Leverage Cycles and the Anxious Economy

By A. Fostel and J.Geanakoplos

Built upon a series of papers of themselves and published in *American Economic Review*

We provide a pricing theory for emerging asset classes, like emerging markets, that are not yet mature enough to be attractive to the general public. We show how leverage cycles can cause contagion, flight to collateral, and issuance rationing in a frequently recurring phase we call the anxious economy. Our model provides an explanation for the volatile access of emerging economies to international financial markets, and for three stylized facts we identify in emerging markets and high yield data since the late 1990s. Our analytical framework is a general equilibrium model with heterogeneous agents, incomplete markets, and endogenous collateral, plus an extension encompassing adverse selection. (JEL D53, G12, G14, G15)

We provide a pricing theory for emerging asset classes, like emerging markets, that are not yet mature enough to be attractive to the general public. We show how leverage cycles can cause contagion flight to collateral, and issuance rationing in a frequently recurring phase we call the anxious economy. Our model provides an explanation for the volatile access of emerging economies to international financial markets, and for three stylized facts we identify in emerging markets and high yield data since the late 1990s. Our analytical framework is a general equilibrium model with heterogeneous agents, incomplete markets, and endogenous collateral, plus an extension encompassing adverse selection. (JEL D53, G12, G14, G15)

We provide a pricing theory for emerging asset classes, like emerging markets, that are not yet mature enough to be attractive to the general public. We show how leverage cycles can cause contagion flight to collateral, and issuance rationing in a frequently recurring phase we call the anxious economy. Our model provides an explanation for the volatile access of emerging economies to international financial markets, and for three stylized facts we identify in emerging markets and high yield data since the late 1990s. Our analytical framework is a general equilibrium model with heterogeneous agents, incomplete markets, and endogenous collateral, plus an extension encompassing adverse selection. (JEL D53, G12, G14, G15)

We provide a pricing theory for emerging asset classes, like emerging markets, that are not yet mature enough to be attractive to the general public. We show how leverage cycles can cause contagion flight to collateral, and issuance rationing in a frequently recurring phase we call the anxious economy. Our model provides an explanation for the volatile access of emerging economies to international financial markets, and for three stylized facts we identify in emerging markets and high yield data since the late 1990s. Our analytical framework is a general equilibrium model with heterogeneous agents, incomplete markets, and endogenous collateral, plus an extension encompassing adverse selection. (JEL D53, G12, G14, G15)

Especially, it is shown that

leverage is *not* necessary to generate contagion

between emerging assets & more dominant assets.

(such as US high yield bonds.)

I. Relation with the Literature

Relation with the Literature: Model

(1) Endogenous credit constraints in GE

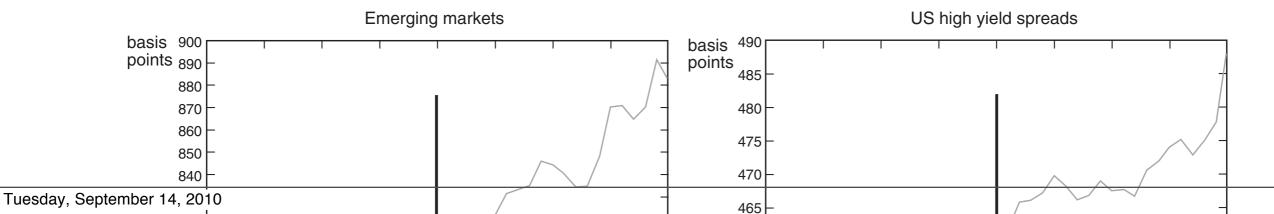
(2) Exogenous credit constraints in GE

(3) Asymmetric info. in GE

(4) Combination of (1) & (3)

Relation with the Literature: Model

(1) Endogenous credit constraints in GE Geanakoplos(97, 03), G-Zame(98) (2) Exogenous credit constraints in GE Kiyotaki-Moore(97), Bernanke-Gertler-Gilchrist(96), Caballero-Krishnamurthy(01) (3) Asymmetric info. in GE Gale(92), Bisin-Gottardi(06), Rustichini-Siconolfi(Forthcoming) (4) Combination of (1) & (3)Rothchild-Stiglitz(76), Dubey-Geanakoplos(02)

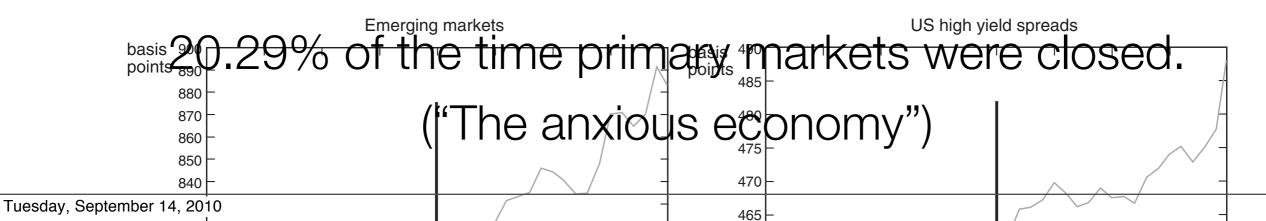

II. Stylized Facts

The "Anxious Economy"

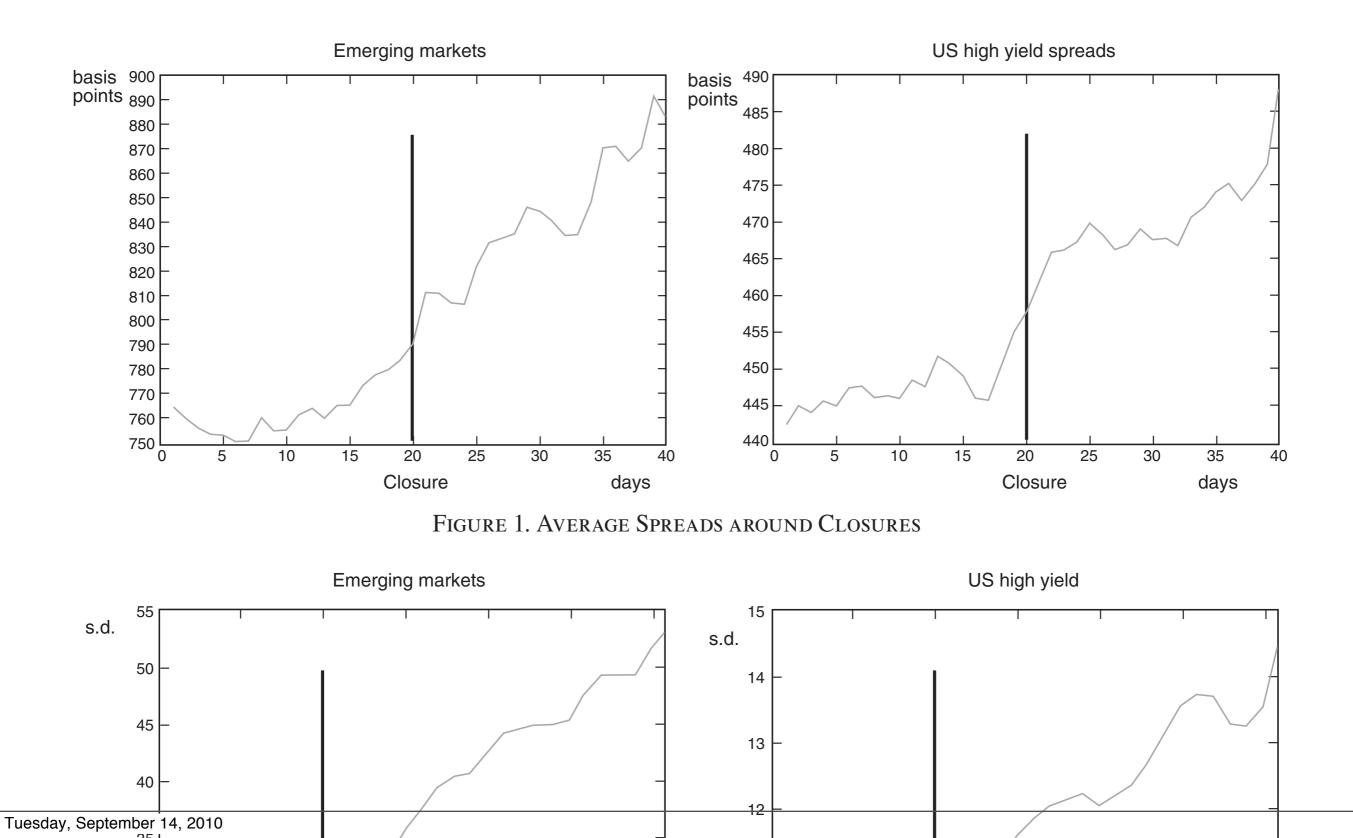
:= A period of 3 consecutive weeks or more during which the weekly primary issuance over all emerging markets are less than 40% of the period's trend

Closure	Year	Date	Duration (weeks)	Associated event
1	1997	03/17-04/06	3	Thailand turmoil
2	1997	08/18-09/07	3	Thailand devaluation
3	1997	10/27-12/07	6	Korea crisis
4	1998	08/03-10/26	12	Russia default and LTCM
5	1999	01/01-01/31	4	Brazil devaluation
6	1999	07/12-08/02	3	
7	1999	08/16-09/05	3	
8	2000	04/03-05/01	4	US interest rate anxieties
9	2000	09/25-10/30	5	US stock market crash
10	2001	08/20-09/10	3	US recession concerns
11	2002	04/29-06/17	7	Brazil turmoil
12	2002	08/05-09/02	4	US stock market
13	2002	09/23-10/14	3	

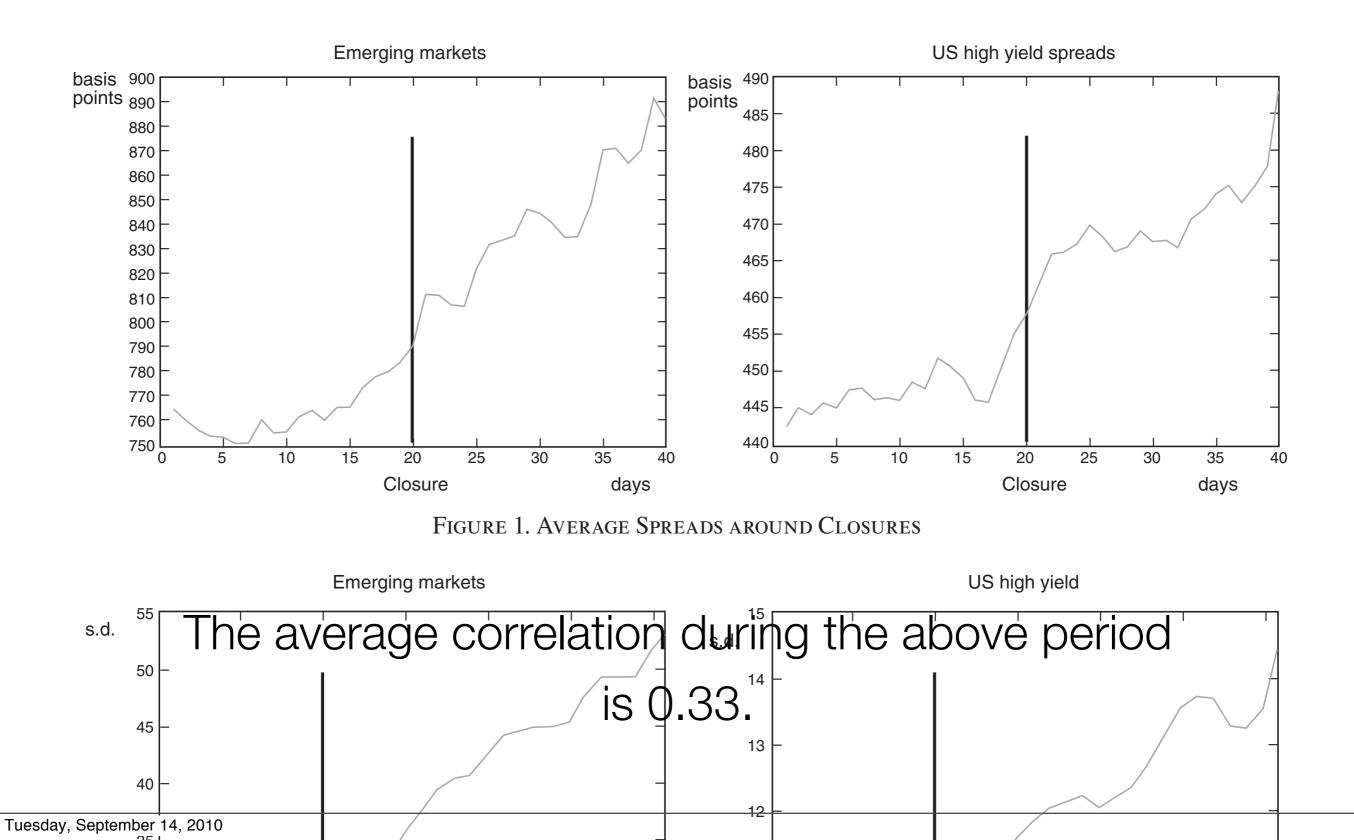
 TABLE 1—PRIMARY MARKET CLOSURES FOR EMERGING MARKET BONDS, 1997–2002



The "Anxious Economy"


:= A period of 3 consecutive weeks or more during which the weekly primary issuance over all emerging markets are less than 40% of the period's trend

Closure	Year	Date	Duration (weeks)	Associated event
1	1997	03/17-04/06	3	Thailand turmoil
2	1997	08/18-09/07	3	Thailand devaluation
3	1997	10/27-12/07	6	Korea crisis
4	1998	08/03-10/26	12	Russia default and LTCM
5	1999	01/01-01/31	4	Brazil devaluation
6	1999	07/12-08/02	3	
7	1999	08/16-09/05	3	
8	2000	04/03-05/01	4	US interest rate anxieties
9	2000	09/25-10/30	5	US stock market crash
10	2001	08/20-09/10	3	US recession concerns
11	2002	04/29-06/17	7	Brazil turmoil
12	2002	08/05-09/02	4	US stock market
13	2002	09/23-10/14	3	


 TABLE 1—PRIMARY MARKET CLOSURES FOR EMERGING MARKET BONDS, 1997–2002

Emerging Markets & US High Yield Spreads Correlation

Emerging Markets & US High Yield Spreads Correlation

Nonuniform Changes in Emerging Markets Spreads Across the Credit Spectrum

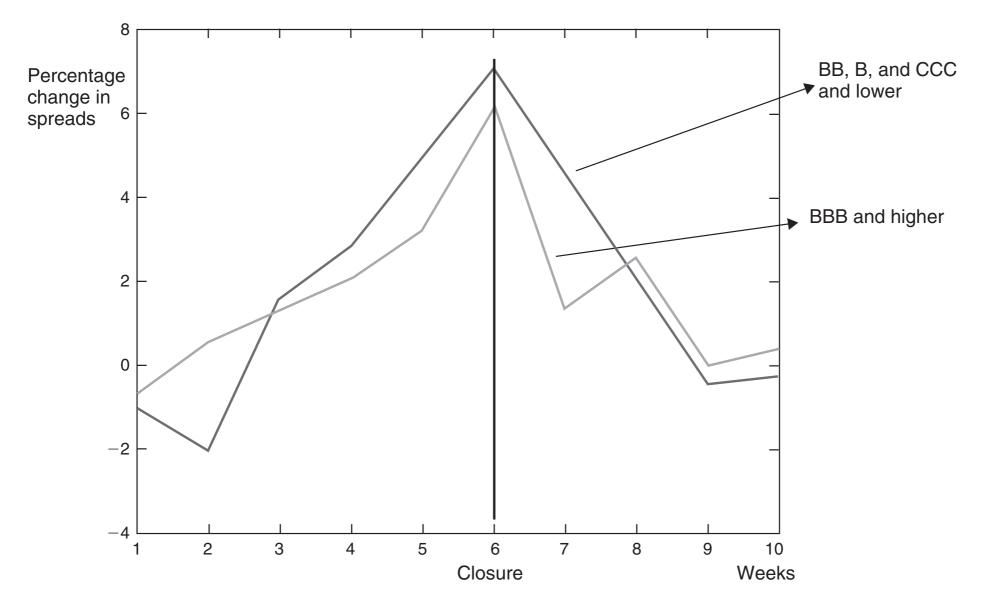


FIGURE 3. AVERAGE PERCENTAGE CHANGE IN EMERGING MARKET SPREADS BY CREDIT RATINGS AROUND CLOSURES

Nonuniform Changes in Emerging Markets Spreads Across the Credit Spectrum

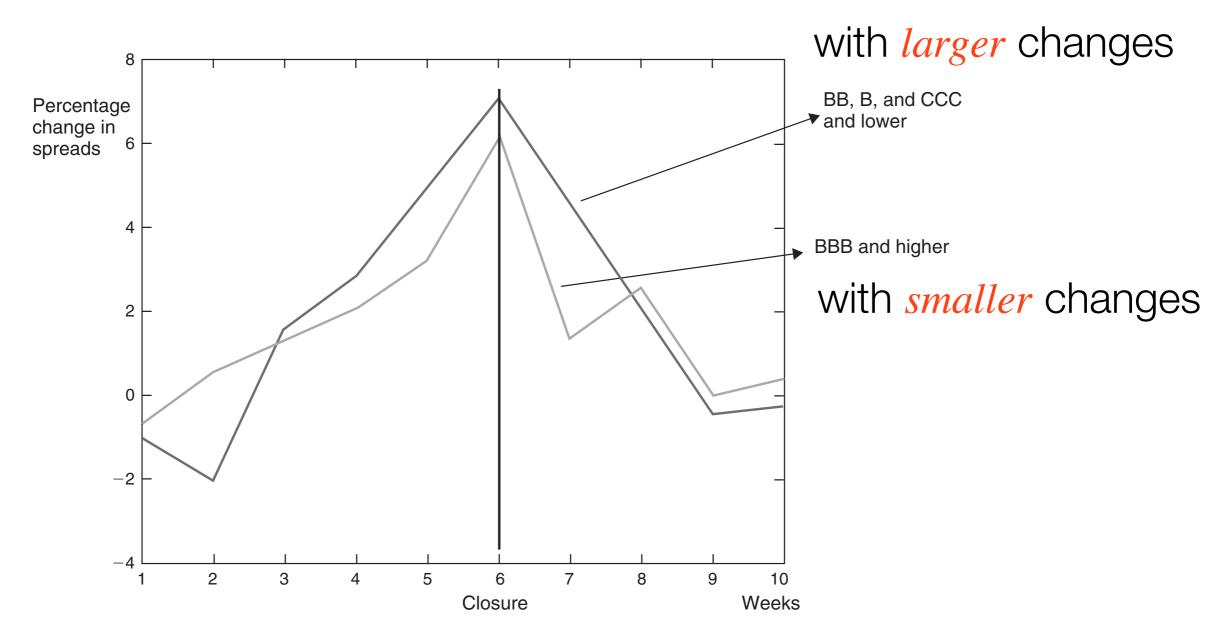
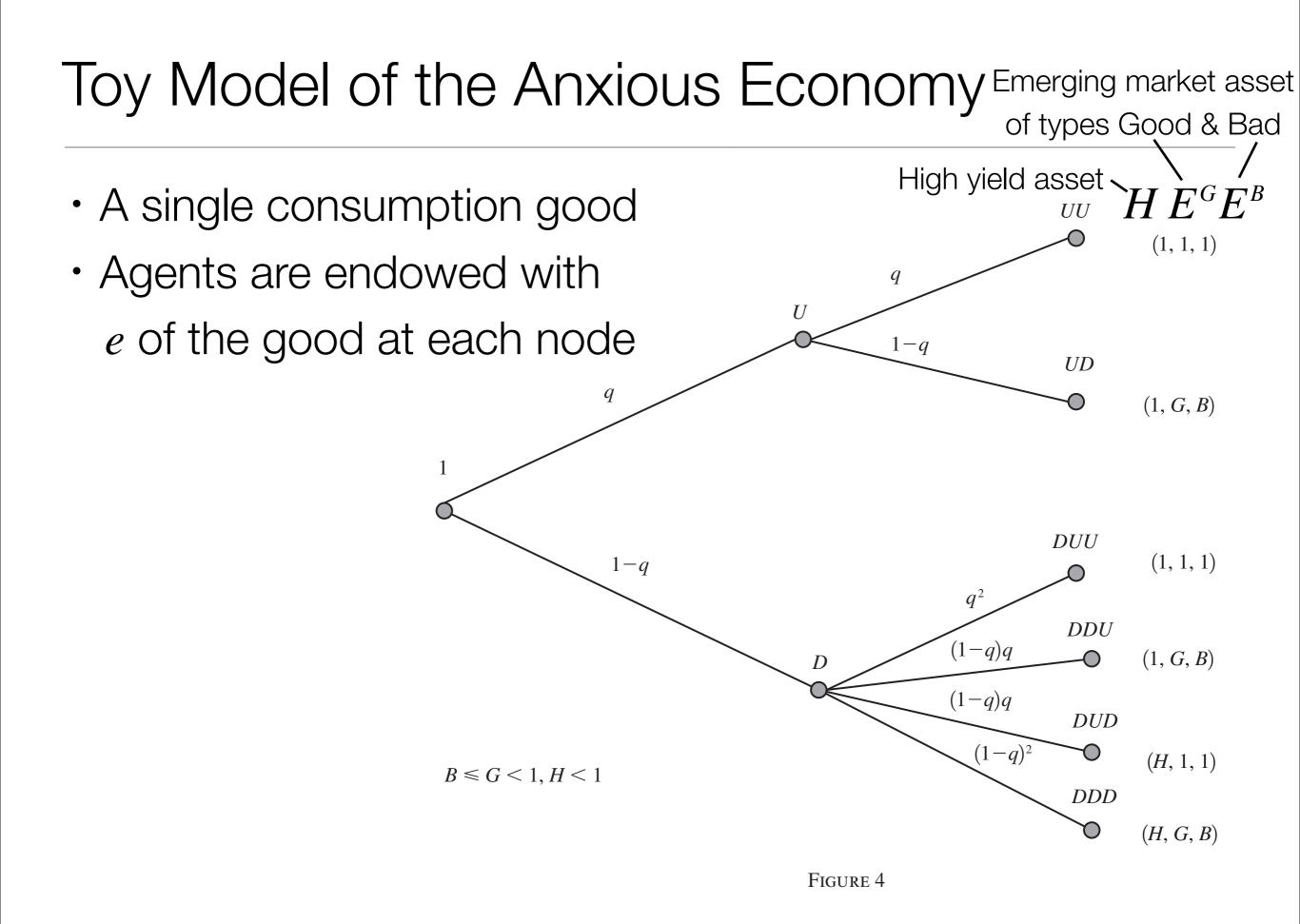
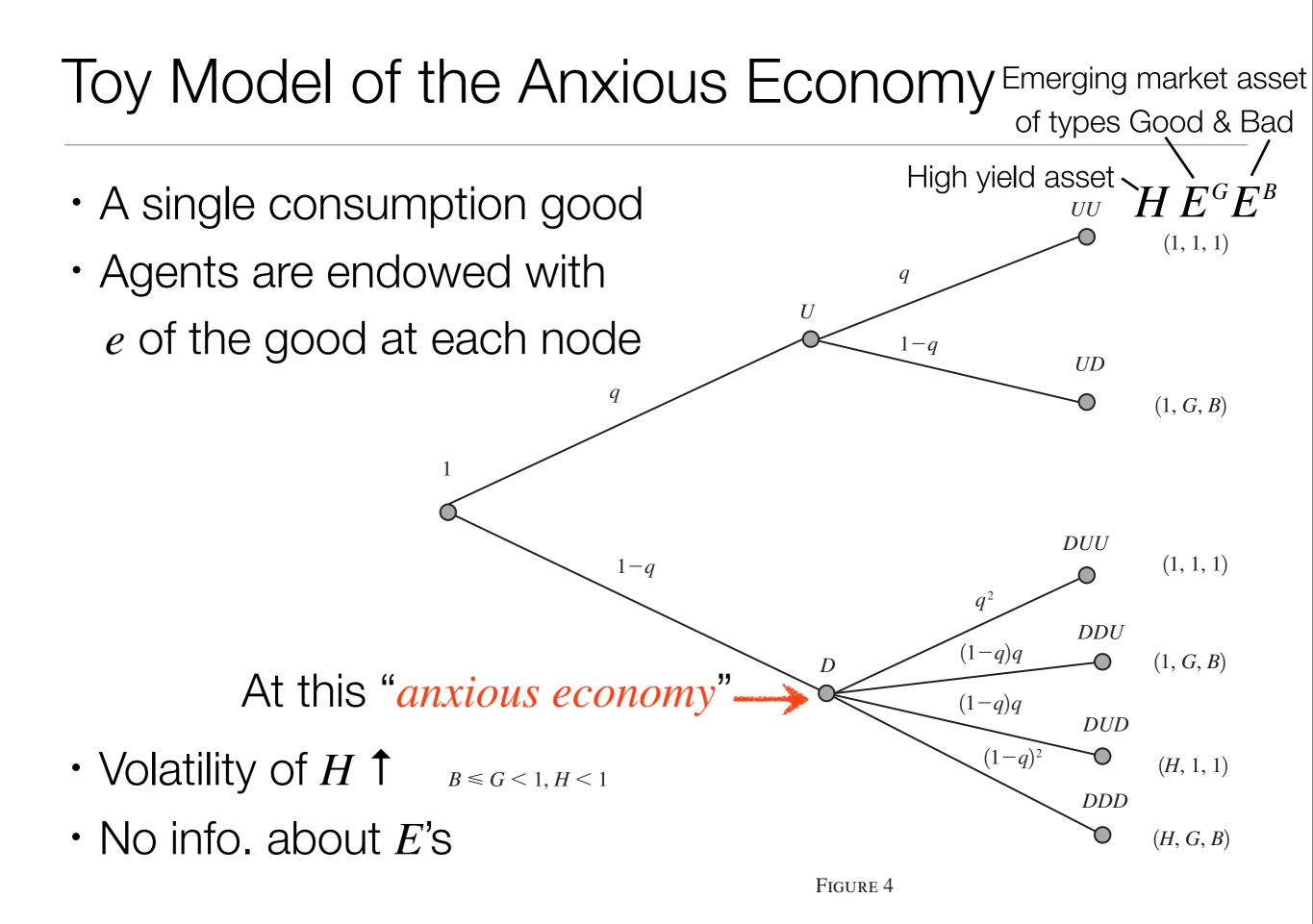


FIGURE 3. AVERAGE PERCENTAGE CHANGE IN EMERGING MARKET SPREADS BY CREDIT RATINGS AROUND CLOSURES


Nonuniform Changes in Issuance Across the Credit Spectrum


High-rated emerging market issuance *drops more* than the low-rated. (This paper's new finding.)

Nonuniform Changes in Issuance Across the Credit Spectrum

> High-rated emerging market issuance *drops more* than the low-rated. (This paper's new finding.) Puzzling contrast High-rated emerging market spreads *increases less* than the low-rated. (Gonzales-Yeyati(05))

Toy Model (III. The Problem A. The Anxious Economy)

Simulations

(III. The Problem (Subsections B-D),IV. Model I: Collateral GE (Subsections C-E), &V. Model II: Collateral GE w/ Adverse Selection (Subsection B))

A. Representative Agent (without Collateral)

B. Heterogenous Agents & Complete Markets (w/o Collateral)

No Contagion

TABLE 2—Simulations 1 and 2

Asset	p_1	p_U	p_D	$(p_U - p_D)/p_U$	$(p_1 - p_D)/p_1$ %
Panel A. Represent	tative agent				
E^{\dagger}	0.9082	0.9082	0.9083	-0.01	-0.01
<i>H</i>	0.9901	0.9981	0.9183	8.00	7.25

Why $p_U < p_D$ for E?

At D, future consumption is lower than at U.

B. Heterogenous Agents & Complete Markets (w/o Collateral)

No Contagion

TABLE 2—Simulations 1 and 2

Asset	p_1	p_U	p_D	$(p_U - p_D)/p_U$	$(p_1 - p_D)/p_1$
Panel A. Represent	tative agent				
E	0.9082	0.9082	0.9083	-0.01	-0.01
<i>H</i>	0.9901	0.9981	0.9183	8.00	7.25

Why $p_U < p_D$ for E?

At *D*, future consumption is lower than at *U*. \rightarrow The MU for future output such as *E* is higher.

B. Heterogenous Agents & Complete Markets (w/o Collateral)

B. Heterogenous Agents & Complete Markets (w/o Collateral)

In this case, there are "*optimists*" and "*pessimists*," who are and will be differrent in beliefs and wealth.

Almost No Contagion

TABLE 2—SIMULATIONS 1 AND 2

Asset	p_1	p_U	p_D	$(p_U - p_D)/p_U$	$(p_1 - p_D)/p_1$
Panel B. Complete	markets and hetero	geneous agents			
E	0.5527	0.5554	0.5499	1.0	0.5
Н	0.8007	0.9985	0.5998	39.9	25.1

Why $p_U > p_D$ for E?

With complete markets, agents are able to transfer wealth to the states they think are more likely.

Almost No Contagion

TABLE 2—SIMULATIONS 1 AND 2

Asset	p_1	p_U	p_D	$(p_U - p_D)/p_U$	$(p_1 - p_D)/p_1$ %
Panel B. Complete	markets and hetero	geneous agents			
E	0.5527	0.5554	0.5499	1.0	0.5
Н	0.8007	0.9985	0.5998	39.9	25.1

Why $p_U > p_D$ for E?

With complete markets, agents are able to transfer wealth to the states they think are more likely. \rightarrow At *U*, prices reflect the optimists' preferences more than at *D*.

C. Heterogenous Agents & *In*complete Markets (w/o Collateral)

TABLE 3—SIMULATION 3, INCOMPLETE MARKETS: PRICES							
	1	U	D	(U-D)/U %	(1-D)/1 %		
ω	0.0668	0.0447	0.2429				
Asset E H	0.7954 0.9097	0.8630 0.9986	0.7273 0.7364	15.72 26.25	8.56 19.05		

Why $p_U > p_D$ for *E*?

At *U*, both types agree about *H* and optimists end up holding *none* of it.

TABLE 3—SIMULATION 3, INCOMPLETE MARKETS: PRICES							
	1	U	D	(U-D)/U %	(1-D)/1 %		
ω	0.0668	0.0447	0.2429				
Asset E H	0.7954 0.9097	0.8630 0.9986	0.7273 0.7364	15.72 26.25	8.56 19.05		

Why $p_U > p_D$ for *E*? At *U*, both types agree about *H* and optimists end up holding *none* of it. \downarrow The increase in the demand for *E*

TABLE 3—SIMULATION 3, INCOMPLETE MARKETS: PRICES							
	1	U	D	(U-D)/U %	(1-D)/1 %		
ω	0.0668	0.0447	0.2429				
Asset E H	0.7954 0.9097	0.8630 0.9986	0.7273 0.7364	15.72 26.25	8.56 19.05		

Why $p_U > p_D$ for E?

At *D*, the difference in opinion increases and optimists end up holding *all* of *H*. \downarrow The reduction in the demand for *E*

TABLE 3—SIMULATION 3, INCOMPLETE MARKETS: PRICES							
	1	U	D	(U-D)/U %	(1-D)/1 %		
ω	0.0668	0.0447	0.2429				
Asset E H	0.7954 0.9097	0.8630 0.9986	0.7273 0.7364	15.72 26.25	8.56 19.05		

Leverage is *not* necessary to generate contagion. The above portfolio effect is enough.

*The share of crossover investors in emerging markets: 15% (1996)→40% (2002) *Leveraged investors: 30% (1998)→5% (2002)

No "Differential Contagion"

	1	U	D	(U-D)/U %	(1- <i>D</i>)/1 %
ω	0.0594	0.09	0.2309		
Asset G	0.7817	0.8378	0.7431	11.3	4.9
B H	0.7679 0.8477	0.8230 0.9162	0.7301 0.7485	11.3 11.3 18.9	4.9 4.9 12.3

TABLE 6—SIMULATION 4, INCOMPLETE MARKETS WITH 3 ASSETS: PRICES

C. Heterogenous Agents & Incomplete Markets (*with* Collateral)

In this case, E (but not H) can be used as collateral to borrow money.

Bigger Contagion

TABLE 9—SIMULATION 5, INCOMPLETE MARKETS WITH COLLATERAL: PRICES AND INTEREST RATE

Asset	1	U	D	(U-D)/U%	(1 - D)/1
E	0.8511	0.8695	0.7416	14.7	12.9
Н	0.9316	0.9985	0.7306	26.8	21.6
r	0.0000	-0.0015	0.0005		and the state of the

"Bigger" contagion because

- The room for leverage amplifies the portfolio effect.
- A new channel through which liquidity affects prices: The collateral value.

Robustness

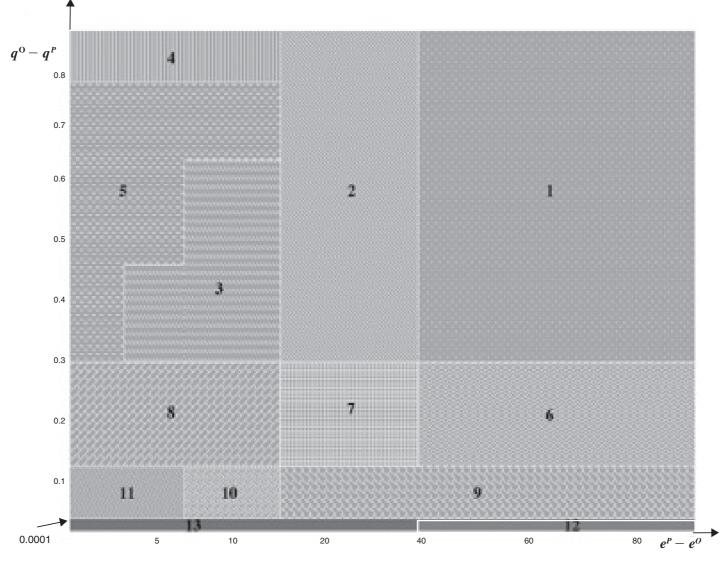


FIGURE 5. ROBUSTNESS ANALYSIS

In all the regions from 1 to 11, contagion occurs in equilibrium.

Differential Contagion

Asset	1	U	D	(U-D)/U %	(1 - D)/1 %
В	0.8458	0.8654	0.7298	15.7	13.7
Н	0.9311	0.9985	0.7332	26.5	21.2
r _s	0.0000	-0.0015	0.0005		

Тарт р 12 SIMILIATION 6 INCOMPLETE MARKETS WITH COLLATEDAL 2 AGETS: DRICES

"Differential" contagion because

G and B have different endogenous values as collaterals.

Wealth Gap Fosters Contagion

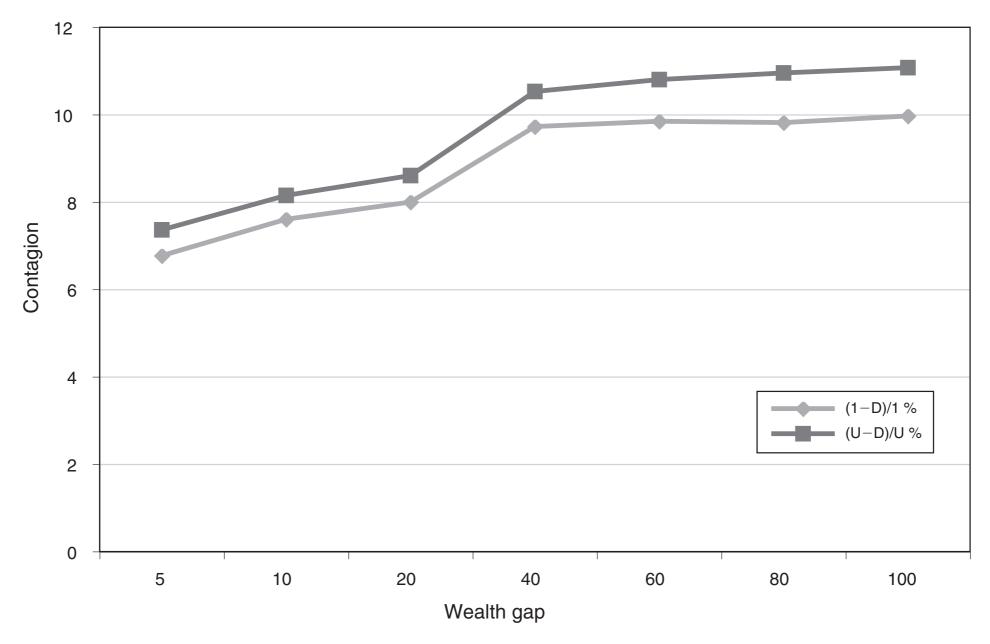


FIGURE 6. CONTAGION FOR DISAGREEMENT LEVEL 0.2

C. Heterogenous Agents & Incomplete Markets (with Collateral *and Adverse Selection*)

(Differential) Contagion

				(U - D)/U	(1 - D)/1
Asset	1	U	D	%	%
G	0.8149	0.8409	0.6957	17.3	14.6
8	0.7807	0.8117	0.6385	21.3	18.2
Ч	0.8849	0.9967	0.6326	36.5	28.5
r s	0.0000	0.0000	0.0000		

Issuance Rationing

TABLE 16—SIMULATION 7, INCOMPLETE MARKETS WITH COLLATERAL AND ADVERSE SELECTION: ISSUANCE

				(U - D)/U	(1 - D)/1
Туре	1	U	D	%	%
G	0.8018	0.8524	0.0808	90	89.9
В	1.0000	1.0000	0.7500	25	25