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Portfolio optimization with choice of a probability
measure

Taiga Saito
Graduate School of Economics
The University of Tokyo
Tokyo, Japan
staiga@e.u-tokyo.ac.jp

Abstract—This paper considers a new problem for portfolio
optimization with a choice of a probability measure, partic-
ularly optimal investment problem under sentiments. Firstly,
we formulate the problem as a sup-sup-inf problem consisting
of optimal investment and a choice of a probability measure
expressing aggressive and conservative attitudes of the investor.
This problem also includes the case where the agent has con-
servative and neutral views on risks represented by Brownian
motions and degrees of conservativeness differ among the risk.
Secondly, we obtain an expression of the volatility process
of a backward stochastic differential equation related to the
conservative sentiment in order to investigate cases where the
sup-sup-inf problem is solved. Specifically, we take a Malliavin
calculus approach to solve the problem and obtain an optimal
portfolio process. Finally, we provide an expression of the optimal
portfolio under the sentiments in two examples with stochastic
uncertainties in an exponential utility case and investigate the
impact of the sentiments on the portfolio process.

Index Terms—Optimal portfolio problem, Uncertainty model-
ing, Malliavin calculus

I. INTRODUCTION

In this paper, we consider a new portfolio optimization
problem with a choice of a probability measure, motivated
by an investment problem under aggressive and conservative
sentiments. When an agent who works on optimization on a
control variable has an aggressive view on one risk, but has
a conservative view on another risk at the same time, it is
crucial to include those views in the optimization. To describe
the views on different risks of an agent, Saito and Takahashi
[19] introduced a sup-inf/inf-sup problem to represent the
aggressive and conservative views on Brownian motions as
a choice of probability measure and solved it by a BSDE
approach. In Saito and Takahashi [19], the control variable
for the optimization of the agent is exogenously given, and the
attitudes towards different risks are formulated as a sup-inf/inf-
sup problem on the views on the Brownian motions. This study
further extends the approach and considers maximization on
the control variable while choosing a probability measure that
reflects the aggressive and conservative views on Brownian
motions. Thus, we include the third optimization on the control
variable in addition to a choice of a probability measure
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representing the sentiments under a given control variable and
formulate the problem as a sup-sup-inf problem. Particularly,
we take the infimum on the conservative view first to be
more conservative on the expected utility. This study also
includes the case where the agent has only conservative and
neutral views on risks represented by Brownian motions,
where degrees of conservativeness vary among the risks.

More concretely, we first set up an investor’s investment
problem under the sentiments as a combination of the op-
timal portfolio problem and a sup-inf problem representing
the investor’s sentiments. Then we propose the conditions
under which the combined sup-sup-inf problem is solved.
Particularly, we use a Malliavin calculus approach to obtain
the conditions by obtaining the volatility term in a backward
stochastic differential equation (BSDE). Finally, we obtain
an optimal portfolio under the sentiments for an exponential
utility case.

Investment under sentiments is an important issue for
investors since the markets are often driven by not only
economic conditions but also sentiments of the market par-
ticipants. Specifically, it is often observed that the market is
driven by sentiments, even when the economic environment
deteriorates. Particularly, in the Japanese government bond
market, while the interest rates were controlled and kept low
by the central bank, the bond prices were determined by
market sentiments. Nishimura et al. [14] and Nakatani et al.
[13] estimated the sentiment in the market empirically by a
text mining approach. In another instance, a home bias exists
with which investors trade domestic assets aggressively while
they trade foreign assets conservatively, since they know well
about the domestic market but are not confident about the
foreign market.

For related literature, Petersen et al. [17] consider stochastic
uncertain systems where uncertainty is described by a con-
straint on the relative entropy. Benavoli and Chisci [2] deal
with an optimal control problem for non-Gaussian discrete-
time linear stochastic systems with imprecise probabilities.
Pun [18] investigates stochastic control problems for an ambi-
guity averse agent. In contrast to the robust control problems,
our work incorporates not only the conservative side but also
the aggressive side to consider optimal investment problems
under sentiments since both conservative and aggressive sen-



timents drive the financial markets. Moreover, we work on
the combined two optimization problems, where we solve the
optimal investment and aggressive and conservative sentiment
problems. For applications of stochastic control to optimal
portfolio problems, see Yiu et al. [26], Calafiore [4], [5],
Mukuddem-Petersen and Petersen [12], Saito and Takahashi
[20], [21], Ma et al. [11], Wang and Yu [24], Bensoussan et
al. [3], Yan and Wong [25], Li et al. [10], and Dombrovskii
et al. [7], for instance.

Specifically, Yiu et al. [26] consider an optimal portfolio
problem under a maximum value-at-Risk constraint. Calafiore
[4] proposes a data-driven approach for computing optimal
portfolio compositions and [5] examines a multi-period se-
quential decision problems for financial asset allocation. Ma et
al. [11] investigate an optimal portfolio execution problem un-
der stochastic price impact and stochastic net demand pressure.
Wang and Yu [24] consider a partial information non-zero-sum
stochastic differential game of BSDEs with applications to an
optimal portfolio problem. Yan and Wong [25] propose an
open-loop control framework to time-consistent mean-variance
portfolio problems in incomplete markets with stochastic
volatility. Dombrovskii et al. [7] consider model predictive
control for constrained discrete-time Markovian switching sys-
tems with an application to an optimal portfolio problem. Li et
al. [10] examine a linear-quadratic problem for a time-delayed
stochastic system with recursive utility with an application to a
cash management problem. Mukuddem-Petersen and Petersen
[12] propose a stochastic control problem for optimal risk
management of banks. Saito and Takahashi [20] investigate an
optimal trading problem of a hedger for derivatives pricing un-
der liquidity costs and market impact, and [21] describe trading
behaviors of different types of players in the high-frequency
markets by a stochastic differential game. Bensoussan et al.
[3] consider a non-zero-sum stochastic differential game for
optimal investment and reinsurance problems between two
insurance companies.

The organization of this paper is as follows. After setting up
the financial market model, Section 3 describes the investor’s
investment problem under sentiments. Section 4 defines the
sentiments of the investor as a choice of a probability measure.
Section 5 describes the conditions under which the sup-sup-
inf problem is solved. Section 6 presents the optimal portfolio
under market sentiments. Finally, Section 7 concludes.

II. SETTINGS

Let (Q,F,P) be a probability space. Let {B;}o<i<T,
B, = (Bigt,...,Bayt), be a d-dimensional Brownian motion
under P and {F;}o<i<7 be the augmentation of the filtration
generated by the Brownian motion B.

Firstly, we set up the financial markets as follows. Let
{S0,+}o<t<T be a money market account process satisfying

dSo+ = 1:S04dt, Soo = 1, where r is a progressively
measurable process satisfying fOT r2ds < oo, P — a.s. Also,
let {S;:}o<i<r,%=1,...,d be price processes of risky assets

following stochastic differential equations (SDEs) dS;; =
bi,tSiﬂgdt + Si,t Z;lzl O'i,j7tdBj7t, where b;, 1 = 1,...,d and

055, 0 < 1,7 < d are progressively measurable processes
satisfying fOT |bi s|lds < oo, fOT 07 ;.ds < oo, P —a.s. We
assume no-arbitrage and completeness for the financial market,
ie. oy = (04t)ij=1,.4 is invertible for 0 < Vt < T,
and there exists the unique market price of risk —f such
that —0; = o~ '(b; — r;1), where b = (by,...,bs)" and
1 = (1,...,1)T. Hereafter, we denote by T the transpose
of a matrix. Let () be the risk neutral probability measure ()
defined as 92 = Z7 = exp(—1 fOT |0t|2dt+f0T 0 dBy), and
we define the state-price density process Hy as Hp; = SZUtt

Moreover, let 7;,i = 1,...,d, be the value of position for
the asset ¢ held by the investor, satisfying fOT 7ri2)tdt < 00,
P — a.s. Also, let myp be the value of the money market
account position for the investor and = be a positive con-
stant, which describes an initial endowment. Let X™ be the

investor’s portfolio value process described as X[ = x +
t d
fo (TSX.Z + 2 i1 is(bis — Te)) ds
+ Z?Zl Z;l:l fot Ti,504,5,sd8; s, where we assume that the
portfolio process © = (mg,m1,...,7q)  is self-financing:
d
X[ =m0+ iy it
Furthermore, let A be a set of self-financing strategies
— T caticfvi T 2 _
7 = (w0, 71,...,mq) " satisfying [ |ms[*ds < o0, P — a.s.
and {Ho ¢+ X[ }o<i<7 is a supermartingale under P to preclude
arbitrage opportunities.

III. PORTFOLIO OPTIMIZATION

Firstly, we consider a portfolio optimization problem with
respect to a terminal wealth X7, given the density process for
the investor’s subjective probability measure.

Let A; be the set of progressively measurable processes \; :
[0, T]xQ — R%, j=1,2,d; +d> = d, satisfying |\; 4 ¢| <
Njkel, k=1,...,d;, 0<t<T where \jr, j=1,2, k=
1,...,d; satisfy a weak version of Novikov’s condition (e.g.
see Corollary 3.5.14 in Karatzas and Shreve [9]) as in Saito
and Takahashi [19]; there exists a partition of [0, 7], 0 =t <
h< o<ty = T, such that B [exp (37 INJ2ds) | <
oo, for all 1 < n < N, where A = (A\{,\J)T. We remark
that in the specific examples in Section VI and Appendix B,
we further restrict A; and A, suitably so that the sup-sup-inf
problem, which will be proposed in Problem 1 in Section IV,
is solved.

We also assume the following conditions as in Pardoux and
Rascanu [16]. Let © : R — R be a utility function, which
is twice differentiable, concave and increasing, that is, u” <
0,u" > 0.

Letp >1,m, =1A(p—1) and V; = ﬂf(i\?\s|2ds).

Assume that there exists § > p’%l such that for ¢ = pp% and
ng=1A(q—1),
E[e?T [u(Xr)[P] < oo,
El(fy \s[2ds)?] < oo, (1)
Elexp(3(;E = L) [i [As[ds)] < oc.

Also, let A = (A[,A\J) ", \j € Aj, j =1,2, and P2
be the investor’s subjective probability measure defined by



dprioA2 A1,A2 A1,A2

= where 7; = exp(—%fg|)\s|2ds +
fot Al dB,). By Girsanov’s theorem, BQW defined as
BN = B, — fg Asds is a Brownian motion under P2,
Since dB; = dB;‘“A2 + A\¢dt, X is considered to be biases on
the view of the original Brownian motion under the investor’s
subjective measure P22,

We consider maximization of the expected utility for the
investor’s terminal wealth £ [u(X7T)] over the strategies
7q) " € A under the budget constraint

= (7o, M1, ..,
E[Hyr X7 < . (2)

Then, it is well-known that the constrained maximiza-
tion reduces to setting a Lagrangian multiplier y >
0 and solving the unconstrained maximization problem:
maxe 4 By ™ u(XE)] + ylz — E[HorX7J]], where the
optimal solution is obtained by solving the first order condition
is as follows. (See Theorem 3.7.6 in Karatzas and Shreve [8]
for example).

' (XF) = yHor. 3)
Then, the optimal terminal wealth X7 is given as
. yHo 1
XT:I< >\17)\2>7 (4)
T

where I = (u/)~! and the Lagrangian multiplier y > 0 is
obtained as a unique solution of the equation

H,
Horl (W)] . (5)
Uiy

IV. CONSERVATIVE AND AGGRESSIVE SENTIMENTS

r=F

Next, we express the investor’s sentiment, which is con-
servative about the first Brownian motion B; and aggressive
about the second Brownian motion Bs, as a sup-inf problem
with respect to the expected utility of the terminal wealth given
the terminal wealth XT.

Let J(m, Ay, Ag) = EP7 [u(XT)], and S° be the space of
R-valued progressively measurable and continuous processes
and AY be the space of progressively measurable processes Z:
Q x [0,T] — R< such that fOT |Z¢|?dt < 400, P — a.s.

We consider the following sup-sup-inf problem.

Problem 1.

sup sup inf EF [u(XT)]
TEA N, eR, M EM

= sup sup inf EPM"AZ[U(X%)].
AgEAs reAMEAL

We remark that in this problem, we take infy,ca prior
to sup,c4 and sup, .z, in order to consider the most
conservative case on the expected utility.

Here, we assume that ]&2 is a subset of Ay such that for
any Ay € Ao, there exists a saddle point (7*(X2), Af(\2))
such that (i) and (ii) below are satisfied.

(1) For A7 € Ay, m € A is the solution of the optimal
portfolio problem, satisfying

o yHor

X5 = 1( Af‘jh), (6)
N
where y is a positive constant obtained as a solution of

H

r=F H07TI (y/\*O:\T>‘| . (7)
T]T17 2
(i) A7 € A, satisfies

* N TN

Lkt = —|)\1,k,t|sgn(Zk)t v k=1,...,d1, (®8)

where (Y7 AAz ZzmALA2) € SO % AY is a unique solution
of BSDE

Yﬂ*vAI7)\2 _
f =
d] d2
_ * AT “ AT
—Q 0 Pkl 28,7 Y Nk 2y, (3t
k=1 k=1
di+da

T TN ¥
+ 30 25, NaB, N = (X))
j=1

Remark 1. We remark that by a slight modification of The-
orem 1 in Saito and Takahashi [19], for given s € 1~X2 and
7 € A ANy € Ay that attains infy, cp, J(7%, A1, Aa), ie
J(T* A, Ae) < J(7*, A1, A2), VAL € Ay is given by (8) and
J(7*, N5, Na) is expressed as J(m*,\j, A2) = Yy A2,
Also, we note that by Pardoux and Rascanu [16], BSDE (9)
has a unique solution (Y™ A1:A2 77 A1A2) € 8O % AY such

that E(supco 1 epvf\Yf*”\T”\ﬂp) < o0

Then, the saddle point (7*(A\2),AT(A2)) attains
Sup,c4infy,ca, J(m, A1, A2) for given Ay € Ay. This
is observed as follows.

For an arbitrary n €
—[Arelsgn(Z).

Then, the saddle point (7*, A}) for given Ay € Ay maxi-
mizes the expected utility as follows:

A, let optimal AT, =

EPT u(xp)] - BP T (X))

< BPV 7 u(XF) - w(XF)] (10)
< BV (XE ) (XF - X5 (11
= E[n%f’kﬁu%m*xxg— X7

=yE[Ho(T)(X7 — X7 )] <ylz—z)=0. (12)

Here, we used the optimality of A\] € A; for 7 €

A in (10), the concavity of w« in (11), and the ex-

pression of y (3) and the budget constraint (2) in (12).

Thus EPT ™ [w(X7)] < EP*2 [u(X5)). which indicates

supre4 infy en, J(m, A1, A2) = J(7*(A2), AT (A2), A2).
Therefore, the problem reduces to solve

sup J(7"(A2), AT(A2), A2).
A2€A2



Remark 2. We can also show that the saddle point
(m*(N\2), Ni(N\2)) attains sup,.c 4 infx,en, for given Ay € Ay
as follows.

Since J(’]T, )\T()\Q), )\2) S J(’]T*()\Q), )\T()\Q), )\2)
< J(r*(A2), A\, A2), YA\ € A, m € A we have
infy, en, Suprea J(m, A1, A2) < (77 (A2), AT (A2), A2) <
supre4 infy,en, J(m, A1, A2). Combining with the inequal-
ity SUPc A inf}qEAl J(?T, /\17 )\2) < J(W*()\Q), )\T()\Q), )\2) <
infy, e, supreq J(m, A1, A2), which naturally holds, we ob-
tain J(m*(A2), AT (A2), A2) = sup,c 4 infx, cn, J(m, A1, A2)
(= infx,en, Supreq J(m, A1, A2)). As this indicates, sup,.¢ 4
and infy,ecp, are interchangeable. However, infy ca, and
Supy,cx, cannot be exchanged. In this work, we consider
taking infy ca, first so that it becomes the most conservative
case.

A. Explicit expression of Z™ 122

As we observed, finding (7*(A2), AT(A2)) that satisfies (i)
and (ii) for given Ay € A, is crucial in solving the problem. As
we will observe in the examples in Section VI and Appendix
B, we can take the following procedure to find the pair.

Step 1. Firstly, we suppose some specific form for Aj
A = /_\1, for instance). More concretely, we predetermine
A /\2), k = 1,...,d1 in (8) as functional of
some exogenously given random variable (sgn(Z7r ’\1”\2) =
—sgn()y) for instance, as we will observe in the examples in
Section VI and Appendix B). .

Step 2. Then, we calculate Z,: ArA2
by (6).

Step 3. Finally, we confirm that sgn(ZTr A2y son(g)
as predetermined. Then, 7 generating X7 and A} constitute
the pair.

In Section VI, we will provide examples where the saddle
point exists for any Ay € Ay and the sup-sup-inf problem is
solved.

In the following, for given A} € A;, we provide an
expression of Z™ 2122 in BSDE (9) with X7 in the terminal
condition given by (6). Hereafter, we suppose r» = 0 for
simplicity. See Appendices for general random cases for r.

Following the definitions of the Malliavin derivative oper-
ator and the Sobolev space in Ocone and Karatzas [15], we
let D, be the Malliavin derivative operator with respect to B;.
L{, denotes the set of R4-valued progressively measurable
processes {v; }o<¢<7 such that (i) for almost every s € [0, T,
v(s,) € (D11)4 (i) Du(s,w) = (Dvj(s,w))ij=1,.d €
(L2 [0 T))? & admlts a progresswely measurable version, (iii)

E[(Jy |vs|?ds)? + ([, | Do(s)|ds)?] < oo, where Dy,
denotes the Sobolev space and | - || denotes the L?([0,T1])
norm, i.e., |[Dv(s)|? = fo ”:1 |D; +v;(s)[2dt.

Theorem 1. Let A = (A}, A3)7T, (M5, \2) € Ay x Ay and
X2 be defined by (4) and (5) with 1 = n’>2. Also, let
BA A2 he PANA2_Brownian motion deﬁned by B/\“/\2 B, —
fo Asds. We assume 0,\ € L$ . Then Z™ X2 in BSDE (9)
has the following expression lf it is well-defined.

sgn(Z;,

in (9) with XQTE* given

2
AN apdioae |, (yHor \ [ yHor
Zi,t ' =FE {_I (n,\;,,\2> (n,\;,,\2>
T T
T
( — 0;..)ds
t

(‘i‘(j\i,t —0;i4) — Di05)(Nis

d T
+>° / Dii(Ajs — ej,s)dB;g’A2>
j=1 t

WXy Z/ D\, quAWm} . (13)
Moreover, when X7 is f;l”\z—measurable, where
{F)1**}o<4<r is the augmentation of the filtration generated

by B**2, we have a more concise expression for Z;‘I’AQ
The following expression will be used in the examples in
Section VI and Appendix B. Let Dg\ 122 pe the Malliavin
derivative operator with respect to Bt’\ 122 Also, let Dj\;”\Q be
the Sobolev space and La 1% be the set of R2-progressively
measurable processes corresponding to BM A2,

Al’Az and X0 €

Z2A2 has the following expresszon if it is well-

Corollary 1. In particular, if XT € Dj
La )\1,)\2

deﬁned

2
TCAI A2 P e [ yHor yHo T
Zi,t =k [_I ( Y /\2>< ALM)

nr' Uiy

/ DY |A — 0,2ds

T
+Z/ DQ;“Q(AN—ej,s)dB;g”)Vﬁl*z]. (14)

Specifically, in the case of an exponential utility with u(x) =
— 5 exp(—pz), p >0,

e 1(yH B
Z;4 A o <f7//\10/\2> E |:()‘i,t —0i4)
t

+Z/ D,\l,,\Q —9,.)dB

Proof. By applying Theorem 2.5 in Ocone and Karatzas
[15] to u(X} ), we obtain the result. See Appendix A for
details.

Tl M?} (15)

V. OPTIMAL PORTFOLIO UNDER CONSERVATIVE AND
AGGRESSIVE SENTIMENTS

Finally, we provide an explicit expression of the portfolio
process 7* that generates the optimal terminal wealth X%*
under conservative and aggressive sentiments. Hereafter, we
denote by {F*}o<i<r the augmentation of the filtration
generated by the Brownian motion B under @ and let
Dgl be the Sobolev space and Li‘lQ be the R¢-progressively



measurable processes corresponding to B?. Also, let DtQ be
the Malliavin derivative with respect to the Brownian motion
B€< under Q.

Suppose that (7%, A}, A3) attains the sup-sup-inf in Problem
1. Then, Xf is expressed as (6) with Ao = A3, since
(m*, %) is the saddle point for given A5 € Ay, and the
portfolio process 7* that generates X;E* at T is given through
the following expression on the discounted terminal wealth
X7 = X7 exp(— fOT rsds). (See Section 3.1 in Ocone and
Karatzas [15] for instance.)

T
X5 :x—i—/ ¢ dBE. (16)
0

where 1 is obtained by v;; = ER {Di,tf(f +
rrx~d (T
Z]:l‘ft

The portfolio process T
71'

Di40;,.dBY, |J—'t]

*

is related with R%-valued pro-

gressively process 0 = 1, and given by 7T*T =

SO,twt Ot -

Particularly, 1 has the following expression when X7 is
]-'19 -measurable, which is satisfied if # and \* are proportional
to the same stochastic processes as in the cases in Section VI.
When X7 ¢ D?J, by Clark-Ocone formula (e.g. Theorem
4.1 in Nunno et al. [6]), 1, = EQ[DZ X7 | F2).

Since we suppose r = 0, we have 71';‘—'— = @Z)tTat’l, and
Xr" = XZ". We can further calculate ¢ with X7 given in
(6) with A\g = A3.

Proposition 1. Let N = (A}, \5). When X7 € Dgl and

)\* 0 € Ll 1> 7Tt = So7t¢;r0't71,
expression if it is well-defined.

where v has the following

yHo,r \ yHo,r
%t—EQ[ I/<)\*>\*> B
nr'

<(x;t 0;.¢ 77/ D¢ \)\*70|2ds

+Z/ DZ(X5, — 0;)dBY )|fQ}
j=17"%

Corollary 2. In particular, when \* and 0 are deterministic
processes,

yHor \ yHor
i = B9 [—I’( i ») Hor
,rl 1272 ,r] 1272

Proof. By applying Clark Ocone formula (e.g. Theorem 4.1
in Nunno et al. [6]) to XT , we obtain the result. See Appendix
B for details.

mﬂ (AL, — 00,

VI. EXPONENTIAL UTILITY CASES

In this section, we present examples, in which the sup-sup-
inf problem in Problem 1 in Section IV is explicitly solved
and the optimal portfolio under conservative and aggressive
sentiments in Section V is obtained, with an exponential utility
where u(z) = —= exp(—pz), p > 0,and I(y) = (u')"*(y) =

—10%. For the cases with a log utility, see Appendix D in the
full version of this paper [22].

Particularly, we present two cases where S\j, the bound
defining Aj;, 7 = 1,2, and the market price of risk —¢ are
stochastic and investigate the impact of the conservative and
aggressive sentiments on the optimal portfolio process.

A. Brownian case

Firstly, we consider a case where S\j, j = 1,2, the processes
defining the bound in A; and the market price of risk —0
are proportional to a Brownian motion B*1**2 under the
probability measure P22,

Example 1. (Brownian case)

Letay j,09,5, 7 = 1,2, be constants satisfying o ;—0g ; >
0, —09,; >0, j=1,2with 7)1 <0,552 > 0.

Let

t
Ajt = 5%]‘/ eI aBy,
0

t
0j: =00 / e~ mit=9dp, (17)
0

In this case, A and 6 are rewritten as )\ t = O’)\JB)\I A2
U(;]B’\l”\2 since B’\l”\2 =/ e“’*»ﬂ(" dB; s is
an Ornstein-Uhlenbeck process that satisfies BJ)T‘,?S‘Z’ =B —
T fo B’\l’)‘st

Let Aq and A2 be a set of A1 and Ao, respectively, satisfying
N = oxgfo e*ffwt VdBj ., = ox;BV?, j = 1,2,
where 0y ;, j = 1,2, are constants satlsfylng —|aa,;] <
oxg <ol

Then, A%, = Aj¢, j=1,2, and 7" generating the terminal

<yH“T> where y =

and 0, =

wealth X7~ = —1 5 log

exp(—p —

A1,z

E®[log Hy 1 — log nAl”\z]) attain the sup-sup-inf in Problem

1. This is confirmed as follows. First, (6) and (8) in (i),(ii) in

Section IV are satisfied, and thus A\] = A; and 7* generating
Yo, T

Xy = - 10g< ,M)
T

considering the maximization with respect to A2, we obtain
the result. For details, see Appendix C.

provide a saddle point. Then by

Remark 3. Since Ny = 6x1B1™2, Ay = 02283 and
0; = cr(97]B>‘1 A2, 7 = 1,2, and B>‘1 2 s an Ornstein-

Uhlenbeck process of B’\l’)‘2 B)‘l’)‘2 = B’\l”\2 B’\l”\2 =

ft 67(&’\v270*=2)(t75)d3>\1’)\2, thus X7r _ (ygr))\Tz)

0

)\1,/\2 )\17/\2
is Fp'"?-measurable and in particular in D7 Tlius, we
can apply Corollary 1 and confirm that )\*()\2) = Ay and

—1 log

yoT

m*(A\2) generating XF = log provide a saddle

point for given Ay € Ay. Then, ltfollows that N5 = Xy attains
Supy, i, J (7 (A2), AT(A2), A2).

Moreover, for the calculation of the optimal portfolio 7*
since )\ = U)\]B)\l’)\z, and 0; = O'QJB)\I’)\Z ji=12, and
B’\l”\2 is an Ornstein-Uhlenbeck process of BQ, B’\1 do _



fot e*(‘?x,j*Ua,j)(t*S)dB;?S

, thus X7~ = filog <ny’T> is
Nt

.7-'19 -measurable and in particular in D1Q71. Thus, we can apply

Proposition 1, and the optimal portfolio 7* is calculated as

= ot with

1 5y i —on ) (T— _ PYIDY
¢j,t _ % (1 + e~ 2(@x,j—06,;)(T t)) (U)\,j _ U@,j)B;\é’)\z.

(18)

For details, see Appendix C.1 in the full version of this
paper [22].

Remark 4. With this X in (17), the first integrability condition
in (1) is not satisfied. We can restrict X\ so that it satisfies
the integrability condition. Specifically, we can use f (BMA2)
instead of B A2 with f R — R such that f is smooth,
increasing, f(m; = z, |z| < R for some R > 0, and
limg 1 oo l‘gg(fz“ < C, C > 0. The same thing holds for
the square-root case in (20).

B. Impact of the sentiments on the position in the Brownian
case

In this subsection, we investigate the impact of the conser-
vative and aggressive sentiments A7 on the position on the
Brownian component v;, j = 1,2 in the Brownian case
with the exponential utility. We note that v); is interpreted
as the position on the Brownian component B;, j = 1,2, as
Yy = ;o and (16) indicate.

First of all, we consider the base case where 7, ; =
0, 7 = 1,2. The expression of v; in (18) indicates that when
B;}/”\z > 0(< 0), j = 1,2, the position v, on the j-th
Brownian component is positive (negative), which means long
(short).

Next, when 651 < 0,052 > 0, since 5 ; —0g,; > 0, ¥+
in (18) has the same sign as as in the base case. Then,
we observe the following for the expression of v; in (18).

e When B}Y™ > 0(< 0), A\j, = 1B} with
ga1 <0 1mplies a negative (positive) bias A} ; < 0(> 0)
for By ;. Since 1)1, the position on the first Brownian
component By, is long (short), which is compatible with
the role of A\] as the conservative sentiment. Similarly,
0,2 > 0 indicates a positive (negative) bias on B ; when
B)‘l’)‘2 > 0(< 0), which implies that A} is viewed as the
aggressive sentiment.

. Compared with the base case where o)1 = 0, A\] =
O')\’lBl) * with g1 < 0and B’\“’\2 > 0(< 0) indicates
that the position on the first Brownian component ) ¢ is
smaller (the short amount is smaller) when the position
is long (short). This agrees with the fact that the investor
maximizes the expected utility under the conservative
sentiment. Similar arguments hold for the effect of the
aggressive sentiment \5.

A1,A2
B

Furthermore, we separate the expression of ¢; ; into the first

_1 = A Az 1
and the second term as ¢, = | (9, —09,;)Bj ;" —5(1 -

¢m2035=00.)(T=1)(5, ; — 0 ;)B};* ). This indicates that

the first term contains AY, — ¢;; the sentiment added market
price of risk, and the second term offsets the first term while
it vanishes as time approaches maturity. Then, the effect of
ox1 < 0 (Ga2 > 0) on the first term is the same as we
discussed on the whole v; ; above.

The effect of 55,1 <0 (65,2 > 0) on the second term is as
follows. We set (5 ;) = —(1—e 2(Oxa=20.)(T=t)) (5, , —
09,;). Then, it follows that ¢’(Gy ;) < 0.

This indicates that compared with the base case where
oxj = 0,051 < 0 (0r2 > 0) makes the position 1 (¢2)
larger (the short amount is larger) and mitigates the first term
effect.

C. Square-root case

Finally, we consider the case in which Xj, j = 1,2,
defining the bound in A; and the market price of risk —0
are proportional to a square-root of a square-root process V.

Example 2. (Square-root case)

Letoy j,09,5, J = 1,2, be constants satisfying o ;—0g ; >
0, —09,5 > 0, 7=1,2 with O 1 <0, OA2 >0, and Oy,j >
0, =12

Let V be a square-root process satisfying a SDE

d‘/],f
= (kj(0) = Vi) = 00,0\ ;Vjt) dt + 00,3/ ViedBje
Vio>0, j=1,2, (19)

where #;,; are positive constants satisfying 2x;0; > o2
Also, let

3

js—g)\,]\/ 7,8 9]5 00,]\/ 78"

Let A; and Ag be a set of A; and Az of the form \;, =
o,/ Vj,s» Tespectively, where oy ; is a constant satisfying

—loasl < ong <lonl.
Then, )\;f, j = 1,2 defined as /\;f)S = 04/ Vjs and
(yHoT>
X1

where y = exp(—pz — E?[log Ho 1 — logn attain the
sup-sup-inf in Problem 1. This is confirmed as follows. First,
(6) and (8) in (i),(ii) in Section IV are satisfied, and thus

yoT

(20)

m* generating the terminal wealth X%E* = log

A“2])

¥ =\ and 7* generating X7 = —2 5 log

provide

T
a saddle point. By considering the maximization on Ay, we
obtain the result. For details, see Appendix D.

Remark 5. Since \1 = ax1VVi,A\2 = ox2VVa and
0; = 09\ Vj, 7 = 1,2, and V; is a square-root process,
which is expressed as a unique strong solution of SDE
AV = #1(01 V1,0 )dt+00,11/ViedBYY™2, dVay = (k2 (02—
Vo) —0u2(0r2 —0x2)Va)dt + 0y 24/ Vo, tdB’\“AZ, Vio >

0, j = 1,2 thus X7 = log<yA oL ) s .7-';1’)‘2-
T

measurable and in particular in D7 1’)‘2 Thus, we can apply
Corollary 1 and confirm that « ()\2) generating X7 =



—%log (m) and N;(\2) = A1 provide a saddle point
T ~ —
for given Ao € Ao. Then, it follows that N5 = Aq attains

Sup/\g €A, J(ﬂ-*()‘2)> /\T ()‘2)7 )‘2)

Moreover, for the calculation of the optimal portfolio, since

A =3 1VVi, A = ox0V/Va and 6 = 09;1/V}, j = 1,2,
and V; is a square-root process, which is expressed as a unique

strong solution of SDE dV;, = (k;(8; — Vj+) — 04,;(Gr; —
005)Vie)dt + 04 /ViedBY,, Vio > 0, j = 1,2, thus

X5 = —% log <yH°‘T

A1,A2
T
in DiQ,l. Thus, we can apply Proposition 1 and calculate the
optimal portfolio process 7* as a1 = Y ot with

1],_
Vi = , [(Uw —00,5)\V Vit

T
— (Gr; — 00,4)2E® U 1/ijngsw/Vj,sds|ftQH,
t

is Fj@ -measurable and in particular

21

where

d‘/j’t =

(k5 (05 = Vi) + 00,3(00,5 = 02,5)Vie)dt + 00,3/ Vi d B,
(22)

and

0'1,7'
DY \Via = =5 %
8 Ki+0yi(Gx; —00.5) R0y Tos
exp / Ry v, LON,j 4) T3 8 | du
¢ 2 Viu

(23)

Here, we note that E© {ftT \ /Vj_,SD]Cf?s, /V,ods|F2| <
2

. . kit (Gai—00.5) 5505 T
oo in (21), since ——-L—2i e < 0,
i

and thus |DY,\/V;,| < %32, also EQ[[) \/Vj.ds] <
VT EQ[[f) V; 4ds] < oo, and thus

EC[[y) /Vj.s D/ Vjsds] < oo

For details, see Appendix C.2 in the full version of this
paper [22].

D. Impact of the sentiments on the position in the square-root
case

Firstly, for the first term in (21), we observe the same effect
of the conservative and aggressive sentiments A7, j = 1,2
on the positions of the Brownian components v;, as in the
Brownian case. That is, since oy ; —o0g,; > 0, j = 1,2, the
position on the Brownian component By (Bsz) is long, while
ox1 < 0 (a2 > 0) implies a negative (positive) bias on B
(B2). Moreover, compared with the base case where 7; =
0, 7 =1,2, 051 <0 (ox,2 > 0) makes the position smaller
(larger).

Secondly, for the second term in (21), 55,1 < 0 (G2 > 0)
makes the position larger (smaller), which mitigates the effect

in the first term. We note that we can calculate v, ; numerically

by simulating E9[[," \/V; ;DY \/V;..ds|F{] in 21) by (22)
with (23).

VII. CONCLUSION

In this work, we have proposed a portfolio optimization with
a choice of a probability measure and presented its application
to an optimal investment problem under conservative and
aggressive sentiments. Firstly, we have formulated this new
problem as a combination of the optimal portfolio problem
and the sup-inf problem on a choice of a probability measure.
Then we have provided the conditions under which the sup-
sup-inf problem is solved by a Malliavin calculus approach.
Finally, we have obtained the optimal portfolio expression
and investigated the effects of the sentiments on the portfolio
for the exponential utility cases. Developing a text mining
approach with machine learning to estimate and predict market
sentiment factors as in Nakatani et al. [13] and applying
machine learning to numerical solutions of relevant high-
dimensional BSDEs are our main future research topics.
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APPENDIX
A. Theorem 1 and Corollary 1

In the following, we calculate Z;r A2 g g general stochastic r €
L$ | case.
By Theorem 2.5 in Ocone and Karatzas [15], we have
TN
z] R
Pki‘,kz * * T ~ A¥ Ao
=F Diu(XT ) +uw(XT )/ DiAsdBsV 7R | Fy
t
Since
o yHo, 1
wXt )=u T g ,
N
(24)
we have
TN yHo,r yHo,T
Dtu(XT ) =Uu I ATaA2 Dt I >\){1>\2
T T
[ yHor \ , [ yHor yHo,1
il v vl RA v vl RO O RS v avws
T n T
2
_ | yHor yHo, A Ao
=1 3o Ao Dy (logHo,T —lognyp, ) .
(25)
. )\T,AQ
We rewrite log Ho, 7 and log 0, as
T T 1 /T
log Ho, 1 = 7/ rsder/ 0] dBs — 7/ |0s|%ds
0 0 2 Jo

T T . 1 T
f/ rsder/ 0T aB)i™? 77/ 10, |2ds

0 0 2Jo

T ~
+/ 0] Xsds,

0
and

w T 1 T
log 712 :/ )\;rst—f/ |xs|2ds
0 2 Jo

T * 1 T
= [ ATaplie s [,
0 2 Jo

where

AT,z

dB, = dB; + Asds.

Thus, we have
T T
Dt(log HO,T) = _/ Dyrsds + 04 +/ D¢0sdBs
t t
T
- / (D6s)0sds
t

T T A5
—/ Dt""sd5+9t+/ D0sdBs1 "2
t t

T
+/ (De0)(he — 65)ds,
t
and

~ T ~ T ~
Dt(lognT) =\t +/ DiAsdBs —/ (Dt/\s)/\sds
t t
AT A2

~ T ~
= A\t +/ Di\sdB,
t

Therefore,

g A e _ P [ yHo T yHo, T
t - )\T,)\z )\I,Ag
n

n T

T
T ~ T _
(f/ Dersds — (5 — 02) +/ (D26)(As — 04)ds
t t
T ~ . . T .
7/ Di(As fGS)dBSAl’M) +u(XF )/ DiAsdBo1 m]
t t

In the case where X%* S Dill’/\2 , by Clark-Ocone formula (e.g.

Theorem 4.1 in Nunno et al. [6] 5, we have

* oy AF A * - *
27 M = PR DI (X R,

Then, the following calculation holds.

D u(XF)
2
yHo 1 yHo, T AT AT
=TI R N he D; V"2 (log Ho,1 — lognzt ' ™?).
T N
Since
AFA
log Hy,7 — log nt 2
T 1 T _
= 7/ rsds — 5/ [As 793|2ds
0 0
T _ «
f/ (As — 05)dB12,
0
we have

2
AT A2 pAtore [ yHor [ yHor
Zy =E |: AT A2 4 AT A2
T T
T A 3 LT e s
(—/ D} 2rsds—()\t—9z)—5/ D2 N — 02 du
t t

T . . .
[ D - aamie) ]
t

Since r = 0, the result follows.

For the exponential utility case with » = 0, the result follows from
"y) = — L dQ  _ [ Hor
I'(y) = Py and AP i nAI,AQ : o



B. Proposition 1 and Corollary 2

In the following, we calculate v for a general stochastic r case. By Clark-
Ocone formula (e.g. Theorem 4.1 in Nunno et al. [6]),

Y = EQ[DPXT | FP).

We calculate DtQ X’;E* as follows.
- H, T
DtQX} = DtQ (I y)\*o’f; exp (—/ rsds))
nTl 12 0
yHor \ yHo,r

H, T
— | m/———exp | — rsds
'r]>\1’>\2 nr P ( /O ° )

T

=_I

XD?(log 77;\11 A2 _ log Hy, 1)

H
+1 | 5228 | exp (—/ rsds) ( / DQT’Sds) .
1272
N
yHo yHo,T
Here, we used W = exp <log <W>>
npt r

Since

logn)\l’)\2

1 T T
:_7/ |)\:|2ds+/ A;T95d5+/ M TdBe,
2 Jo 0 0

T 1 T T
log Ho 1 = —/ rsds + f/ 05)%ds +/ 0] dBQ,
0 2Jo 0

we have

and

AF A
logny!'"? —log Ho,

T 1 T T
=/ rsdsff/ |)\f5705l2ds+/ (A2 —65)TdBS.
0 2 Jo 0
Thus,
DQ(logn 1A —log Ho,T)
=/ DErods + (Af — 64)
t
1 T o T o
75_/1 Df |)\§795|2ds+/t DE(A* — 05)dBS,
and
ECIDP X7 F)
H, H, T
= E“ {—I’ y}\*ofl yror exp (—/ Tsds)
nTl’ 2 nr 0
T
x(/ DErgds + (A} — 04)
t
1 T T
—§/t DZ|A* —93|2ds+/t D (\E —es)stQ)
H, T T
+1 | 522 ) exp (—/ rsds) (—/ Dthsds) \f?] 26)
172 0 t
Uiy
Since 7 = 0, the result follows. O

In this appendix, we provide details of the sup-sup-inf problem in
Examples 1 and 2 in Section VI, where it is solved concretely for the
exponential utility. For the cases with a log utility, see Appendix D in
the full version of this paper [22].

In the following, we consider an exponential utility case where

1
u(x) = — = exp(—pz), p >0,
P

and I(y) = ——loiy.

Suppose that for given Az € A, the saddle point (7* (Az),
attains sup, ¢ 4 infy, ¢, is obtained.
Then, by (6), X,}T,* is expressed as

A7 (A2)) that

where
_ Q AT A2
y = exp(—pz — E%[log Ho 1 — lognz'"7]).

Hence, we have

AT *

J(m* A1) = EPV R [u(XF)]
PSIPY H,

e L

P o P
T

=—- exp(—px - = EQ[(X{,S —015)2
0

Particularly, if for any A2 € Ao, the saddle point (7*(A2), AT (A2)) is

yHo T

Ty | 3 we will observe in

given by A\¥ = A, X7 = < log
the following cases, the problem reduces to

1 /T -
sup o [ EQ(Ghu = 02,27 + Oz — 62.0)%]ds
Ao €Ay 0

1 [T -
- 7/ EQ (s — 01.5)%]ds
2 Jo
1 T
+ sup 7/ EQ[(Azys—Ozys)Q]ds.
A2€A; 0

C. Brownian case (exponential utility)

Firstly, in the Brownian case where ), 6 are proportional to a Brownian
motion B >*2 under P*1>*2 as in Example 1 in Section VI-A,

for any Ay € Ag, (7*, A7) satisfying \¥ = X1, and X%* =
log il OAT2 is a saddle point.

: _ A1, A2 — A1, A2

Since A1 = ox1B] , A2 = ox2B; and

0; = 09]B>‘1’>‘2 j = 1,2, and B>‘1’>‘2 is an Ornstein-

Uhlenbeck process of B)‘1’>‘2, B)‘1’>‘2 = BM‘A?, B)‘l‘)‘2 =

fO e*(&xz*JA,Q)(tfs)ngqsﬁxz, thus X% — _% log <yio,>\7;> is
) b

.7-';1)‘2 -measurable and in particular in Di‘ll)‘z
Corollary 1.
By Corollary 1, noting that » = 0,

. Thus, we can apply

D?W (s = 016) =
DA
D2 (s

(Gr,1 — o0, 1)1{s>t}

—61,5)> =2(Gx1 —00,1)° By Ty,
dQ Ho,r

AP 122 n;h)\Z ’

and BQ B/\l’k2 fg(@s —Xs)ds is a {]_—51,)2 }-Brownian motion
under Q we calculate

XA 1 ( yHos \ ,_ XA
let 2= SV (Ga1 —06,1) BTy 2.
P nt 1:A2 ’

Since

ox1—091 >0, ox1 <0,



we have
AT XA <
sgn(Z7,7172) = sgn(BIYY?) = —sgn(iu ),
and

AT A2

—|A1elsgn(Zy, ) =Ae = Al

Thus, (6) and (8) in (i),(ii) in Section IV are satisfied and A} = A1 and

yHo T
)\
npt

m* generating X%* =—= log provide a saddle point.

Then, the problem reduces to
LT o 5
S| E¥[(A1s —01,5)]ds
2 Jo

1 T
+ sup 5/ EQ[(A275—927S)2](18
0

A2€As
Y 5
= - E%[(A1,s —01,5)°]ds
2 Jo
1
+ sw c(ona—0u2) / ER((B3172)2]ds.
—0x,2503,2<0 2 2 0
Here,
33151*2 - /OS e—(f’f,\,z—ffs,z)(S—“)dggu7
and

/ EQ((ByL*2)?)ds

/ / e 2(0x,2790,2)(5—v) gy, ds < co.

Since 04 2 < 0, the supremum is attained at
O';2 = 5'/\’2.

D. Square-root case (exponential utility)

Next, in the case where \ and 6 are proportional to a square-root of a
square-root process as in Example 2 in Section VI-C, for any A2 € A2,

T, satisfyin, = )1 an T = o1 ¥, is a saddle
* AY) satisfying A} = A; and X L xhox ddl
Ny
point.
Firstly,
5 2
D322V; 0 = D32 (Vi)
A1,
=2y/Vjs D FRVAZIS
where
X1,A
D 1 2 ‘/],
(’?79] _ 57)
. s . 2 8
Tv.d exp / A A N du | >0, 27)
2 t 2 Vi

by Proposition 4.1 in Alos and Ewald [1] and o, ; > 0.

Since 5\1 = 5’)\71\/‘/1,)\2 = O')\VQ\/VQ and 9]‘ = O'g’jx/Vj, 7 =12,
and Vj is a square-root process, which is expressed as a unique strong
solution of SDE

dVi, = k1(01 — Va1)dt + oy 14/ Vi 1dBYY
dVa,;

= (k2(02 — Vo) — 0v,2(Gx,2 — 0x,2)V2,t)dt + 04,21/ Vz,tng"lz’AZ
‘/j,O > 07 .7 - 1727

T _ yHor ). 21,22 . .
thus X7 = log < X139 > is Frr -measurable and in particular
T

in Di‘}l’)‘? Thus, we can apply Corollary 1.

By Corollary 1, noting that » = 0,
D2 (As — 015) = (Ga,1 — 00,1) D12 (VW)

Dilt'/\Z (A,s —01,5)2 =2(Gx1 — 00,1)2V/ VA, sDAl’Az (V' V1,s)s
aQ Hy 1

dP A2 XA
nr

and ftT Dilt’h(\/VLS)dBS’\l”\2 is a {]—'th’h}—maningale under
P>A2 ) we calculate

SPIDY 1 ( yHoe \ _
Ziy7t = - < Al,h) (Ga1 —00,1)v/ V1t

p 7y

Since 5,1 — 09,1 > 0, we have sgn(Z )‘1‘/\2) = +1 = sgn(A1,t)
and
A A T 5
A elsgn(Z7,22) = — A ilsgn(A0)
= )‘1,75 = Xf,r
Thus, (6) and (8) in (i),(ii) in Section IV are satisfied, and A} = A1 and
T* generating X;‘Z* = —% log yi 0’>\T2 provide a saddle point.
np’

Then, the problem reduces to
1T o 2
— E [()\1,5 —601,5) lds
2 Jo

1 T
+ sup 7/ EQ[(A275—627S)2]ds
A2€A;

1 [T -
- 7/ EQ(r.s — 01.5)%]ds
2Jo

+ sup
—ox,250x2<0x 2

1 2 [T 2
~(or,2 —09,2) / EC[VZ,)ds
0
Here, V> satisfies the SDE
dVa ¢
= (k2(02 — Va,t) — 0v,2(Gr,2 — 00,2) Vo, )dt

+ou,2y/Va 1dBE,

V2,0 > 0,

and

T
/ E® [Vﬁs]ds < TE®[ sup V2 5] < o0.
0 0<s<T

Since 09 2 < 0, the supremum is attained at

* =
0)\72 =0\,2-
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