}} \eta^{j} \left\{ \frac{P_{i,t}^{*} \left(\bar{\pi}_{t}^{\chi j}\right)^{1-\mu} \left(\pi_{t-1,t+j-1}^{\chi}\right)^{\mu}}{P_{t+j}} Y_{i,t+j} - \frac{W_{t+j}}{P_{t+j}} \left(\frac{Y_{i,t+j}}{Z_{t+j}}\right) \right\}$$

s.t
$$Y_{i,t+j} = \left[\frac{P_{i,t}^*(\overline{\pi}_t^{\chi j})^{1-\mu}(\pi_{t-1,t+j-1}^{\chi})^{\mu}}{P_{t+j}}\right]^{-\theta} Y_{t+j}$$

$$\pi_{t,t+j} = \left(\frac{P_{t+1}}{P_t}\right) \left(\frac{P_{t+2}}{P_{t+1}}\right) \dots \left(\frac{P_{t+j}}{P_{t+j-1}}\right) \qquad for \ j = 1,2,3 \dots$$

Monetary Policy and Welfare Issues in the Economy with Shifting Trend Inflation

Intermediate Goods-Producing Firms A positive steady state inflation

The first order condition

$$\begin{split} \frac{P_{i,t}^{*}}{P_{t}} &= \frac{\theta}{\theta - 1} \begin{bmatrix} E_{t} \sum_{j=0}^{\infty} (\beta\eta)^{j} \Lambda_{t+j} \frac{W_{t+j}}{P_{t+j}} \frac{Y_{t+j}}{Z_{t+j}} Y_{i,t+j} \left[\frac{P_{i,t}^{*} \left(\bar{\pi}_{t}^{\chi j} \right)^{1-\mu} \left(\pi_{t-1,t+j-1}^{\chi} \right)^{\mu}}{P_{t+j}} \right]^{1-\theta} \\ &= E_{t} \sum_{j=0}^{\infty} (\beta\eta)^{j} \Lambda_{t+j} \frac{W_{t+j}}{P_{t+j}} \frac{Y_{t+j}}{Z_{t+j}} Y_{i,t+j} \left[\frac{P_{i,t}^{*} \left(\bar{\pi}_{t}^{\chi j} \right)^{1-\mu} \left(\pi_{t-1,t+j-1}^{\chi} \right)^{\mu}}{P_{t+j}} \right]^{1-\theta} \\ &\cdot \quad No_{t} = E_{t} \sum_{j=0}^{\infty} (\beta\eta)^{j} \Lambda_{t+j} \frac{W_{t+j}}{P_{t+j}} \frac{Y_{t+j}}{Z_{t+j}} Y_{i,t+j} \left[\frac{P_{i,t}^{*} (\bar{\pi}_{t}^{\chi j})^{1-\mu} \left(\pi_{t-1,t+j-1}^{\chi} \right)^{\mu}}{P_{t+j}} \right]^{-\theta} \\ &\rightarrow No_{t} = w_{t} + \beta\eta \left(\bar{\pi}_{t}^{-\chi\theta} \right)^{1-\mu} \left(\pi_{t}^{-\chi\theta} \right)^{\mu} E_{t} \{ \pi_{t+1}^{\theta} No_{t+1} \} \end{split}$$

$$\Rightarrow De_t = 1 + \beta \eta \left(\bar{\pi}_t^{\chi(1-\theta)} \right)^{1-\mu} \left(\pi_t^{\chi(1-\theta)} \right)^{\mu} E_t \left\{ \pi_{t+1}^{\theta-1} De_{t+1} \right\}$$

• Price dispersion: $s_t = (1-\eta) \left(\pi_t^* \right)^{-\theta} + \eta \left(\bar{\pi}_t - \chi^{\theta} \right)^{1-\mu} \left(\pi^{-\chi\theta} \right)^{\mu} \pi^{\theta} s_t$

Monetary Policy and Welfare Issues in the Economy with Shifting Trend Inflation

Intermediate Goods-Producing Firms Positive vesus Zero Inflation Target

- The evolution of price depends on the previous inflation rate and the trend inflation
- The future expected inflation rates enter on both Not and Det, thus have effects on the future variables.
 Price-setting becomes more "forward-looking" so inflation does
- Implications of microfoundations (price dispersion term, marginal markup, discounting) appears when trend inflation is positive but disappear when it is zero.

The authority Monetary Policy

- The Taylor rule: $\frac{r_t}{r} = \left(\frac{r_{t-1}}{r}\right)^{p_r} \left[\left(\frac{\pi_t}{\overline{\pi}_t}\right)\left(\frac{y_t}{y}\right)^{p_y}\right]^{1-p_r} \delta_r e^{rt}$
 - Where $\bar{\pi}_t$ is trend inflation, $y_t = \frac{Y_t}{Z_t}$, r and y are deterministic levels of r_t and y_t
- Two properties of trend inflation:
 - Increase over time
 - High persistence

• The model under two different assumptions on the process of trend inflation

 $- \ln \bar{\pi}_t = (1 - \rho_\pi) \ln \bar{\pi}^* + \rho_\pi \ln \bar{\pi}_{t-1} + \epsilon_{\overline{\pi}, \overline{t}}$

(capture the second property and high probability of negative number)

 $- \ln[\bar{\pi}_t - 1] = (1 - \rho_{\pi}) \ln[\bar{\pi}^* - 1] + \rho_{\pi} \ln[\bar{\pi}_{t-1} - 1] + \epsilon_{\overline{\pi}, \overline{t}}$ (capture both properties)

The authority Fiscal Policy

• The government budget resource is represented as

$$\frac{M_{t-1}}{P_t} + B_t + P_t G_t = P_t T_t + \frac{B_{t+1}}{r_t} + \frac{M_t}{P_t}$$

• Government expenditure is financed by lump-sum taxes and seigniorage as follows

$$G_t = T_t + M_t - \frac{M_{t-1}}{\pi_t}$$

• Let g_t denote the the government spending growth and we have

$$G_t = \left(1 - \frac{1}{g_t}\right) Y_t$$
 where $g_t > 1$: the gov expenditure growth

• Where g_t is an AR(1) process

$$\ln(g_{t+1}) = (1 - p_g)\ln(g) + p_{\theta}\ln(g_t) + \epsilon_{\theta_t}$$

Market Clearing Conditions

• The market clearing condition in the labor market can be expressed as

$$H_t = \int H_t(i)di$$

• The market clearing condition in the good market

$$Y_t = C_t + G_t \rightarrow Y_t = C_t + \left(1 - \frac{1}{g_t}\right)Y_t \rightarrow C_t = \frac{1}{g_t}Y_t$$

• Finally, the zero net supply of bond is

$$B_t = 0$$

Welfare Cost Computation

The compensation variation in consumption that enhances the welfare of a typical household in one economy to make them as better-off as others in another economy

$$E\left\{\sum_{t=0}^{\infty}\beta^{t}u\left(\left(1+\frac{wc}{100}\right)C_{A,t},H_{A,t},m_{A,t}\right)\right\}=\left\{\sum_{t=0}^{\infty}\beta^{t}u\left(C_{B,t},H_{B,t},m_{B,t}\right)\right\}$$

Where $C_{A,t}$, $H_{A,t}$, $m_{A,t}$ are consumption, labor supply and money growth in the economy with $\sigma_{\overline{\pi}} > 0$ and $C_{B,t}$, $H_{B,t}$, $m_{B,t}$ are in economy with $\sigma_{\overline{\pi}} = 0$.

Steady-State Distortions Social Planner

- Q_t : the optimal consumption
- Social planer maximize Social welfare function under the frictions associated monetary trade and sluggish price adjustments

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[\ln(Q_t - \gamma Q_{t-1}) + \ln\left(\frac{\mathsf{M}_t}{\mathsf{P}_t}\right) - \int_0^1 \omega \frac{n_t(i)^{1+\nu}}{1+\nu} di \right]$$

- The aggregate feasibility constraint: $Z_t \left[\int_0^1 n_t(i)^{\frac{\theta_t}{\theta_t 1}} di \right]^{\frac{\sigma_t}{\theta_t 1}} \ge g_t Q_t$ (Market Clearing Condition)
- Compare to Household's problem:

$$\max_{B_{t},M_{t},C_{t},h_{t}} E_{o} \sum_{t=0}^{\infty} \beta^{t} \left[\ln(C_{t} - \gamma C_{t-1}) + \ln\left(\frac{M_{t}}{P_{t}}\right) - \frac{\omega}{1+\nu} H_{t}^{1+\nu} \right]$$
$$C_{t} + \frac{B_{t}}{r_{t}} + M_{t} = M_{t-1} - P_{t}T_{t} + B_{t-1} + W_{t}h_{t} + D_{t}P_{t}$$

Monetary Policy and Welfare Issues in the Economy with Shifting Trend Inflation

Steady-State Distortions

• The inefficiency sources is defined here as components making the consumption deviate from its efficient amount in the steady state. In particular,

$$c = \left\{ \frac{1}{\omega} \left(\frac{z - \beta \gamma}{z - \gamma} \right) \frac{w}{s^{v} g^{v}} \right\}^{\frac{1}{1 + v}} deviate \ q = \left[\frac{g^{(1 - \theta)/\theta}}{\omega} \frac{z - \beta \gamma}{z - \gamma} \right]^{\frac{1}{1 + v}} by$$
$$\frac{w}{s^{v} g^{v + \frac{1 - \theta}{\theta}}} = \frac{1}{g^{v + \frac{1 - \theta}{\theta}}} * \frac{1}{\mu_{m}} * \left[\frac{1 - \eta \beta \pi^{(1 - \chi)(-\theta)}}{1 - \eta} \right] \left[\frac{1 - \eta}{1 - \eta \pi^{(1 - \chi)(\theta)}} \right] \left[\frac{1 - \eta \pi^{(1 - \chi)(\theta - 1)}}{1 - \eta} \right]^{\frac{1 + \theta v}{1 - \theta}}$$

- The source of inefficiency:
 - $-g^{\nu+\frac{1-\theta}{\theta}}$: inefficient government expenditure (d_f)
 - $-\frac{1}{\mu_m}$: the monopolistic competition distortion (d_m)
 - the non-optimal inflation target (d_i)

<u>Proposition 1</u>: If the price is fully flexible $(\eta = 1)$, or a price indexation is unit $(\chi = 1)$, or when the zero-inflation target is considered $(\bar{\pi}_t = 1^{0.25})$, the optimal consumption can be obtained if $g = \left(\frac{1}{\mu_m}\right)^{\overline{\nu\theta+1-\theta}} = \left(\frac{\theta-1}{\theta}\right)^{\overline{\nu\theta+1-\theta}}$

Monetary Policy and Welfare Issues in the Economy with Shifting Trend Inflation

3. Parametrization Values GMM, SMM, and Bayesian

• Observable variables

- Quarterly data seasonally adjusted: 1982Q4:2015Q1
- GDP growth; GDP Deflator; 3-month treasury bill rate

Table 2: Estimated Parameters from Different Methods

	β	ρz	δ_Z	$ ho_{ar{\Pi}}$	$\delta_{\overline{\Pi}}$
GMM	0.9974 (0.0414)	0.8000 (0.3903)	0.0992 (0.0121)	0.9950 (0.0820)	0.098 (0.0067)
Bayesian Estimation	0.9999	0.7523	0.1390	0.9949	0.05

Parametrization Values Benchmark Model

Parameter	Description	Calibrated Value		
β	The discount factor	0.9974		
γ	Consumption habit	0.81		
Z	The steady state of technology shock	1.00		
ω	Labor supply disutility	1.00		
V	Inverse Frisch elasticity of labor supply	1.59		
θ	Elasticity of substitution	10.0		
$1 - g^{-1}$	Steady state share of Government expenditure			
p_z	AR(1) coefficient for technology shock	0.80		
p_g	AR(1) coefficient for government spending shock	0.98		
$100\delta_z$	Standard deviation of technology shock	1.10		
$100\delta_g$	Standard deviation of government spending shock	0.55		
Monetary Policy (The interest rate rule)				
ϕ_{π}	Taylor coefficient on the inflation gap	1.92		
ϕ_y	Taylor coefficient on the output gap	0.10		
p_r	AR(1) coefficient for monetary shock	0.81		
$100\delta_r$	Standard deviation of monetary shock	0.25		
Monetary Policy	The money growth rule)			
p_{gm}	The persistence of money growth	0.81		
$100p_{em}$	AR(1) coefficient of monetary shock	0.25		
s1	Impacts of inflation	1.92		
s2	Impact of output	0.10		
Calvo Price Settir	lg			
n	Probability of not being able to optimize	[0 6 0 65 0 7 0 75]		

4.1. Transmission Mechanism The cost of price dispersion

• The cost of price dispersion by $\tilde{z}_t = z_t/s_t$ (an effective aggregate productivity)

Monetary Policy and Welfare Issues in the Economy with Shifting Trend Inflation

4.1. Transmission Mechanism **Steady-State Variables**

Changes in trend inflation affect the steady state, which leads to a change in the point around which the model is log-linearly approximated

 \rightarrow the log-linear dynamics of the model alter

4.1. Transmission Mechanism A Shock to Trend Inflation

• The shock persistently distorts the economy

Monetary Policy and Welfare Issues in the Economy with Shifting Trend Inflation

4.1. Transmission Mechanism Summary

- 1. A rise in trend inflation directly causes price dispersion augment, and then a reduction in an effective aggregate productivity occurs.
- 2. The results illustrating changes of steady-state variables due to shifting trend inflation show that the more inputs are required to produce a given amount of output when output and consumption diminish. Hence, the welfare cost is a direct consequence of more working while salary and consumption decrease.
- 3. It will put burden on the society by distorting the environment for the economic growth, such as a persistent increase in inflation and interest rate, and price dispersion while wage relentlessly reduces

4.2. Welfare Cost and Inefficiency Sources Computations Constant Positive Trend Inflation

	Welfare	Welfare Cost	d _f	d _m	d _i
$\overline{\Pi} = 1.00^{0.25}$	-894.844				
$\overline{\Pi} = 1.06^{0.25}$	-895.459	0.595%	0.496%	0.535%	0.845%

- Can Deflation be good? Probably if
 - The deflation leads to a small level of price dispersion
 - As long as the deflation is set, if the central bank mandates negative interest rates

Monetary Policy and Welfare Issues in the Economy with Shifting Trend Inflation

4.2. Welfare Cost and Inefficiency Sources Computations Shifting Trend Inflation

	Welfare	Welfare Cost	d _f	d _m	d _i	
$\ln(\overline{\Pi}_t/\overline{\Pi}^*) = \rho_{\overline{\Pi}} \ln(\overline{\Pi}_{t-1}/\overline{\Pi}^*) + \epsilon_{\Pi,\mathrm{T}}$						
All shocks	-895.315					
$\sigma_{\Pi}=0$	-894.589	0.09%	0.119%	0.082%	0.130%	
Without Business	-890.896	0.571%	0.477%	0.514%	0.812%	
Cycle Fluctuation						
$\ln\left((\overline{\Pi}_t - 1)/(\overline{\Pi}^* - 1)\right) = \rho_{\overline{\Pi}} \ln\left((\overline{\Pi}_{t-1} - 1)/(\overline{\Pi}^* - 1)\right) + \epsilon_{\Pi, \mathrm{T}}$						
All shocks	-895.883					
$\sigma_{\Pi} = 0$	-894.590	0.166%	0.215%	0.149%	0.235%	
Without Business Cycle Fluctuation	-891.464	0.569%	0.475%	0.512%	0.809%	

5. Conclusions

- The theory on the mechanism:
 - a rise in price dispersion causing a larger difference between output and labor hours
 - a reduction in an effective aggregate productivity
 - a decrease in consumption and wage but an increase in labor hours
 - the effect of distorting an improving path of output growth while amplifying an expansion of inflation and labor supply
- The trend inflation source signified the welfare cost the most significantly
- The high-trend-inflation economy is more elastic to changes as opposed to the low-trend inflation economy

Thank You