Macroprudential Regulation Versus Mopping Up After the Crash

By O. Jeanne and A. Korinek

Motivation

Recent calls for macro-prudential regulation.

But some people doubt its effectiveness. e.g. "Greenspan Doctrine"

(=Ex ante regulation is too costly compared to ex post "mopping up.")

Summary

This paper studies the desirability of ex ante vs ex post policies in a very simple setup.

It is shown that the optimal policy consists of a combination of both ex ante & ex post policies.

The point of optimality is determined such that

Key Assumptions

Financial markets are imperfect:

- borrowing is subject to constraints
- constraints depend on asset prices
- optential for feedback spirals between
 - collapsing asset prices
 - tightening borrowing constraints
 - declining spending
 - \rightarrow financial accelerator, debt deflation, ...

< = ▶

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

=

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< □ ▶ < @ ▶ < Ξ

Friday, April 15, 2011

Model

Consider an open economy in a 1-good world with 3 time period t=0, 1, 2.

The economy is populated by a continuum of identical consumers with the following utility function.

Model (Ctd.)

Collateral Constraint

Assume consumers can buy or sell the asset in a (perfectly competitive) market (in t=1).

pt: Price of the asset in period *t*

Also impose the following collateral constraint in t=1.

This induces the externality among consumers through pt.

Ex Ante & Ex Post Policies

Ex ante

A planner can impose a tax on borrowing in t=0, which is rebated as a lump sum benefit.

<u>Ex post</u>

A planner can subsidize labor in t=1, the cost of which is raised via a lump sum tax.

Budget Constraint

The resulting budget constraint is as follows.

Consumer's Problem

max
$$u(c_0) + u(c_1 - d(l_1)) + c_2$$
.
(Utility function)

$$\begin{cases} c_0 = (1 - \tau) b_1 + T, \\ c_1 + b_1 = (1 + s) A l_1 + b_2 + (\theta_0 - \theta_1) p_1 - R, \\ c_2 + b_2 = \theta_1 y_2. \end{cases}$$

(Budget constraint)

 $b_2 \leq \phi \theta_1 p_1$ (Collateral constraint)

Planner's Problem

To derive the optimal policy, consider the following planner's problem of maximizing consumer's utility.

$$\max_{b_1, l_1, b_2} u(\overline{b_1}) + E \left\{ u(\overline{Al_1 - b_1 + b_2} - d(l_1)) + y_2 - b_2 \right\} \\ - \lambda \left[b_2 - \phi p(\underline{Al_1 - b_1 + b_2}) \right] \\ = c_2$$

Optimal Ex Ante & Ex Post Policies

Proposition 1

If the collateral constraint is binding with positive prob. in t=1, then the planner chooses a positive ex ante tax $\tau>0$.

Proposition 2

If the collateral constraint is binding in t=1, then the planner chooses a positive ex post subsidy s>0.

Optimal Ex Ante & Ex Post Policies

Proposition 1

If the collateral constraint is binding with positive prob. in t=1, then the planner chooses a positive ex ante tax $\tau>0$.

Negative
$$b_1 \downarrow \rightarrow c_0 \downarrow$$

 $\tau > 0 \rightarrow b_1 \downarrow$
Positive $c_1 \uparrow \rightarrow p(c_1) \uparrow \rightarrow CC$ relaxed

Optimal Ex Ante & Ex Post Policies

Proposition 2

If the collateral constraint is binding in t=1, then the planner chooses a positive ex post subsidy s>0.

Negative
$$l_1 \uparrow \rightarrow d(l_1) \uparrow$$

 $s > 0 \rightarrow l_1 \uparrow \checkmark$
Positive $c_1 \uparrow \rightarrow p(c_1) \uparrow \rightarrow$ CC relaxed

Possibility of "Under-borrowing"

Debt with ex post policy > Debt without ex post policy

This possibility is pointed out by Benigno et al. (09, 10ab). This result can be replicated as follows. Fix a level of ex ante policy.

$$s > 0 \rightarrow l_{1} \uparrow \rightarrow c_{1} \uparrow \rightarrow c_{0} \uparrow \rightarrow b_{1} \uparrow$$

$$u'(c_{0})(1 - \tau) \stackrel{*}{=} E[u'(c_{1})]$$
(EQC for consumer's problem)

Possibility of "Under-borrowing"

On the other hand, there is also a possibility of "over-borrowing" by ex ante policy. Fix a level of ex post policy.

$$\tau > 0 \twoheadrightarrow c_0 \downarrow \twoheadrightarrow b_1 \downarrow$$

When the planner uses both ex ante & ex post policies, the amount of debt may rise or fall, depending on which policy has a stronger effect.

Alternative Ex Post Policy

Instead of subsidy on labor, we can consider a generic policy instrument α that directly relaxes the collateral constraint as $b_2 \leq \phi \theta_1 p_1 + \alpha$ with cost of $L(\alpha)$.

Assume $L(\theta)=L'(\theta)=0<L''(\alpha)$.

Lagrange multiplier =Marginal benefit of relaxing the CC

Note FOC for planner's problem is $L'(\alpha) = \lambda$.

Again, $\alpha > 0$ if $\lambda > 0$.

"Managing Credit Booms and Busts: A Pigouvian Taxation Approach," by Jeanne and Korinek Timothy S. Fuerst

Senior Economic Advisor, FRB Cleveland

October 15, 2010

Financial Accelerator.

Decline in asset price tightens credit constraint.

Tighter credit constraint lowers consumption.

Lower consumption lowers asset price.

Etc.

<u>But</u>, the tighter credit constraint should also have a positive effect on asset prices because assets help relax the credit constraint. This positive effect should moderate the decline in asset prices coming from the decline in consumption. <u>This effect is missing from their</u> <u>analysis.</u>

Why is CE not Pareto Efficient in model?

- 1. Missing market? Nope. This is RA setting.
- 2. Value of endowment is unbounded? Nope.
- 3. Large agents? Nope.
- 4. Explicit "pollution" effect. Nope.

I suspected the laissez-faire problem is off the mark.

Summary

This paper studies the desirability of ex-ante vs ex-post policies in a very simple setup.

It is shown that the optimal policy consists of a combination of both ex ante & ex post policies.

The point of optimality is determined such that

