Macroprudential Regulation Versus Mopping Up After the Crash

By O. Jeanne and A. Korinek

Motivation

Recent calls for macro-prudential regulation.

But some people doubt its effectiveness. e.g. "Greenspan Doctrine"
(=Ex ante regulation is too costly compared to ex post "mopping up.")

Summary

This paper studies the desirability of ex ante vs ex post policies in a very simple setup.

It is shown that the optimal policy consists of a combination of both ex ante \& ex post policies.

The point of optimality is determined such that

Marginal cost/benefit
Marginal cost/benefit of ex post policy

Key Assumptions

Key Assumptions

Financial markets are imperfect:

- borrowing is subject to constraints
- constraints depend on asset prices
- potential for feedback spirals between
- collapsing asset prices
- tightening borrowing constraints
- declining spending
\rightarrow financial accelerator, debt deflation, ...

Feedback Spirals

Economic shock

Tightening Constraint

Adverse Movement in Relative Prices

Model

Consider an open economy in a 1-good world with 3 time period $t=0,1,2$.

The economy is populated by a continuum of identical consumers with the following utility function.

$$
\text { Consumption at each } t \quad \text { Labor at } t=1
$$

Utility of consumption Disutility of labor with at each $t \quad d(0)=d^{\prime}(0)=0<d^{\prime \prime}\left(l_{1}\right)$

Model (Ctd.)

Collateral Constraint

Assume consumers can buy or sell the asset in a (perfectly competitive) market (in $t=1$).
$p t$: Price of the asset in period t
Also impose the following collateral constraint in $t=1$.

$$
\begin{aligned}
& \begin{array}{c}
\text { Constant } \\
\text { smaller than } 1
\end{array} \\
& \begin{array}{l}
\text { The amount } \\
\text { of the asset }
\end{array} \\
& \text { held in } t=1 .
\end{aligned}
$$

This induces the externality among consumers through pt.

Ex Ante \& Ex Post Policies

Ex ante

A planner can impose a tax on borrowing in $t=0$, which is rebated as a lump sum benefit.

Expost

A planner can subsidize labor in $t=1$, the cost of which is raised via a lump sum tax.

Budget Constraint

The resulting budget constraint is as follows.

$$
\begin{gathered}
\text { Tax on } \\
\text { borrowing }=\tau b 1 \\
\left\{\begin{array}{l}
\left.c_{0}=(1-\tau)\right) b_{1}+T, \\
\left.c_{1}+b_{1}=(1+s)\right) A l_{1}+b_{2}+\left(\theta_{0}-\theta_{1}\right) p_{1}-R, \\
c_{2}+b_{2}=\theta_{1} y_{2} \cdot
\end{array} \begin{array}{l}
\text { Subsidy } \\
\text { on labor }
\end{array}\right. \\
=s A l 1
\end{gathered}
$$

Consumer's Problem

$\max u\left(c_{0}\right)+u\left(c_{1}-d\left(l_{1}\right)\right)+c_{2}$.
(Utility function)
s.t.

$$
\begin{aligned}
& \left\{\begin{array}{l}
c_{0}=(1-\tau) b_{1}+T, \\
c_{1}+b_{1}=(1+s) A l_{1}+b_{2}+\left(\theta_{0}-\theta_{1}\right) p_{1}-R, \\
c_{2}+b_{2}=\theta_{1} y_{2}
\end{array}\right. \\
& \text { (Budget constraint) } \\
& b_{2} \leq \phi \theta_{1} p_{1} \text { (Collateral constraint) }
\end{aligned}
$$

Planner's Problem

To derive the optimal policy, consider the following planner's problem of maximizing consumer's utility.

$$
=c o \quad=c_{1}
$$

$$
\max _{b_{1}, l_{1}, b_{2}} u\left(\overline{b_{1}}\right)+E\left\{u\left(\overline{A l_{1}-b_{1}+b_{2}}-d\left(l_{1}\right)\right)+y_{2}-b_{2}\right\}
$$

$$
-\lambda\left[b_{2}-\phi p\left(\underline{A l_{1}-b_{1}+b_{2}}\right)\right]
$$

$$
=c 2
$$

Optimal Ex Ante \& Ex Post Policies

Proposition 1

If the collateral constraint is binding with positive prob. in $t=1$, then the planner chooses a positive ex ante tax $\tau>0$.

Proposition 2

If the collateral constraint is binding in $t=1$, then the planner chooses a positive ex post subsidy $s>0$.

Optimal Ex Ante \& Ex Post Policies

Proposition 1

If the collateral constraint is binding with positive prob. in $t=1$, then the planner chooses a positive ex ante tax $\tau>0$.

$$
\begin{array}{r}
\text { Negative } \\
\tau>0 \rightarrow \underset{\text { Positive }}{\rightarrow} \searrow_{c 1 \downarrow} \searrow_{c 1} \uparrow \rightarrow p(c 1) \uparrow \rightarrow \text { CC relaxed }
\end{array}
$$

Optimal Ex Ante \& Ex Post Policies

Proposition 2

If the collateral constraint is binding in $t=1$, then the planner chooses a positive ex post subsidy $s>0$.

Possibility of "Under-borrowing"

Debt with ex post policy > Debt without ex post policy

This possibility is pointed out by Benigno et al. (09, 10ab).
This result can be replicated as follows.
Fix a level of ex ante policy.

$$
\begin{gathered}
s>0 \rightarrow l_{1} \uparrow \rightarrow c 1 \uparrow \rightarrow c 0 \uparrow \rightarrow b_{1} \uparrow \\
u^{\prime}\left(c_{0}\right)(1-\tau) \stackrel{ }{=} E\left[u^{\prime}\left(c_{1}\right)\right] \\
\text { (FOC for consumer's problem) }
\end{gathered}
$$

Possibility of "Under-borrowing"

On the other hand, there is also a possibility of "over-borrowing" by ex ante policy.

Fix a level of ex post policy.

$$
\tau>0 \rightarrow c 0 \downarrow \rightarrow b 1 \downarrow
$$

When the planner uses both ex ante \& ex post policies, the amount of debt may rise or fall, depending on which policy has a stronger effect.

Alternative Ex Post Policy

Instead of subsidy on labor, we can consider a generic policy instrument α that directly relaxes the collateral constraint as

$$
b_{2} \leq \phi \theta_{1} p_{1}+\alpha \text { with cost of } L(\alpha)
$$

$$
\text { Accume } I(\Omega)-I '(\Omega)-0<I "(\alpha) \quad \text { Lagrange multiplier }
$$

$$
\text { Assume } L(0)=L^{\prime}(0)=0<L^{\prime \prime}(\alpha) . \quad \text { =Marginal benefit of }
$$ relaxing the CC

Note FOC for planner's problem is $L^{\prime}(\alpha)=\lambda$.

Again, $\alpha>0$ if $\lambda>0$.

Discussion of

"Managing Credit Booms and Busts: A Pigouvian Taxation Approach,"

by Jeanne and Korinek

Timothy S. Fuerst
Senior Economic Advisor, FRB Cleveland
October 15, 2010

Financial Accelerator.

Decline in asset price tightens credit constraint.
Tighter credit constraint lowers consumption.
Lower consumption lowers asset price.
Etc.
But, the tighter credit constraint should also have a positive effect on asset prices because assets help relax the credit constraint. This positive effect should moderate the decline in asset prices coming from the decline in consumption. This effect is missing from their analysis.

Why is CE not Pareto Efficient in model?

1. Missing market? Nope. This is RA setting.
2. Value of endowment is unbounded? Nope.
3. Large agents? Nope.
4. Explicit "pollution" effect. Nope.

I suspected the laissez-faire problem is off the mark.

Summary

This paper studies the desirability of ex-ante vs ex-post policies in a very simple setup.

It is shown that the optimal policy consists of a combination of both ex ante \& ex post policies.

The point of optimality is determined such that

