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Abstract

We estimate a New Keynesian model incorporating two notable features: bounded

rationality and the zero lower bound on the nominal interest rate. Our Bayesian esti-

mation of a fully nonlinear model shows that the model with bounded rationality better

fits the US data than its rational expectations counterpart and that both households

and firms exhibit a substantial degree of bounded rationality. Moreover, we demon-

strate that bounded rationality expands a parameter region in which the model can be

estimated and weakens the power of forward guidance.
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1 Introduction

A deviation from the rational expectations (RE) assumption likely changes the implications

of dynamic macroeconomic models. Gabaix (2020) proposes a tractable approach to incor-

porating bounded rationality (BR) in an otherwise standard New Keynesian (NK) model to

analyze its implications for macroeconomic policy. He demonstrates that bounded rational-

ity considerably changes the properties of the model. However, the results are based on a

linearized model with calibrated parameters.

This study addresses the following two questions: whether the BR assumption improves

the fit of a model to US macroeconomic time series, including the virtually zero interest rate

period, and to what extent the estimated degree of BR changes implications for macroeco-

nomic analyses. The primary goal of this paper is to provide quantitative answers to these

two questions. To this end, we estimate a NK model under BR incorporated with the zero

lower bound (ZLB) on the nominal interest rate in a fully nonlinear and stochastic setting

using Bayesian methods. The model follows from Gabaix (2020), who introduces cognitive

myopia (discounting) to capture BR. Agents are partially myopic, shrinking their expecta-

tions about the future state of the economy toward its steady state. For a better fit to the

data, we extend Gabaix (2020)’s model by incorporating habit persistence in consumption

preferences, a stochastic trend in technological progress, and monetary policy smoothing.

To quantify the effects of BR, considering nonlinearity in the model, particularly the ZLB,

is of crucial importance. It is important not only because the ZLB has constrained actual

monetary policy since the Great Recession, but also because BR can alter the quantitative

implications of the ZLB. Richter and Throckmorton (2015) argue that, in the economy with

the ZLB, monetary policy needs to be more aggressive against inflation than is suggested

by the Taylor principle to find a nonlinear RE solution. This result comes from the fact

that a negative shock to the economy is reinforced by the contractionary effects of the ZLB.

However, as Gabaix (2020) indicates, BR remarkably weakens the contractionary effects of

the ZLB. It is important to note that incorporating BR expands a parameter region in which
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the model can be estimated and enables us to obtain parameter estimates that would not

be obtained in the estimation of its RE counterpart. Moreover, BR can provide a favorable

implication for the power of forward guidance, which is important, especially when monetary

policy is constrained by the ZLB. It has been well known that, under the RE, standard NK

models grossly over-predict the effect of forward guidance (the so-called forward guidance

puzzle).1 In this regard, Gabaix (2020) shows that BR undermines an expectation channel

through which forward guidance works and dramatically weakens its effect. Thus, in this

paper, we quantitatively evaluate the power of forward guidance in the estimated BR model.

Because we employ a fully nonlinear model, the effect of forward guidance is state dependent.

We demonstrate how the power of forward guidance can change, depending on whether or

not the ZLB constraint binds.

Our estimation results are threefold. First, the BR model better fits the US data than its

RE counterpart. This outcome occurs because the BR model can more effectively replicate

the ZLB episodes in the aftermath of the global financial crisis. The estimated parameters

on cognitive discounting suggest a substantial degree of BR; that is, both households and

firms discount the future more, by around 15%, than those under the RE.

Second, given the estimated parameters, we demonstrate that BR considerably expands

the region of the model’s parameter space in which the policy function iteration converges

to an equilibrium solution. More specifically, with the estimated BR parameters, we can

obtain convergence for all the positive values for monetary policy coefficients on inflation

and output; whereas these coefficients are required to be larger in the nonlinear RE model

with the ZLB than those satisfying the Taylor principle in the linearized RE model without

the ZLB. This finding suggests that the estimation of an RE model would be constrained by

a requirement for convergence, which might, in turn, yield an upward bias in the estimates

of the monetary policy coefficients. On the other hand, the convergence requirement cannot

1See Del Negro, Giannoni, and Patterson (2015) and McKay, Nakamura, and Steinsson (2016). Nakata
et al. (2019) discuss optimal monetary policy when the power of forward guidance is attenuated because of
discounting.
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be a constraint for the estimation of the BR model and is unlikely to generate such a bias.

We also find that firms’ cognitive discounting parameter plays a more important role in

expanding the convergence region than that of households.

Third, we evaluate the power of forward guidance in the estimated BR model and compare

it with that in its RE counterpart by adding a one-period-ahead monetary policy news

shock as a proxy for forward guidance. The simulation analysis shows that BR substantially

weakens the effect of forward guidance on inflation and output. Besides, our fully nonlinear

approach enables us to find that the effect of forward guidance is further weakened when

there is hardly any room for an interest rate cut.

To estimate a nonlinear NK model incorporating the ZLB, we employ the approach

that is used in Iiboshi, Shintani, and Ueda (forthcoming), which consists of two useful

methods. First, to solve a (bounded) rational expectations equilibrium in the model with

the ZLB, we use the time iteration with linear interpolation (TL) method (see Richter,

Throckmorton, and Walker 2014). Second, to estimate the model, we use the sequential

Monte Carlo squared (SMC2) method (see Chopin, Jacob, and Papaspiliopoulos 2013 and

Herbst and Schorfheide 2015). Although the TL and SMC2 methods have many advantages,

they are still computationally intensive. To facilitate the computations, we use a simple NK

model with BR, which abstracts capital formation and wage stickiness.

A handful of studies have attempted to estimate NK models with BR in the form of

cognitive discounting based on Gabaix (2020), including Gabaix (2018), Andrade, Coredeiro,

and Lambais (2019), Ilabaca, Meggiorini, and Milani (2020), Afsar et al. (2020). Gabaix

(2018), which is an earlier version of Gabaix (2020), estimates a behavioral NK model using

a Bayesian technique and documents the significant degree of BR. However, he notes that

his result is preliminary and further well-identified empirical work is necessary. Our paper

is different from these studies in that the model is fully nonlinear and incorporates the ZLB.

Our paper is also related to empirical studies on cognitive discounting, which are based on

a partial, rather than general, equilibrium framework. This strand of the literature includes
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Gali and Gertler (1999) and Linde (2005) on the Phillips curve, Fuhrer and Rudebusch (2004)

on the Euler equation, and Ganong and Noel (2017) on micro-level cognitive discounting.

Our analysis, which solves and estimates a nonlinear NK model with the ZLB, is closely

related to previous studies by Gust et al. (2017), Plante, Richter, and Throckmorton (2018),

and Iiboshi, Shintani, and Ueda (forthcoming). The most important difference is that their

models are based on rational expectations, whereas our model incorporates bounded ratio-

nality.

The remainder of this paper is structured as follows. After Section 2 describes our behav-

ioral model, Section 3 explains our estimation methods. Section 4 presents the estimation

results and empirical consequences of BR. Section 5 concludes.

2 Behavioral Model

In the the model economy, there are behavioral households, behavioral firms, and a central

bank. The firms consist of monopolistically competitive intermediate-good producers facing

price stickiness and a perfectly competitive final-good producer. The central bank sets the

nominal interest rate following a Taylor-type monetary policy rule that is constrained by

the ZLB. The economy is subject to three types of exogenous shocks: a discount factor

(preference) shock, a technology shock, and a monetary policy shock. For a better fit to

the data, the model incorporates habit persistence in consumption preferences, a stochastic

trend in output, and monetary policy smoothing.

Following Gabaix (2020), we introduce cognitive discounting for behavioral agents. In

comparison with the RE case, the agents further discount their expectations for k period

ahead by a factor Mk; that is, EBRt [Xt+k] = MkEt[Xt+k], where EBRt and Et represent

expectation operators in period t under the BR and RE assumptions, respectively, and

Xt is a state vector with zero mean.2 Moreover, as in Gabaix (2020), we assume that

2Gabaix (2020) refers to M as an aggregate-level attention parameter, differentiating it from an individ-
ual’s cognitive discounting factor m̄. In his benchmark model and our model, M equals m̄.
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behavioral firms discount their expectations differently from behavioral households; that is,

their cognitive discount factor is denoted by M f .

2.1 Households

Each behavioral household i (∈ [0, 1]) maximizes the intertemporal utility function

EBRt

[
∞∑
j=0

βjZb
t+j

{
(Ci,t+j − hCt+j−1)1−σ

1− σ
− χ

(At+j)
1−σ l1+ω

i,t+j

1 + ω

}]
, (1)

subject to the budget constraint Ci,t + Bi,t/Pt ≤ Wtli,t + Rt−1Bi,t−1/Pt + Tt, where Ci,t, li,t,

Pt, Wt, Rt, and Tt represent consumption, labor services, the aggregate price level, real wage,

the nominal rate of return, and the lump-sum transfer, respectively, in period t. In addition,

Bi,t is the holding of one-period riskless bonds at the end of period t. Parameter β(∈ (0, 1))

is the subjective discount factor; σ(> 0) is the inverse of the intertemporal elasticity of

substitution of consumption; h(∈ [0, 1)) measures the degree of external habit persistence

in consumption preferences; ω(> 0) is the inverse of the labor supply elasticity; and χ(> 0)

is the scale parameter for the disutility from working. As in Erceg, Guerrieri, and Gust

(2006), we allow preferences for leisure to shift with the nonstationary technology level, At,

to ensure the existence of a balanced growth path. Finally, Zb
t represents a shock to the

discount factor (preference) and follows a first-order autoregressive (AR(1)) process:

log(Zb
t ) = ρblog(Zb

t−1) + εbt , (2)

where ρb ∈ [0, 1) and εbt ∼ i.i.d. N(0, σ2
b ).

The first-order conditions for optimal decisions on consumption, labor supply, and bond-
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holding are identical across households and therefore can be written without subscript i:

ΛtA
σ
t = (Ct/At − hCt−1/At−1 (At−1/At))

−σ , (3)

ΛtWt = A1−σ
t χlωt , (4)

1 = βEBRt

[
Λt+1A

σ
t+1

ΛtAσt

(
At+1

At

)−σ Zb
t+1

Zb
t

Rt

πt+1

]
, (5)

where Λt denotes the Lagrange multiplier and πt = Pt/Pt−1 is the (gross) inflation rate. As

is assumed in Gabaix (2020), the agents anchor on the correct steady state. Subtracting the

steady state value (on the balanced growth path) from both sides of equation (5), we obtain

the behavioral household’s Euler equation:

(ΛtA
σ
t )A−σt Zb

t − β(ΛAσ)γ−σa A−σt
R

π
= EBRt

[
β(Λt+1A

σ
t+1)A−σt+1Z

b
t+1

Rt

πt+1

− β(ΛAσ)γ−σa A−σt
R

π

]

⇔ (ΛtA
σ
t )A−σt Zb

t − (ΛAσ)A−σt = MEt
[
β(Λt+1A

σ
t+1)A−σt+1Z

b
t+1

Rt

πt+1

− (ΛAσ)A−σt

]

⇔ 1− ΛAσ

ΛtAσt

1

Zb
t

= MEt

[
β

Λt+1A
σ
t+1

ΛtAσt

(
At+1

At

)−σ Zb
t+1

Zb
t

Rt

πt+1

− ΛAσ

ΛtAσt

1

Zb
t

]
, (6)

where the variables without subscript t denote their steady-state values and M represents the

behavioral households’ cognitive discounting parameter measuring attention to the future.3

Note that we use the steady-state relationship for the real interest rate; that is, R/π =

γσa /β(≥ 1), where γa is the stady-state growth rate of At.

2.2 Firms

The representative final-good firm produces output Yt under perfect competition by choosing

a combination of intermediate inputs Yf,t so as to maximize its profit PtYt −
∫ 1

0
Pf,tYf,t df

3In the present paper, we extend the linearized model of Gabaix (2020) to its non-linear version by
assuming EBRt [·t+1] = MEt[·t+1]. Although this assumption greatly simplifies our analysis, it does not
necessarily ensure consistency with the sparse behavioral dynamic programming that serves as the basis of
Gabaix (2020) in a nonlinear setting.
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subject to the Dixit–Stiglitz aggregator Yt =
{∫ 1

0
Y

ε−1
ε

f,t df
} ε
ε−1

, where Pf,t is the price of

intermediate good f and ε(> 1) represents the elasticity of substitution among intermediate

goods.

Each monopolistically competitive intermediate-good firm f(∈ [0, 1]) produces one kind

of differentiated goods Yf,t by choosing a cost-minimizing labor input lf,t, given the real wage

Wt, subject to the production function:

Yf,t = Atlf,t, (7)

where At represents the technology level and the log of At follows the non-stationary stochas-

tic process:

logAt = log γa + logAt−1 + µat , (8)

where γa denotes the steady-state (gross) rate of technological change and µat is the technol-

ogy shock, which follows a stationary AR(1) process:

µat = ρaµ
a
t−1 + εat , (9)

where ρa ∈ [0, 1) and εat ∼ i.i.d. N(0, σ2
a).

Then, each intermediate-good firm f maximizes its firm value by setting the optimal

price Pf,t in period t in the presence of a Rotemberg-type price adjustment cost:

EBRt

[
∞∑
j=0

βj
Λt+jZ

b
t+j

ΛtZb
t

(
Pf,t+j
Pt+j

− Wt+j

At+j
− φ

2

(
Pf,t+j
Pf,t+j−1

− π
)2
)
Yf,t+j

]
(10)

subject to the final-good firm’s demand curve Yf,t = (Pf,t/Pt)
−ε Yt, where φ is the parameter

for the adjustment cost.

Combining the first-order condition with equation (4) and the aggregate production func-

tion Yt = Atlt yields
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1− φ (πt − π) πt − ε
[
1− χ(Yt/At)

ω

ΛtAσt
− φ

2
(πt − π)2

]
+βEBRt

[
Λt+1A

σ
t+1

ΛtAσt

(
At+1

At

)1−σ Zb
t+1

Zb
t

φ (πt+1 − π) πt+1
Yt+1/At+1

Yt/At

]
= 0,

or

1− φ (πt − π)πt − ε
[
1− χ(Yt/At)

ω

ΛtAσt
− φ

2
(πt − π)2

]
+βM fEt

[
Λt+1A

σ
t+1

ΛtAσt

(
At+1

At

)1−σ Zb
t+1

Zb
t

φ (πt+1 − π) πt+1
Yt+1/At+1

Yt/At

]
= 0, (11)

where M f denotes the behavioral firms’ cognitive discounting parameter.

The final-good market clearing condition is given by

Yt = Ct + φ (πt − π∗)2 Yt/2. (12)

Because the technology level At is nonstationary, as specified by equation (8), we rewrite

the equilibrium conditions in terms of stationary variables detrended by At: yt = Yt/At,

ct = Ct/At, λt = ΛtA
σ
t , so that we can derive a nonstochastic steady state for the detrended

variables.

The detrended equilibrium conditions and the steady-state relationships are shown in

Appendix A.1 and A.2, respectively.

2.3 Central Bank

Without the ZLB constraint, the central bank sets the nominal interest rate Rt in response

to the deviations of inflation, detrended output, and output growth from their steady-state
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values, as in Gust et al. (2017). More specifically, its monetary policy rule is given by

Rt = (Rt−1)ρr

(
R
(πt
π

)ψπ (yt
y

)ψy ( Yt
Yt−1γa

)ψ∆y

)1−ρr

eε
r
t , (13)

where ρr(∈ [0, 1)) captures interest rate smoothing, ψπ, ψy, and ψ∆y(> 0) represent the

degrees of monetary policy responses to the target variables, and εrt ∼ i.i.d.N(0, σ2
r) is the

monetary policy shock.

With the ZLB constraint, the nominal interest rate Rt cannot be less than one, so that

the monetary policy rule is described as

Rt = max[R∗t , 1], (14)

where R∗t denotes the notional interest rate that the central bank would set, according to

the monetary policy rule specified as equation (13) in the absence of the ZLB. We consider

the following two specifications for R∗t , depending on the choice of the lagged interest rate

in (13).

Nominal Rate Model

In the first specification, the observed nominal interest rate enters as the lagged interest rate:

R∗t = (Rt−1)ρr

(
R
(πt
π

)ψπ (yt
y

)ψy ( Yt
Yt−1γa

)ψ∆y

)1−ρr

eε
r
t . (15)

This specification has been employed, for example, by Aruoba, Cuba-Borda, and Schorfheide

(2018). Since R∗t depends on the nominal interest rate in the previous period, we refer to

the model with this specification as the nominal rate model.
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Notional Rate Model

In the second specification, the notional interest rate appears as the lagged interest rate:

R∗t =
(
R∗t−1

)ρr (
R
(πt
π

)ψπ (yt
y

)ψy ( Yt
Yt−1γa

)ψ∆y

)1−ρr

eε
r
t . (16)

This specification has been employed by Gust et al. (2017) and Plante, Richter, and Throck-

morton (2018). We refer to the model with this specification as the notional rate model.

The notional rate model differs from the nominal rate model only in the choice of the

lagged interest rate in the interest smoothing. With this change, however, the notional rate

model induces a stronger commitment to the zero-interest-rate policy in the future than

does the nominal rate model. Once the notional rate takes a value below one due to adverse

shocks to the economy and depends on the past notional rate, it is more likely to be below

one in the future periods, implying that the central bank will keep the policy rate at zero

for longer periods. As a result, the central bank can compensate for its inability to lower

the policy rate below zero by promising to continue the zero-interest-rate policy.

3 Methodology

This section outlines how we solve and estimate the model with the ZLB in a fully nonlinear

and stochastic setting. We then describe the data and prior specifications used for estima-

tion. For details about the solution and estimation methods, see Appendix B.1 and B.2,

respectively.

3.1 Model Solution

To solve for the policy functions satisfying the detrended equilibrium conditions, we employ

a type of policy function iteration called the time iteration with linear interpolation (TL)

method. The TL method has been recommended by Richter, Throckmorton, and Walker
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(2014) as it is well balanced in terms of computational speed and approximation accuracy,

compared with other alternative methods. The TL method begins with a time iteration

for policy functions until the equilibrium conditions are satisfied at every node. Then, a

standard linear interpolation is used to interpolate the policy functions for future variables.

In comparison with the projection method using the Chebyshev polynomial basis, the linear

interpolation is expected to perform better when the policy functions exhibit kinks due to

the ZLB.

In the subsequent analysis, we investigate how the BR assumption can expand the region

of the model’s parameter space in which the policy function iteration converges to an equi-

librium solution. We regard the solution as convergent if the following three conditions are

met: (i) the policy functions converge to a tolerance size of 10−5 within 200 iterations; (ii)

the ZLB binds fewer than 50 percent of the nodes in the state space, following Richter and

Throckmorton (2015); and (iii) the policy functions do not jump during the time iteration

to guarantee contraction mapping. Otherwise, the solution is classified as non-convergent.

3.2 Estimation

To estimate the nonlinear model with the ZLB, we employ the SMC2 method. The “squared”

means that the sequential Monte Carlo (SMC) algorithm is used for two objectives. First,

for each draw of parameters, it evaluates the likelihood of a nonlinear model by generating

particles that represent the states of endogenous variables. This part is often referred to

as the particle filter. Second, it approximates the posterior distribution of parameters by

sampling the draws of parameters as particles.

This method comprises the following four steps. In Step 1 (initialization), we draw Nθ

particles for parameters θ. We then repeat Steps 2 to 4 below for Nφ stages. In Step 2

(correction), given θ, we compute the likelihood p(Yt|θ) and normalized weight W̃ . In Step

3 (selection), we resample θ together with unnormalized weight W , which is based on θ in

the previous stage and W̃ in the previous step. Then, in Step 4 (mutation), we propagate θ
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and W using the Metropolis–Hastings algorithm.

Specifically, in Step 2, we adopt the tempered particle filter (TPF) proposed by Herbst

and Schorfheide (2019) to approximate the likelihood p(Yt|θ). The TPF can further equalize

particle weights by gradually reducing the measurement error variances, which enables us to

make a much more accurate particle approximation of the likelihood than the conventional

bootstrap particle filter (BPF). Moreover, the TPF can approximate the likelihood accurately

even if the number of particles is relatively small.4 This feature enables us to estimate our

model with a considerably smaller number of particles, as specified below, than those in the

previous studies that estimate nonlinear NK models with the ZLB using the BPF.5

We set the numbers of particles for states and parameters as NS = 10, 000 and Nθ =

1, 200, respectively. The number of stages for approximating the posterior distribution of

parameters is set at Nφ = 10. Following Herbst and Schorfheide (2019), the number of TPF

stages is adaptively determined in the algorithm and results in at most three to four in our

estimation. By utilizing parallel computing, a single estimation takes about a week using a

workstation with a 32-core processor (Intel Xeon E5-2698v3).

3.3 Data

The model is estimated using three quarterly time series for the US from 1983:Q1 to 2019:Q4:

the per capita real GDP growth rate (100∆ logGDPt), the inflation rate of the GDP implicit

price deflator (100∆ logPGDPt), and the (quarterly) federal funds rate (FFt). The federal

funds rate was strictly above zero even when the Fed conducted the virtually zero-interest

policy from 2009 to 2015, the minimum value being 0.0175% on a quarterly basis. To regard

such a very small value as binding at zero, we replace the quarterly federal funds rate data

that are smaller than or equal to 0.05% with zeros.6 In Figure 1, the solid lines show these

4Herbst and Schorfheide (2019) demonstrate that, for a given level of accuracy, the TPF’s 4,000 particles
are comparable to 40,000 particles of the conventional BPF in estimating a small-scale NK model.

5Gust et al. (2017) generate 500,000 particles for a medium-scale NK model. Plante, Richter, and
Throckmorton (2018) adopt 40,000 particles for a small-scale NK model.

6Gust et al. (2017) make no adjustment regarding the effective lower bound, whereas Plante, Richter,
and Throckmorton (2018) set the lower bound equal to the minimum federal funds rate of 0.017%. We set
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three time series.

The observation equations that relate the data to model variables are given by


100∆ logGDPt

100∆ logPGDPt

FFt

 =


100 log

(
yt
yt−1

γae
µat+1

)
100 log πt

100 logRt

+ ut,

where ut = (uyt , u
π
t , u

R
t )′ are measurement errors and ut ∼ N(0,Σu).

3.4 Prior Specifications

Before estimation, we fix some parameter values. The curvature parameter σ in the house-

holds’ utility function is fixed at 1.5. This choice is necessary because Gabaix (2020) points

out an identification issue between the cognitive discount factor M and this σ, in that both

parameters affect the degree of intertemporal substitution in the Euler equation. Since one

of the primary objectives of this paper is to estimate the behavioral parameter M , we fix σ.

Moreover, we fix the subjective discount factor β at 0.998 to ensure the contraction mapping

in solving the nonlinear model for all the possible draws of parameters. Further, we fix χ = 1

and ε = 6 to avoid identification problems.

All the other parameters are estimated.7 For convenience, we transform some of the

parameters as follows. Instead of estimating the adjustment cost parameter φ, we define

the slope of the Phillips curve κ = (ε − 1) [ω + σ/(1− h/γa)] /(φπ) and estimate it. Also,

rather than estimating the steady-state growth rate γa and inflation rate π in gross terms,

we estimate these rates in net percentage terms: ā = 100 log γa and π̄ = 100 log π.

Table 1 shows the prior distributions of parameters. Whereas most of the priors are in

the lower bound at 0.05%, which is slightly larger than those in the previous studies. This choice is needed
to correctly capture the virtually zero-interest rate periods in our estimation with the relatively small size
of the measurement error on the nominal interest rate.

7We conduct the identification tests of Iskrev (2010), Komunjer and Ng (2011), and Qu and Tkachenko
(2012) and confirm that all estimated parameters are locally identified at the prior mean specified below. See
also Andrade, Coredeiro, and Lambais (2019) for discussion about identification in a behavioral NK model.
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line with those in previous studies, such as Smets and Wouters (2007) and Iiboshi, Shintani,

and Ueda (forthcoming), the cognitive discount factors, M and M f , are specific in our

empirical analysis. For these priors, we impose the beta distribution with mean 0.85 and

0.80, respectively, and the common standard deviation 0.05. The prior mean values follows

from calibration in Gabaix (2020). As for the steady-state rates of output growth and

inflation, ā and π̄, the prior mean is set equal to the corresponding sample mean.

The sizes of measurement errors for the three observables (100∆ logGDPt, 100∆ logPGDPt,

and FFt) are respectively set at 6.25%, 6.25%, and 0.25% of their sample variances in the

data. These sizes are much smaller than the 25% in Gust et al. (2017) and the 10% in Plante,

Richter, and Throckmorton (2018). In particular, we set the very small measurement error

for the federal funds rate so that its filtered estimate can well track the data during the zero

interest rate periods.

4 Empirical Consequences

4.1 Estimation Results

Table 2 shows the posterior distributions of parameters and the marginal likelihoods for the

following four models: the BR notional rate model (i.e., the BR model, where the notional

rate depends on its lagged value), the BR nominal rate model (i.e., the BR model, where

the notional rate depends on the lagged (observed) nominal interest rate), the RE notional

rate model, and the RE nominal rate model.

The marginal likelihood for the BR notional rate model is the highest, followed by that

for the BR nominal rate model. The marginal likelihoods then drop substantially for the

remaining two RE models. Between the two RE models, the nominal rate model exhibits a

better fit to the data than the notional rate model. Thus, in what follows, we mainly analyze

the estimation results for the BR notional rate model and compare them with those for its

RE counterpart.
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In the BR notional model, M and M f are both close to 0.85. In his working paper,

Gabaix (2018) obtains the estimates of M and M f around 0.7 and 0.9, respectively. Ilabaca,

Meggiorini, and Milani (2020) obtain a larger degree of BR (i.e., 0.7 for M and 0.4 for M f ).

Other parameter estimates are basically not considerably different between the BR and RE

models. However, we find that the habit persistence parameter h is somewhat smaller in

the BR model (0.36) than in the RE model (0.63). Moreover, the interest rate smoothing

parameter ρr is larger in the BR model (0.77) than in the RE model (0.47).

Figure 1 compares the filtered median estimates (dashed lines) of output growth, inflation,

and the nominal interest rate, which are based on the estimated BR notional rate model, with

the corresponding data (solid lines). The shaded areas show the 90% credible intervals of the

filtered series.8 The filtered median estimates trace the actual fluctuations well; however,

the filtered inflation rate failed to replicate the huge drop in the actual rate when the global

financial crisis was triggered by the collapse of Lehman Brothers in 2008:Q3 and around the

periods when the policy rate was raised from zero in 2016:Q1.

Monetary Policy during the Zero Interest Rate Period

As addressed above, in terms of the fit of the model to the data, the BR notional rate

model performs the best, followed by the BR nominal rate model. By contrast, between

the two RE models, the notional rate model performs considerably worse than the nominal

rate model. This result is noteworthy in that Gust et al. (2017) and Plante, Richter, and

Throckmorton (2018) assume the notional rate model in their estimation of RE models,

which corresponds to the worst performing model of the four considered in our analysis.

One important difference from Gust et al. (2017) and Plante, Richter, and Throckmorton

(2018) is that our observation period includes the period after the zero-rate policy was lifted

in 2015, while in Gust et al. (2017) and Plante, Richter, and Throckmorton (2018), the

observation period ends in 2014:Q1 and 2014:Q2, respectively. Thus, a good model needs

8The filtered estimates are computed using the posterior mean estimates of parameters.
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to explain not only the continuation of the zero-rate policy from 2009 to 2015, but also the

termination of this policy and the subsequent increases in the policy rate from 2016.

To understand why the BR notional rate model empirically performs the best and why

its RE counterpart is the worst, we conduct two exercises. First, we compare the sequences

of log-likelihood increments log p(yt |Y1:t−1) for the two models in panel (a) of Figure A.2

and plot the filtered mean estimates of the nominal and notional interest rates after 2008

in panel (b).9 Second, we calculate the expected duration of the zero interest rate based on

the four models as shown in Figure 3.

Regarding the first exercise, panel (a) of Figure A.2 shows that, for both models, the

likelihood increments tend to deteriorate during the zero interest rate period (shaded area),

compared with those during the other periods. This outcome implies that it is more difficult

to predict the observables during the period, especially when either entering or leaving the

zero interest rate is endogenously determined. In particular, the likelihood increments for

the RE notional rate model substantially decrease several times during the zero interest rate

period, which coincides with the periods when the filtered estimate of the nominal interest

rate is larger than zero as shown in panel (b). As we have argued, the notional rate model

exhibits a stronger commitment to keeping the zero-rate policy (i.e., forward guidance) than

does the nominal rate model, once the notional rate turns to be negative. As the so-called

forward guidance puzzle indicates, such a commitment boosts the economy too much under

the RE assumption, which is at odds with the data. Thus, to mitigate this commitment

effect, the notional RE model is prone to predicting positive interest rates, despite the

zero-rate policy, which decreases the likelihood considerably. By contrast, the BR model

substantially weakens the power of forward guidance, as we discuss in the next subsection.

Thus, the predicted (filtered) notional rate can fall below zero, inducing the zero interest

rate as observed in the data. Consequently, the likelihood for the BR model improves.

9The filtered mean estimates are the averages of the 120 means of state particles, which are based on 120
parameter particles from the posterior distribution. See Appendix C for the filtered series of output growth,
inflation, and the nominal interest rate for the full sample period.
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As the second exercise in understanding the difference in model performance, we calcu-

late the duration of ZLB spells as in Gust et al. (2017) and Iiboshi, Shintani, and Ueda

(forthcoming). In Figure 3, panel (a) plots the cumulative distribution functions for the

average duration of staying at the zero interest rate implied by the BR notional rate model

and its RE counterpart, while panel (b) shows the right tails of the histograms for the dis-

tributions.10 According to panel (a), which is based on the RE notional rate model, the

median duration of ZLB spells is nearly two quarters, which is almost the same as that in

Gust et al. (2017). By contrast, the BR notional rate model can replicate a longer duration,

whose median is around four quarters, and thus improve a fit to the data.

4.2 Quantitative Implications of Estimated BR Model

In this subsection, we discuss the quantitative implications of our estimated BR model,

following the analyses in Gabaix (2020) regarding the Taylor principle and forward guidance.

4.2.1 Region for Convergence

Regarding the Taylor principle, Gabaix (2020) argues that even when monetary policy is

passive, equilibrium can be determinate if the degree of BR is strong enough. He analytically

derives the condition for determinacy in a simplified linear model. Here we complement

his analysis by investigating the parameter region in which the policy function iteration

converges to an equilibrium solution of our nonlinear model with the ZLB. Appendix A.3

shows the determinacy condition for the log-linearized version of our model.

It should be emphasized that convergence does not necessarily imply determinacy (i.e.,

holding the Taylor principle). Particularly in a nonlinear RE model, Richter and Throck-

morton (2015) demonstrate that, when the ZLB constrains the economy, monetary policy

needs to be more aggressive than suggested by the Taylor principle in order to obtain a stable

10The average duration of ZLB spells are calculated from the simulated series of the nominal interest rate
using 120 parameter particles from the posterior distribution. For each draw of parameters, 100 series are
simulated with a sample size of 1,000 observations.
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solution of the nonlinear model. In this regard, our study contributes to the literature by

studying a difference in the parameter regions for convergence between the BR and RE mod-

els, whereas Richter and Throckmorton (2015) indicate a difference between the parameter

region for convergence and that for holding the Taylor principle based on a RE model.

In panel (a) of Figure 4, the light gray (plus dark gray) area depicts the convergence

region for monetary policy parameters, ψπ and ψy, which respectively represent the responses

to inflation and detrended output, given the other parameters fixed at its posterior mean

estimates of the BR notional model. The dark gray area in the figure shows the same region

for the RE case with M = M f = 1. When M = M f = 1, the monetary policy responses

are required to be larger than those satisfying the Taylor principle in order to guarantee

convergence, as is consistent with the argument in Richter and Throckmorton (2015). With

the estimated M and M f , however, all the positive values for ψπ and ψy lead to convergence.

In the figure, the large filled black circle represents the posterior mean estimates of ψπ

and ψy in the BR notional rate model. This circle lies at the boundary of the convergence

region for the RE case. This result suggests that, if the model were estimated under the RE

assumption, this posterior mean would not be obtained, taking account of the dispersion

of the posterior distribution. In other words, the estimation of the RE model would be

constrained by a requirement for convergence, which might, in turn, yield an upward bias in

the estimates of ψπ and ψy. By contrast, in the estimation of the BR model, the convergence

requirement is much less stringent and therefore unlikely to generate such a bias.

To demonstrate which BR parameter, M f or M , plays a crucial role in expanding the

region for convergence, panels (b) and (c) show how the convergence regions expand by

changing each of the two BR parameters, while keeping the other fixed at the posterior mean

estimate. Panel (b) indicates that, with the estimate of M f , convergence occurs for almost

all the positive values of ψπ and ψy even if M = 1. Thus, the estimated M f explains almost

all the expansion of the convergence region shown in panel (a). Moreover, with M fixed at

the estimated value, panel (c) demonstrates that the reduction in M f by small increments
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(0.025) from M f = 1 (RE case) to M f = 0.925 remarkably expands the convergence region.

4.2.2 Power of Forward Guidance

Gabaix (2020) argues that the forward guidance policy becomes much less powerful under BR

because the intertemporal substitution for households and firms is weakened with M,M f <

1. Here, we quantitatively investigate this argument using our estimated model. Gabaix

(2020) simulates his linear model by adding T -period-ahead monetary policy news shocks

that are announced at period 0 and materialize as an interest rate cut in period T and

quantifies the impact on inflation at time 0. While he considers up to the 80-period-ahead

news shock, it is not feasible for our nonlinear model to incorporate news shocks with such a

long anticipation horizon because of the increased number of state variables. Thus, in what

follows, we add the one-period-ahead monetary policy news shock in period 0. Because this

shock will materialize in the next period after the announcement, we offset the shock in

period 1 to eliminate the effect of an actual interest cut and to isolate the effect of forward

guidance.

Figure 5 depicts the impulse response functions (IRFs) of output, inflation, and the

nominal interest rate to the one-period-ahead monetary policy news shock of −2.5% in

period 0, followed by the offsetting shock of 2.5% in period 1. IRFs are computed using

the following three models: (1) the estimated BR notional rate model (solid line); (2) the

estimated BR notional rate model with M and M f replaced by 1(dotted line); and (3) the

estimated RE notional rate model (dashed line). The parameters are fixed at the posterior

mean estimates for each model except for the second model in dotted line. Because all the

models are nonlinear, the IRFs are state dependent. Thus, we calculate the IRFs conditional

on three historical episodes, 1988:Q4, 2010:Q1, and 2015:Q4. The federal funds rate was well

above zero in 1988:Q4, whereas 2010:Q1 is the period in which it was the lowest and virtually

bounded at zero. In 2015:Q4, the Federal Reserve commenced the policy normalization

process by raising the federal funds rate from its effective lower bound.
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A comparison of the solid and dotted lines in Figure 5 indicates that the responses

of output and inflation are indeed smaller in the estimated BR model than those in the

estimated BR model with M and M f replaced by 1, as is consistent with the argument of

Gabaix (2020). Thus, the estimated degree of the BR considerably decreases the effects of

forward guidance. While the differences between the two models are remarkable, irrespective

of different historical episodes, the effects of forward guidance in both models are somewhat

weakened in 2010:Q1 and 2015:Q4, when there was hardly any room for a reduction in the

policy rate. This result occurs because the expected future paths of the nominal interest

rate are constrained by the ZLB, which impairs the stimulus effects of forward guidance.

The dashed lines in Figure 5 demonstrate that the estimated RE model can generate the

weak effects of forward guidance as with the estimated BR model, albeit its poor empirical

performance presented in Section 4.1. As shown in Table 2, the interest rate smoothing pa-

rameter ρr is much smaller in the RE model (0.47) than in the BR model (0.77). This smaller

estimate of ρr implies that monetary policy is less history dependent and thus mitigates the

effects of anticipated future policy (Woodford 2003).

5 Concluding Remarks

This paper has estimated an NK model incorporated with BR and the ZLB in a fully

nonlinear and stochastic setting. Our Bayesian estimation results show that BR improves

the fit of the model to US data and that the estimated parameters on cognitive discounting

indicate a substantial degree of BR. We have found that BR considerably expands the model’s

parameter region where a solution converges, which enables us to obtain parameter estimates

that would not be obtained in the estimation of RE models. Given the estimated parameters,

we have demonstrated that the power of forward guidance is weakened by incorporating BR

and is further weakened when monetary policy is constrained by the ZLB.

The following two extensions are left for future work. First, whereas we employ a dy-
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namically richer model than that analyzed in Gabaix (2020), the model can be extended to a

medium-scale model with capital accumulation and sticky wages to assess more empirically

relevant implications of BR. Second, although we have focused on the implications of our

estimated BR model for monetary policy, it is worth investigating how and to what extent

an estimated BR model can alter quantitative implications for fiscal policy. For instance,

Gabaix (2020) shows that lump-sum transfers from the government to households, which are

ineffective under the RE assumption, can be effective in a BR model. It is meaningful to

empirically examine the effect of lump-sum transfers because such a fiscal policy option has

been adopted worldwide since the COVID-19 pandemic.
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Table 1: Prior Distributions

Parameter Description Mean S.D. Dstribution
M Households’ cognitive discounting factor 0.85 0.05 Beta
M f Firms’ cognitive discounting factor 0.80 0.05 Beta
h Consumption habit 0.50 0.20 Beta
ā Steady-state growth rate 0.42 0.50 Normal
ω Inverse of labor supply elasticity 2.00 0.75 Normal
κ Slope of the Phillips curve 0.05 0.006 Normal
π̄ Target inflation 0.50 0.05 Normal
ρr Interest rate smoothing 0.60 0.10 Beta
ψπ Monetary policy response to inflation 2.00 0.50 Normal
ψy Monetary policy response to output 0.25 0.10 Normal
ψ∆y Monetary policy response to output growth 0.25 0.10 Normal
ρa Persistence of technology shock 0.60 0.10 Beta
ρb Persistence of discount factor shock 0.60 0.10 Beta
σa Standard deviation of technology shock 0.50 5.00 Inv. Gamma
σb Standard deviation of discount factor shock 0.50 5.00 Inv. Gamma
σr Standard deviation of monetary policy shock 0.20 5.00 Inv. Gamma
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Table 2: Posterior Distributions and Marginal Likelihoods

BR Notional Rate Model BR Nominal Rate Model
Parameter Mean 90% interval Mean 90% interval
M 0.856 [0.8097, 0.8861] 0.861 [0.8051, 0.8905]
M f 0.838 [0.8152, 0.8864] 0.816 [0.799, 0.8352]
h 0.364 [0.3275, 0.436] 0.484 [0.3879, 0.5825]
ā 0.418 [0.3496, 0.4441] 0.436 [0.4271, 0.4701]
ω 2.245 [1.6866, 3.29] 1.964 [1.6411, 3.2491]
κ 0.046 [0.0411, 0.0536] 0.062 [0.05, 0.0667]
π̄ 0.492 [0.4738, 0.519] 0.437 [0.405, 0.5938]
ρr 0.774 [0.7434, 0.7895] 0.716 [0.6881, 0.7688]
ψπ 2.016 [1.9383, 2.1569] 1.656 [0.9883, 1.959]
ψy 0.232 [0.1382, 0.2773] 0.241 [0.1647, 0.3585]
ψ∆y 0.252 [0.1908, 0.4163] 0.150 [0.0962, 0.2619]
ρa 0.443 [0.3891, 0.6471] 0.619 [0.547, 0.6641]
ρb 0.688 [0.6546, 0.7775] 0.683 [0.6059, 0.8197]
σa 0.415 [0.3877, 0.4821] 0.467 [0.4167, 0.5331]
σb 0.800 [0.521, 0.8995] 0.776 [0.6271, 0.8562]
σr 0.204 [0.1333, 0.2835] 0.311 [0.1898, 0.3944]
log p(Y) -93.97 -105.06

RE Notional Rate Model RE Nominal Rate Model
Parameter Mean 90% interval Mean 90% interval
h 0.625 [0.5082, 0.6878] 0.509 [0.3339, 0.5555]
ā 0.387 [0.3746, 0.4089] 0.412 [0.4083, 0.4136]
ω 2.075 [1.602, 2.9562] 2.263 [2.0028, 2.3355]
κ 0.031 [0.0255, 0.0407] 0.045 [0.03, 0.0467]
π̄ 0.441 [0.411, 0.4953] 0.567 [0.5222, 0.5759]
ρr 0.472 [0.4046, 0.5962] 0.643 [0.5921, 0.8164]
ψπ 2.052 [1.9636, 2.2152] 2.493 [2.2071, 2.8187]
ψy 0.165 [0.1027, 0.1992] 0.207 [0.1685, 0.2431]
ψ∆y 0.352 [0.2968, 0.3816] 0.239 [0.1755, 0.2583]
ρa 0.561 [0.5591, 0.5621] 0.727 [0.5885, 0.7659]
ρb 0.611 [0.5446, 0.7328] 0.607 [0.5801, 0.7373]
σa 0.511 [0.4066, 0.7047] 0.388 [0.3197, 0.4261]
σb 0.728 [0.5028, 0.8535] 0.633 [0.6024, 0.7276]
σr 0.264 [0.1846, 0.307] 0.226 [0.203, 0.2545]
log p(Y) -277.23 -175.53

Notes: This table reports the posterior mean and 90 percent credible intervals of estimated parameters in

each model, based on 1, 200 particles from the final importance sampling in the SMC2 algorithm. In the

table, log p(Y) represents the SMC-based approximation of the log marginal likelihood.

26



Figure 1: Filtered Series of Observables
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Notes: This figure compares the filtered median estimates (dashed lines) of output growth, inflation, and

the nominal interest rate, based on the estimated BR notional rate model with the corresponding data (solid

lines). The shaded areas show the 90% credible intervals of the filtered estimates.
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Figure 2: Series of Log-Likelihood Increments and Filtered Nominal/Notional Rates
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(b) Nominal and Notional Rates After 2008
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Notes: In this figure, panel (a) compares the sequence of log-likelihood increments log p(yt |Y1:t−1) for the

BR notional rate model with that for the RE notional rate model. Panel (b) plots the filtered mean estimates

of the nominal and notional interest rates after 2008, based on the two models.
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Figure 3: Duration of Being at the Zero Lower Bound
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Notes: In this figure, panel (a) plots the cumulative distribution functions for the average duration of the

ZLB spells implied by the BR notional rate model and its RE counterpart. Panel (b) shows the right tails

of the histograms for the distributions.
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Figure 4: Regions for Convergence

(a) Effect of BR

(b) Effect of M , given M f = 0.84

(c) Effect of M f , given M = 0.86

Notes: This figure shows the convergence regions in (ψπ, ψy)-space for different values of M and Mf , given
the posterior mean estimates of the other parameters in the BR notional rate model.
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Figure 5: Power of Foward Guidance: Impulse Responses to a Monetary Policy News Shock
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Note: This figure shows the impulse responses of output, inflation, and the nominal interest rate to the

one-period-ahead monetary policy news shock of −2.5% in period 0, followed by the offsetting shock of 2.5%

in period 1, based on the BR notional rate model (solid line), the same model but with M = Mf = 1 (dotted

line), and the RE notional rate model (dashed line), given the posterior mean estimates of parameters for

each model.
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Appendix to “Estimating a Behavioral New Keynesian Model with

the Zero Lower Bound”

Yasuo Hirose Hirokuni Iiboshi Mototsugu Shintani Kozo Ueda

March 2022

A Details of the Model

A.1 Detrended Equilibrium Conditions

Because the technology level At is nonstationary, we rewrite the equilibrium conditions in

terms of stationary variables detrended by At: yt = Yt/At, ct = Ct/At, λt = ΛtA
σ
t .

λt =

[
ct − hct−1

(
1

γaeµ
a
t

)]−σ
, (17)

1− λ

λt

1

Zb
t

= MEt
[
β
λt+1

λt

(
γae

µat+1
)−σ Zb

t+1

Zb
t

Rt

πt+1

− λ

λt

1

Zb
t

]
, (18)

1− φ (πt − π) πt − ε
(

1− χ(yt)
ω

λt
− φ

2
(πt − π)2

)
+βM fEt

[
λt+1

λt

(
γae

µat+1
)1−σ Zb

t+1

Zb
t

φ (πt+1 − π) πt+1
yt+1

yt

]
= 0, (19)

yt = ct + φ (πt − π)2 yt/2, (20)

Rt = max[R∗t , 1], (21)

where, in the nominal rate model,

R∗t = (Rt−1)ρr

(
R
(πt
π

)ψπ (yt
y

)ψy ( yt
yt−1

eµ
a
t+1

)ψ∆y

)1−ρr

eε
r
t , (22)
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or, in the notional rate model,

R∗t =
(
R∗t−1

)ρr (
R
(πt
π

)ψπ (yt
y

)ψy ( yt
yt−1

eµ
a
t+1

)ψ∆y

)1−ρr

eε
r
t . (23)

An equilibrium is given by the sequences {yt, ct, λt, πt, Rt, R
∗
t} satisfying the detrended

equilibrium conditions.

A.2 Steady State

At the steady state, given π, we have

y =

[
ε− 1

εχ

(
1− h

γa

)−σ] 1
σ+ω

, (24)

c = y, (25)

λ =
ε

ε− 1
χyω, (26)

R =
γσaπ

β
(≥ 1), (27)

R∗ = R. (28)

A.3 Linearized System of Equations and Condition for Equilib-

rium Determinacy

Log-linearizing the detrended equilibrium conditions, rearranging the resulting equations,

and omitting the structural shocks yields the following three-equation system:

ỹt =
h

γa +Mh
ỹt−1 +

Mγa
γa +Mh

Etỹt+1 −
γa − h

(γa +Mh)σ

(
R̃t − Etπt+1

)
, (29)

π̃t = βM fγ1−σ
a Etπ̃t+1 +

ε− 1

φπ

(
ω +

σ

1− h/γa

)
ỹt, (30)
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R̃t = ρrR̃t−1 + (1− ρr) [ψππ̃t + ψyỹt + ψ∆y(ỹt − ỹt−1)] . (31)

To derive a condition for equilibrium determinacy analytically, we consider the case where

h = 0 and ψ∆y = 0.

Then, the system can be written as the following matrix form:

A


R̃t

Etπ̃t+1

Etỹt+1

 = B


R̃t−1

π̃t

ỹt

 , (32)

where

A ≡


1 0 0

0 1 0

−σ−1 σ−1 1

 ,

B ≡


0 ψπ ψy

0 (βM fγ1−σ
a )−1 −κ

0 0 M−1

 ,

with κ =
[
ε−1
φπ

(ω + σ)
]−1

The equilibrium is determinate if and only if the number of the eigenvalues of the matrix

A−1B that are outside the unit circle is two. Since

A−1B =


0 ψπ ψy

0 (βM fγ1−σ
a )−1 −κ

0 σ−1ψπ − σ−1(βM fγ1−σ
a )−1 σ−1ψy + σ−1κ+M−1

 ,
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the characteristic equation is

f(λ) =
{

(βM fγ1−σ
a )−1 − λ

}{
σ−1ψy + σ−1κ+M−1 − λ

}
+
{
σ−1ψπ − σ−1(βM fγ1−σ

a )−1
}
· κ

= λ2 −
{

(βM fγ1−σ
a )−1 + σ−1ψy + σ−1κ+M−1

}
λ+

{
σ−1ψy +M−1

}
(βM fγ1−σ

a )−1 + σ−1ψπκ.

The two eigenvalues of the matrix are outside the unit circle if f(1) > 0; that is,

f(1) = 1− (βM fγ1−σ
a )−1 − σ−1κ−M−1 + (βMM fγ1−σ

a )−1 + σ−1ψπκ+ σ−1ψy
{

(βM fγ1−σ
a )−1 − 1

}
> 0.

If γa = 1, this becomes

f(1) = 1− (βM f )−1 − σ−1κ−M−1 + (βMM f )−1 + σ−1ψπκ+ σ−1ψy
{

(βM f )−1 − 1
}

⇔ (σ/κ)f(1) = ψπ − 1 + ψy
1− βM f

κβM f
+
σ

κ

{
1− (βM f )−1 −M−1 + (βMM f )−1

}
> 0.

Thus, the condition for equilibrium determinacy is given by

ψπ − 1 + ψy
1− βM f

κβM f
+
σ

κ

1

βMM f
(1−M)

(
1− βM f

)
> 0. (33)

This condition indicates that the determinacy region of the model’s parameter space

expands as either M or M f decreases.

B Methodology

B.1 Model Solution

The detrended equilibrium conditions contain two endogenous state variables (output yt−1

and the notional nominal interest rate R∗t−1) and three exogenous shocks (the technology

shock µat , the discount factor shock Zb
t , and the monetary policy shock εrt ). We solve for
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policy functions that depend on these state variables. More specifically, we compute the

time-invariant policy functions for output yt and inflation πt:

(yt, πt)
′ = Φ(zt−1, εt),

where zt−1 = (yt−1, R
∗
t−1)′ and εt = (µat , Z

b
t , ε

r
t )
′. The TL method locally approximates the

policy functions at each node in the state space (zt−1, εt). We discretize five grid points on

each of the continuous state variables; i.e., 3, 125(= 55) nodes in total.

The policy function iteration in the TL method takes the following steps. Let i ∈

{0, · · · , I} denote the iterations of the algorithm and n ∈ {1, · · · , N} denote the nodes in

the policy function Φ(zt−1, εt).

1. For i = 0, we make an initial conjecture of the policy function Φ0(zt−1, εt) from a

solution for a linearized version of the model without the ZLB using Sims’ (2002)

gensys algorithm.

2. For each iteration i ∈ {1, · · · , I} and node n ∈ {1, · · · , N}, we execute the following

procedures.

(a) Given yi−1
t and πi−1

t obtained by Φi−1(zt−1, εt), solve for endogenous variables

{ct, Rt, R
∗
t}′ from the equilibrium conditions including the ZLB.

(b) Calculate the future variables {Etyt+1,Etπt+1} by applying a piecewise linear in-

terpolation to the policy function Φi−1(zt, εt+1). Then, substitute the future vari-

ables into the equilibrium conditions. We employ the Gauss-Hermite integration

to approximate the conditional expectations with three nodes per shock, following

Gust et al. (2017).

(c) Use a nonlinear solver such as Sims’ csolve to find the policy function Φi(zt−1, εt)

that minimizes the errors in the model’s intertemporal equations.
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3. Define maxdist = max( |yit,n− yi−1
t,n |, |πit,n− πi−1

t,n |). Repeat Step 2 until the policy func-

tion converges, say, to maxdist < 10−4, for all nodes, n.

We classify the solution as convergent when the following conditions are met: (i) the policy

function converges before iteration i reaches I = 1, 000; (ii) the ZLB constrains fewer than

50 percent of the nodes in the state space, following Richter and Throckmorton (2015); and

(iii) the maximum of the differences in policy functions between iterations i− 1 and i is less

than 1.5 times the maximum of the differences in policy functions between iterations i − 2

and i− 1 (contraction mapping). Otherwise, we classify the solution as non-convergent.

B.2 Estimation Procedures

To generate draws from the posterior distribution of parameters θ in our nonlinear model, we

use the SMC2 sampler instead of the widely-used particle filter Metropolis-Hastings (PFMH)

algorithm. While the PFMH algorithm requires serialization in generating draws and hence

is not amenable to parallel computing, the SMC2 can make use of parallelization to shorten

the computation time dramatically. Moreover, SMC2 can approximate the posterior dis-

tribution more accurately by working independent sampling efficiently. In approximating

the likelihood, we incorporate the tempered particle filter (TFP) proposed by Herbst and

Schorfheid (2019) into the SMC2, instead of the so-called bootstrap particle filter (BSPF)

employed by Gust et al. (2017).

SMC2 consists of two parts: parameter sampling and likelihood evaluation. In what

follows, we first explain the algorithm for SMC-based parameter sampling, following Herbst

and Schorfheide (2015) and Fernández-Villaverde, Rubio-Ramirez, and Schorfheide (2016).

Then we turn to the TFP algorithm for likelihood evaluation, following Herbst and Schorfheid

(2019). Notice that both algorithms share a similarity in the use of tempering stages and

schedule to improve approximation accuracy.
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B.2.1 Algorithm for Parameter Sampling

Let φn for n = 0, · · · , Nφ denote a sequence that slowly increases from zero to one. We

define a sequence of bridge distributions, {πn(θ)}Nφn=0 as

πn(θ) =
[p(Y|θ)]φnp(θ)∫
[p(Y|θ)]φnp(θ)dθ

, for n = 0, · · · , Nφ, φn ↑ 1,

where p(θ) and p(Y|θ) are the prior density and likelihood function, respectively. We adopt

the likelihood tempering approach that generates the bridge distributions, {πn(θ)}Nφn=0, by

taking the power transformation of p(Y|θ) with parameter φn (i.e., [p(Y|θ)]φn). The bride

distribution converges to the target posterior distribution as φn → 1. The tempering schedule

{φn}
Nφ
n=0 is determined by φn = (n/Nφ)λ, where λ is a parameter that controls the shape of

the tempering schedule. Following Herbst and Schorfheide (2015), we set λ = 2.

Let θin for i = 0, · · · , Nθ denote the particles of a parameter vector in stage n. In the

SMC2, the posterior draws of parameters are generated from the following steps.

1. Initialization Step:

(a) Set the initial stage as n = 0 and draw the initial particle of parameters θi0 from

the prior distribution p(θ).

(b) Set a weight for each particle in the initial stage as W i
0 = 1 for i = 1, · · · , Nθ.

Then, for n = 1, · · · , Nφ, repeat Steps 2 to 4.

2. Correction Step: Calculate the normalized weight, W̃ i
n, for each particle as

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

for i = 1, · · · , Nθ,

where w̃it is an incremental weight defined as

w̃in = [p(Y|θin−1)]φn−φn−1 .

38



The likelihood p̂(Y|θ) is approximated by the particle filter explained in the next

subsection.

The correction step is a classic importance sampling step in which particle weights are

updated to reflect the stage n distribution, πn(θ). Because this step does not change

the particle value, we can skip this step only by calculating the power transformation

of p(Y|θ) with parameter φn.

3. Selection (Resampling) Step:

(a) Calculate the effective particle sample size ÊSSn, which is defined as

ÊSSn = Nθ/

(
1

Nθ

Nθ∑
i=1

(W̃ i
n)2

)
.

(b) If ÊSSn < Nθ/2, then resample particles {θ̂in} by a multinomial resampling pro-

cedure and set W i
n = 1.

(c) Otherwise, let θ̂in = θin−1 and W i
n = W̃ i

n.

4. Mutation Step: Propagate the particles {θ̂in, W i
n} via the random walk MH algorithm

with the proposal distribution

ϑ|θ̂in ∼ N
(
θ̂in, c

2
nΣθ̂n

)
,

where Σθ̂n
denotes the covariance matrix of the particles of parameters {θ̂in} in stage n

and cn is a scaling factor. To keep the acceptance rate around 25%, we set the scaling

factor cn for n > 2 as

cn = cn−1f(An−1),

where An−1 represents the acceptance rate in the mutation step in stage n − 1 and
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function f(An−1) is given by

f(An−1) = 0.95 + 0.10
e16(An−1−0.25)

1 + e16(An−1−0.25)
.

5. In the final stage of n = Nφ, the final importance sampling approximation of the

marginal likelihood is obtained as

PSMC(Y ) =

Nφ∏
n=1

(
1

Nθ

Nθ∑
i=1

w̃inW
i
n−1

)
,

which converges almost surely to p(Y ) as Nθ →∞.

Similarly, we can calculate the particle approximation of the posterior estimator,

Eπ[h(θ)], as

hNφ,Nθ =

Nθ∑
i=1

h(θiNφ)W i
Nφ
,

where h(·) is a function of any interest such as impulse response functions.

B.2.2 Algorithm of the Tempered Particle Filter (TPF)

Given the parameter vector θ, the solution for our nonlinear model and the observation

equations can be written as the following state-space form:

st = Φ(st−1, εt, θ), εt ∼ N(0, Σε),

yt = Ψ(st, θ) + ut, ut ∼ N(0, Σu),

where st =
(
yt, ct, πt, Rt, R

∗
t , µ

a
t , Z

b
t

)′
denotes a vector of endogenous variables, εt =

(
εat , ε

b
t , ε

r
t

)′
an exogenous shock vector, yt = (100∆ logGDPt, 100∆ logPGDPt, FFt)

′ is a vector of ob-

servables, and ut = (uyt , u
π
t , u

R
t )′ is a vector of measurement errors. εt and ut follow a

multivariate normal distributions with covariance matrices Σu and Σε, respectively.

The structure of the TPF algorithm is basically the same as the generic BSPF algorithm.
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The only difference is the inclusion of the tempering iteration step outlined in Step 2 (b)

below, in which the measurement error variances are reduced iteratively. In this step, a tem-

pering schedule φn,t and the number of stages Nφ
t are introduced as similar to the parameter

sampling in the previous subsection, but they are adaptively determined in the algorithm to

improve both accuracy and efficiency of approximation.

Let sjt and εjt for j = 0, · · · , NS respectively denote the particles of endogenous variables

and exogenous shocks in period t.

1. For period t = 0, draw the particles of exogenous shocks εj0 from N(0, Σε) and generate

the initial particles of endogenous variables sj0|0 from the nonlinear solution Φ(s̄, εj0, θ),

where s̄ is the ergodic mean of endogenous variables.

2. For t = 1, · · · , T , repeat Steps (a) and (b).

(a) Particle Initialization Step:

i. Draw the particles of exogenous shocks εjt from N(0, Σε) and generate the

forecasts of endogenous variables sjt|t−1 from the nonlinear solution Φ(st−1|t−1, ε
j
t , θ).

ii. Approximate the predictive density of observables yt by

p(yt|Y1:t−1, θ) =
1

NS

NS∑
j=1

wjt ,

where wjt is the normal predictive density of particle j based on the mea-

surement equations yt = Ψ(st, θ) + ut, ut ∼ N(0, Σu). This density is given

by

wjt = (2π)−Ny/2|Σu|−1/2exp

{
−1

2
(yt −Ψ(sjt|t−1, θ))

′Σ−1
u (yt −Ψ(sjt|t−1, θ))

}
,

where Ny is the dimension of yt; i.e., the number of observables.

iii. Resample the particles {sjt|t−1} from a multinomial distribution with proba-
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bility wjt/Σw
j
t and regard the resulting particles as {sjt|t}.

(b) Tempering Iteration Step:

Conduct the algorithm below and approximate the likelihood increment:

p(yt |Y1:t−1) =

Nφ
t∏

n=1

(
1

Ns

NS∑
i=1

wi,nt W i,n−1
t

)
.

3. The particle approximation of the likelihood is obtained as

p(Y|θ) =
T∏
t=1

p(yt |Y1:t−1).

Algorithm for Tempering Iteration Step

Until φn,t = 1, repeat Steps 1 to 3.

1. Correction Step:

(a) Calculate the normalized weight W̃ j,n
t for each particle as

W̃ j,n
t (φn,t) =

wj,nt W j,n−1
t

1
NS

∑NS
i=1w

j,n
t W j,n−1

t

for j = 1, · · · , NS,

where wj,nt is an incremental weight derived from likelihood tempering with φn,t−

φn−1,t:

wj,nt = [p(yt|Y1:t, θ)]
φn,t−φn−1,t .

(b) Calculate the inefficiency ratio InEff(φn) from

InEff(φn) =
1

NS

NS∑
j=1

(
W̃ j,n
t (φn.t)

)2

.

(c) Let r∗ denotes target inefficiency ratio, say r∗ = 3. If InEff(φn) > r∗, then set

φn,t to the value that solves InEff(φn) = r∗ and set W̃ j,n
t = W̃ j,n

t (φn.t). Otherwise,
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set φn,t = 1, Nφ
t = n, and W̃ j,n

t = W̃ j,n
t (1).

2. Selection Step:

Resample the particles {si,n−1
t , εj,n−1

t , s
j,Nφ

t−1

t−1 , W̃ j,n−1
t } from a multinomial distribution

with probability W̃ j,n−1
t and regard the resulting particles as {ŝi,nt , ε̂

j,n
t , s

j,Nφ
t−1

t−1 ,W j,n
t }.

Then, set W i,n
t = 1 for j = 1, · · · , NS.

3. Mutation Step. Propagate the particles {ŝi,nt , ε̂
j,n
t , s

j,Nφ
t−1

t−1 ,W j,n
t } to obtain {si,nt , ε

j,n
t , s

j,Nφ
t−1

t−1 ,W j,n
t }

via the random walk MH algorithm with the proposal distribution:

ejt ∼ N
(
ε̂j,n,l−1
t , c2

nIn

)
,

where l is the iteration number in the MH algorithm and the number of iteration is

set at two in our estimation. cn is a scaling factor for the identity matrix In in stage

n. To keep the acceptance rate around 40%, we set the scaling factor cn for n > 2 as

cn = cn−1f(An−1),

where An−1 represents the acceptance rate in the mutation step in stage n − 1 and

function f(An−1) is given by

f(An−1) = 0.95 + 0.10
e20(An−1−0.4)

1 + e20(An−1−0.4)
.

B.3 Comparison of the TPF and the BSPF

Herbst and Schorfheide (2019) conduct a Monte Carlo experiment to compare the perfor-

mance of the TPF and the BSPF in estimating a linear DSGE model. We follow their

experiments but use our nonlinear model with the ZLB to show the advantages of the TPF.

Figure A.1 shows the distributions of the approximated likelihood based on three different

settings of the particle filters. For each setting, the particle approximation of the likelihood
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is computed for 100 times, given the same parameters and data. While the solid blue line is

the distribution of the approximated likelihood based on the BSPF using 39,600 particles,

the red and black dotted lines are based on the TPF using 10,800 particles with the target

inefficiency ratios r∗ = 2 and r∗ = 3, respectively. Even with the much smaller number of

particles, the variance of the distribution based on the TPF with r∗ = 3 is on par with that

based on the BSPF.

Moreover, the distribution based on the BSPF is located leftward compared with the other

two. This is consistent with the finding in Herbst and Schorfheide (2019), who demonstrate

that the BSPF causes a downward bias in the approximated likelihood from its true value

but that the TPF does not.

C Filtered Series for Full Sample Period

Figure A.2 shows the filtered mean estimates of the nominal interest rate, the notional rate,

output growth, and inflation for the full sample period from 1983Q1 to 2019Q4, based on

the for models: the BR notional and nominal rate models and their RE counterparts. Other

than the ZLB period (gray shaded area), the filtered estimates of the nominal and notional

rates are almost the same across the four models because of the small measurement errors

for the nominal interest rate series. Regarding the estimates of output growth and inflation,

some differences arise among the four models. However, these differences do not necessarily

cause remarkable differences in the likelihood increments, as shown in Figure 2 of the paper.

44



Figure A.1: Comparison of the Tempered Particle Filter and the Bootstrap Particle Filter
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Figure A.2: Comparison of Fitted Series
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