UNIVERSITY OF TOKYO $1^{\text {st }}$ Finance Junior Workshop Program

Monetary Policy and Welfare Issues in the

 Economy with Shifting Trend InflationLe Thanh Ha (GRIPS)
(30 ${ }^{\text {lh }}$ March 2017)

1. Introduction Exercises

- This paper studies a standard New Keynesian model with Calvo price setting, shifting trend inflation and without full price indexation
- Two assumptions: Central Bank
- Set a positive inflation target
- But lack commitment to a fixed inflation target (trend inflation behaves as a shock)
- Objectives:
- Quantify the welfare cost and inefficiency sources of shifting trend inflation using the U.S data

Rationales

Necessities of Study on Trend Inflation

- Trend Inflation: Central Bank's inflation target and private sector's long run expectation.
- Restrictive assumptions: inflation target must be zero and full price indexation
\rightarrow empirically unrealistic because
- Exceedingly rare (the authority always sets the positive inflation target)
- Misleading conclusions (e.g. "divine coincidence", a highly non-linear and positive slope of the long-run NKPC...)
- Washing out implications of micro-foundations (price dispersion, marginal markup, discounting)
- Welfare's issue: Inappropriateness of standard welfare function (Woodford, 2003)

Rationales Necessities of Study on Shifting Trend Inflation

- Shifting Trend Inflation: the authority lacks a commitment to pursue a fixed inflation target \rightarrow target can change (Policy Implementation Inconsistency)
- Few papers pay attentions to time-varying property of trend inflation to indicate its necessities:
- Cogley (2008): a fitting data problem from monetary regimes.
- Nakata (2014): changes in welfare of representative agents.
- Consistent to reality

Research Questions

- How does the Policy Implementation Inconsistency (shifting trend inflation) affects the economy and brings about consequences?
- What are components causing economy to deviate from its efficiency (the inefficient sources) and how they magnify the welfare cost?

Limitations of Closely Related Papers

- Woodford (2003): the approach is not consistent
- Curvature of loss function (small as of zero inflation) sharply increase as trend inflation grows
- Steady-state variable are still dynamic, while exogenous shocks remain stable at their mean
\rightarrow thus the standard welfare loss function underestimates welfare under positive trend inflation.
- Alves (2012, 2014): find new approach but abstract the property of shifting trend inflation
- Nakata (2014): successes in computing the welfare function But not control the radius of convergence and the appropriateness of local approximation is wholly problem specific

Contributions

- Show the exact magnitude of persistence for trend inflation
- Indicate different channels that shifting trend inflation affects the economy
- Find a new approach to derive the inefficiency sources

2. Overview of the Model

- 4 sectors:
- Household
- Intermediate Producers
- Final Producers
- Monetary Authority
- structural shocks
- Technology $\left(\epsilon_{z t}\right)$, Cost-push $\left(\epsilon_{\theta_{t}}\right)$, government expenditure $\left(\epsilon_{g t}\right)$, interest rate $\left(\epsilon_{R t}\right)$, or money growth $\left(\epsilon_{m t}\right)$, and shock to trend inflation $\left(\epsilon_{\overline{\pi, t}}\right)$.

Household sector

Households solve a problem that how they maximize their utility with respect to a given budget constraint

$$
\operatorname{Max}_{\mathrm{B}_{t}, \mathrm{M}_{t}, C_{t}, h_{t}} E_{o} \sum_{t=0}^{\infty} \beta^{t}\left[\ln \left(C_{t}-\gamma C_{t-1}\right)+\ln \left(\frac{\mathrm{M}_{t}}{\mathrm{P}_{t}}\right)-\frac{\omega}{1+v} H_{t}^{1+v}\right]
$$

Such that: $\mathrm{P}_{t} \mathrm{C}_{t}+\frac{B_{t}}{r_{t}}+\mathrm{M}_{t}=M_{t-1}-\mathrm{P}_{t} \mathrm{~T}_{t}+\mathrm{B}_{t-1}+W_{t} h_{t}+D_{t}$

Final goods-producing firm

The competitive final good producing firms solve a problem that how they maximize their profit with a given technology

- $\theta_{t}:$ price elasticity of demand for intermediate goods.
- The cost-push shock: $\ln \left(\theta_{t}\right)=\left(1-p_{\theta}\right) \ln (\theta)+p_{\theta} \ln \left(\theta_{t-1}\right)+\epsilon_{\theta_{t}}$
- The competitive final good producing firms maximize the profit:

$$
\operatorname{Max} \pi_{t}^{I}=P_{t}\left[\int_{0}^{1} Y_{t}(i)^{\frac{\theta_{t}-1}{\theta_{t}}} d i\right]^{\frac{\theta_{t}}{\theta_{t}-1}}-\int_{0}^{1} P_{t}(i) Y_{t}(i) d i
$$

The constant-return-to scale technology: $\left[\int_{0}^{1} Y_{t}(i)^{\frac{\theta_{t}-1}{\theta_{t}}} d i\right]^{\frac{\theta_{t}}{\theta_{t}-1}} \geq Y_{t}$

Intermediate Goods-Producing Firms A positive steady state inflation

- A monopolistic competitive firm produces an intermediate good using a linear production technology: $Z_{t} h_{t}(i) \geq Y_{t}(i)$
- The aggregate technology shock: $\ln \left(Z_{t}\right)=\ln (z)+p_{z} \ln \left(Z_{t-1}\right)+\epsilon_{z t}$
- A Calvo Model: a fraction η of firms cannot optimize prices, but can update it

$$
P_{t}(i)=\left(\pi_{t-1}^{\mu} \bar{\pi}_{t-1}^{1-\mu}\right)^{\chi} P_{t-1}(i) \text { where } \bar{\pi}_{t} \text { : Authority's inflation target }
$$

- $(1-\eta)$ Intermediate-goods producing firms set the price P_{t}^{*} to optimize profit

$$
\begin{array}{r}
\max _{Y_{i, t}, P_{i, t}} E_{t} \sum_{j=0}^{\infty} \frac{\lambda_{t+j}}{\lambda_{t}} \eta^{j}\left\{\frac{P_{i, t}^{*}\left(\bar{\pi}_{t}^{\chi j}\right)^{1-\mu}\left(\pi_{t-1, t+j-1}^{\chi}\right)^{\mu}}{P_{t+j}} Y_{i, t+j}-\frac{W_{t+j}}{P_{t+j}}\left(\frac{Y_{i, t+j}}{Z_{t+j}}\right)\right\} \\
\text { s.t } Y_{i, t+j}=\left[\frac{P_{i, t}^{*}\left(\bar{\pi}_{t}^{\chi j}\right)^{1-\mu}\left(\pi_{t-1, t+j-1}\right)^{\mu}}{P_{t+j}}\right]^{-\theta} Y_{t+j} \\
\pi_{t, t+j}=\left(\frac{P_{t+1}}{P_{t}}\right)\left(\frac{P_{t+2}}{P_{t+1}}\right) \ldots\left(\frac{P_{t+j}}{P_{t+j-1}}\right) \quad \text { for } j=1,2,3 \ldots
\end{array}
$$

Intermediate Goods-Producing Firms A positive steady state inflation

The first order condition
$\rightarrow \frac{P_{i, t}^{*}}{P_{t}}=\frac{\theta}{\theta-1} \frac{\mathrm{No}_{t}}{D e_{t}}$

- $N o_{t}=E_{t} \sum_{j=0}^{\infty}(\beta \eta)^{j} \Lambda_{t+j} \frac{W_{t+j}}{P_{t+j}} \frac{Y_{t+j}}{Z_{t+j}} Y_{i, t+j}\left[\frac{P_{i, t}^{p}\left(\bar{\pi}_{t}^{\chi j}\right)^{1-\mu}\left(\pi_{t-1, t+j-1}^{x}\right)^{\mu}}{P_{t+j}}\right]^{-\theta}$
$\rightarrow N o_{t}=w_{t}+\beta \eta\left(\bar{\pi}_{t}^{-\chi \theta}\right)^{1-\mu}\left(\pi_{t}^{-\chi \theta}\right)^{\mu} E_{t}\left\{\pi_{t+1}^{\theta} N o_{t+1}\right\}$
- $D e_{t}=E_{t} \sum_{j=0}^{\infty}(\beta \eta)^{j} \Lambda_{t+j} Y_{i, t+j}\left[\frac{P_{P, t}^{*}\left(\bar{\pi}_{t}^{\chi j}\right)^{1-\mu}\left(\pi_{t-1, t+j-1}^{\chi}\right)^{\mu}}{P_{t+j}^{1-\theta}}\right]^{1}$
$\rightarrow D e_{t}=1+\beta \eta\left(\bar{\pi}_{t}^{\chi(1-\theta)}\right)^{1-\mu}\left(\pi_{t}^{\chi(1-\theta)}\right)^{\mu} E_{t}\left\{\pi_{t+1}^{\theta-1} D e_{t+1}\right\}$
- Price dicnercion. c. $=(1-n)\left(n^{*}\right)^{-\theta}+n(\bar{\pi} . \quad-\chi \theta)^{1-\mu}\left(_{\pi}-\chi \theta\right)^{\mu}{ }_{\pi}{ }^{\theta} \mathrm{c}$. .

Monetary Policy and Welfare Issues in the Economy with Shifting Trend Inflation

Intermediate Goods-Producing Firms Positive vesus Zero Inflation Target

- The evolution of price depends on the previous inflation rate and the trend inflation
- The future expected inflation rates enter on both $N o_{t}$ and $D e_{t}$, thus have effects on the future variables. Price-setting becomes more "forward-looking" so inflation does
- Implications of microfoundations (price dispersion term, marginal markup, discounting) appears when trend inflation is positive but disappear when it is zero.

The authority Monetary Policy

- The Taylor rule: $\frac{r_{t}}{r}=\left(\frac{r_{t-1}}{r}\right)^{p_{r}}\left[\left(\frac{\pi_{t}}{\bar{\pi}_{t}}\right)\left(\frac{y_{t}}{y}\right)^{p_{y}}\right]^{1-p_{r}} \delta_{r} e^{r t}$
- Where $\bar{\pi}_{t}$ is trend inflation, $y_{t}=\frac{Y_{t}}{Z_{t}}, \mathrm{r}$ and y are deterministic levels of r_{t} and y_{t}
- Two properties of trend inflation:
- Increase over time
- High persistence
- The model under two different assumptions on the process of trend inflation
$-\ln \bar{\pi}_{t}=\left(1-\rho_{\pi}\right) \ln \bar{\pi}^{*}+\rho_{\pi} \ln \bar{\pi}_{t-1}+\epsilon_{\overline{\pi, t}}$
(capture the second property and high probability of negative number)
$-\ln \left[\bar{\pi}_{t}-1\right]=\left(1-\rho_{\pi}\right) \ln \left[\bar{\pi}^{*}-1\right]+\rho_{\pi} \ln \left[\bar{\pi}_{t-1}-1\right]+\epsilon_{\overline{\pi, t}}$
(capture both properties)

The authority Fiscal Policy

- The government budget resource is represented as

$$
\frac{M_{t-1}}{P_{t}}+B_{t}+P_{t} G_{t}=P_{t} T_{t}+\frac{B_{t+1}}{r_{t}}+\frac{M_{t}}{P_{t}}
$$

- Government expenditure is financed by lump-sum taxes and seigniorage as follows

$$
G_{t}=T_{t}+M_{t}-\frac{M_{t-1}}{\pi_{t}}
$$

- Let g_{t} denote the the government spending growth and we have

$$
G_{t}=\left(1-\frac{1}{g_{t}}\right) Y_{t} \text { where } g_{t}>1: \text { the gov expenditure growth }
$$

- Where g_{t} is an $\operatorname{AR}(1)$ process

$$
\ln \left(g_{t+1}\right)=\left(1-p_{g}\right) \ln (g)+p_{\theta} \ln \left(g_{t}\right)+\epsilon_{\theta_{t}}
$$

Market Clearing Conditions

- The market clearing condition in the labor market can be expressed as

$$
H_{t}=\int H_{t}(i) d i
$$

- The market clearing condition in the good market

$$
Y_{t}=C_{t}+G_{t} \rightarrow Y_{t}=C_{t}+\left(1-\frac{1}{g_{t}}\right) Y_{t} \rightarrow C_{t}=\frac{1}{g_{t}} Y_{t}
$$

- Finally, the zero net supply of bond is

$$
B_{t}=0
$$

Welfare Cost Computation

The compensation variation in consumption that enhances the welfare of a typical household in one economy to make them as better-off as others in another economy

$$
E\left\{\sum_{t=0}^{\infty} \beta^{t} u\left(\left(1+\frac{w c}{100}\right) C_{A, t} H_{A, t} m_{A, t}\right)\right\}=\left\{\sum_{t=0}^{\infty} \beta^{t} u\left(C_{B, t}, H_{B, t}, m_{B, t}\right)\right\}
$$

Where $C_{A, t}, H_{A, t}, m_{A, t}$ are consumption, labor supply and money growth in the economy with $\sigma_{\bar{\pi}}>0$ and $C_{B, t}, H_{B, t}$, $m_{B, t}$ are in economy with $\sigma_{\bar{\pi}}=0$. .

Steady-State Distortions Social Planner

- $Q_{t}:$ the optimal consumption
- Social planer maximize Social welfare function under the frictions associated monetary trade and sluggish price adjustments

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t}\left[\ln \left(Q_{t}-\gamma Q_{t-1}\right)+\ln \left(\frac{\mathrm{M}_{t}}{\mathrm{P}_{t}}\right)-\int_{0}^{1} \omega \frac{n_{t}(i)^{1+v}}{1+v} d i\right]
$$

- The aggregate feasibility constraint: $Z_{t}\left[\int_{0}^{1} n_{t}(i)^{\frac{\theta_{t}}{\theta_{t}-1}} d i\right]^{\frac{\theta_{t}}{\theta_{t}-1}} \geq g_{t} Q_{t}$ (Market Clearing Condition)
- Compare to Household's problem:

$$
\begin{gathered}
\operatorname{Max}_{\mathrm{B}_{t}, \mathrm{M}_{t}, \mathrm{C}_{t}, h_{t}} E_{o} \sum_{t=0}^{\infty} \beta^{t}\left[\ln \left(C_{t}-\gamma C_{t-1}\right)+\ln \left(\frac{\mathrm{M}_{t}}{\mathrm{P}_{t}}\right)-\frac{\omega}{1+v} H_{t}^{1+v}\right] \\
\mathrm{C}_{t}+\frac{B_{t}}{r_{t}}+\mathrm{M}_{t}=M_{t-1}-\mathrm{P}_{t} \mathrm{~T}_{t}+\mathrm{B}_{t-1}+W_{t} h_{t}+D_{t} \mathrm{P}_{t}
\end{gathered}
$$

Steady-State Distortions

- The inefficiency sources is defined here as components making the consumption deviate from its efficient amount in the steady state. In particular,

$$
\begin{gathered}
c=\left\{\frac{1}{\omega}\left(\frac{z-\beta \gamma}{z-\gamma}\right) \frac{w}{s^{v} g^{v}}\right\}^{\frac{1}{1+v}} \text { deviate } q=\left[\frac{g^{(1-\theta) / \theta}}{\omega} \frac{z-\beta \gamma}{z-\gamma}\right]^{\frac{1}{1+v}} \text { by } \\
\frac{\mathrm{w}}{\mathrm{~s}^{v} g^{v+\frac{1-\theta}{\theta}}}=\frac{1}{g^{v+\frac{1-\theta}{\theta}}} * \frac{1}{\mu_{m}} *\left[\frac{1-\eta \beta \pi^{(1-\chi)(-\theta)}}{1-\eta}\right]\left[\frac{1-\eta}{1-\eta \pi^{(1-\chi)(\theta)}}\right]\left[\frac{1-\eta \pi^{(1-\chi)(\theta-1)}}{1-\eta}\right]^{\frac{1+\theta \mathrm{v}}{1-\theta}}
\end{gathered}
$$

- The source of inefficiency:
$-g^{v+\frac{1-\theta}{\theta}}$: inefficient government expenditure $\left(d_{f}\right)$
$-\frac{1}{\mu_{m}}$: the monopolistic competition distortion $\left(d_{m}\right)$
- the non-optimal inflation target $\left(d_{i}\right)$

Proposition 1: If the price is fully flexible $(\eta=1)$, or a price indexation is unit $(\chi=1)$, or when the zero-inflation target is $\operatorname{considered~}_{\theta}\left(\bar{\pi}_{t}=1^{0.25}\right)$, the optimal consumption can be obtained if $\mathrm{g}=\left(\frac{1}{\mu_{m}}\right)^{\frac{\theta}{v \theta+1-\theta}}=\left(\frac{\theta-1}{\theta}\right)^{\frac{\theta}{v \theta+1-\theta}}$

3. Parametrization Values GMM, SMM, and Bayesian

- Observable variables

- Quarterly data seasonally adjusted: 1982Q4:2015Q1
- GDP growth; GDP Deflator; 3-month treasury bill rate

Table 2: Estimated Parameters from Different Methods

	β	$\rho_{\bar{Z}}$	δ_{Z}	$\rho_{\overline{\bar{I}}}$	$\delta_{\overline{\bar{I}}}$
GMM	0.9974	0.8000	0.0992	$\mathbf{0 . 9 9 5 0}$	0.098
	(0.0414)	(0.3903)	(0.0121)	(0.0820)	(0.0067)
Bayesian Estimation	0.9999	0.7523	0.1390	$\mathbf{0 . 9 9 4 9}$	0.05

Parametrization Values Benchmark Model

Parameter	Description	Calibrated Value
β	The discount factor	0.9974
γ	Consumption habit	0.81
z	The steady state of technology shock	1.00
(1)	Labor supply disutility	1.00
v	Inverse Frisch elasticity of labor supply	1.59
0	Elasticity of substitution	10.0
$1-g^{-1}$	Steady state share of Government expenditure	
p_{z}	AR(1) coefficient for technology shock	0.80
p_{0}	AR(1) coefficient for government spending shock	0.98
$100 \delta_{8}$	Standard deviation of technology shock	1.10
$100 \delta_{g}$	Standard deviation of government spending shock	0.55
Monetary Policy (The interest rate rule)		
ϕ_{π}	Taylor coefficient on the inflation gap	1.92
ϕ_{y}	Taylor coefficient on the output gap	0.10
p_{r}	AR(1) coefficient for monetary shock	0.81
$100 \delta_{r}$	Standard deviation of monetary shock	0.25
Monetary Policy (The money growth rule)		
$p_{g m}$	The persistence of money growth	0.81
$100 p_{\text {em }}$	AR(1) coefficient of monetary shock	0.25
s1	Impacts of inflation	1.92
s2	Impact of output	0.10
Calvo Price Setting		
n	Probability of not being able to optimize	0,6,0,65, 0.7,0.75]

4.1. Transmission Mechanism The cost of price dispersion

- The cost of price dispersion by $\tilde{z}_{t}=z_{t} / s_{t}$ (an effective aggregate productivity)

$$
s\left(\bar{\pi}_{\mathrm{t}}\right)=\frac{(1-\eta)^{\frac{1}{1-\theta}}}{\left(1-\eta \bar{\pi}_{\mathrm{t}}^{(1-\chi)(\theta)}\right)\left(1-\eta \bar{\pi}_{\mathrm{t}}^{(1-\chi)(\theta-1)}\right)^{\frac{\theta}{1-\theta}}}
$$

4.1. Transmission Mechanism Steady-State Variables

- Changes in trend inflation affect the steady state, which leads to a change in the point around which the model is log-linearly approximated
\rightarrow the log-linear dynamics of the model alter

4.1. Transmission Mechanism A Shock to Trend Inflation

- The shock persistently distorts the economy

Note: Bayesian Model using the U.S data

4.1. Transmission Mechanism

Summary

1. A rise in trend inflation directly causes price dispersion augment, and then a reduction in an effective aggregate productivity occurs.
2. The results illustrating changes of steady-state variables due to shifting trend inflation show that the more inputs are required to produce a given amount of output when output and consumption diminish. Hence, the welfare cost is a direct consequence of more working while salary and consumption decrease.
3. It will put burden on the society by distorting the environment for the economic growth, such as a persistent increase in inflation and interest rate, and price dispersion while wage relentlessly reduces

42. Welfare Cost and Inefficiency Sources Computations Constant Positive Trend Inflation

	Welfare	Welfare Cost	$\mathbf{d}_{\mathbf{f}}$	\mathbf{d}_{m}	$\mathbf{d}_{\mathbf{i}}$
$\bar{\Pi}=1.00^{0.25}$	-894.844				
$\bar{\Pi}=1.06^{0.25}$	-895.459	0.595%	0.496%	0.535%	0.845%

- Can Deflation be good? Probably if
- The deflation leads to a small level of price dispersion
- As long as the deflation is set, if the central bank mandates negative interest rates

42. Welfare Cost and Inefficiency Sources Computations Shifting Trend Inflation

	Welfare	Welfare Cost	$\mathbf{d}_{\mathbf{f}}$	\mathbf{d}_{m}	$\mathbf{d}_{\mathbf{i}}$
	$\ln \left(\bar{\Pi}_{t} / \bar{\Pi}^{*}\right)=\rho_{\bar{\Pi}} \ln \left(\bar{\Pi}_{t-1} / \bar{\Pi}^{*}\right)+\epsilon_{\Pi, T}$				
All shocks	-895.315				
$\sigma_{\Pi}=0$	-894.589	0.09%	0.119%	0.082%	0.130%
Without Business Cycle Fluctuation	-890.896	0.571%	0.477%	0.514%	0.812%
$\ln \left(\left(\bar{\Pi}_{t}-1\right) /\left(\bar{\Pi}^{*}-1\right)\right)=\rho_{\bar{\Pi}} \ln \left(\left(\bar{\Pi}_{t-1}-1\right) /\left(\bar{\Pi}^{*}-1\right)\right)+\epsilon_{\Pi, T}$					
All shocks	-895.883				
$\sigma_{\Pi}=0$	-894.590	0.166%	0.215%	0.149%	0.235%
Without Business Cycle Fluctuation	-891.464	0.569%	0.475%	0.512%	0.809%

5. Conclusions

- The theory on the mechanism:
- a rise in price dispersion causing a larger difference between output and labor hours
- a reduction in an effective aggregate productivity
- a decrease in consumption and wage but an increase in labor hours
- the effect of distorting an improving path of output growth while amplifying an expansion of inflation and labor supply
- The trend inflation source signified the welfare cost the most significantly
- The high-trend-inflation economy is more elastic to changes as opposed to the low-trend inflation economy

Thank You

λ

