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Abstract

A number of recent papers have developed multifactor extensions of the classic consumption

capital asset pricing model (CCAPM), and found that they perform remarkably well in explain-

ing the cross-section of stock returns. While the extant literature has generally concluded that

conditioning information improves the empirical performance of the CCAPM, the empirical work

to date has primarily employed cross-sectional regressions that ignore theoretical restrictions on

the time-series intercepts in regressions of each test asset return on the model�s factors. This pa-

per asks whether the superior empirical performance of the multifactor CCAPMs is maintained

once the time-series intercept restrictions have been explicitly tested. The use of maximum

correlation portfolios makes it straightforward to test whether such multifactor CCAPMs sat-

isfy the time-series intercept restrictions, since in this case the single testable implication of the

model is that each intercept should be zero. The empirical Þndings support the conclusion that

multifactor CCAPMs can explain the cross-section of expected stock returns better than classic

unconditional models such as the CAPM and CCAPM. Moreover, several of the multifactor

CCAPMs are shown to perform as well or better than the Fama and French (1993) three-factor

model.
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1 Introduction

A number of recent papers have developed multifactor extensions of the classic consumption capital

asset pricing model (hereafter CCAPM), and found that they perform remarkably well in explaining

the cross-section of stock returns (e.g. Lettau and Ludvigson (2001), Piazzesi, Schneider and Tuzel

(2005), Lustig and Van Nieuwerburgh (2005), Santos and Veronesi (2005)). Multifactor models

can be thought of as conditional versions of the standard CCAPM because the weights in the

linear factor representations of these models are not Þxed, but rather modeled as functions of

information known at time t. These consumption-based models have factors which are not returns,

and have been tested using cross-sectional regressions. For models in which factors are returns,

the single testable implication is that intercepts from time-series regressions of test asset returns

on the factors should be jointly zero. In models where factors are not returns, such time-series

intercepts are not unrestricted, but they involve unknown parameters that must be estimated.

This complicates testing whether the intercept restrictions hold. As a result, such restrictions are

typically not tested or imposed, and the performance of the model is evaluated solely on the basis

of the cross-sectional Þt. A complete assessment of the success of prominent multifactor extensions

requires an evaluation of whether the time-series intercept restrictions are in fact satisÞed.1

One way to test whether time-series intercept restrictions of multifactor CCAPMs are satisÞed

is to use maximum correlation portfolio (hereafter MCP), as proposed by Breeden (1979), and

Breeden, Gibbons and Litzenberger (1989). Lewellen and Nagel (2005) is a recent application of

this methodology to study conditional implications of the CCAPM. By employing MCP returns

that are maximally correlated with the original factors, tests of the models once again collapse

to evaluating the single implication that the time-series intercepts must be jointly zero. Breeden,

Gibbons and Litzenberger (1989) evaluate the standard CCAPM with consumption growth as a

single factor, and show that the CCAPM holds with respect to a set of test assets when betas are

measured relative to the MCPs obtained from the test assets. I extend these results to settings

with multiple non-return factors.

In this paper I test speciÞc multifactor CCAPMs that have been found elsewhere to explain

the cross-section of expected stock returns better than the standard unconditional CCAPM. The

main question is whether the superior cross-sectional performance of such models is maintained

once the time-series intercept restrictions are explicitly recognized. I test the scaled CCAPM

proposed by Lettau and Ludvigson (2001b), in which the consumption-wealth ratio is used as a

conditioning variable; the consumption-housing CAPM of Piazzesi, Schneider and Tuzel (2005),

in which the non-housing consumption expenditure share is used as a conditioning variable; the

collateral-CCAPM of Lustig and Van Nieuwerburgh (2005), in which the housing collateral ratio

1Similar point is discussed in Lewellen and Nagel (2004), as "Estimates of conditional alphas provide a more direct

test of the conditional CAPM. Average conditional alphas should be zero if the CAPM holds..." (p.3).
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is used as a conditioning variable; and the conditional CCAPM with labor income of Santos and

Veronesi (2005). For comparison, I also test the standard CAPM and the Fama-French three-

factor model (Fama and French (1993)). The Fama-French model is based on three atheoretical

return factors and is the leading empirical model for explaining cross-sectional variation in average

stock returns. Nevertheless, the stunning performance of the Fama-French model has generated

controversy over the interpretation of the results, since it is unclear how the three Fama-French

factors relate to systematic sources of macroeconomic risk, such as consumption growth in the

CCAPM or its multifactor extensions.

I report two main results. First, the time-series intercept-based tests show that the multifactor

CCAPM models explain the cross-section of stock returns better than classic unconditional models

such as the CAPM and CCAPM. Second, several of the multifactor CCAPMs are shown to perform

as well as or better than the Fama and French three-factor model. It is known from previous studies

(cited above) that these multifactor extensions of the CCAPM perform about as well as the Fama-

French model when evaluated according to cross-sectional regressions. This paper adds to the

empirical literature by showing that several of these models match or surpass the Fama-French

model, even when evaluated in the time-series.

The rest of this paper is organized as follows. In section 2 I explain the speciÞcations of

unconditional and multifactor CCAPMs. Section 3 presents restrictions on the intercepts in time-

series regressions which provide the basis for the cross-sectional asset pricing test. The methodology

for testing time-series restrictions using MCPs in place of factors is also discussed in section 3.

Section 4 describes the multifactor CCAPMs I test and discusses which variables are considered

as factors in those models. Section 5 describes the data and presents the results of tests. I Þrst

compare the pricing errors across the candidate models, and then conduct statistical tests proposed

by Gibbons, Ross and Shanken (1989), as well as alternative bootstrap tests. Section 6 concludes.

2 Unconditional vs. Scaled Multifactor CCAPM

I start by motivating the general multifactor extensions of the classic CCAPM. Throughout the

paper, I assume that the risk-free rate Rft is observed. Let Mt+1 be the stochastic discount factor.

Any tradable asset with return Rt+1 must satisfy

1 = Et[Mt+1Rt+1], (1)

where Et denotes the expectation conditional on time t information. For the basic consumption-

based model, the asset pricing equation (1) comes from the Þrst-order condition for optimal con-

sumption choice of a representative agent, that is,

1 = Et[δ
u0(Ct+1)
u0(Ct)

Rt+1],
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where u(Ct) is instantaneous utility function and u0(Ct) is marginal utility with consumption Ct,

and δ is the subjective discount factor. In this model the stochastic discount factorMt+1 = δ
u0(Ct+1)
u0(Ct)

is the intertemporal marginal rate of substitution.

It is assumed that the stochastic discount factorMt+1 can be approximated as a linear function

of consumption growth,

Mt+1 = a+ b∆ct+1, (2)

where ct+1 = log(Ct) and a, b are parameters. The standard CCAPM of Breeden (1979) speciÞes

these parameters as constant, where consumption growth is the single factor. But if I derive a, b

by combining equation (1), (2), and the relation for the risk-free rate which is known at time t

1 = Et[Mt+1]R
f
t ,

then

a =
1

Rft
− bEt[∆ct+1]

b =
Et[Rt+1]−Rft

Rft Covt[∆ct+1, Rt+1]
,

which shows that a, b may vary over time to the extent that conditional moments vary. Based on

this, conditional versions of the CCAPM can be written that allow the coefficients to be varying

over time such as

Mt+1 = at + bt∆ct+1. (3)

For example, following Cochrane (1996), the time-varying coefficients may be modeled as linear

functions of conditioning variables zt known at time t:

Mt+1 = (a0 + a1zt) + (b0 + b1zt)∆ct+1

= a0 + a1zt + b0∆ct+1 + b1(∆ct+1zt)

= a0 +A
0Ft+1, (4)

where

A = [a1 b0 b1]
0, Ft+1 = [zt ∆ct+1 ∆ct+1zt]

0.

I refer to this as the scaled multifactor CCAPM. The empirical models I consider below are of

this form, and differ based on the choice of conditioning variables zt. I call ∆ct+1 the fundamental

factor. In some of the models that I consider below, there are more than one fundamental factors

to be scaled by conditioning variables. If I model time-variation of the coefficients explicitly as

functions of known conditioning variables, then I can rewrite the conditional single-factor model as

an unconditional multifactor model. These models can then be tested unconditionally as multifac-

tor models with consumption growth, the conditioning variable and the product term as factors.
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Then, using the unconditional multifactor speciÞcation of the stochastic discount factor with con-

stant coefficients, the unconditional asset pricing equation can be derived by taking unconditional

expectation on both sides as follows:

0 = Et[Mt+1R
e
t+1] ⇒

0 = E[Mt+1R
e
t+1]

= E[Mt+1]E[R
e
t+1] + Cov[Mt+1, R

e
t+1]

= E[Mt+1]E[R
e
t+1] +A

0Cov[Ft+1, Ret+1], (5)

where Ret+1 is excess return over risk-free rate, R
e
t+1 = Rt+1 − Rft . From this unconditional asset

pricing equation (5) I can derive the unconditional expected return-beta representation:

E[Ret+1] = − 1

E[Mt+1]
A0Cov[Ft+1, Ret+1]

= − 1

E[Mt+1]
A0Cov[Ft+1, F 0t+1]β

= β0λ, (6)

where

β = Cov[Ft+1, F
0
t+1]

−1Cov[Ft+1, Ret+1]

λ = − 1

E[Mt+1]
Cov(Ft+1, F

0
t+1)A.

In this paper I focus on testing the unconditional implications of such multifactor models.

The unconditional factor model has an expected return-beta representation with constant (uncon-

ditional) betas on the multiple factors. So, when I consider the expected return-beta model to

impose the restrictions on the time-series regressions, it is appropriate to "unconditionally" esti-

mate the intercepts and the coefficients on the factors from the time-series regressions of the test

assets on the multiple factors.

Again, multifactor models can be thought of as conditional versions of the standard CCAPM.

Here the "conditioning" in the conditional CCAPM refers to allowing the coefficients at and bt to

depend on time t information. I then go on to test the unconditional implications of the model, as

has been done in the paper cited above. An alternative approach would be to test the conditional

implications of the scaled multifactor models.2 Because the models and empirical results discussed

above are all based on tests of the unconditional implications of multifactor models, I do not pursue

this avenue here.
2Ferson and Harvey (1999) tests the conditional implications of the Fama-French three-factor model directly by

modeling time-variation in the alphas and betas.
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3 Time-Series Restrictions for Cross-Sectional Tests

3.1 Restriction on Time-Series Intercept

In this section I discuss the restriction implied by the model for the time-series regressions of test

asset returns on factors, and apply this restriction in the setting where the factors are not returns.

Suppose we have a vector of K factors, ft+1 = [f1,t+1 · · · fK,t+1]0, and N test asset returns

Rei,t+1, i = 1, · · · , N, excess over the risk-free rate, of which we want to explain the cross-sectional
variation in unconditional average. The expected return-beta representation of the linear factor

model is, as stated in equation (6),

E[Rei,t+1] = β
0
iλ, (7)

where βi is K × 1 vector of multiple regression coefficients from a time-series regression of the

return of asset i, Rei,t+1, on the K factors. βi can be interpreted as the amount of exposure to the

risk captured by each factor, and λ is K × 1 vector of the "price" of such risk. The time-series
regression of each test asset return on the factors, used to get βi, is written

Rei,t+1 = αi + β
0
ift+1 + 9i,t+1. (8)

Taking unconditional expectations on both sides of the time-series regression, I have

E[Rei,t+1] = αi + β
0
iE[ft+1]. (9)

Equating (7) and (9), I have

β0iλ = αi + β
0
iE[ft+1]⇒ αi = β

0
i(λ−E[ft+1]), (10)

resulting in a restriction on the time series intercept of the regression (8).

When the factors ft+1 are not returns, the above restriction includes a vector of free parameters

λ, which should be estimated. But in the special case where the factors are excess returns, this

restriction can be simpliÞed. I can apply the expected return-beta representation to the factors,

since the factors are also excess returns. Doing so, the betas on the factors themselves are one and

those on the other factors are all zero. From these relations I can derive λ = E[ft+1]. When ft+1

is an excess return, this means the parameters in λ are no longer free, implying that the intercepts

in the time-series regressions should be all zero for each test asset (see Cochrane (2001)). So, the

null hypothesis for the cross-sectional test, with time-series intercept restrictions, is

H0 : αi = 0, i = 1, · · · , N .
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3.2 Testing Time-Series Intercept Restrictions

As explained, in case the factors I am interested in are macroeconomic variables, not returns, I

cannot directly test the null hypothesis that the intercepts from time-series regressions are jointly

zero. One way to deal with this problem is to make use of maximum correlation portfolio (MCP), as

proposed by Breeden (1979), and Breeden, Gibbons and Litzenberger (1989). This section extends

their analysis to the case of multiple non-return factors.

In practice this MCP is derived from the regression of original factor on a set of base asset

returns, and is therefore a linear combination of those base asset returns which is maximally corre-

lated with the factor. Let�s suppose that I choose a vector of M base asset returns Rbt+1 = [R
b
1,t+1

· · · RbM,t+1]0, where all the returns are excess over the risk-free rate. Then the MCP regression for
a factor fk,t+1 is

fk,t+1 = ωk,0 + ωk,1R
b
1,t+1 + · · ·+ ωk,MRbM,t+1 + ηk,t+1, (11)

with MCP f∗k,t+1 given as the Þtted value from this regression:

f∗k,t+1 = �ωk,1R
b
1,t+1 + · · ·+ �ωk,MRbM,t+1,

where "hats" denote estimated coefficients. Here the estimated coefficients on the base assets are

used as portfolio weights.

To test the time-series intercept restrictions for models with multiple non-return factors, I form

the MCP f∗k,t+1 for each factor, and use the MCPs in place of the original factors in time-series

regressions (8). To use this MCP strategy, I need to verify that, if the expected return-beta represen-

tation holds with betas on the original factors, then it also holds with betas on the MCPs.3 Breeden,

Gibbons and Litzenberger (1989) consider the standard CCAPM with consumption growth as the

single factor, and choose base assets to be the same as test assets. Then they show that the con-

sumption beta is proportional to consumption-MCP beta, a condition to assure that if the model

with consumption beta holds, then it also holds with consumption-MCP beta, with the price of

risk parameter rescaled.

The case that I consider in this paper is more general than that considered in Breeden, Gibbons

and Litzenberger (1989), for two reasons. First, because I am interested in testing multifactor

models, I need to derive the betas on the factors as the coefficients from the multivariate time-series

regressions, so I should check if I can apply the same methodology used for testing single-factor

models to our multifactor setting. Second, I may want to consider a larger set of base assets that

can be applied to our test.

As for the Þrst question, if I derive the betas on MCPs from the multivariate time-series re-

gressions, then generally I cannot keep one-by-one proportionality of beta on each factor to beta
3 I refer to "betas on factors" as the coefficients in a multivariate regression of test assets on factors, and "betas

on MCPs" as the coefficients in the multivariate regression of test assets on MCPs.
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on MCP for that factor. But I can show that if I choose base assets properly, then an expected

return-beta representation still holds with betas on MCPs instead of factors. In general, if the

base assets span the test assets, then the expected return-beta representation holds with betas on

MCPs when it holds with betas on factors. For example, when I want to test the model with N

test assets Ret+1 = [R
e
1,t+1 · · · ReN,t+1], if I choose M base assets Rbt+1 = [R

b
1,t+1 · · · RbM,t+1] such

that Ret+1 = Rbt+1Γ, where Γ is an M × N (M ≥ N) matrix, then I can use MCPs formed from

these base assets, in place of factors, to test the multifactor model. In other words, if the relations

E[Rei,t+1] = βi1λ1 + · · ·+ βiKλK , i = 1, · · · , N,

hold with βi1, · · · , βiK measured for each of K factors, then the following relations

E[Rei,t+1] = β
∗
i1λ

∗
1 + · · ·+ β∗iKλ∗K , i = 1, · · · , N,

also hold with β∗i1, · · · , β∗iK measured for K factor-MCPs. It follows that I can perform the cross-

sectional test by testing the intercepts from the time-series regressions of the test assets on the

MCPs. In Appendix 1 I show that the expected return-beta representation with betas on the

MCPs can be derived from the beta representation with betas on the original factors when I choose

a set of base asset returns that span the test asset returns.

It should be noted that, in principle, a valid set of base assets could also consist of any set

of asset returns that span the unconditional mean-variance frontier. In practice, however, it is

not clear precisely which assets those might be. Therefore a practical advantage of the approach

outlined here is that it is straightforward to Þnd assets that span the set of test asset returns by,

for example, simply choosing the set of base assets to be the same as the set of test asset returns.

4 Description of the Candidate Models

4.1 Unconditional Models

For comparison with the scaled multifactor CCAPMs, I consider two types of unconditional CCAPMs.

The benchmark model is the classic CCAPM of Lucas (1978) and Breeden (1979), where consump-

tion growth is the single factor; the speciÞcation of this model is given in equation (2).

Recently this model has been augmented to deal with non-separable preference over non-housing

consumption and housing consumption. Piazzesi, Schneider and Tuzel (2005) argue that the com-

position of the consumption bundle is a new risk factor, and they show that under the assumption

of CES utility the composition risk factor can be represented as growth of the ratio of non-housing

consumption to overall consumption expenditure, or non-housing consumption expenditure share.

The stochastic discount factor is augmented by the growth of the non-housing consumption ex-

penditure share. If I denote Ct and Ht as non-housing and housing consumption, with pCt and
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pHt as prices of non-housing and housing consumption goods respectively, then the non-housing

consumption expenditure share St is deÞned as

St =
pCt Ct

pCt Ct + p
H
t Ht

.

Then the stochastic discount factor augmented by the composition risk factor is

Mt+1 = a+ b∆ct+1 + d∆st+1, (12)

where st+1 = log(St+1) and the coefficients a, b and d are considered as constant. Here d depends

on the intratemporal elasticity of substitution between non-housing and housing consumption, as

well as the coefficient of relative risk aversion. Following Piazzesi, Schneider and Tuzel (2005), I

call this model as the (unconditional) consumption-housing CAPM, or CHCAPM.

4.2 Scaled Multifactor Models

As I already explained, I follow several recent empirical papers and capture time-variation of the

coefficients in the linearized stochastic discount factor by specifying those coefficients as linear

functions of chosen conditioning variables in the scaled version of CCAPM, as in equation (4). As

in these empirical papers I can test the unconditional asset pricing implications of the model by

interpreting it as unconditional multifactor model.

For the scaled multifactor versions of the CCAPM, the coefficients a and b in (2) are allowed

to be time-varying, so I have

Mt+1 = at + bt∆ct+1.

Keeping the assumption that the coefficients are linear functions of the chosen conditioning variable,

the scaled version of CCAPM is

Mt+1 = (a0 + a1zt) + (b0 + b1zt)∆ct+1

= a0 + a1zt + b0∆ct+1 + b1(∆ct+1 · zt).

I test three empirical models distinguished by different choice of conditioning variables. The Þrst

model is the scaled CCAPM proposed by Lettau and Ludvigson (2001b). In their model, a proxy for

the log consumption-wealth ratio (hereafter cay) is used as the conditioning variable zt. The variable

cay is computed as a cointegrating residual between log of consumption, log of asset wealth and log

of labor income. Detailed explanation for cay can be found in Lettau and Ludvigson (2001a). The

second model is the housing-CCAPM considered in Piazzesi, Schneider and Tuzel (2005). They use

the non-housing consumption expenditure share as the conditioning variable zt, and consider the

scaled CCAPM by scaling the coefficients of the CCAPMwith their conditioning variable. The third

model is the collateral-CCAPM derived from the model with housing collateral by Lustig and Van
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Nieuwerburgh (2005). They consider a heterogeneous agent model with endogenously incomplete

market and collateralized borrowing. The tightness of the borrowing constraint depends on the

housing collateral ratio, myt, which is the ratio of housing wealth to total wealth. Thus, they

consider a model with separable preferences and a model with non-separable preferences, and I call

the model with separable preferences a version of the scaled CCAPM.

When preferences are non-separable over non-housing and housing consumption, I have scaled

versions of CHCAPM, where the coefficients in (12) are allowed to be time-varying, as in

Mt+1 = at + bt∆ct+1 + dt∆st+1.

Keeping the assumption that the coefficients are linear functions of the chosen conditioning variable,

the scaled version of CHCAPM is

Mt+1 = (a0 + a1zt) + (b0 + b1zt)∆ct+1 + (d0 + d1zt)∆st+1

= a0 + a1zt + b0∆ct+1 + b1(∆ct+1 · zt) + d0∆st+1 + d1(∆st+1 · zt).

I test two models for the scaled CHCAPM. One is the scaled CHCAPM proposed by Piazzesi,

Schneider and Tuzel (2005), which I call housing-CHCAPM. This model considers non-housing and

housing consumption under the assumption of non-separable utility function. For this model the

conditioning variable zt is the non-housing consumption expenditure share. The other model is the

collateral-CHCAPM of Lustig and Van Nieuwerburgh (2005) with non-separable preferences. The

conditioning variable zt in this model is the housing collateral ratio.

I also test the conditional CCAPM with labor income, proposed by Santos and Veronesi (2005).

Like the models above, the Santos-Veronesi model is a consumption-based model. In this model,

a representative agent chooses portfolio and consumption allocation by maximizing the present

discounted value of expected future utility functions over consumption. But because there is single

shock in the model the conditional CCAPM can be expressed in terms of the return to aggregate

wealth, including human capital. To account for human capital, Santos and Veronesi model includes

two types of returns as factors, one for non-human wealth and the other for human wealth. The

return on non-human, or Þnancial, wealth is proxied by a market portfolio return, where the return

on human wealth RWt+1 is proxied by labor income growth,
4 respectively. And they use the ratio of

labor income to consumption, swt , as a conditioning variable. This model has the form

Mt+1 = a+ b0R
M
t+1 + b1R

M
t+1s

w
t + d0R

W
t+1 + d1R

W
t+1s

w
t .

4They use the labor income growth as measure of return to human wealth, and measure the excess return as the

log of labor income growth minus the risk-free rate. So I consider the labor income growth as return, as they do.
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4.3 Extensions of CAPM

To further compare the cross-sectional performance of the models above with the classic models,

I also test the standard CAPM and two other models which are the extensions of CAPM. The

standard CAPM is the single-factor unconditional model with a market portfolio return as a factor,

as

Mt+1 = a+ bR
M
t+1,

where RMt+1 is a market portfolio return. The second one is the Fama-French three-factor model,

which includes the return on a portfolio long in stocks of small-size Þrms and short in stocks of

large-size Þrms (SMB) and the return on a portfolio long in high book-to-market stocks and short

in low book-to-market stocks (HML) as additional factors. It takes the form

Mt+1 = a+ bR
M
t+1 + dSMBt+1 + hHMLt+1.

This model is known to have particular success explaining the cross-section of stock returns, espe-

cially the size and value effects.

The Santos-Veronesi model (note that the scaled returns, e.g. RMt+1s
w
t , have the interpretation

of managed portfolio returns, see Cochrane (1996)), the standard CAPM and the Fama-French

three-factor model have factors which are all excess returns, so I can directly test them using the

intercept restrictions on the time-series regressions. There is no need to form MCPs.

All the candidate models described above are summarized in Table 1, with their speciÞcations

of the stochastic discount factors.

5 Empirical Results

In this section I Þrst describe the data, and then present the empirical results. The data are

quarterly, and the full-sample period is 1952:Q1-2002:Q4. I will also present the results from two

subsamples, 1952:Q1-1977:Q4 and 1978:Q1-2002:Q4.

5.1 Data Description

Financial Data I use the Fama-French 25 portfolios formed on Þrm size and book-to-market

value. The 25 portfolios are the intersections of 5 portfolios sorted by Þrm size and 5 portfolios

sorted by the ratio of book value to market value of equity. But, instead of taking all of the 25

portfolios as test assets, I perform the cross-sectional tests for two groups chosen out of the 25

portfolios. One group is composed of 10 portfolios chosen by size, and I call this group as "size

group". This group takes the 5 portfolios from the smallest-size quintile and the 5 portfolios from

the biggest-size quintile. The other group takes the 10 portfolios chosen by book-to-market, and I
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call this group as "book-to-market group". This group takes the 5 portfolios from the lowest-book-

to-market quintile and the 5 portfolios from the highest-book-to-market quintile. The reason I

choose 10 asset returns for each group is the following. As shown in Appendix 1, to form the MCPs

which will be used for the cross-sectional tests, I need at least as many base assets as test assets so

that the base assets can span the test assets. Recalling that these base assets are regressors in the

MCP regressions, I need to control the number of base assets given the relatively small time-series

sample (T = 204 for full sample) in quarterly data.

Summary statistics for the two groups of test assets are presented in Table 2. The values are

annualized in real terms. It is observed that on average the stock returns of small-size Þrms are

higher than those of big-size Þrms by 3.07%, and the stock returns of Þrms with high book-to-

market value are higher than those of Þrms with low book-to-market value by 5.7%. For each

of the size quintile, it is observed that the stocks with higher book-to-market value have higher

returns. Also for the book-to-market quintile, the returns are higher as size is smaller, though it�s

not clear in the low-book-to-market quintiles.

As for comparison, Lewellen and Nagel (2005) consider two groups related to the size and book-

to-market criteria.5 One group includes the average of the stock returns in the smallest quintile,

the average of the stock returns in the biggest quintile, and the difference of the two to capture

the size-premium. The other group is composed of the average of the stock returns in the highest

book-to-market quintile, the average of the stock returns in the lowest book-to-market quintile, and

the difference of the two to capture the value-premium. Then they look at how large the average

of conditional time-series intercepts is for each group. In this paper, instead of focusing on the

magnitude of intercepts for size premium and value premium separately, I look at 10 time-series

intercepts from the time-series regressions of test assets on the MCPs for each group, and test if

the intercepts are jointly zero.

The Fama-French 25 portfolio returns sorted by size and book-to-market value, and the Fama-

French three factors, value-weighted market excess returns, SMB and HML are from Kenneth

French�s website. For the risk-free rate, I use the three-month Treasury bill rate, from Federal Re-

serve Board�s website.

Macroeconomic Data The consumption series used in the cay-CCAPM of Lettau and Ludvigson

(2001b) is slightly different from the consumption measure used in the housing-CCAPM of Piazzesi,

Schneider and Tuzel (2005) and collateral-CCAPM of Lustig and Van Nieuwerburgh (2005). That

is, the series of consumption expenditure for nondurables and services excluding shoes and clothing

is used to measure the consumption ßow in cay-CCAPM, while housing-CCAPM and collateral-

CCAPM use consumption expenditure for nondurables and services excluding housing services as

5Lewellen and Nagel(2004) also consider another group related to the momentum portfolios. In this paper we

focus on the size-related and book-to-market-related portfolios.
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consumption ßow measure. For the standard CCAPM, I use the consumption measure used in

the cay-CCAPM. All the consumption series are real, chain-weighted values in 2000 dollars, from

Bureau of Economic Analysis (hereafter BEA) website.

All the returns used in this paper are represented as real values, computed by dividing nominal

returns by the inßation rate. The inßation rate is measured from the price index for personal

consumption expenditure, which is also from BEA.

Housing consumption and the price of housing and non-housing consumption goods used to com-

pute the expenditure share of non-housing consumption are all from BEA, following the description

in Piazzesi, Schneider and Tuzel (2005). The expenditure share of non-housing consumption is used

as a conditioning variable for consumption-housing CAPM. The series of consumption-wealth ratio,

cay, is from Sydney Ludvigson�s website, and the series of the housing-collateral ratio, my, is from

Stijn Van Nieuwerburgh. In Lustig and Van Nieuwerburgh (2005), they consider three different

series for the measure of the housing collateral stock and computed the housing collateral ratio for

each of the measures. Among these, I use the housing collateral ratio computed using the market

value of residential real estate wealth.

5.2 MCP Regression

For each factor, MCP is obtained from time-series regression of the factor on a set of base asset

returns. I have already discussed appropriate ways to choose the base assets in MCP regressions in

practice. One way is to follow Breeden, Gibbons and Litzenberger (1989) and keep the base asset

returns the same as the test asset returns. In my notation, their choice corresponds to the case of

Γ = I where I is the N ×N identity matrix, in the restriction Ret+1 = R
b
t+1Γ. I use this approach

here.

The results of the MCP regressions are presented in Table 3. The Þrst column shows (adjusted)

R-squared from the regressions of the factors on the 10 returns in the size group, and the second

column shows (adjusted) R-squared from the regressions of the factors on the 10 returns in the

book�to-market group. I normalize the portfolio weight on each of the base asset returns so that

the weights sum to one, by dividing each coefficient by sum of all coefficients.

Overall the (adjusted) R-squared are not so high, considering that the MCP means the linear

combination of the base assets to give the maximum correlation with the factor. In Lewellen and

Nagel (2005), it is suggested to use dynamic MCP, where the portfolio weights are time-varying,

as a way to achieve higher R-squared, such as

fk,t+1 = ωk0,t + ωk1,tR
b
1,t+1 + · · ·+ ωkM,tRbM,t+1 + ηk,t+1. (13)

In dynamic MCP approach employed by Lewellen and Nagel (2005), the time-variation of the

portfolio weights is captured by specifying the weights in the MCP regressions as linear functions
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of some conditioning variables. For example, the following dynamic MCP regression for each factor

fk,t+1, with base assets [Rb1,t+1 · · · RbM,t+1] and conditioning variable zt can be run:

fk,t+1 = (ω
0
k0 + ω

1
k0zt) + (ω

0
k1 + ω

1
k1zt)R

b
1,t+1 + · · ·+ (ω0kM + ω1kMzt)R

b
M,t+1 + ηk,t+1, (14)

implying that the dynamic MCP is

f∗k,t+1 = (�ω
0
k1 + �ω

1
k1zt)R

b
1,t+1 + · · ·+ (�ω0kM + �ω1kMzt)R

b
M,t+1.

It is observed that, by capturing the time-variation of portfolio weights, I can get higher R-

squared from the MCP regressions. For example, if I run MCP regression of the consumption

growth on the 10 base assets for each group with time-varying coefficients captured using cay as

a conditioning variable, then I have R-squared 0.24 and 0.25 (adjusted R-squared 0.15 and 0.16)

for size and book-to-market group respectively in full sample, much higher than those from the

constant-weight MCP regressions.

Then, is it better to use dynamic MCPs since I can achieve higher R-squared? If one wants

to test the conditional implications of the CCAPM models considered here, as in Lewellen and

Nagel (2005), then this approach makes sense, since the portfolio weights are derived as functions

of conditional covariance between factors and base asset returns. In this case if I estimate the

dynamic MCPs and derive the conditional betas on the dynamic MCPs, then I can show that the

conditional expected return-beta representations hold with dynamic MCPs when the conditional

beta representations hold with the original factors, with a proper choice of a set of base assets.

But my focus is on the test of the unconditional implications of the models, and I need to use

Þxed weights. Appendix 2 shows that I can use dynamic MCPs when I perform the test of the

conditional implications of the models. But I also show that, if I use dynamic MCPs to test the

unconditional implications, then the expected return-beta representations may not hold with betas

on the dynamic MCPs even if the representations hold with betas on the factors. Based on these

results, I form the constant-weight MCPs and use them for the unconditional tests of conditional

CCAPMs.6

5.3 Test from the Time-Series Regressions

5.3.1 Pricing Error

As one dimension to compare the cross-sectional performance across the models, I Þrst compare

each model�s pricing error. The time-series intercepts can be interpreted as pricing errors when the

factors are returns. Since I use MCPs instead of factors, this approach provides an easy way to

compare different versions of CCAPMs in terms of pricing errors by looking at the magnitude of
6Breeden, Gibbons and Litzenberger (1989) also comments about this point saying that "constant weights are

appropriate for the empirical work focuses on unconditional moments"(p.248).
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the time-series intercepts. In Table 4 I present the square root of the average squared pricing errorq
1
N

PN
i=1 α

∗2
i for the N test assets, calculated by the time-series intercept α∗i from the regression

of test asset i on the MCPs, for each model. The values presented in Table 4 are in quarterly

percentage units.

With full sample it can be found that, for both CCAPM and CHCAPM, the scaled models

produce smaller average squared pricing errors than the unconditional models, that is, their time-

series intercepts are smaller. For the CCAPMs, all of the scaled models have smaller average

squared pricing errors compared with the unconditional model. And for the CHCAPMs, especially

the collateral-CHCAPM produce smaller pricing errors with both the size and the book-to-market

groups than the unconditional model. Similar patterns can be found in the subsamples. The

results show that the scaled models have smaller pricing errors than the classic unconditional

models. The cay-CCAPM and the housing-CCAPM shows smaller average squared pricing errors

than the unconditional CCAPM, and the housing-CHCAPM and collateral-CHCAPM perform as

well as, or better than, the unconditional CHCAPM in lowering the magnitude of pricing errors.7

Let�s compare the average squared pricing errors of consumption-based models with the CAPM-

type models. Among the CAPM and its extensions, the Fama-French three-factor model performs

best in terms of the average squared pricing errors. This model also shows smaller magnitude

of pricing errors than the classic and scaled CCAPMs, as well as the unconditional CHCAPM.

The Fama-French three-factor model is known to explain the size and value effect very well. But,

I can Þnd that the scaled CHCAPMs have smaller magnitude of pricing errors than the Fama-

French three-factor model in some cases. For example, in full sample and especially in the second

subsample, the housing-CHCAPM shows smaller average squared pricing errors than the Fama-

French three-factor model with size group. And, in the Þrst subsample, both the housing-CHCAPM

and collateral-CHCAPM outperform Fama-French three-factor model in lowering the pricing errors.

These results of the pricing errors support the main arguments of this paper. First, the multi-

factor CCAPM models explain the cross-section of stock returns better than classic unconditional

models such as the CAPM and CCAPM. Second, some of the multifactor CCAPMs, especially the

scaled consumption-housing models, are shown to perform as well as, or better than, the Fama-

French three-factor model in lowering the pricing errors. It is known from previous studies cited

above that these multifactor extensions of the CCAPM perform about as well as the Fama-French

model when evaluated according to cross-sectional regressions. The results of the pricing errors

show that several of these models match or surpass the Fama-French model, even when evaluated

in the time-series.
7 It is not the case that models with greater numbers of factors necessarily have smaller time-series intercepts in

magnitude. A simple monte carlo analysis can be used to demonstrate this point.
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5.3.2 GRS Test

Now I perform the statistical tests of the null hypothesis that, for each model, the intercept terms

from the time-series regressions of test assets on MCPs are jointly zero. Let�s remind that I denote

MCP for factor fk,t+1 as f∗k,t+1, k = 1, · · ·K, and also the vector of MCPs as f∗t+1 = [f∗1,t+1 · · ·
f∗K,t+1] where K is the number of factors in the model under evaluation. Then the time-series

regressions, which provide measures of betas on the MCPs, are

Rei,t+1 = α
∗
i + β

∗0
i f

∗
t+1 + 9

∗
i,t+1, i = 1, · · · , N. (15)

The null hypothesis for the cross-section test is

H0 : α
∗
i = 0, ∀i.

Gibbons, Ross and Shanken (1989) derive the appropriate Þnite-sample test statistics and its

distribution under the null hypothesis, assuming that the regression residuals are jointly normally

distributed.8 The GRS test statistics is given as

T −N −K
N

[1 +ET (f
∗)0 �Ω−1ET (f∗)]−1�α∗0 �Σ−1�α∗ ∼ F (N,T −N −K), (16)

where

�α∗ = [�α∗1 · · · �α∗N ]0

ET (f
∗) =

1

T

TX
t=1

f∗t

�Ω =
1

T

TX
t=1

[f∗t −ET (f∗)][f∗t −ET (f∗)]0

�Σ =
1

T

TX
t=1

�9∗t�9
∗0
t , �9

∗
t = [�9

∗
1,t · · · �9∗N,t]0.

The GRS test statistics and p-values for size and book-to-market groups in full sample are

summarized in Table 5. The null hypothesis that the time-series intercepts are jointly zero is rejected

at the 5% signiÞcance level for both the unconditional and scaled CCAPMs, Santos-Veronesi model

and the Fama-French three-factor model, as well as the standard CAPM. The only model that

is not rejected is the collateral-CHCAPM, the scaled CHCAPM which uses the housing collateral

ratio as a conditioning variable, but the unconditional CHCAPM is rejected. Compared with the

unconditional CHCAPM, adding conditioning variable capturing time-variation of the coefficients

8Though the MCP returns are linear combinations of test asset returns, these linear combinations are not left

unrestricted, so the residual covariance matrix is not singular.
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in the stochastic discount factor is shown to improve the cross-sectional performance, both for size

and book-to-market groups.

Now I perform the GRS test for two subsamples. For each subsample I estimate MCPs again and

run the time-series regressions with the new MCPs. Those results are presented in Table 6 for the

Þrst subsample and in Table 7 for the second subsample respectively. For the Þrst subsample, the

unconditional CCAPM is rejected, but the scaled versions of the CCAPM, cay-CCAPM, housing-

CCAPM and collateral-CCAPM, are not rejected at the 5% signiÞcance level, when I perform

the tests with size group. None of the unconditional and scaled CHCAPMs are rejected, and the

Fama-French three-factor model is not rejected either. With book-to-market group, no candidate

models are rejected.

But, with the second subsample, it becomes much more difficult to explain the size and value

effects with any of these models, as the results show many rejections of the candidate models in

Table 7. For the size group, the unconditional and all of the scaled CCAPMs, as well as all of the

classic and the extensions of CAPM including the Fama-French three-factor model, are rejected.

But here I observe that the scaled CHCAPMs are not rejected while the unconditional CHCAPM

is rejected at the 5% signiÞcance level. Again, the scaled versions of the CHCAPM improves the

cross-sectional performance of the unconditional model, according to this test. For book-to-market

group, however, all of the candidate models are rejected, which means that in the latter subsample

the scaled multifactor models are not enough to explain the cross-sectional variation of the average

stock returns of the Þrms with the highest and lowest book-to-market values.

5.3.3 Distributional Test for Residuals

The GRS test is based on the assumption that residual terms from the time-series regressions

follow normal distribution. But the normality assumption has been pointed out as a problem by a

number of papers (Zhou (1993), Dufour, Khalaf and Beaulieu (2003)). These papers Þnd that the

null hypothesis that the residuals of the time-series regressions are jointly normally distributed is

frequently rejected in common applications which test the classic CAPM.9 Also they argue that if

we test the CAPM based on the assumption that the residual terms follow normal distribution, but

these residuals actually follow alternative fat-tail distributions, then we tend to reject the CAPM

too often from the GRS test.

To address this issue, I perform the distributional goodness-of-Þt test for Normality of the

residuals, based on the multivariate skewness and kurtosis measures proposed by Mardia (1970).

Let X1, · · · ,XT be the observations on an N×1 random vector over the period T . The multivariate
9Zhou(1993) and Dufour, Khalaf and Beaulieu(2003) test the mean-variance efficiency of the market portfolio

return under the assumption that the residual distributions follow either Student-t or mixture-of-normal distributions,

using Monte-Carlo simulation.
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skewness and kurtosis statistics are deÞned as

SK =
1

T 2

TX
t=1

TX
s=1

r3ts

KU =
1

T

TX
t=1

r2tt,

where rts = (Xt − X̄)0S−1(Xs − X̄) and X̄ and S are the sample mean and sample covariance

matrices, respectively. Under the null hypothesis that X1, · · · ,XT follow multivariate normal dis-
tribution, it is derived that SK and KU are distributed as follows:

T

6
· SK ∼ χ2(ν),

where ν is the degree of freedom determined as

ν =
N(N + 1)(N + 2)

6
,

and
KU −N(N + 2)

(8N(N+2)T )
1
2

∼ N(0, 1).

Based on these measures of multivariate skewness and kurtosis and their distributions as deÞned

above, I can test for the null hypothesis that the residual terms follow the multivariate normal

distribution. Mardia (1970) proposes the combined skewness-kurtosis test statistic for multivariate

Normality for the case when X follows a multivariate normal distribution,

CSK =
T

6
SK +

T [KU −N(N + 2)]2

8N(N + 2)
∼ χ2(N(N + 1)(N + 2)

6
+ 1). (17)

Table 8 reports p-values from the distributional test for normality based on the CSK statistics

for the full sample and the two subsamples. Except for the standard CCAPM in the Þrst subsample,

the null hypothesis that the residuals follow the normal distribution is strongly rejected for all the

models.

5.3.4 Bootstrap Test

Since I observe the strong rejection of normality for all the models, there is reason to doubt the

validity of the GRS test presented above. To address this issue, I perform a bootstrap test. Again, I

test the model using the time-series regressions (15), under the null hypothesis that the time-series

intercepts are jointly zero. I form bootstrap test statistics using the Wald test statistic

W = T · [1 +ET (f∗)0 �Ω−1ET (f∗)]−1�α∗0 �Σ−1�α∗.
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Under the null hypothesis, the Wald test statistic is asymptotically distributed as a chi-square

distribution with degree of freedom equal to the number of test assets. For this procedure, it is

not required that the time-series residuals follow a normal distribution in Þnite sample. It can be

shown that the test statistics have a well-behaved asymptotic distribution, which is a necessary

condition for consistency of the bootstrap.

In practice, I perform the bootstrap tests following the suggestion in MacKinnon (2002) and

Horowitz (2003). First I obtain the residuals from the time-series regressions of the test asset

returns on the MCPs, using the original data. Then I generate bootstrap errors by resampling the

residuals with replacement. Here I use a block bootstrap with block-length chosen following the

recommendation of Horowitz (2003).10 Since the OLS residuals �9∗t+1 have smaller variance than the

population errors, I need to rescale the OLS residuals when generating the bootstrap errors �9t+1:

�9∗t+1 =
r

T

T − k�9
∗
t+1,

where k is the number of regressors including constant. Using these bootstrap errors, I create the

bootstrap sample of test asset returns �Ret+1, with imposing the null hypothesis, by constructing

�Ret+1 = 0 + β
∗0f∗t+1 +�9

∗
t+1,

where β∗ are the multiple regression coefficients from a regression of the test asset on the multiple

factors, using the original data.

Using the bootstrap sample, I re-run the time-series regressions of �Ret+1 on the MCPs and

compute the Wald test statistics. By iterating these procedures 1000 times, I can generate an

empirical conÞdence interval of the test statistics for each of the candidate models. One possible

caveat is that, since I use the MCPs estimated from the original data, the procedure does not

take into account that the regressors are generated in a Þrst-stage regressions. To the best of my

knowledge, this problem has not been worked out in the literature. I am currently working on a

procedure to implement such a correction in the bootstrap.

The empirical 95% conÞdence intervals and the results of the bootstrap tests based on these

estimated conÞdence intervals for each candidate model are presented in Table 9 for the full sample

and in Table 10 and Table 11 for the Þrst and second subsamples, respectively. In the full sample

the bootstrap test shows basically the same results as the GRS test. That is, only the collateral-

CHCAPM is not rejected; the Wald test statistics based on the original data fall within the empirical

95% conÞdence interval, for both size and book-to-market groups. For these models, the bootstrap

test reinforces the conclusion that speciÞc scaled multifactor models can explain the cross-section

of test asset returns better than the unconditional models.
10 It is recommended in Horowitz(2003) that the asymptotically optimal block-length is l ∼ T 1

4 for estimating the

one-sided distribution function.
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The results for the size group in two subsamples are somewhat different from those with the

GRS test. In the Þrst subsample (Table 10), no model is rejected from the bootstrap test with

95% empirical conÞdence interval. But in the second subsample (Table 11), I Þnd that the housing-

CCAPM and the collateral-CCAPM, which are scaled multifactor extensions of the classic CCAPM,

are not rejected from the test, where the unconditional CCAPM is rejected. For book-to-market

group, the boostrap test shows the same results as the GRS test, that is, none of the models are

rejected in the Þrst subsample, but all the models are rejected in the second subsample.

In conclusion, I found that some scaled multifactor CCAPMs are not rejected statistically, where

the unconditional models almost always are, including often the Fama-French three-factor model.

However, it is inappropriate to make model comparisons based on these test statistics, since they

do not tell us whether one model�s pricing errors are different from another�s. In particular, the

Fama-French three-factor model and the housing-CHCAPM have much lower pricing errors than

the other models (Table 4), even though they are statistically rejected.

6 Conclusion

This paper performs cross-sectional tests of scaled multifactor CCAPMs, by explicitly considering

the theoretical restrictions on the time-series intercepts. For models whose factors are all returns,

the restriction is simple: the time-series intercepts should be jointly zero. But for models in

which the factors are not returns, such as the CCAPM and the multifactor extensions that have

been investigated in the recent empirical literature, the models cannot be directly tested with this

restriction. So, to test the CCAPMs by applying the time-series intercept restrictions, I use the

MCPs, constructed by regressing the original factors on the proper choice of base assets. Those

MCPs are used in the time-series regressions in place of the original factors.

I show that if the expected return-beta representation holds with betas on the original factors,

then the beta representation also holds with betas on the MCPs, when I choose the set of base assets

that spans the test assets. By using the MCPs in place of the original factors, I can transform the

model into one in which the single testable implication is that the time-series intercepts be jointly

zero.

This method provides an explicit way to take into account these theoretical restrictions, when

evaluating the cross-sectional performance of scaled multifactor CCAPM models. Recent studies

have found that the scaled CCAPM can explain the cross-sectional variation of the expected stock

returns much better than the standard unconditional CCAPM, but these results are usually based

on the cross-sectional regressions, ignoring the time-series intercept restrictions. The MCP approach

employed in this paper makes it possible to test the models, and to check if the superior cross-

sectional performance of the scaled CCAPMs can be maintained when the time-series intercept
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restrictions are explicitly considered.

As candidate models, I consider several versions of unconditional and scaled CCAPMs. For

unconditional models, I consider the classic single-factor CCAPM with consumption growth as the

single factor, and also the consumption-housing CAPM, or CHCAPM, with composition risk factor

as additional fundamental factor derived from the assumption of non-separable preferences between

non-housing and housing consumption goods.

For the scaled multifactor CCAPM models, I test the models that have proven successful em-

pirically: the cay-CCAPM of Lettau and Ludvigson (2001b), a three-factor model in which the

consumption-wealth ratio is used as a conditioning variable, the housing-CCAPM of Piazzesi,

Schneider and Tuzel (2005), in which the non-housing consumption expenditure share is used

as a conditioning variable, and the collateral-CCAPM of Lustig and Van Nieuwerburgh (2005),

in which the housing collateral ratio is used as a conditioning variable, respectively. Following

Piazzesi, Schneider and Tuzel (2005) and Lustig and Van Nieuwerburgh (2005), I test two types of

their models: three-factor models with separable preferences as the scaled CCAPM, and Þve-factor

models with non-separable preferences as the scaled CHCAPM.

The empirical Þndings show that the scaled multifactor versions of CCAPM and CHCAPM

can explain the cross-section of expected stock returns better than the corresponding unconditional

models. In terms of the pricing errors, the scaled CCAPMs and CHCAPMs deliver a smaller

magnitude of average squared pricing errors compared with the unconditional models, and in some

cases the scaled versions of CHCAPM models, the housing-CHCAPM and the collateral-CHCAPM,

outperform the Fama-French three-factor model in lowering the pricing error. The multifactor

extensions of the CCAPM studied here are known to perform about as well as the Fama-French

model when evaluated according to cross-sectional regressions. This paper shows that several of

these models match or surpass the Fama-French model, even when evaluated in the time-series.

From a statistical perspective, I do the GRS test and also an alternative bootstrap test of the

candidate models. For the GRS test, both in the full sample and in two subsamples we observe

that some candidate scaled CCAPMs and CHCAPMs are not rejected while the corresponding

unconditional models are rejected. Considering the questions on the Normality assumptions for

the time-series residuals for the validity of the GRS test raised by several studies, I also do a boot-

strap test by estimating the empirical conÞdence intervals which do not depend on the Normality

assumptions in Þnite sample. The results from the bootstrap test mainly support the results from

the GRS test.

As is already explained in (10), in models where the factors are not returns, the time-series

intercepts are not unrestricted, but the restrictions involve free parameters that must be estimated.

In this paper, I use the MCPs in place of the original factors to take account of these restrictions and

eliminate the free parameters. This is not the only way such restrictions can be evaluated, however.
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An alternative is to directly impose the time-series intercept restrictions in Generalized Method of

Moments estimation of the model. Since this approach can both impose the appropriate restrictions

and estimate the free parameters upon which it depends, Generalized Method of Moments can be

used to test the restricted version of the model. I plan to pursue this in future work.
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7 Tables

Table 1: Summary of the Candidate Models

Abbreviation Description

Unconditional Models

CAPM classic CAPM

Mt+1 = a+ bR
M
t+1

CCAPM classic CCAPM

Mt+1 = a+ b∆ct+1

CHCAPM consumption-housing CAPM

Mt+1 = a+ b∆ct+1 + d∆st+1

FF Fama-French three-factor model

Mt+1 = a+ bR
M
t+1 + dSMBt+1 + hHMLt+1

Scaled Multifactor Models

cay-CCAPM Lettau-Ludvigson model, Scaled CCAPM

Mt+1 = a0 + a1cayt + b0∆ct+1 + b1∆ct+1cayt

housing-CCAPM Piazzesi-Schneider-Tuzel model, Scaled CCAPM

Mt+1 = a0 + a1st + b0∆ct+1 + b1∆ct+1st

collateral-CCAPM Lustig-Van Nieuwerburgh model, Scaled CCAPM

Mt+1 = a0 + a1myt + b0∆ct+1 + b1∆ct+1myt

housing-CHCAPM Piazzesi-Schneider-Tuzel model, Scaled CHCAPM

Mt+1 = a0 + a1st + b0∆ct+1 + b1∆ct+1st + d0∆st+1 + d1∆st+1st

collateral-CHCAPM Lustig-Van Nieuwerburgh model, Scaled CHCAPM

Mt+1 = a0 + a1myt + b0∆ct+1 + b1∆ct+1myt + d0∆st+1 + d1∆st+1myt

SV Santos-Veronesi model

Mt+1 = a0 + b0R
M
t+1 + b1R

M
t+1s

w
t + d0R

W
t+1 + d1R

W
t+1s

w
t

RMt+1- market portfolio return, ∆ct+1- consumption growth

∆st+1- growth of non-housing consumption expenditure share

SMBt+1- small minus big, HMLt+1- high minus low

cayt- consumption-wealth ratio, myt- housing collateral ratio

RWt+1- return on human wealth, s
w
t - ratio of labor income to consumption
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Table 2: Summary statistics for test assets

size group b-m group

mean std.dev mean std.dev

s1b1 5.39 31.04 s1b1 5.39 31.04

s1b2 11.59 26.61 s2b1 6.89 27.82

s1b3 12.02 23.31 s3b1 8.20 25.02

s1b4 14.89 22.27 s4b1 8.78 22.75

s1b5 15.86 24.19 s5b1 8.13 18.27

E[s1] 11.95 E[b1] 7.48

s5b1 8.12 18.27 s1b5 15.87 24.19

s5b2 8.13 16.15 s2b5 14.55 21.95

s5b3 9.28 14.64 s3b5 13.34 20.65

s5b4 9.19 15.53 s4b5 12.50 20.51

s5b5 9.65 17.81 s5b5 9.65 17.81

E[s5] 8.88 E[b5] 13.18

Notes - This table summarizes sample mean and standard deviation

of the returns in size and book-to-market groups, in %. Size group

includes 5 returns from the smallest size quintile and 5 returns from

the biggest size quintile. Book-to-market group includes 5 returns

from the lowest book-to-market quintile and 5 returns from the highest

book-to-market quintile. Means are annualized by multiplying by 4

and standard deviations are multiplied by 2. All the returns are in real

value, divided by inßation rate.
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Table 3: R2 (R̄2) - MCP regression

size group b-m group

standard CCAPM

∆ log ct+1 0.09 (0.04) 0.05 (0.01)

Lettau-Ludvigson model

∆ log ct+1 0.09 (0.04) 0.05 (0.01)

cayt 0.11 (0.06) 0.12 (0.08)

∆ log ct+1 · cayt 0.07 (0.02) 0.08 (0.03)

Piazzesi-Schneider-Tuzel model

∆ log ct+1 0.09 (0.05) 0.06 (0.01)

∆ log ct+1 · st 0.09 (0.05) 0.06 (0.01)

st 0.03 (0.00) 0.06 (0.01)

∆ log st+1 0.06 (0.02) 0.07 (0.02)

∆ log st+1 · st 0.06 (0.02) 0.07 (0.02)

Lustig-Van Nieuwerburgh model

∆ log ct+1 0.09 (0.05) 0.06 (0.01)

∆ log ct+1 ·myt 0.05 (0.00) 0.05 (0.00)

myt 0.06 (0.01) 0.05 (0.00)

∆ log st+1 0.06 (0.02) 0.07 (0.02)

∆ log st+1 ·myt 0.06 (0.02) 0.07 (0.03)

Notes - R2 (R̄2) from MCP regressions of each factor on

the base asset returns. Base assets for size group are

same as test assets in size group, and base assets for

book-to-market group are same as test assets in book-to-

market group.
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Table 4: Average squared pricing error

Rei,t+1 = α
∗
i + β

∗0
i f

∗
t+1 + 9

∗
i,t+1 i = 1, · · · ,N

size b-m size b-m size b-m

1952:1-2002:4 1952:1-1977:4 1978:1-2002:4

Unconditional Models

CAPM 0.920 1.098 0.723 0.893 1.198 1.391

CCAPM 0.953 0.979 0.593 0.598 1.772 2.074

CHCAPM 0.792 0.784 0.535 0.410 2.054 2.425

FF 0.596 0.640 0.489 0.488 0.859 0.931

Scaled Multifactor Models

cay-CCAPM 0.863 0.890 0.580 0.593 1.942 1.743

housing-CCAPM 0.707 0.874 0.546 0.565 1.276 1.585

collateral-CCAPM 0.805 0.944 0.816 0.769 2.265 2.825

housing-CHCAPM 0.561 0.850 0.451 0.404 0.350 2.895

collateral-CHCAPM 0.715 0.721 0.434 0.415 1.027 3.952

SV 0.954 1.083 1.009 0.984 1.123 1.288

Notes - This table reports the square root of average squared pricing errors across the

test assets for size and book-to-market groups, which are measured by

vuut 1

N

NX
i=1

α∗2i

in full sample and two subsamples. α∗i are the time-series intercept, interpreted as

pricing error, for each of the test assets, in quarterly percentage unit.
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Table 5: GRS statistics and p-value : 1952:Q1 - 2002:Q4

Rei,t+1 = α
∗
i + β

∗0
i f

∗
t+1 + 9

∗
i,t+1 i = 1, · · · ,N

H0 : α
∗
i = 0, ∀i

size group b-m group

GRS statistics p-value GRS statistics p-value

Unconditional Models

CAPM 5.833 0.000 4.969 0.000

CCAPM 4.660 0.000 4.710 0.000

CHCAPM 4.155 0.000 4.171 0.000

FF 4.447 0.000 3.666 0.000

Scaled Multifactor Models

cay-CCAPM 4.376 0.000 4.424 0.000

housing-CCAPM 3.844 0.000 3.940 0.000

collateral-CCAPM 3.570 0.000 3.428 0.000

housing-CHCAPM 2.550 0.007 3.773 0.000

collateral-CHCAPM 1.865 0.053 1.762 0.070

SV 5.389 0.000 4.466 0.000

Notes - This table reports the GRS statistics and p-values from the time-series

regressions of each test asset Rei,t+1 on the MCPs f
∗
t+1 in full sample. Bold

letters correspond to the model which is not rejected at the 5% signiÞcance level.
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Table 6: GRS statistics and p-value : 1952:Q1 - 1977:Q4

Rei,t+1 = α
∗
i + β

∗0
i f

∗
t+1 + 9

∗
i,t+1 i = 1, · · · ,N

H0 : α
∗
i = 0, ∀i

size group b-m group

GRS statistics p-value GRS statistics p-value

Unconditional Models

CAPM 2.601 0.008 1.821 0.068

CCAPM 1.979 0.044 1.230 0.283

CHCAPM 1.758 0.080 0.921 0.518

FF 1.796 0.072 0.956 0.488

Scaled Multifactor Models

cay-CCAPM 1.922 0.052 1.203 0.300

housing-CCAPM 1.789 0.074 1.104 0.368

collateral-CCAPM 1.526 0.143 1.077 0.389

housing-CHCAPM 1.606 0.118 0.881 0.554

collateral-CHCAPM 0.590 0.818 0.534 0.862

SV 3.020 0.003 1.646 0.107

Notes - This table reports the GRS statistics and p-values from the time-series

regressions of each test asset on the MCPs in the Þrst subsample. Bold letters

correspond to the model which is not rejected at the 5% signiÞcance level.
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Table 7: GRS statistics and p-value : 1978:Q1 - 2002:Q4

Rei,t+1 = α
∗
i + β

∗0
i f

∗
t+1 + 9

∗
i,t+1 i = 1, · · · ,N

H0 : α
∗
i = 0, ∀i

size group b-m group

GRS statistics p-value GRS statistics p-value

Unconditional Models

CAPM 5.318 0.000 5.953 0.000

CCAPM 3.875 0.000 6.288 0.000

CHCAPM 3.231 0.001 5.664 0.000

FF 4.800 0.000 5.337 0.000

Scaled Multifactor Models

cay-CCAPM 3.721 0.000 6.040 0.000

housing-CCAPM 2.668 0.007 4.700 0.000

collateral-CCAPM 2.367 0.016 3.875 0.000

housing-CHCAPM 0.159 0.998 3.765 0.000

collateral-CHCAPM 1.048 0.412 3.189 0.001

SV 4.598 0.000 5.051 0.000

Notes - This table reports the GRS statistics and p-values from the time-series

regressions of each test asset on the MCPs in the second subsample. Bold

letters correspond to the model which is not rejected at the 5% signiÞcance level.
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Table 8: Distributional test : p-value

size b-m size b-m size b-m

1952:1-2002:4 1952:1-1977:4 1978:1-2002:4

Unconditional Models

CAPM 0.00 0.00 0.00 0.00 0.00 0.00

CCAPM 0.00 0.00 0.01 0.06 0.00 0.00

CHCAPM 0.00 0.00 0.00 0.00 0.00 0.00

FF 0.00 0.00 0.01 0.00 0.00 0.00

Scaled Multifactor Models

cay-CCAPM 0.00 0.00 0.00 0.00 0.00 0.00

housing-CCAPM 0.00 0.00 0.00 0.00 0.00 0.00

collateral-CCAPM 0.00 0.00 0.00 0.00 0.00 0.00

housing-CHCAPM 0.00 0.00 0.00 0.00 0.00 0.00

collateral-CHCAPM 0.00 0.00 0.00 0.00 0.00 0.00

SV 0.00 0.00 0.00 0.00 0.00 0.00

Notes - This table reports the p-value for combined multivariate skewness and kurtosis

test statistics from chi-square distribution. The test statistics are computed under the

null hypothesis that the residuals from the time-series regressions follow multivariate

normal distribution. Bold letters correspond to the model which is not rejected.
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Table 9: Bootstrap results : 1952:Q1 - 2002:Q4

size group b-m group

95% conÞdence interval Wdata 95% conÞdence interval Wdata

Unconditional Models

CAPM [1.25 40.91] 61.67 [1.56 38.61] 52.53

CCAPM [0.90 38.36] 49.27 [1.51 34.03] 49.79

CHCAPM [0.95 35.63] 43.92 [0.66 29.03] 44.10

FF [1.44 38.77] 47.51 [1.91 34.45] 39.17

Scaled Multifactor Models

cay-CCAPM [0.33 35.38] 46.76 [0.47 33.61] 47.27

housing-CCAPM [0.59 28.93] 41.08 [0.84 29.35] 42.09

collateral-CCAPM [0.94 29.46] 38.15 [0.24 28.15] 36.63

housing-CHCAPM [0.09 25.75] 27.53 [0.06 23.28] 40.74

collateral-CHCAPM [0.22 27.51] 20.13 [0.14 22.60] 19.02

SV [1.36 40.50] 57.88 [0.80 36.35] 47.96

Notes - This table reports the empirical 95% conÞdence interval from bootstrap and Wald test statistics

from the original data in full sample. The empirical conÞdence interval from bootstrap is based on the

bootstrap sample of test assets created by resampling the rescaled residuals with replacement for 1000

times. Wdata denotes the value of Wald test statistics from original data. Bold letters correspond to

the model which is not rejected.
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Table 10: Bootstrap results : 1952:Q1 - 1977:Q4

size group b-m group

95% conÞdence interval Wdata 95% conÞdence interval Wdata

Unconditional Models

CAPM [0.51 46.30] 29.12 [1.52 49.96] 20.39

CCAPM [1.03 39.64] 22.16 [0.36 49.05] 13.77

CHCAPM [0.85 34.44] 19.69 [0.79 32.83] 10.31

FF [1.21 35.86] 20.56 [1.53 52.88] 10.94

Scaled Multifactor Models

cay-CCAPM [0.21 36.40] 22.00 [0.38 32.99] 13.76

housing-CCAPM [0.61 33.59] 20.47 [0.25 53.03] 12.63

collateral-CCAPM [0.87 27.67] 17.47 [0.40 49.21] 12.32

housing-CHCAPM [0.13 31.77] 18.80 [0.11 25.11] 10.31

collateral-CHCAPM [0.19 23.87] 6.91 [0.42 31.49] 6.25

SV [1.66 38.78] 34.95 [1.94 43.69] 19.05

Notes - This table reports the empirical 95% conÞdence interval from bootstrap and Wald test statistics

from the original data in the Þrst subsample. The empirical conÞdence interval from bootstrap is based

on the bootstrap sample of test assets created by resampling the rescaled residuals with replacement for

1000 times. Wdata denotes the value of Wald test statistics from original data. Bold letters correspond

to the model which is not rejected.
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Table 11: Bootstrap results : 1978:Q1 - 2002:Q4

size group b-m group

95% conÞdence interval Wdata 95% conÞdence interval Wdata

Unconditional Models

CAPM [1.48 50.45] 59.75 [1.97 48.52] 66.88

CCAPM [1.53 42.27] 43.53 [1.86 41.67] 70.65

CHCAPM [1.26 43.19] 36.31 [0.73 30.55] 63.64

FF [1.42 51.49] 55.17 [1.28 52.14] 61.35

Scaled Multifactor Models

cay-CCAPM [0.60 29.07] 42.77 [0.81 33.71] 69.42

housing-CCAPM [0.30 33.69] 30.67 [0.57 38.57] 54.03

collateral-CCAPM [0.99 36.85] 27.20 [0.50 37.74] 44.54

housing-CHCAPM [0.12 24.93] 1.87 [0.18 35.62] 44.30

collateral-CHCAPM [0.31 30.38] 12.32 [0.16 30.60] 37.52

SV [1.68 52.17] 53.46 [2.28 50.00] 58.73

Notes - This table reports the empirical 95% conÞdence interval from bootstrap and Wald test statistics

from the original data in the second subsample. The empirical conÞdence interval from bootstrap is based

on the bootstrap sample of test assets created by resampling the rescaled residuals with replacement for

1000 times. Wdata denotes the value of Wald test statistics from original data. Bold letters correspond

to the model which is not rejected.
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Appendix 1
In appendix 1, I show that if a set of base asset returns can span the test asset returns,

then MCPs can be used instead of factors to test the multifactor model. Suppose that I have K

factor f1,t+1, · · · , fK,t+1, and N test asset returns Re1,t+1, · · · , ReN,t+1, and I choose M base asset

Rb1,t+1, · · · , RbM,t+1 (M ≥ N) such that test asset returns can be generated as linear combinations
of the base asset returns. To simplify, I denote f as T × K matrix of the factors, Re as T × N
matrix of the test asset returns, and Rb as T ×M matrix of the base assets, with sample size of T .

Then this choice of the base assets means that I have M ×N matrix Γ satisfying Re = RbΓ.

As the Þrst step, I derive betas on the factors from the time-series regressions of the test asset

returns on the factors as follows.

Rei,t+1 = αi + βi1f1,t+1 + · · ·+ βiKfK,t+1 + 9i,t+1, i = 1, · · · , N.
From these multivariate regressions, a K ×N matrix of betas on the factors is given as

β =


β11 · · · βN1
...

. . .
...

β1K · · · βNK


= Cov[f 0, f ]−1Cov[f 0, Re].

Next I consider the MCP regression of each factor on the base asset returns as

fj,t+1 = ωj0 + ωj1R
b
1,t+1 + · · ·+ ωjMRbM,t+1 + ηj,t+1, j = 1, · · · ,K.

From these regressions I have an M ×K matrix of portfolio weighs

ω =


ω11 · · · ωK1
...

. . .
...

ω1M · · · ωKM


= Cov[Rb0, Rb]−1Cov[Rb0, f ],

and a T ×K matrix of MCPs

f∗ = Rbω.

Then betas on the MCPs can be estimated from the time-series regressions of the test asset

returns on the MCPs as

Rei,t+1 = α
∗
i + β

∗
i1f

∗
1,t+1 + · · ·+ β∗iKf∗K,t+1 + 9∗i,t+1, i = 1, · · · ,N,

and a K ×N matrix of betas on the MCPs is given as follows.

β∗ =


β∗11 · · · β∗N1
...

. . .
...

β∗1K · · · β∗NK


= Cov[f∗0, f∗]−1Cov[f∗0, Re].
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Using the expression for f∗ and ω, I can derive β∗, betas on the MCPs, with a set of base assets

Rb given the test assets:

β∗ = (ω0Cov[Rb0, Rb]ω)−1(ω0Cov[Rb0, Re])

= (Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, Rb]Cov[Rb0, Rb]−1Cov[Rb0, f ])−1 ·
(Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, Re])

= (Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, f ])−1Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, Re].

Suppose that I choose a set of base asset returns which span the test asset returns, satisfying

the relation Re = RbΓ. Then β∗ can be rewritten as

β∗ = (Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, f ])−1Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, Rb]Γ

= (Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, f ])−1Cov[f 0, RbΓ]

= (Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, f ])−1Cov[f 0, f ]Cov[f 0, f ]−1Cov[f 0, Re]

= Πβ

where

Π = (Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, f ])−1Cov[f 0, f ].

Here betas on the MCPs are linear combinations of betas on the original factors. Generally

one-by-one proportionality of beta on the MCP to beta on the corresponding factor that Breeden,

Gibbons and Litzenberger (1989) derive in the single-factor model cannot be maintained in the

multifactor model.11 If K × K matrix Π is nonsingular, I have the relation β = Π−1β∗. Let�s

denote

Π−1 =


π11 · · · π1K
...

. . .
...

πK1 · · · πKK

 ,
then I have the relations, for all i = 1, · · · , N,

βi1 = π11β
∗
i1 + · · ·+ π1Kβ∗iK

...

βiK = πK1β
∗
i1 + · · ·+ πKKβ∗iK .

Suppose that the expected return-beta representations hold for the model, such as

E(Rei,t+1) = βi1λ1 + · · ·+ βiKλK , i = 1, · · · ,N,
11The special case that we can have proportionality is when Π is diagonal.
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where λk is the parameter for the price of risk exposure to the factor fk, k = 1, · · · ,K. Using the
above relation between β and β∗, I can rewrite these representations as

E(Rei,t+1) = (π11β
∗
i1 + · · ·+ π1Kβ∗iK)λ1 + · · ·+ (πK1β∗i1 + · · ·+ πKKβ∗iK)λK

= β∗i1(π11λ1 + · · ·+ πK1λK) + · · ·+ β∗iK(π1Kλ1 + · · ·+ πKKλK)
= β∗i1λ

∗
1 + · · ·+ β∗iKλ∗K , i = 1, · · · ,N.

So, the above results show that if the expected return-beta representations hold with β and λ,

then the beta representations also hold with β∗ and λ∗, when I choose a set of base asset returns

which can span the test asset returns.

For comparison, suppose that I choose base assets such that test asset returns can span the base

asset returns, but not vice versa. In this case, with N test assets and M base assets (N > M), I

have the relation Rb = ReΓ where Γ is N ×M matrix specifying the linear relations. If I apply this

relation to the expression of β∗, then I get

β∗ = (Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, f ])−1Cov[Re0, f ]0Γ(Γ0Cov[Re0, Re]Γ)−1Γ0Cov[Re0, Re]

= (Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, f ])−1Cov[f 0, f ]Cov[f 0, f ]−1Cov[f 0, Re] ·
Γ(Γ0Cov[Re0, Re]Γ)−1Γ0Cov[Re0, Re]

= ΠβΨ,

where

Π = (Cov[Rb0, f ]0Cov[Rb0, Rb]−1Cov[Rb0, f ])−1Cov[f 0, f ]

Ψ = Γ(Γ0Cov[Re0, Re]Γ)−1Γ0Cov[Re0, Re].

So, if K ×K matrix Π and N ×N matrix Ψ are nonsingular, I have β = Π−1β∗Ψ−1. With

Π−1 =


π11 · · · π1K
...

. . .
...

πK1 · · · πKK

 , Ψ−1 =


ψ11 · · · ψ1N
...

. . .
...

ψN1 · · · ψNN

 ,
I have, for all i = 1, · · · , N,

βi1 = (π11β
∗
11 + · · ·+ π1Kβ∗1K)ψ1i + · · ·+ (π11β∗i1 + · · ·+ π1Kβ∗iK)ψii

· · ·+ (π11β∗N1 + · · ·+ π1Kβ∗NK)ψNi
...

βiK = (πK1β
∗
11 + · · ·+ πKKβ∗1K)ψ1i + · · · (πK1β∗i1 + · · ·+ πKKβ∗iK)ψii +

· · ·+ (πK1β∗N1 + · · ·+ πKKβ∗NK)ψNi.

39



What is the difference between this case and the previous case? In this case, if I express betas

on the factors as functions of betas on the MCPs, then the betas of the test asset i on the factor

k, βik, is a function not only of β
∗
i1 · · ·β∗iK but also of β∗j1 · · ·β∗jK , j 6= i. As in the Þrst case, if I

look at the expected return-beta representations with betas on the MCPs β∗, then I have

E[Rei,t+1] = {(π11β∗11 + · · ·+ π1Kβ∗1K)ψ1i + · · ·+ (π11β∗N1 + · · ·+ π1Kβ∗NK)ψNi}λ1 + · · ·
+{(πK1β∗11 + · · ·+ πKKβ∗1K)ψ1i + · · ·+ (πK1β∗N1 + · · ·+ πKKβ∗NK)ψNi}λK

= (π11ψ1i + · · ·+ πK1ψ1i)β∗11 + · · ·+ (π1Kψ1i + · · ·+ πKKψ1i)β∗1K + · · ·
+(π11ψii + · · ·+ πK1ψii)β∗i1 + · · ·+ (π1Kψii + · · ·+ πKKψii)β∗iK + · · ·
+(π11ψNi + · · ·+ πK1ψNi)β∗N1 + · · ·+ (π1KψNi + · · ·+ πKKψNi)β∗NK .

From these representations it is clear that the expected return-beta representation for E[Rei,t+1]

includes not just β∗i1, · · · , β∗iK , but also β∗j1, · · · , β∗jK (j 6= i). This is because, when I derive the

relations between the betas on the factors and betas on the MCPs, I have post-multiplied matrix

Ψ−1. So even if the representation for test asset i holds with betas on the factors, I cannot transform

the representation as linear combination of the asset i�s betas on the MCPs, but the other assets�

betas are included in the representation. Compared with this case, when the base assets can span

the test assets, I can cancel out the post-multiplied matrix, and keep βi1, · · · , βiK as functions of

β∗i1, · · · , β∗iK . And this makes it possible to rewrite the expected return-beta representation for
each test asset with betas on factors into the representation with betas on the MCPs.
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Appendix 2
In appendix 2, I show that the expected return-beta representations hold conditionally with

betas on dynamic MCPs if the conditional beta models hold with betas on factors, but if I derive

unconditional betas on the dynamic MCPs then I may not transform the unconditional expected

return-beta representations with betas on the original factors into the beta representations with

betas on the dynamic MCPs.

The conditional, or time-varying, betas of the test assets Ret+1 on the factors ft+1 can be

represented as

βt = Covt[f
0
t+1, ft+1]

−1Covt[f 0t+1, R
e
t+1].

From the MCP regression of each factor fk,t+1 on a set of base assets with general expression

of time-varying weights,

fk,t+1 = ωk0,t + ωk1,tR
b
1,t+1 + · · ·+ ωkM,tRbM,t+1 + ηk,t+1,

an M ×K matrix of portfolio weights

ωt =


ω11,t · · · ωK1,t
...

. . .
...

ω1M,t · · · ωKM,t

 ,
(the Þrst subscript denotes the index for each factor, and the second subscript denotes the index

for each base asset) can be derived such as

ωt = Covt[R
b0
t+1, R

b
t+1]

−1Covt[Rb0t+1, ft+1],

from which I derive the dynamic MCPs f ∗
t+1 = Rbt+1ωt. So, if I derive the conditional betas on

the dynamic MCPs, then

β∗t = Covt[f
∗0
t+1, f

∗
t+1]

−1Covt[f∗0t+1, R
e
t+1]

= (ω0tCovt[R
b0
t+1, R

b
t+1]ωt)

−1ω0tCovt[R
b0
t+1, R

e
t+1]

= (ω0tCovt[R
b0
t+1, R

b
t+1]ωt)

−1Covt[Rb0t+1, ft+1]
0Covt[Rb0t+1, R

b
t+1]

−1Covt[Rb0t+1, R
e
t+1].

By choosing the base asset returns which can span the test assets such as Re = RbΓ, β∗t can be

rewritten as

β∗t = (ω0tCovt[R
b0
t+1, R

b
t+1]ωt)

−1Covt[Rb0t+1, ft+1]
0Covt[Rb0t+1, R

b
t+1]

−1Covt[Rb0t+1, R
b
t+1]Γ

= (ω0tCovt[R
b0
t+1, R

b
t+1]ωt)

−1Covt[f 0t+1, R
b
t+1Γ]

= Πtβt

41



where

Πt = (ω
0
tCovt[R

b0
t+1, R

b
t+1]ωt)

−1Covt[f 0t+1, ft+1].

So, as in Appendix 1, if Πt is nonsingular then I have βt = Π
−1
t β

∗
t , and by this relation I can

show that if the conditional expected return-beta representaions hold with betas on the factors,

then those conditional beta representations also hold with betas on the dynamic MCPs. In other

words, if

Et(R
e
i,t+1) = βi1,tλ1,t + · · ·+ βiK,tλK,t, i = 1, · · · ,N,

hold, then the followings also hold:

Et(R
e
i,t+1) = β

∗
i1,tλ

∗
1,t + · · ·+ β∗iK,tλ∗K,t, i = 1, · · · ,N.

Let�s consider the case that I derive the unconditional betas on the dynamic MCPs and use

them for the unconditional beta representaions. Here I use the speciÞc assumption that the portfolio

weights are linear functions of a conditioning variable zt which is known at time t and show that

the unconditional expected return-beta representations with constant betas on dynamic MCPs

f∗k,t+1 = (ω
0
k,1 + ω

1
k,1zt)R

b
1,t+1 + · · ·+ (ω0k,N + ω1k,Nzt)RbN,t+1,

formed from the regressions

fk,t+1 = ω
0
k,0 + ω

1
k,0zt + (ω

0
k,1 + ω

1
k,1zt)R

b
1,t+1 + · · ·+ (ω0k,N + ω1k,Nzt)RbN,t+1 + ηk,t+1, k = 1, · · · ,K,

may not hold even if the representations hold with betas on factors. For simplicity, I choose a set

of base asset returns same as the test asset returns, Ret+1 = Rbt+1, with specifying Γ = I. First

deÞne T × (2N + 1) matrix

RZt+1 = [zt R
e
1,t+1zt · · · ReN,t+1zt Re1,t+1 · · ·ReN,t+1]

then I can denote the base asset, same as test asset, as Ret+1 = [R
e
1,t+1 · · ·ReN,t+1] = RZt+1D0 with

D0 is (2N + 1)×N matrix

D0 =

"
0(N+1)×N
IN×N

#
.

Using these notations, I derive the betas on the factors

β =


β11 · · · βN1
...

. . .
...

β1K · · · βNK


= Cov[f 0t+1, ft+1]

−1Cov[f 0t+1, R
e
t+1] = Cov[f

0
t+1, ft+1]

−1Cov[f 0t+1, R
Z
t+1]D0.
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Next, I form the dynamic MCPs from the MCP regressions speciÞed above such as

f∗t+1 = (ω0k,1 + ω
1
k,1zt)R

b
1,t + · · ·+ (ω0k,N + ω1k,Nzt)RbN,t

= RZt+1D1T,

where

T = Cov[RZ0t+1, R
Z
t+1]

−1Cov[RZ0t+1, ft+1]

D1 =

"
0 01×2N

02N×1 I2N×2N

#
.

I have (2N + 1)× (2N + 1) matrix D1 with zero in the upper left corner because RZ contains the

conditioning variable, T contains the coefficient on the conditioning variable, and I just want to

have a linear combination of base asset returns.

Then, I estimate betas on the dynamic MCPs from the time series regressions

Rei,t = α
∗
i + β

∗
i1f

∗
1,t + · · ·+ β∗iKf∗K,t + 9∗i,t, i = 1, · · · , N,

and I get

β∗ = Cov[f∗0, f∗]−1Cov[f∗0, Re] = Cov[f∗0, f∗]−1Cov[f∗0, RZ ]D0

= (T0D01Cov[R
Z0, RZ ]D1T)−1T0D01Cov[R

Z0, RZ ]D0

= (T0D01Cov[R
Z0, RZ ]D1T)−1Cov[RZ0, f ]0Cov[RZ0, RZ ]−1D01Cov[R

Z0, RZ ]D0.

If D01 = I, then I can get the relation β∗ = Πβ, the condition that we need to satisfy the

relation between the expected return-beta representations with betas on the original factors and

beta representaions with betas on the MCPs, as in Appendix 1. But with D01 6= I, I cannot derive
β∗ = Πβ condition. The reason is as follows. When I derive the portfolio weights conditionally, the

weights are functions of conditional covariance between the base asset returns and the factors, and

the covariance between the factors and conditioning variable can be ignored because the condition-

ing variable is known at time t. But when I run the dynamic MCP regressions unconditionally,

the covariances between the factors and conditioning variable are included in the coefficients. So I

need to add D1 to pick up only the linear combinations of the base asset returns, which prevents

the relation β∗ = Πβ from holding.
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