
IMES DISCUSSION PAPER SERIES 
 
 

 
 
 

 
 

INSTITUTE FOR MONETARY AND ECONOMIC STUDIES 

BANK OF JAPAN 

2-1-1 NIHONBASHI-HONGOKUCHO 

CHUO-KU, TOKYO 103-8660 

 JAPAN 

You can download this and other papers at the IMES Web site: 

http://www.imes.boj.or.jp

Do not reprint or reproduce without permission. 

 
 

The Role of Monetary Policy Uncertainty 
in the Term Structure of Interest Rates 

Junko Koeda and Ryo Kato 

Discussion Paper No. 2010-E-24 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTE:  IMES Discussion Paper Series is circulated in 

order to stimulate discussion and comments. Views

expressed in Discussion Paper Series are those of 

authors and do not necessarily reflect those of 

the Bank of Japan or the Institute for Monetary 

and Economic Studies.   



IMES Discussion Paper Series 2010-E-24 
October 2010 

 
The Role of Monetary Policy Uncertainty  
in the Term Structure of Interest Rates 

 
Junko Koeda* and Ryo Kato** 

 
Abstract 

We examine the effect of uncertainty arising from policy-shock volatility on 
yield-curve dynamics. In contrast to the assumption of many macro-finance models, 
policy-shock processes appear to be time varying and persistent. We allow for this 
heteroskedasticity by constructing a no-arbitrage GARCH affine term structure 
model, in which policy-shock volatility is defined as the conditional volatility of 
the error term in a Taylor rule. We find that an increase in monetary policy 
uncertainty raises the medium- and longer-term spreads in a model that 
incorporates macroeconomic dynamics.  

 
Keywords: GARCH; Estimation; Term Structure of Interest Rates; Financial 

Markets and the Macro-economy; Monetary Policy 
JEL classification: C13, C32, E43, E44, E52 

 
*Assistant Professor, Department of Economics, University of Tokyo, 7-3-1, Hongo, 
Bunkyo-ku, Tokyo, Japan. Tel: +81-3-5841-5649, (E-mail: jkoeda@e.u-tokyo.ac.jp) 
**Director and Senior Economist, Institute for Monetary and Economic Studies, Bank of Japan 
(E-mail: ryou.katou@boj.or.jp) 
 
We are grateful to Kazuo Ueda, Takatoshi Ito, Ken Singleton, Tack Yun, Shin-ichi Fukuda, 
Tatsuyoshi Okimoto, Akihiko Takahashi, and seminar participants at the Board of Governors of 
the Federal Reserve System, the Bank of Japan, the International Monetary Fund, Hitotsubashi 
University, National Graduate Institute for Policy Studies, and the University of Tokyo for their 
useful discussions and comments. We thank Yoshifumi Hisata and Masaki Higurashi for the 
role they played at an early stage of our work. Junko Koeda acknowledges funding from the 
Nomura Foundation for Academic Promotion. Views expressed in this paper are those of the 
authors and do not necessarily reflect the official views of the Bank of Japan. All remaining 
errors are our own. 
 
 



1 Introduction

The time-varying volatility of factors that explain yield-curve dynamics may have impor-

tant macroeconomic implications. For example, if the short-term interest rate follows

a monetary policy rule such as a Taylor rule, then its conditional volatility captures

monetary policy uncertainty that can a�ect the interest rate risk perceived by market

participants. In line with this widely acknowledged idea, some authors (Rudebusch 2002,

Rudebusch, Swanson, and Wu, 2006) suggest investigating the role of uncertainty factors

in explaining yield curve dynamics. However, little formal analysis has followed, and

most macro-�nance no-arbitrage a�ne term structure models (ATSMs) remain to be

homoskedastic.1 To �ll this gap, this paper examines the role of the uncertainty arising

from the heteroskedastic policy shock process in accounting for yield curve dynamics.

In general, the degree of policy uncertainty may at times be large and long-lived,

while at other times relatively small and short-lived. At times of unusual distress–for

example, the Volcker shock of the early 1980s, Black Monday in 1987, 9/11 in 2001,

and the Lehman shock in 2008–the Fed may undertake extraordinary action deviating

from any known simple policy rule. As a result, uncertainty in the federal funds (FF)

and other �nancial markets increases. On the other hand, there are indications that

FF market volatility has declined since the Federal Open Market Committee (FOMC)

began publicly announcing the target FF rate in 1995 (Favero and Mosca, 2001). In a

somewhat similar vein, in 2004, the FOMC explicitly signaled that its future course of

monetary policy would be less volatile and more predictable for market participants.2

1A body of empirical evidence, however, indicates that homoskedasticity is disputable (e.g., Brenner,

Harjes, and Kroner 1996).
2For example, the FOMC made explicit policy commitments with statements such as, “Policy accom-

modation can be maintained for a considerable period” (August 2003) and “Accommodative monetary
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On these grounds, it may be more reasonable to assume that the policy shock process

consists of large occasional shocks. Once the Fed signi�cantly deviates from the policy

rule, the increased uncertainty in �nancial markets cannot easily be eliminated. One

way to accommodate this type of shock process is to apply a generalized autoregressive

conditional heteroskedasticity (GARCH) process that allows for serial correlation in the

conditional volatility.3 4 To this end we construct a discrete-time macro-�nance GARCH

term structure model. Speci�cally, we extend Heston and Nandi’s (2003) multivariate

GARCH “ATSM”5 with a richer macro structure. The main di�erence between Heston

and Nandi’s (2003) model and other GARCH term-structure models is that the yield

equation in their model can be written as an a�ne function of state variables. This

allows for greater tractability and generates a closed-form solution for term rates with

any maturity as well as option pricing.

With the existing macro-�nance ATSMs having performed broadly successfully,6 we

policy stance will be removed at a measured pace” (June 2004).
3Previously developed “pure �nance” ATSMs (e.g., Dai and Singleton 2000) are compatible with

stochastic volatility, and they typically assume a square-root process for factor heteroskedasticity–for

example, in a single-factor ATSM, where the short rate is the only factor explaining yield curves, the

factor variance is the level of short rate itself. However, the square-root models tend to overstate the

sensitivity of volatility to levels (Brenner et al., 1996), and to date no consensus has been reached on

how to model short-rate volatility.
4Evidence of time-varying conditional volatility can be provided by single-equation GARCH estima-

tion. A regression of the FF rate on a constant, its �rst lag, 12-month in�ation, 12-month change in

unemployment (in percent), where the conditional variance of the FF rate follows the autoregressive

moving-average process, generates statistically signi�cant GARCH and ARCH terms.
5We use “ATSM” in the sense that model-implied yields can be expressed as an a�ne function of state

variables. Because the continuous version of the GARCH equation reduces to an ordinary di�erential

equation rather than an a�ne di�usion process, our model lies outside the continuous ATSM framework

formally de�ned by Dai and Singleton (2000).
6For example, Ang and Piazzesi (2003), using a discrete-time version of the a�ne class introduced
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take Ang and Piazzesi (2003) as a point of departure and generalize their model in

three directions. First, we allow the short-term interest rate to follow a GARCH-type

process with the conditional volatility of the error term following an autoregressive

moving average process. Second, we allow the dynamics of macro variables7 to depend

on the lagged short-term interest rate as well as their own lagged variables, in a spirit

similar to Ang, Piazzesi, and Wei (2006) and Hördahl, Tristani, and Vestin (2006).

Thus, the policy interest rate can directly in�uence future macro variables, and vice

versa. Third, to enhance the link between �nancial econometrics and macroeconomics,

we include no latent variables, which are commonly used in many term structure models

to improve empirical performance, because they alone cannot out�t any macroeconomic

interpretations. We show that the inclusion of economically interpretable conditional

volatility can signi�cantly improve the empirical �t of the ATSMs, e�ectively replacing

uninterpretable latent factors.

Model-implied conditional volatility is signi�cantly time varying and persistent–it

soared in the early 1980s and tapered o� during the period of the “Great Moderation.”

The gradual decline halted in the early 2000s, when the Fed undertook expansionary

policy deviating from the Taylor rule (Taylor 2009), but resumed its decline after the

FOMC began making explicit policy announcements. Then it increased again during

the global �nancial crisis of the late 2000s.

Our model-estimated results indicate that the conditional volatility of the short-term

by Du�e and Kan (1996), �nd that macro factors explain up to 85 percent of movements in the short

and middle parts of yield curves, and around 40 percent at the long end.
7 In the baseline model, we assume homoskedasticity for the dynamics of in�ation and real activity. We

can extend our model to allow heteroskedasticity for the macro dynamics, though such heteroskedasticity

is less evidently con�rmed when the sample period is short.
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interest rate–monetary policy uncertainty–plays a signi�cant role in determining the

shape of yield curves in the presence of the Taylor rule and endogenous macro dynamics.

An increase in the uncertainty in the short-rate dynamics raises term spreads by lifting

the middle and longer-end parts of the yield curves. In this context, we focus on a new

aspect of the policy shock process–policy shock volatility–in explaining yield curves,

whereas the existing literature focuses on the policy shock itself, assuming that policy

shocks are i.i.d. normal, presumably for tractability. For example, Evans and Marshall

(2001), using vector autoregressions (VARs) with yields of various maturities and macro

variables, �nd that positive monetary policy shocks would bear-�atten a yield curve.

To exemplify how our model performs on real data, we set forth a case study, high-

lighting the so-called Greenspan conundrum period of 2004-06, on the grounds that

several indicators signaled a decline in monetary policy uncertainty during this period

(for example, see Figure 1). Our model with estimated parameters successfully gen-

erates the continued bear-�attening of yield curves.8 It also suggests that the greater

predictability in monetary policy in this period reined in the risk premium. Meanwhile,

it o�sets the upward pressures from the rising short-term interest rate and expanding

economic activity.

This paper proceeds as follows. Section 2 describes our macro-�nance GARCH term-

structure model. Section 3 sets out our estimation strategy, and Section 4 discusses

estimated results and a case study on the conundrum period of 2004-06 during which

8 In the run-up to the 2008 global �nancial crisis, US yield curves continued to bear-�atten, despite

consecutive hikes in the FF rate and expanding economic activity.
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monetary policy uncertainty declined. Section 5 concludes.

 

Figure 1. Anticipated/unanticipated changes in the federal funds rate (in basis 

points). Following the methodology of  Kuttner (2001), this figure reports a measure of  
monetary policy uncertainty; unanticipated policy changes are calculated by differences 
between the spot-month futures rates before and after each FOMC meeting; anticipated 
changes are the actual minus the estimated unanticipated changes. During the tightening 
period of  2004—2007, as can be seen from the figure, the interest rate hikes were mostly 
well anticipated by investors. 
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2 The Model

The basic setup of our model essentially builds on the prevailing discrete-time macro-

�nance no-arbitrage term structure model, where the stochastic process of the short-term

interest rate is driven by a Taylor-type (1993) monetary policy rule. With no-arbitrage

bond pricing restrictions, term rates for any maturity can be expressed as an a�ne

function of factors such as the short term interest rate and macro variables.

2.1 Short-term interest rate and macro-variable dynamics

We employ a few variants of the standard Taylor rule that include the lagged short-term

interest rate and expected in�ation rate (rather than the concurrent in�ation rate). This
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speci�cation including the expected in�ation may be labeled a forward-looking version

of the Taylor rule as proposed by Clarida et al. (2000). With this formulation of the

policy rule, the baseline dynamics of short-term interest rate and macro variables are

given by

rt+1 = �0
1×1

+ �1
1×1

rt + �2
1×2

Xt+1 +
p

ht+1zt+1 (1)

Xt+1 = �0
2×1

+ �1
2×1

rt + �
2×2Xt + �

2×2�t+1 (2)

ht+1 = �0
1×1

+ �1
1×1

ht + �
1×1z

2
t (3)

Xt = [�t yt]
0, (4)

where rt denotes the short-term interest rate (FF rate). Xt is a 2 × 1 macro-variable

vector of in�ation (�) and real activity (y) following an autoregressive (AR) process.

� is an upper triangular matrix, while ht is the conditional variance of the short-term

interest rate. A scalar random shock z and a 2× 1 random shock vector � are assumed

to be independent and jointly normal.

We take Ang and Piazzesi (2003) as a point of departure and generalize their model

in three directions. First, we allow the short-term interest rate to follow a GARCH-

type process with the conditional volatility of the error term following an autoregressive

moving average process given by equation (3). Note that ht+1 is included in the in-

formation set in period t by (3).9 The
p

ht+1zt+1 term in the short-rate equation (1)

could be interpreted as discretionary changes in the FF rate deviated from the Taylor

rule. In some preceding macro-�nance models as well as in broader monetary policy-

related works, the “policy shock” is frequently assumed to be a random shock following

i.i.d. normal distribution on account of tractability rather than empirical plausibility.

9See also Condition 1 in Appendix A.
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As discussed in the previous section, empirical evidence supports that the policy shock

has time-varying (conditional) variance as opposed to the homoskedasticity frequently

assumed in most of the early macro-�nance studies.

Second, we allow the dynamics of macro variables to depend on the lagged short term

interest rate as well as their own lagged variables, in a spirit similar to Ang, Piazzesi,

and Wei (2006) and Hördahl, Tristani, and Vestin (2006). Thus, the policy interest rate

can directly in�uence future macro variables. In the next estimation-strategy section,

we will explain that the inclusion of the lagged short term interest rate requires us to

modify the Ang and Piazzesi-type speci�cation of the system of equations.

Third, our model has no latent variables, which are commonly used in term structure

models to explain the yield curve dynamics, because they alone cannot provide any

macroeconomic interpretations. Instead, we treat the conditional volatility of the short

term interest rate as an additional factor that explains the yield curves. We then jointly

estimate this unobservable variable via maximum likelihood.

Substituting (2) into (1), we obtain

rt+1 = �0 + �1rt + �2Xt+1 +
p

ht+1zt+1

= �0 + �1rt + �2 (�0 + �1rt +�Xt +��t+1) +
p

ht+1zt+1

= (�0 + �2�0)| {z }
�0

+ (�1 + �2�1)| {z }
�1

rt + (�2�)| {z }
�2

Xt +
p

ht+1zt+1 + �2��t+1 (5)

where �̄0 = �0 + �2�0, �̄1 = �1 + �2�1, and �̄2 = �2�.

The above short-term interest rate and macro-variable dynamics can be rewritten in a
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more concise form:�
���

rt+1

Xt+1

�
��� =

�
���

�0

�0

�
���+

�
���

�1

�1

�
��� rt +

�
���

�2

�

�
���Xt +

�
���
p

ht+1 �2�

0 �

�
���

| {z }
��t+1

�
���

zt+1

�t+1

�
���

| {z }
�et+1

,

ht+1 = �0 + �1ht + �z2t .

2.2 Pricing kernel and the price of risk

We de�ne a time-dependent 3 × 1 price of risk vector �t and assume that the price of

risk takes a certain a�ne form in state variables, as handled in a number of existing

ATSMs.

�
0
t � (�r,t ��,t �y,t)�
						


�0r

�0�

�0y

�
������

| {z }
�0

+

�
						


0 0 0

�21 �22 �23

�31 �32 �33

�
������

| {z }
�1

�
						


rt

�t

yt

�
������
, (6)

�0 � [�0� �0y]
0, �1 � [�21 �31]

0, �̃1 �

�
		


�22 �23

�32 �33

�
�� ,

where �0 is a 3× 1 constant vector, and �1 is a 3× 3 constant matrix where we impose

some zero restrictions.10 Note that with the zero restriction, �r,t = �0r.

Now suppose that the pricing kernel (m)11 is given by

mt+1 � exp(�rt +�t�t+1et+1 � 1
2
�t�t+1�

0
t+1�

0
t).

10The �rst row in �1 must be zero, as this is a critical condition to ensure that the model lies within

the a�ne framework.
11For the pricing kernel expressed in terms of risk-neutral probabilities, see Appendix A.
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Then the log price of an n-period bond follows the following a�ne form (see Appendix

B for the derivation):

pn
t = exp(Ān + B̄nrt + C̄nht+1 + D̄nXt),

where

Ān+1 = Ān + B̄n�0 + C̄n�0 + D̄n�0 +
1

2
Hn��

0H
0
n (7)

�1
2
log(1� 2C̄n�) + �0r�2��

0H0n +Hn��
0�0,

B̄n+1 = B̄n�1 + D̄n�1 +Hn��
0�1 � 1, (8)

C̄n+1 = C̄n�1 + B̄n�0r +
1

2
B̄2n, (9)

D̄n+1 = D̄n�+B̄n�2 +Hn��
0�̃1, (10)

where

�1 = �1 +�2�1 , �2 = �2�, and Hn = B̄n�2 +Dn.

Accordingly, the n-period bond yield is given by

rn
t = An +Bnrt + Cnht+1 +DnXt,

where An = �Ān/n, Bn = �B̄n/n, Cn = �C̄n/n, and Dn = �D̄n/n.

3 Estimation Strategy

For our estimation, we use monthly data on interest rates and macro variables that

capture in�ation and real activity from July 1954 to December 2009.12 We assume

that the policy reaction function remains fully stable throughout the period except for

the time-varying volatility.13 The summary statistics and data sources are provided in
12Our sample period starts from July 1954 because the FF rate data are available from that month.
13While we subscribe the view expressed by Sims and Zha (2006) that the monetary policy rule was

stable in the benchmark, we include some robustness checks in this regard (Section 4.2).
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Appendix C.

 

 
Figure 2. Bond yields and macro variables. The top panel plots the monthly FF rate and 
zero-coupon bond yields of  maturity at 3 months, 12 months, 36 months, and 60 months at an 
annualized rate in percent. The bottom panel plots employment and CPI in year-on-year 
percentage change, representing real activity and inflation, respectively. The sample period is July 
1954 to December 2009. 
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We use the FF rates for the short term interest rate and zero-coupon bond yields of

3-, 12-, 36-, and 60-month maturities (Figure 2, top panel); the FF rates are obtained

from the Fed. The bond yields are from the CRSP US Treasury Database (the Fama-

Bliss Discount Bond Files for 12-, 36-, and 60-month data and from the Risk-Free Rate
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Files for 3-month data). All bond yields are continuously compounded and expressed at

annualized rates in percentages. Regarding in�ation and real activity measures, we use

the consumer price index (CPI) and employment data (Figure 2, bottom panel). These

macro variables are expressed in the year-on-year di�erence in logs of the original series

(see Appendix C for data description).

As explained in the previous section, our model consists of macro dynamics and

static yield equations. The macro dynamics are summarized by equation (2) and the

static yield equations are given by

Rt = A+Brt + Cht+1 +DXt +�
m�m

t+1,

where Rt =
£
r3t , r

12
t , r36t , r60t

¤0 is a 4 × 1 vector of bond yields with maturities corre-

sponding to the superscript numbers (in months). The yield dynamics are an a�ne

function of the state variables with the 4 × 1 coe�cient vectors of A,B, and C, and a

4 × 2 matrix D corresponding to (i) the constant term, (ii) the short-rate term, (iii)

the conditional variance term, and (iv) the macro-variable term, respectively. The sub-

script numbers in A,B, C, and D correspond to maturities (i.e., A = [A3, A12, A36, A60]
0

B = [B3, B12, B36, B60]
0 C = [C3, C12, C36, C60]

0 D = [D3,D12,D36,D60]
0). Their el-

ements are derived from the recursive equations; in other words, the model implicitly

imposes cross-equation restrictions reducing the number of parameters to be estimated.

Measurement errors �m are assumed to have constant variance and �m is a diagonal

matrix.

We can summarize the system of equations to be estimated as follows:
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�
�������

rt+1

Xt+1

Rt

�
�������

| {z }
�Yt+1

=

�
�������

�0

�0

A

�
�������
+

�
�������

�1

�1

B

�
�������

rt +

�
�������

0

0

C

�
�������

ht+1 (11)

+

�
�������

�2

�

D

�
�������

Xt +

�
�������

p
ht+1 �2� 0

0 � 0

0 0 �m

�
�������

�
�������

zt+1

�t+1

�m
t+1

�
�������

,

ht+1 = 	+ �1(ht � 	) + �(z2t � 1), (12)

where zt, �t, and �m
t are jointly normal and independent of each other and over time.

Thus, the observation equation linking Rt to the state (rt, ht+1,Xt) is appended to

the GARCH-VAR equations describing the state dynamics. We set the lag of Xt and

ht at one.14 	 is the unconditional variance of the short term interest rate given by

(�+ �0)/(1� �1). We estimate this system using the maximum likelihood method (for

details, see Appendix D).15

4 Estimated Results

4.1 Estimation summary

A cursory glance at the model-implied yields (Figure 3) indicates a good �t to the

data. The parameter estimates of our model are reported in Table 1. The estimated
14The coe�cients corresponding to longer lag lengths are insigni�cant.
15The sample here is (y1, ..., yT ) = (r1,X1, R0; r2,X2, R1; ..., rT ,XT , RT�1). It may look more natural

to consider the sample (r1,X1, R1; r2, X2, R2; ..., rT ,XT , RT ), but the usual factorization argument can

be more readily applied to the former. If the sample size T is large, the choice of the sample would not

matter for the point estimation.
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conditional volatility of the short rate is highly persistent as �1 is near one (0.989). The

GARCH and ARCH coe�cients in the GARCH equation (3) are statistically signi�cant

as well. Likewise, the price of risk coe�cients corresponding to in�ation and real activity

are statistically signi�cant, implying that the macro factors drive time-variation in risk

premia. The Taylor rule coe�cients (�0, �1,�2) have the right signs with the implied

long-run response to in�ation (denoted as 
)16 close to 1 (0.96)–we cannot reject the

null hypothesis that 
 is equal to 1. The estimated parameters describing in�ation and

real-activity (�0, �1,�) are broadly in line with the preceding studies. We will discuss

robustness checks of these results in Section 4.2.

Figure 3: Model-implied yields (in annualized rate in percent). These figures plot 
model-implied yields for the indicated maturities in annualized rate in percent. The dotted-lines show 
one-period-ahead in-sample forecasting, and the solid lines show the actual data. 
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Table 1. Estimated coefficients. This table reports estimated coefficients in our 

macro-finance GARCH term-structure model. Numbers in italics indicate standard errors. 

Insignificant prices of  risk parameters are set to zero. The delta method is used to calculate 

the standard errors of  0�  and 1� . Measurement error is the estimated variance of  

The key results are as follows. First, our model-implied conditional volatility is

considerably time varying and persistent. Figure 4 reports the dynamics of conditional

variance17 and shows that the model-implied conditional standard deviation increased

17This GARCH process is stationary, as the absolute values of the corresponding polynomial roots

15



notably in the wake of the Volcker shock of the early 1980s (left panel) and tapered o�

during the “Great Moderation.” The gradual decline halted in the early 2000s when the

Fed undertook expansionary policy deviating from the Taylor rule (Taylor 2009) but

resumed its decline when the FOMC made explicit policy announcements with state-

ments such as, “policy accommodation can be maintained for a considerable period”

(August 2003) and “accommodative monetary policy stance will be removed at a mea-

sured pace” (June 2004) (right panel). Then, the standard deviation increased again

during the global �nancial crisis of the late 2000s.

Figure 4: Model-implied conditional standard deviation of  the short rate (at an annualized 

rate in percent). The left panel shows the conditional standard deviation of the short rate for the 
entire sample period. The right panel enlarges the developments in recent years. 
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Second, our results con�rm that the conditional volatility of the short term interest

rate plays a signi�cant role in determining yield curves in the presence of endogenous

macro dynamics. Figure 5 shows how the yield-equation coe�cients change against

maturity. The upward slope of An represents the shape of average yield curves, while

the downward slope of Bn implies that an increase in the short term interest rate has a

more positive impact on the shorter-end of yield curves, thereby reducing term spreads.

The shape of Cn indicates that the conditional volatility increases term spreads by

are all greater than one.
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lifting the middle parts and the longer-end of yield curves. This implies that a one-

standard-deviation increase in h (� 0.09) raises the �ve-year bond yield by more than

150 basis points. The shapes of Dn appear similar to the corresponding observations in

the existing macro-�nance literature, and capture the positive impact of macro variables

on yield curves (with diminishing magnitude over maturity).

Figure 5. Factor weights against maturity. This figure plots the coefficients of  the yield equation 
against maturity (in months). A(n), B(n), C(n), and D(n) correspond to the constant term, the 
short-rate term, the conditional-variance term, and macro-variable term, respectively.  
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Third, to illustrate the role of the time-varying conditional volatility, we estimated

the model in the absence of heteroskedasticity. As a result, model performance deteri-

orates considerably. Note that we can obtain the homoskedastic version of the model

simply by setting the coe�cients of the ARCH term (�) and GARCH term (�1) in the

GARCH equation to zero and re-maximizing the log-likelihood function. Clearly, this

homoskedastic model with no other latent variables turns out to be overly in�exible to

provide a reasonable �t to the data, notably at the longer-end of the yield curves as
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shown in Figure 6.

Figure 6: Model-implied yields without heteroskedasticity. With no other latent variables, the 
model has a poor and unreasonable fit to the data, notably at the longer-end of yield curves. 
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4.2 Robustness checks

We now proceed to some robustness checks of these benchmark results. The check is

three-fold, aimed at testing (i) an alternative estimation procedure, (ii) additional/alternative

macroeconomic variables and (iii) a di�erent choice of the sample period. First, note that

we estimate both macro-variable dynamics and the term structure simultaneously while

some preceding works estimate these two blocks using a two-step estimation strategy.

We estimate parameters describing in�ation and real activity separately from the term

structure and con�rm that the independently estimated parameters are broadly com-

parable to those in the benchmark results (for description of the multivariate GARCH

model excluding the term structure, see Appendix E).

Second, we consider additional measures of macro variables. In the benchmark case,

we employ one variable each to represent (i) in�ation (by CPI) and (ii) real activity
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(by non-farm employment). While these two speci�c variables are, conceivably, widely

recognized as the typical measures for in�ation and real activity, to re�ect more com-

prehensive information available to market participants, for example, Ang and Piazzesi

(2003) include the �rst principal components of the two groups of macro variables, each

of which represents (i) in�ation and (ii) real activity. Likewise, in this paper, we prepare

the �rst group consisting of CPI and the Producer Price Index (PPI) for �nished goods

and the second group including industrial production and non-farm employment to rep-

resent real activity. All variables are expressed in the year-on-year di�erence in logs of

the original series. In each group, the �rst principal component has remarkably high

explanatory power. For in�ation, it explains 95 percent of total variance, and similarly

for real activity, it explains 92 percent of total variance. These results of the principal

components analysis are broadly in line with those in Ang and Piazzesi (2003) and there-

fore, we include only the �rst principal components taken from each group. With the

principal components replacing the CPI and employment, the main estimation results

remain broadly unchanged and we conclude that our results are reasonably robust for

various measures of macro variables. (The corresponding estimated results are available

upon request).

Finally, we estimate the model using a shorter sample period from January 1988

to December 2009, i.e., the period that covers the Alan Greenspan’s tenure as Fed

chairman. This exercise does not give rise to any signi�cant change in the benchmark

result. (The corresponding estimated results are available upon request).
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4.3 A case study: The “conundrum” period

In the run-up to the 2008 global �nancial crisis, US yield curves continued to bear-�atten,

despite consecutive hikes in the FF rate along with expanding economic activity. This

development, labeled a “conundrum” by then-Fed Chairman Alan Greenspan, poses a

challenge to the existing macro-�nance models. During the period 2004-06, these models

performed less successfully compared to other periods, predicting higher longer-term

yields with negative residuals left unexplained.

Our model-implied yield curves (Figure 7) successfully replicate the continued bear-

�attening in the period 2004-06. The factor dynamics around this period (Figure 8)

facilitate understanding of the mechanism that creates this bear-�attening in the model.

These factor dynamics are characterized by a decline in conditional variance while the

short-term interest rate is rising and economic activity is expanding. During the period,

essentially all factors other than the conditional variance–our measure of monetary

policy uncertainty–acted to raise yield levels (Figure 9). Thus, waning monetary policy

uncertainty during the period curbed the longer term yield, partly accounting for the

Greenspan conundrum. The underlying mechanism and the economic interpretation of

our GARCH ATSM appear to be in line with the various policy commitments made by

the Fed during this period, which resulted in greater predictability of the then-future

course of monetary policy.

While our GARCH ATSM successfully replicates the observed bear-�attening during

the period, the model-implied yield cannot fully explain the low levels of long-term

yields. Admittedly, a signi�cant decline in model residuals manifest with respect to

longer maturity yield equations, particularly in 2002 (Figure 10). This suggests that

there remain yet-to-be explained factors preventing a full explanation for the Greenspan
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conundrum.

 
Figure 7. Model-implied yield curves (at an annualized rate in percent) The implied 
yield curves continued to bear-flatten during the low long-term yield period. 
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Figure 8. Factor dynamics around the conundrum. These figures plot the dynamics of state 
variables (i.e., the short rate, the conditional volatility of  the short rate, and macro variables between 
January 2002 and December 2009). 
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Figure 9. Contributions to the model-implied yields (in annualized rate in percent). These 
figures demonstrate the contribution to the model-implied yields by each term in the yield equation. 
Note that the sum of  each factor contribution is equal to the model-implied yields. 
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Figure 10. Model residuals for the yield equations (actual minus model-implied 

yields, at an annualized rate in percent). The model residuals of  the 3-month-maturity 
yield equation are more stable than those of  longer-maturity yield equations during the 
conundrum period. The model residuals of  the 60-month yield equation dropped in 2002 and 
gradually turned from negative to positive values prior to the global financial crisis. 
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5 Conclusion

We analyze a new aspect of monetary policy e�ects–the role of policy shock volatility or

policy uncertainty–rather than the policy shock itself (i.e., its level or the �rst moment,

in contrast to our focus; the second moment), in accounting for yield curve dynamics.

Our estimation results con�rm that the newly included uncertainty factor improves the

empirical performance of our ATSM remarkably, reducing the unexplained portion or

residuals, particularly at the longer-end of the yield curves. Furthermore, the results

indicate that time-varying and persistent policy shocks increase term spreads as they

lift the middle-part and longer-end of the yield curves.

There may be, however, other factors not yet included that could further reveal the

unexplained portion of term premium dynamics or model residuals. For example, at

a time of unusual distress, if the Fed were to undertake extraordinary policy actions,

investors might lose their risk appetite, collectively switching to treasury bonds or other

risk-free assets. This sort of “�ight to quality” driven by a demand shift could fully

o�set the upward pressure on the interest rates arising from the elevated uncertainty as

discussed in this paper. Looking ahead, the impact of demand-side shifts (i.e., investors’

preference) on yield curves could be stressed more in the future research, particularly

focusing on the crisis experience.
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.

A Pricing Kernel and the Risk-Neutral Measure

Assume the existence of an equivalent martingale measure (or risk-neutral measure) Q,

such that the price of any asset pt with no dividends at time t + 1 satis�es

pt = EQ
t (exp(�rt)pt+1) ' EQ

t

μ
pt+1

1 + rt

¶
,

where expectation is taken under the measure Q and �log(1+rt) = log(1+rt)
�1 ' �rt.

Let the Radon-Nikodym derivative, which converts the risk-neutral measure to the data-

generating measure exploiting the Girsanov theorem, be denoted by �t+1. Then, for any

random variable Zt+1, we have

EQ
t Zt+1 = Et

μ
�t+1

�t

Zt+1

¶
. (13)

Condition 1 Assume �t+1 follows the process described as,

�t+1 = �t exp

μ
��t+1et+1 � 1

2
��t+1�

0
t+1�

0
¶

Et�t+1 = �t+1,

where et is a vector of random variables that jointly follows N(0, 1) distribution and �t+1

denotes a lower or upper triangular standard deviation matrix. �t+1 can vary depending

on t while it needs to be known at period t.

Under this condition, we de�ne the pricing kernel mt+1 as,

mt+1 � exp(�rt)× �t+1

�t

.

Using the kernel, the price of an asset without any dividend can be written as,

pt = Et (mt+1pt+1)

= Et

�
exp(�rt)×

μ
�t+1

�t

¶
× pt+1

¸
= exp(�rt)E

Q (pt+1) .
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This clari�es the relationship between the pricing kernel and the risk-neutral measure.

As shown here, the pricing kernel e�ectively adjusts the measure in addition to the

discount e�ect arising from exp(�rt).

B Recursive Bond Prices

We can con�rm that the n-period bond pricing formula in

pn+1
t = Et

¡
mt+1p

n
t+1

¢

= Et

�
		

exp(�rt +�t�t+1et+1 � 1

2�t�t+1�
0
t+1�

0
t)

× exp(Ān + B̄nrt+1 + C̄nht+2 + D̄nXt+1)

�
��

= exp(�rt + Ān � 1
2
�t�t+1�

0
t+1�

0
t)

×Et

£
exp(�t�t+1et+1 + B̄nrt+1 + C̄nht+2 + D̄nXt+1)

¤
.

Plugging in the dynamics of Xt+1, rt+1, and ht+2 into the above gives

pn+1
t = exp(�rt + Ān � 1

2
�t�t+1�

0
t+1�

0
t)

×Et

�
		
exp

�
���
�t�t+1et+1 + B̄n

³
�0 + �1rt + �2Xt +

p
ht+1zt+1 + �2��t+1

´

+C̄nht+2 + D̄n (�0 + �1rt +�Xt +��t+1)

�
���
�
��

= exp

�
���
�rt + Ān � 1

2�t�t+1�
0
t+1�

0
t + B̄n (�0 + �1rt +�2Xt)

+D̄n (�0 + �1rt +�Xt)

�
���

×Et

�
		
exp

�
���
�t�t+1et+1 + B̄n

³p
ht+1zt+1 + �2��t+1

´

+C̄nht+2 + D̄n (��t+1)

�
���
�
�� .

At this point, we can spell out the C̄n(.) and ht+2(.) terms in the above as:

27



C̄nht+2 = C̄n

£
�0 + �1ht+1 + �z2t+1

¤

= �0C̄n + C̄n�1ht+1 + C̄n�z
2
t+1,

where s1 and S are the selection vector and matrix, respectively. In the expectations

operator, rearranging the terms leaves:

�
										

exp

�
�����������

�t�t+1et+1

+B̄n

³p
ht+1zt+1 + �2��t+1

´

+C̄nht+2

+D̄n (��t+1)

�
�����������

�
����������
=

�
														


exp

�
���������������

�t�t+1et+1

+B̄n

p
ht+1zt+1

+
¡
B̄n�2 + D̄n

¢
��t+1

+�0C̄n + C̄n�1ht+1

+C̄n�z
2
t+1

�
���������������

�
��������������

.

Putting this back into the bond pricing formula leaves

pn+1
t = Et

¡
mt+1p

n
t+1

¢

= exp

�
�������

�rt + Ān � 1
2�t�t+1�

0
t+1�

0
t + B̄n (�0 + �1rt + �2Xt)

+D̄n (�0 + �1rt +�Xt)

+�0C̄n + C̄n�1ht+1

�
�������

×Et

�
���������
exp

�
���������

�t�t+1et+1

+B̄n

p
ht+1zt+1 +

¡
B̄n�2 + D̄n

¢
| {z }

�Hn

��t+1

+C̄n�z
2
t+1

�
���������

�
���������

28



= exp

�
�������

�rt + Ān � 1
2�t�t+1�

0
t+1�

0
t + B̄n (�0 + �1rt +�2Xt)

+D̄n (�0 + �1rt +�Xt)

+�0C̄n + C̄n�1ht+1

�
�������

×Et

�
���exp

�
���
�
		
�t�t+1 +

³
B̄n

p
ht+1 Hn�

´
| {z }

�Jn

�
�� et+1 + C̄n�z

2
t+1

�
���
�
��� .

Now with the aid of a proposition used in Heston and Nandi (2003), i.e., Et exp (azt+1) =

exp(a2/2), and Et exp
h
k (zt+1 � a)2

i
= exp

³
ka2

1�2k � 1
2 log (1� 2k)

´
, where z is i.i.d

standard normal, all t + 1 variables (zt+1, �t+1, z
2
t+1) can be taken out from the ex-

pectations operators:

Et [exp ([�t�t+1 + Jn] et+1)] = exp

�
1

2

¡
�t�t+1�

0
t+1�

0
t + JnJ

0
n + 2�t�t+1J

0
n

¢¸

= exp

�
										


1

2

�
�����������

�t�t+1�
0
t+1�

0
t + B̄2nht+1 +Hn��

0H0n

+2

�
�������

�0rB̄nht+1 + �0r�2��
0H0n

+Hn��
0�0 +Hn��

0�1rt

+Hn��
0�̃1Xt

�
�������

�
�����������

�
����������

Et

£
C̄n�z

2
t+1

¤
= exp

�
�1
2
log
¡
1� 2C̄n�

¢¸
.

The bond price equation can �nally be rewritten as

29



pn+1
t = Et

¡
mt+1p

n
t+1

¢

= exp

�
��������������������������������

+Ān + B̄n�0 + �0C̄n + D̄n�0

+12Hn��
0H0n � 1

2 log
¡
1� 2C̄n�

¢
+�0r�2��

0H0n +Hn��
0�0

+
¡
B̄n�1 + D̄n�1 � 1 +Hn��

0�1
¢
rt

+
¡
C̄n�1 +

1
2B̄

2
n + �0rB̄n

¢
ht+1

+
³
B̄n�2 + D̄n�+Hn��

0�̃1
´
Xt

�
��������������������������������

,

corresponding to equations (7) - (10).

C Data

Table AC-1. Summary Statistics of the Data

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3
FF rate 5.523 3.384 1.181 5.011 0.987 0.965 0.942
3-month 5.120 2.908 0.999 4.552 0.985 0.966 0.948
12-month 5.506 2.898 0.834 3.932 0.986 0.968 0.952
36-month 5.884 2.761 0.840 3.664 0.990 0.976 0.965
60-month 6.106 2.670 0.872 3.515 0.991 0.980 0.971

CPI 1.625 1.200 1.329 4.871 0.991 0.976 0.959
Employment 0.758 0.913 -0.804 3.491 0.985 0.958 0.915

Note: Normal distribution has skewness of zero and kurtosis of 3.

AutocorrelationsCentral moments
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Table AC-2. Data sources

Variable Source

Federal funds rate Fed

Zero coupon bond yields (3, 12, 36, 60 month) 1/ CRSP US Treasury Database

 CPI-U, all items, seasonally adjusted (1982-84=100) Bureau of Labor Statistics

PPI for finished goods, seasonally adjusted (base year=1982) Bureau of Labor Statistics

Nonfarm payroll employment
Establishment Survey Data,
Bureau of Labor Statistics

Industrial production, major industry groups, seasonally
adjusted (2000=100)

FRB

1/ CRSP currently does not provide zero-coupon bond yield data longer than five years.

D The Log-Likelihood Function

In this appendix, we explain the derivation of the log likelihood function used in this

paper. Our likelihood function di�ers from that for the standard multivariate GARCH

model in the sense that the static yield equations are appended to the state dynamics.

In preparation for the following discussion, we summarize the model as follows.

yt = AY + �̃yt�1 + CY ht + �̃tut, (14)

ht = 	+ �1(ht�1 � 	) + �(z2t�1 � 1), (15)
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where

yt = (rt,Xt, Rt�1)0 , ut = (zt, �t, �
m
t )
0 ,

�̃ =

�
						


�1

�1

B

�2

�

D

0

0

0

�
������
, AY =

�
�������

�0

�0

A

�
�������

, CY =

�
�������

0

0

C

�
�������

, �̃t =

�
�������

�
ht �2� 0

0 � 0

0 0 �m

�
�������

,

�̄1 = 1� �2[1, 0]0/
 + �2�1, and �̄2 = �2�,

where 	 and 
 are de�ned in the text (pp. 10-11) as the unconditional variance of

the short-term interest rate and the implied long-run response to in�ation respectively.

The elements in A,B,C, and D are given recursively in equations (8)� (11) in the text.

zt, �t,and �m
t are jointly normal and independent to each other and over time. We denote

the vector of parameters to be estimated as �,

� =
h
�0, �1,�, 	, �1, �,�, �0, 
,�2,�

m,�0, �1, �̃1

i
.

We wish to describe the joint density of (yT , yT�1, ..., y1) given (y0, y�1, h0). (The

reason for conditioning the joint density with (y0, y�1, h0) will be explained later in

this appendix.) Note that the joint density of observations 1 through t conditioned on

y0, y�1,and h0 satis�es

f (yt, yt�1, ..., y1|y0, y�1, h0; �) (16)

= f (yt�1, ..., y1|y0, y�1, h0; �)

× f (yt|yt�1, ..., y0, y�1, h0; �) ,

and through the usual sequential substitution, the joint density of (yT , yT�1, ..., y1) given
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(y0, y�1, h0) satis�es

f (yT , yT�1, ..., y1|y0, y�1, h0; �) (17)

=
TY

t=1

f (yt|yt�1, ..., y0, y�1, h0; �) .

We are now ready to derive the conditional distribution in (17), i.e., f (yt|yt�1, ..., y0, y�1, h0; �).

Since ut is i.i.d. standard normal, the distribution of ut conditioned on (yt�1, ..., y0, y�1, h0)

is

ut|yt�1, ..., y0, y�1, h0 � N(0, I).

By (14), u0 is a function of (y0, y�1, h0) and thus by (15), h1 is also a function of

(y0, y�1, h0). In the following period, u1 is a function of (y1, y0, y�1, h0) and h2 is also a

function of (y2,y0, y�1, h0). It follows that ut is a function of (yt, yt�1, ..., y0, y�1, h0) and

ht is a function of (yt�1, ..., y0, y�1, h0). Since ht is nonrandom given (yt�1, ..., y0, y�1, h0),

the distribution of yt conditioned on (yt�1, ..., y0, y�1, h0) is

yt|yt�1, ..., y0, y�1, h0

� N(AY + �̃yt�1 + CY ht, �̃t�̃
0
t).

Therefore, the joint density of (yT , ..., y1) conditioned on (y0, y�1, h0) is given by

f (yT , yT�1, ..., y1|y0, y�1, h0; �) (18)

= (2�)�T/2 |(�̃t�̃
0
t)
�1|1/2

× exp
�
(�1/2)

³
yt �AY � �̃yt�1 � CY ht

´0
(�̃t�̃

0
t)
�1
³
yt �AY � �̃yt�1 � CY ht

´¸
.

The conditional log likelihood is the log of the above expression, i.e.,
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L (�) = const� 1
2

TX
t=1

log |�̃t�̃
0
t|

� 1
2

TX
t=1

³
yt �AY � �̃yt�1 � CY ht

´0
(�̃t�̃

0
t)
�1
³
yt �AY � �̃yt�1 � CY ht

´
.

If the sample size T is large, the conditional maximum likelihood estimation would

be asymptotically the same as the maximum likelihood estimation that maximizes the

unconditional log likelihood, log f(yT , ..., y1).

E Estimating Macro Dynamics Without the Term Struc-

ture of Interest Rates

To see if our estimated parameters for macro dynamics lie within a reasonable range,

we estimate the macro dynamics given by (2) and report the estimated results. The

only di�erence between (2) and our macro-�nance GARCH ATSM is that the former

excludes the term structure.

The log-likelihood function is given by

L(�̃) = �1
2

TX
t=1

log(det(�t))� 1
2

TX
t=1

�̃0t�
�1
t �̃t,

where �̃ is the vector of parameters to be estimated

�̃ = [�0, �1,�, 	, �1, �,�, �0, 
,�2] .

H̃ is the covariance-variance matrix

�t =

�
		


ht +�2�(�2�)
0 �2��

0

�(�2�)
0 ��0

�
�� ,

and � is the error term in the model de�ned by
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�̃t+1 =

�
���

rt+1

Xt+1

�
����

�
���

�0

�0

�
����

�
���

�1

�1

�
��� rt �

�
���
�2

�

�
���Xt.

where

�̄1 = 1� �2[1, 0]0/
 + �2�1, and �̄2 = �2�.

The estimation results are reported in Table AE. The delta method is used to cal-

culate the standard errors of �0 and �1.

35


