December 18, 2009

Incentives in Hedge Funds

(Forthcoming)

Hitoshi Matsushima

Faculty of Economics, University of Tokyo

December 13, 2009

What is HF? (1)

Financial Intermediation: cf. Bank, MF

Private Partnership: Investor (Unsophisticated Investor)

Manager (Manager + Sophisticated Investors)

What is HF? (2)

Investor: 1 Unit of Fund

No Withdrawal

Manager: M Units of Self-Fund

Run Investor's Fund and Part of Self-Fund

Low Transparency

Weak Regulation

Dynamical Investment Strategy: cf. Buy-and-Hold

What is HF? (3)

Return for Investor's Fund: $x \in [0,\infty)$

Alpha: x-1

Manager's Fee Scheme: $y:[0,\infty) \to [-M,\infty]$

 $y(x) \in [-M, \infty)$

Maximal Penalty: $w(y) \equiv \max[-\min_{x \in [0,\infty)} y(x), 0] \ge 0$

What is HF? (4)

Real Fee Scheme: 2:20

Asymmetry

No Penalty, w(y) = 0

Convexity

High-Powered

Criticisms: Positive Penalty w(y) > 0, Linear, Symmetry, Fulcrum

Lower-Powered

Warren Buffet

HF Problem (1)

Fake Alpha: Performance Mimicry

Option Trading Induces Market Failure

Hidden Action (Moral Hazard): Skilled Manager Mimics High Performance

Hidden Information (Lemon): Unskilled Enters and Mimics Skilled

Real HF: Much Lower Alpha than Expected

HF Problem (2)

Capital Decimation Partners (CDP)

Andrew Lo (2001): 2:20 Scheme Motivates CDP

Foster-Young (FY, 2008): In Theory, Incentive Scheme is Impossible to Design

Press Releases: FT (18/3/08), NYT (3/8/08), etc

"Ideal HF Never Survives. More Transparency!"

My Research (1)

Q: Why Is FY so Pessimistic?

A: Incentives in HFs are Special:

Maximal Penalty w(y) Must be Put in Escrow: Unmanageable

Skilled is Deprived of Self-fund Management: Distortion, Lemon

My Research (2)

Q: Is FY True?

A: No!

FY Depends on 'No Capital Gain Tax (CGT)'

My Research (3)

Incentive Fee Scheme: $y(x) \in [-M, \infty), x \in [0, \infty)$

Five Requirements: Skilled Manager's Entry

Unskilled Manager's Exit

Investor's Entry

Welfare Improvement

Skilled Manager's Performance Mimicry

My Research (4)

Q: Does Incentive Scheme Exist?

What Condition?

How to Design?

Welfare-Optimal?

How to Implement?

Results (1)

CGT Matters:

No CGT Incentive Scheme Never Exists!

Allow Positive CGT Incentive Scheme Does Exist!

• Shape of Incentive Scheme: Positive Penalty w(y) > 0, Linear,

Symmetry, Fulcrum ...

Results (2)

• Welfare-Optimal CGT Rate: Low Enough to Keep Skilled Manager's Entry Binding

Implementation: Manager Prefers Over-Solvency

'Tax on Manager's Fee' Matters

Tax Rate on Fee Must be Bigger than CGT Rate

Manager's Types: Skilled and Unskilled (1)

Skilled Manager:

Investment Strategy: Action $a \in [0, \infty)$

Alpha a

Non-pecuniary Cost c(a): Increasing, Convex, ...

Side Contracting (CDP): $F:[0,\infty) \to [0,1] \in \Phi(a)$

$$E[z \mid F] = a + 1$$

$$y(z)-c(a)$$

Manager's Types: Skilled and Unskilled (2)

Unskilled Manager:

No Investment Strategy: a = 0

Only Performance Mimics: $F:[0,\infty) \to [0,1] \in \Phi(0)$

$$E[z|F]=1$$

y(z)-c(0)=y(z)

Other Characters

Investor: x - y(x)

Third Party: Option Buyer, Arbitrageur

Escrow Service: Make Manager Solvent to Penalty and Side Contract

Government: CGT Rate $t \ge 0$

Tax on Fee Rate $\tau \ge 0$

CDP: Performance Mimicry (1)

By Selling Covered Options, Unskilled Manager Mimics 'Alpha $a = \frac{1}{1-p}$ with Prob. 1-p'

Put Investor's Fund in Escrow

Give it to Buyer if S&P 500 Stock Index Declines 20%: Prob. p

Give Nothing Otherwise:

Prob. 1-p

Option Price p

Put *p* in Escrow and Sell Options Further, ...

Total Option Sale: $1 + p + p^2 + \dots = \frac{1}{1 - p}$

Total Return: $\frac{1}{1-p}$ Prob. 1-p

Prob. p

CDP: Performance Mimicry (2)

By Using CDP, Even Skilled Manager Can Mimic High Performance

CDP Implements Any Side Contract

Requirements & : Linearity, Symmetry

Requirement : Skilled Manager's Entry

Outside Opportunity: Manage Self-Fund M

Select
$$a = \tilde{a}(1-t)$$
 to Maximize $(1-t)a - c(a)$

$$\overline{V}(t) \equiv M\{(1-t)\tilde{a}(1-t) - c(\tilde{a}(1-t))\}$$

Payoff: Put w(y) in Escrow, Unmanageable

$$V(y,\tau,t) = \min[(1-\tau)y(a^*(y,\tau)+1), y(a^*(y,\tau)+1)] - c(a^*(y,\tau))$$
$$+\{M - w(y)\}\{(1-t)\tilde{a}(1-t) - c(\tilde{a}(1-t))\}$$

Entry $V(y,t,\tau) \ge \overline{V}(t)$: $\min[(1-\tau)y(a^*(y,\tau)+1), y(a^*(y,\tau)+1)] - c(a^*(y,\tau))$ $\ge w(y)\{(1-t)\tilde{a}(1-t) - c(\tilde{a}(1-t))\}$

Requirement : Unskilled Manager's Exit

Outside Opportunity: Zero

Payoff: $\max_{F \in \Phi} E[\min[(1-\tau)y(z), y(z)]|F]$

Exit: $\max_{F \in \Phi} E[\min[(1-\tau)y(z), y(z)]|F] \le 0$

Requirement: Investor's Entry

Outside Opportunity: Zero

payoff: $U(y,t,\tau) = \min[(1-t)\{a^*(y,\tau) - y(a^*(y,\tau) + 1)\},$

 $a^*(y,\tau) - y(a^*(y,\tau) + 1)$]

Entry $U(y,t,\tau) \ge 0$: $a^*(y,\tau) \ge y(a^*(y,\tau)+1)$

Requirement: Welfare Improvement

Status Quo:

No HF,
$$t = \tau = 0$$

$$\overline{S} \equiv M\{\tilde{a}(1) - c(\tilde{a}(1))\}$$

Social Surplus:

$$S(y,t,\tau) \equiv a^*(y,\tau) - c(a^*(y,\tau))$$

$$+\{M-w(y)\}\{\tilde{a}(1-t)-c(\tilde{a}(1-t))\}$$

$$S(y,t,\tau) > \overline{S}$$

$$a^*(y,\tau)-c(a^*(y,\tau))+\{M-w(y)\}\{\tilde{a}(1-t)-c(\tilde{a}(1-t))\}$$

$$> M\{\tilde{a}(1) - c(\tilde{a}(1))\}$$

Requirement : Skilled Manager's Mimicry

With $a \in A$ and $F \in \Phi(a)$, Skilled Manager Receives;

$$E[\min[(1-\tau)y(z),y(z)]|F]-c(a)$$
 +{ $M-w(y)$ }{ $(1-t)\tilde{a}(1-t)-c(\tilde{a}(1-t))$ }

No Incentive to CDP:
$$\forall a\in A\ \forall F\in \Phi(a):$$

$$V(y,t,\tau)\geq E[\min[(1-\tau)y(z),y(z)]|F]-c(a)$$

$$+\{M-w(y)\}\{(1-t)\tilde{a}(1-t)-c(\tilde{a}(1-t))\}$$

No CGT: Lemon (1)

Theorem 1 (Lemon): Suppose CGT Rate t = 0. Then, There Exists No Fee Scheme that Satisfies Skilled's Entry , Unskilled's Exit , and Welfare Improvement .

No CGT: Lemon (2)

Outline of Proof: Suppose a > 0 is only available, c(a) = c

$$a+1$$
 with Prob. $\frac{1}{a+1}$

0 with Prob.
$$\frac{a}{a+1}$$

$$\frac{1}{a+1}y(a+1) + \frac{a}{a+1}y(0) \le 0$$
$$y(a+1) - w(y)a \le 0$$

$$y(a+1) - w(y)a \le 0$$

No CGT: Lemon (3)

Skilled's Outside Opportunity: M(a-c)

Skilled's Payoff: $y(a+1)-c+\{M-w(y)\}(a-c)$

Skilled Exit + Welfare Improvement : $y(a+1) - w(y)a \ge \{1 - w(y)\}c > 0$

Contradiction!

Positive CGT: Existence

Theorem 2: There exist $(t,\tau) \in [0,1]^2$ and $y \in Y^*(\tau)$ that satisfy

Outline of Proof:

CGT Makes Compatible with

Skilled Has Incentive to Save CGT

Unskilled Has No Such Incentive No Skill to Earn Alpha

'Low-Powered + Large Fund' is More Efficient Than 'High-Powered + Small Fund'

Welfare Optimization (1)

Specify Fee Scheme

$$y = y^{k,\tau}$$

$$(1-\tau)y^{k,\tau}(x) = k(x-1) \qquad \text{for all } x \in [1,\infty)$$

$$y^{k,\tau}(x) = k(x-1)$$
 for all $x \in [0,1)$

$$0 \le k \le \min[E, 1-\tau], \ w(y^{k,\tau}) = k$$

Specify CGT Rate

$$t = \hat{t}(k)$$

Binding :
$$k\tilde{a}(k) - c(\tilde{a}(k)) = w(y)\{(1-t)\tilde{a}(1-t) - c(\tilde{a}(1-t))\}$$

Welfare Optimization (2)

Specify (k^*,t^*,τ^*)

$$k=k^* \text{ maximizes } \tilde{a}(k)-c(\tilde{a}(k))-(M-k)\{\tilde{a}(1-\hat{t}(k))-c(\tilde{a}(1-\hat{t}(k)))\}$$

$$t^*\equiv\hat{t}(k^*)$$

$$\tau^*\equiv 1-k^*$$

Tax Rate on Fee τ^* is Greater than CGT Rate t^*

Welfare Optimization (3)

Theorems 3&5&6: $(y^{k^*,\tau^*},t^*,\tau^*)$ *Satisfies*

. There exists No (y,t, au) that

Satisfies , and

$$S(y,t,\tau) > S(y^{k^*,\tau^*},t^*,\tau^*).$$

No Tax on Fee: Useless HF

Skilled Manager Has Very Strong Incentive to Save CGT: Best Prefers $y^{\min[M,1-\tau],\tau}$

High Tax Rate on Fee Impedes Over-Solvency

Theorem 4 (Useless HF): If
$$M > 1$$
 and $\tau = 0$, then
$$\overline{S}(0) > S(y^{\min[M,1-\tau],\tau},t,\tau) = S(y^{1,0},t,0).$$