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Abstract

We propose an analytical method to calculate mixed moments between the terminal
value and the maximum of a Lévy process. The method derives the moments directly
from the Wiener-Hopf factors without finding density or characteristic functions. The
advantage of this method is that it is computationally fast and stable. Furthermore,
it can be applied to a wide class of Lévy processes. Numerical experiments show that
our method provides sufficiently accurate values of the moments. We then apply it to
a Monte Carlo simulation for the pricing of barrier and lookback options. The results
show that our simulation method can greatly reduce the time discretization error.
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1 Introduction

The Lévy processes are a class of continuous-time stochastic processes with discontinuous
trajectories. They are not only capable of representing various types of jumps in paths but
also have properties that make them tractable for analysis. Their application fields are vast,
including physics, stochastic control problems, queueing theory, insurance, and finance.

However, the maximum of a Lévy process is notorious for being difficult to analyze. Even
though there is a well-known analytical representation for the maximum called the Wiener-
Hopf factorization, it is not easy to use it in practice. There are only a few Lévy processes,
such as Brownian motion, for which the Wiener-Hopf factors can be obtained in closed form.
Unfortunately, it is very difficult to calculate the probability distribution of the maximum
from the Wiener-Hopf factorization numerically. For numerical calculation, in addition to
the need to obtain the Wiener-Hopf factors numerically, the inverse Laplace transform and
the double inverse Fourier transform are necessary. This procedure is computationally slow,
and the results are unstable. In fact, only a group of Lévy processes, known as the spectrally
negative Lévy processes, can be implemented in such numerical calculation. A spectrally
negative Lévy process has only negative jumps with a diffusion term. Madan and Schoutens
(2007), Jönsson and Schoutens (2008), and Ozeki et al. (2011) applied the spectrally negative
Lévy processes to finance, but the scope of their applications is limited due to the specificity
of the processes.

Another approach to the maximum of a Lévy process is Monte Carlo simulations. In
a Monte Carlo simulation, a number of paths of the Lévy process are generated, and the
maximum value in each path is collected as a sample. For example, if we want to find the
expected value of the maximum, we can take the average of the samples of the maximum.
However, there are two problems with this approach. The first is the convergence error,
which is caused by the difference between the population mean and the sample mean of the
Monte Carlo simulation. In order to reduce this error, a large number of samples have to
be generated. The second is the discretization error. When simulating a Lévy process, its
sample paths have to be discretized in time. This discretization causes a bias because the
sample of the maximum is always smaller than the true maximum. In order to eliminate
this error, a finer discretization is necessary. In general, Monte Carlo simulations are time-
consuming, and there is a tradeoff between reducing these two errors and computation time.

We develop an analytical method to calculate the moments of the maximum of a Lévy
process. In our method, the moments of the maximum are derived directly from the Wiener-
Hopf factors, to circumvent finding its density function or characteristic function. A series
of mixed moments between the terminal value and the maximum of a Lévy process can
be obtained recursively. The advantage of our method is that the double inverse Fourier
transform is no longer necessary in numerical calculations. As a result, the numerical results
can be obtained faster and more stable. Our method is applicable to a class of Lévy processes
that are widely used in applications.

Moments are only fragmentary information of a probability distribution, but their ap-
plications are quite broad. We propose an application of the moments of the maximum to
the pricing of barrier and lookback options in finance.

The pricing of path-dependent options under Lévy processes has been studied vigorously
in past literature. However, only a few analytical methods have been discovered. For exam-
ple, Feng and Linetsky (2008) applied the Hilbert transform to price discretely monitored
barrier options. Fusai and Meucci (2008) derived semi-analytical formulas for geometric
average option prices. Yamazaki (2014) applied the Gram-Charlier expansion to price arith-
metic average options. Umezawa and Yamazaki (2015) provided a semi-analytical formula,
which is based on multivariate characteristic functions, for some path-dependent option
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prices with discrete monitoring. Unfortunately, as far as the existing research is concerned,
it may be difficult to find an analytical method for pricing barrier and lookback options with
continuous monitoring.

In practice, Monte Carlo simulations are used to price barrier and lookback options that
are continuously monitored. We propose an efficient Monte Carlo simulation combined with
our method of moment calculation. Our simulation method can considerably reduce the
discretization error in option price estimates. This improvement allows for a significant
reduction in computation time.

There are a number of techniques for improving Monte Carlo option pricing under Lévy
processes. For example, Avramidis et al. (2003), Avramidis et al. (2006), Becker (2010),
Shiraya et al. (2020), and Shiraya et al. (2021) proposed variance reduction, which is a
technique for reducing the convergence error. Avramidis et al. (2003), Ribeiro and Webber
(2004), Avramidis et al. (2006), and Becker (2010) developed a bridge sampling technique
to eliminate the discretization error, but its application is limited to a specific Lévy process.
Our error reduction method, on the other hand, has a much wider range of applications.

The rest of the paper is organized as follows. Section 2 provides the definition of the
Lévy process and its maximum. Section 3 presents an analytical method for calculating the
moments of the maximum. In Section 4, numerical experiments are conducted to confirm
the validity of our method. Section 5 proposes an application of our method to evaluate
barrier and lookback options. Section 6 refers to the conclusion. In Appendix, we provide
some technical supplements.

2 Lévy Process and Its Maximum

We start with a probability space (Ω,F ,Q) carrying a one-dimensional Lévy process (Yt)t≥0

with the associated filtration F := (Ft)t≥0. A stochastic process (Yt)t≥0 on (Ω,F ,Q) with
values in R such that Y0 = 0 is called a Lévy process if it possesses the following properties:
(1) (Yt)t≥0 is F-adapted. (2) The sample paths of (Yt)t≥0 are right continuous with left
limits. (3) Yu− Yt is independent of Ft for 0 ≤ t < u. (4) Yu− Yt has the same distribution
as Yu−t for 0 ≤ t < u.

The following proposition, which is named the Lévy-Khintchine formula, gives the general
representation of the characteristic function of an arbitrary Lévy process. The proof of the
proposition can be found on pp.35-45 in Sato (1999) for instance.

Proposition 1 (Lévy-Khintchine formula) Let (Yt)t≥0 be a Lévy process on R. The char-
acteristic function of the distribution of Yt has the form

ϕYt
(θ) := E

[
eiθYt

]
= e−tψY (θ), t ≥ 0, θ ∈ R, (2.1)

where the function ψY , which is called the characteristic exponent, is given by

ψY (θ) = −iaθ + 1

2
b2θ2 +

∫ ∞

−∞
(1− eiθy + iθy1|y|<1)Π(dy). (2.2)

Here a ∈ R and b ≥ 0 are constants, and Π is a positive Radon measure on R\{0} verifying∫ ∞

−∞
(1 ∧ y2)Π(dy) <∞.

The parameter b2 is called the Gaussian coefficient, and the measure Π is called the Lévy
measure. The triplet (a, b2,Π) is referred to as the Lévy characteristics. Intuitively, a and b2
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represent the drift and the variance of the continuous component of the process, respectively.
The Lévy measure determines the property of the jump component of the process. If Π = 0,
the Lévy process is identified as a Gaussian process. If a = b = 0, the Lévy process becomes
a pure jump process with no continuous component.

There is a class of Lévy processes called the finite-activity jump processes, which make
a finite number of jumps within any finite time interval. An arbitrary finite-activity jump
process can be represented as a compound Poisson process. In option pricing, Merton (1976)
employed the compound Poisson process with normally distributed jumps, and Kou (2002)
adopted that with double-exponentially distributed jumps. Eraker et al. (2003) and Eraker
(2004) applied the compound Poisson process with one-side exponentially distributed jumps
to the empirical analysis of option markets.

Another important class of Lévy processes is the infinite-activity jump processes, which
generate an infinite number of jumps within any finite time interval. Examples of this
class include the normal inverse Gaussian process by Barndorff-Nielsen (1997), the variance
gamma process by Madan and Seneta (1990) and Madan et al. (1998), the finite moment
log-stable process by Carr and Wu (2003), the Meixner process by Schoutens (2002), and
the CGMY process by Carr et al. (2002).

For more details on the Lévy processes as applied to finance, see Cont and Tankov (2003)
and Boyarchenko and Levendorskĭi (2002).

The maximum and the minimum of a Lévy process in time interval [0, T ] are written as

Y T := sup
0≤t≤T

Yt and Y T := inf
0≤t≤T

Yt,

respectively. In the following, we only discuss the maximum, but the minimum can be
analyzed in a similar way to the maximum.

3 Mixed Moments

In this section, we provide a formula for calculating mixed moments between the terminal
value and the maximum of a Lévy process. Let the (n1, n2)-th mixed moment of (YT , Y T )
denote

mn1,n2
:= E

[
(YT )

n1
(
Y T
)n2
]
,

for n1, n2 ∈ {0, 1, 2, . . . }.

3.1 Brownian Motion and Its Maximum

Let Zt := at+ bWt, where (Wt)t≥0 is a one-dimensional standard Brownian motion, and a
and b > 0 are some constants. Note that the drifted Brownian motion (Zt)t≥0 is a special
case of Lévy processes. The joint characteristic function of (ZT , ZT ) is known to be given
in the form

ϕZT ,ZT
(θ1, θ2) := E

[
eiθ1ZT+iθ2ZT

]
=

1

2
e

ζ2−a2

2b2
T

{
1 +

ib2θ2
2ζ − ib2θ2

}{
1 + erf

(√
T

2b2
ζ

)}

+
1

2
e

η2−a2

2b2
T

{
1− ib2θ2

2η + ib2θ2

}{
1− erf

(√
T

2b2
η

)}
, θ1, θ2 ∈ R,
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where ζ := ζ(θ1, θ2) = a+ ib2(θ1 + θ2), η := η(θ1) = a+ ib2θ1, and

erf(x) :=
2√
π

∫ x

0

e−u
2

du,

which is the error function. Therefore, the (n1, n2)-th mixed moment of (ZT , ZT ) denoted
by m̂n1,n2

is obtained by1

m̂n1,n2 = i−(n1+n2)(∂n1,n2ϕZT ,ZT
)(0, 0).

3.2 Lévy Process and Its Maximum

In this subsection, it is shown that the Wiener-Hopf factorization can be used to find mixed
moments of (YT , Y T ) of a Lévy process (Yt)t≥0. First, we introduce the Wiener-Hopf factors
in the following lemma. The proof of the lemma can be found on p.334 of Sato (1999).

Lemma 1 Let q > 0. There exist a unique pair of characteristic functions of infinitely
divisible distributions supported on [0,∞) and (−∞, 0], which are denoted by Φ+

q and Φ−
q ,

respectively, such that

q

q + ψY (θ)
= Φ+

q (θ)Φ
−
q (θ), θ ∈ R.

These functions are represented as

Φ+
q (θ) = exp

{∫ +∞

0

T−1e−qT dT

∫ +∞

0

(
eiθx − 1

)
dFYT

(x)

}
, (3.1)

Φ−
q (θ) = exp

{∫ +∞

0

T−1e−qT dT

∫ 0

−∞

(
eiθx − 1

)
dFYT

(x)

}
, (3.2)

where FYT
(·) is the cumulative distribution function of YT .

The functions Φ+
q and Φ−

q are known as the Wiener-Hopf factors. Φ+
q can be continuously

extended to a bounded analytic function without zeros on the upper half plane. Φ−
q can also

be extended to the lower half plane.
The following lemma shows that the Laplace transform of the joint characteristic function

of (YT , Y T ) can be represented as the product of the Wiener-Hopf factors. The proof of the
lemma can be found on p.341 of Sato (1999).

Lemma 2 Let

ϕYT ,Y T
(θ1, θ2) := E

[
eiθ1YT+iθ2Y T

]
, θ1, θ2 ∈ R, (3.3)

be the joint characteristic function of (YT , Y T ). The Laplace transform in T of ϕYT ,Y T
is

given by

q

∫ +∞

0

e−qTϕYT ,Y T
(θ1, θ2)dT = Φ+

q (θ1 + θ2)Φ
−
q (θ1),

for any q > 0.

1The partial derivative of a function f in x and y is denoted by

(∂n1,n2f) (x, y) :=
∂n1+n2f

∂xn1∂yn2
(x, y), n1, n2 ∈ {0, 1, 2, . . . }.
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Closed-form expressions for the Wiener-Hopf factors are not known, except in a few
special cases. To obtain the Wiener-Hopf factors, some numerical calculation is required.
However, the calculations of (3.1) and (3.2) are inefficient because they involve the cumu-
lative distribution function of YT , which is usually unknown in closed form. Therefore, it is
difficult, even numerically, to obtain the joint characteristic function (3.3) by Lemma 2. This
problem has been recognized as a bottleneck in analyzing the maximum of Lévy processes.

Our idea is to calculate directly mixed moments between the terminal value and the
maximum of a Lévy process without having to find the joint characteristic function. The
following proposition gives us the representation of the Laplace transform to the mixed
moments of (YT , Y T ).

Proposition 2 Let D(n)Φ±
q be the n-th derivative of Φ±

q (θ) with respect to parameter θ.
The Laplace transform in T of the mixed moment mn1,n2

is given by

q

∫ +∞

0

e−qTmn1,n2
dT = i−(n1+n2)

n1∑
k=0

(
n1
k

)(
D(n2+k)Φ+

q

)
(0)
(
D(n1−k)Φ−

q

)
(0), (3.4)

for any q > 0.

Proof of Proposition 2: From Lemma 2, we have

q

∫ +∞

0

e−qT
(
∂n1,n2

ϕYT ,Y T

)
(0, 0)dT = ∂n1,n2

(
Φ+
q (θ1 + θ2)Φ

−
q (θ1)

) ∣∣∣∣
θ1,θ2=0

=
∂n1

∂θn1
1

(
D(n2)Φ+

q

)
(θ1 + θ2)Φ

−
q (θ1)

∣∣∣∣
θ1,θ2=0

=

n1∑
k=0

(
n1
k

)(
D(n2+k)Φ+

q

)
(0)
(
D(n1−k)Φ−

q

)
(0).

□

Boyarchenko and Levendorskĭi (2002) provided an expression for the Wiener-Hopf factor
that can be calculated more efficiently. It is valid for the tempered stable process, the normal
inverse Gaussian process, and other suitable processes. According to them, the Wiener-Hopf
factors can be represented as

Φ+
q (θ) = eθφ

+
q (θ) and Φ−

q (θ) = eθφ
−
q (θ), (3.5)

where

φ+
q (θ) :=

1

2πi

∫ +∞+iω−

−∞+iω−

ln(q + ψY (z))

z(θ − z)
dz, φ−

q (θ) := − 1

2πi

∫ +∞+iω+

−∞+iω+

ln(q + ψY (z))

z(θ − z)
dz,

with some ω− < 0 and ω+ > 0 such that Φ+
q and Φ−

q are analytic in the half plane =θ > ω−
and =θ < ω+, respectively.

By assuming the Boyarchenko-Levendorskĭi representation (3.5), we can obtain the fol-
lowing proposition to calculate D(n)Φ±

q in Proposition 2.

Proposition 3 Suppose that the Wiener-Hopf factors of a Lévy process (Yt)t≥0 have the
Boyarchenko-Levendorskĭi representation (3.5). Then we have(

D(n+1)Φ±
q

)
(0) =

n∑
k=0

(1 + k)

(
n

k

)(
D(k)φ±

q

)
(0)
(
D(n−k)Φ±

q

)
(0), (3.6)
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where
(
D(n)φ±

q

)
(θ) denotes the n-th derivative of φ±

q in parameter θ. The n-th derivative
at θ = 0 is given by(

D(n)φ+
q

)
(0) = (−1)

n n!

2πi

∫ +∞+iω−

−∞+iω−

ln(q + ψY (z))

zn+2
dz, (3.7)

(
D(n)φ−

q

)
(0) = (−1)

n+1 n!

2πi

∫ +∞+iω+

−∞+iω+

ln(q + ψY (z))

zn+2
dz, (3.8)

with
(
D(0)Φ±

q

)
(0) := Φ±

q (0) = 1.

Proof of Proposition 3: Consider a sequence of functions (gn)n≥0 such that(
D(n)Φ+

q

)
(θ) = gn(θ)Φ

+
q (θ), for n = 0, 1, 2, . . . . (3.9)

Obviously, g0(θ) = 1 and g1(θ) = φ+
q (θ) + θ

(
Dφ+

q

)
(θ) for any θ ∈ R. The n-th derivative

of g1 is given by

g
(n)
1 (θ) =

(
D(n)φ+

q

)
(θ) +

dn

dθn
θ
(
Dφ+

q

)
(θ)

=
(
D(n)φ+

q

)
(θ) +

n∑
k=0

(
n

k

)
θ(k)

(
D(n−k+1)φ+

q

)
(θ)

= (n+ 1)
(
D(n)φ+

q

)
(θ) + θ

(
D(n+1)φ+

q

)
(θ).

By the definition of gn in (3.9), we have(
D(n+1)Φ+

q

)
(θ) =

dn

dθn
g1(θ)Φ

+
q (θ) =

n∑
k=0

(
n

k

)
g
(k)
1 (θ)

(
D(n−k)Φ+

q

)
(θ)

=

(
n∑
k=0

(
n

k

)
g
(k)
1 (θ)gn−k(θ)

)
Φ+
q (θ). (3.10)

Note that

gn+1(0) =

n∑
k=0

(
n

r

)
g
(k)
1 (0)gn−k(0) =

n∑
k=0

(1 + k)

(
n

k

)(
D(k)φ+

q

)
(0)gn−k(0). (3.11)

Substituting (3.11) and Φ+
q (0) = 1 into (3.10), and noting

(
D(n)Φ+

q

)
(0) = gn(0), we obtain

(3.6) for
(
D(n)Φ+

q

)
(0). Similarly, we can also show (3.6) for

(
D(n)Φ−

q

)
(0). □

4 Numerical Experiments

In this section, we demonstrate the validity of our moment calculation method proposed in
the previous section. Let us consider a Lévy process (Yt)t≥0 given by

Yt = (r + ψX(−i))t+Xt, for any t ≥ 0, (4.1)

where r is a constant, and (Xt)t≥0 is the normal inverse Gaussian (NIG) process. The
characteristic exponent of the NIG process is

ψX(θ) =
1

κ

√
1 + σ2κθ2 − 2iµκθ − 1

κ
, (4.2)
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Table 1: Model parameters
r σ µ κ

Case 1 0.03 0.20 -0.18 0.06
Case 2 0.03 0.20 -0.18 0.20

where σ, µ, κ are some constants. The NIG process is a time-changed Brownian motion
subordinated by the inverse Gaussian process. This process has an infinite variation with
high frequency of small jumps and is one of the most commonly used Lévy processes in
finance applications. Parameter σ determines the standard deviation of the distribution of
X1, parameter µ controls the skewness, and parameter κ generates the excess kurtosis. The
NIG process converges to a Brownian motion as κ approaches zero. The parameter setting
in the numerical experiments is listed in Table 1.

For the implementation of all numerical experiments in this paper, we use a PC with
AMD Ryzen 7 5800H CPU 16GB RAM and MATLAB R2021a as numerical computation
software.

4.1 Computation of Mixed Moments

We compute mixed moments between the terminal value and the maximum of the NIG
process by Propositions 2 and 3. Recall that they are obtained by the inverse Laplace
transform of (3.4) in Proposition 2. To compute the inverse Laplace transform, we apply
the Gaver-Stehfest algorithm. See Appendix A for the algorithm. Constants ω− and ω+

in (3.7) and (3.8) of Proposition 3 are set to −2 and 2, respectively. For the numerical
integration of (3.7) and (3.8), we use the MATLAB function quadgk, which is the Gauss-
Kronrod quadrature.

For comparison with our analytical method, Monte Carlo estimates of the mixed moments
are calculated. In the Monte Carlo simulation, we generate sample paths of the NIG process
as the subordinated Brownian motion sample paths on a fixed time grid, which is set at
equal intervals. For simulating the NIG process, see Cont and Tankov (2003) for example.
To reduce the convergence error, 10 million paths are generated for each estimate. We would
like to emphasize that the setting of the time discretization is important for accurate Monte
Carlo estimation of the moments of maximum. The estimates are always underestimated
due to the time discretization error. In order to examine the degree of the error, the number
of time steps per year is set to four patterns: 23, 27, 211, and 215.

Figure 1 illustrates the numerical results of the mixed moments for the case of T = 1.
The solid and dashed lines in the figure depict the levels of the moments calculated by our
analytical method for the parameter settings of Cases 1 and 2, respectively. The dotted and
chain lines plot the Monte Carlo estimates of the moments for Cases 1 and 2, respectively,
with error bars2. The accuracy of the Monte Carlo estimates improves with increasing time
steps, approaching the levels of the analytical moments. As we all know, the Monte Carlo
simulation is very time-consuming. Computed in 215 time steps, that is more than 13 hours.
However, using our method, we can obtain the values of the six moments in each case within
a total of one second.

2Since the standard errors are very small, the error bars in the figure may be too short to be discernible.
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Figure 1: Moments of maximum of NIG process

Panel A: 1st moment m0,1 Panel B: 2nd moment m0,2

Panel C: 3rd moment m0,3 Panel D: 4th moment m0,4

Panel E: (1,1)-th mixed moment m1,1 Panel F: (2,2)-th mixed moment m2,2
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4.2 Approximation of Density Function

In this subsection, we consider a two-dimensional cumulant expansion to the joint density
function of the terminal value and the maximum of a Lévy process (YT , Y T ) around the
joint density function of those of a Brownian motion (ZT , ZT ).

Let g and ĝ be the joint density functions of (YT , Y T ) and (ZT , ZT ), respectively. Then
g is approximated by

g(x, y) ∼ ĝ(x, y) +

∞∑
d=1

∑
n1+n2=d

In1,n2(κ)

n1!n2!
(−1)d (∂n1,n2

ĝ) (x, y), (4.3)

where κ := (cl1,l2 − ĉl1,l2)l1,l2≥0, and the mapping In1,n2
is defined in (B.3) of Appendix

B.2. Here, cl1,l2 and ĉl1,l2 denote the (l1, l2)-th mixed cumulants of (YT , Y T ) and (ZT , ZT ),
respectively. Any mixed cumulant can be expressed as a polynomial of mixed moments, and
vice versa. The relationship between the cumulants and the moments is shown in Appendix
B.1 and B.2. The derivation of (4.3) can be found in Appendix B.3.

The joint density function of the terminal value and the maximum of a Brownian motion
with parameters a, b is known in the form

ĝ(x, y) =

√
2

π

e−
a2

2b2
T

(b2T )
3/2

(2y − x) e
a
b2
x− (2y−x)2

2b2T , x ≤ y. (4.4)

See Borodin and Salminen (2015) for the derivation of (4.4). The closed-form expression of
the partial derivative (∂n1,n2 ĝ) (x, y) in (4.3) is provided in Appendix C.

Combining (4.3) with our moment calculation method, we expect to obtain an approxi-
mation for the joint density function of (YT , Y T ). In numerical experiments, the approximate
marginal density functions with respect to the maximum Y T of the NIG process are calcu-
lated. The NIG parameters are set to Cases 1 and 2 in Table 1 with T = 1. When applying
(4.3), we choose the parameters a, b in (4.4) such that the first and second moments of the
maximum of the Brownian motion are equal to those of the NIG process. That is,

argmin
a∈R,b>0

(m̂0,1 −m0,1)
2
+ (m̂0,2 −m0,2)

2
.

We then calculate the third and fourth order approximations of the density function. To
check the validity of the approximate density functions, we compare them with the density
function estimated by a Monte Carlo simulation using 10 million sample paths with 215 time
steps per year.

Figure 2 shows a plot of the approximate density functions. The solid lines in the figure
depict the density functions of the maximum of the Brownian motion moment-matched to
the maximum of the NIG process. The dashed and chain lines denote the third and fourth
order approximate density functions, respectively. However, these lines are indistinguishable,
because they are almost equal to the density functions of the maximum of the Brownian
motion. In other words, the third and fourth order terms in (4.3) have little effect on the
shape of the approximate density functions. The bar charts represent the density functions
estimated by the Monte Carlo simulation. As can be seen from the figure, the approximate
density functions cannot capture the left side of the estimated density functions, that is,
the part where the density changes discontinuously near zero. The convergence of the
approximate density functions to the true density function is very slow.

In order to improve the accuracy, we need to consider an appropriate density function
different from (4.4). Probably, a density function with an atom at zero is a candidate. For
now, however, this is a subject for future research.
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Figure 2: Approximate density functions of maximum of NIG process

Panel A: Case 1

Panel B: Case 2
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5 Application to Option Pricing

In the previous section, it is shown that our analytical method yields very accurate moments
of the maximum of a Lévy process. However, the approximate density functions based on
the moments are inaccurate. Although not discussed here, we have applied the approximate
density function to option pricing, but the results, which we will provide upon request, were
not good. In this section, we attempt another application of our moment calculation method
to option pricing, the Monte Carlo simulation with moment-matching samples.

5.1 Moment-Matching Samples

Let (
Y [1], Y [2], . . . , Y [J]

)
, (5.1)

be a random sample vector from the maximum of a Lévy process, Y T , where J denotes the
number of sampling in a Monte Carlo simulation. We transform the random samples (5.1)
to match the first and second moments of the underlying population by defining

Y
∗
[j] =

√
m0,2 −m2

0,1

Σ

(
Y [j] −M

)
+m0,1, for j = 1, 2, . . . , J, (5.2)

where M and Σ are the sample mean and the sample variance of (5.1), respectively. Recall
that the population moments m0,1 and m0,2 are obtained by our analytical method. In the
following, we use the moment-matching samples(

Y
∗
[1], Y

∗
[2], . . . , Y

∗
[J]

)
,

to evaluate barrier and lookback options.

5.2 Option Pricing

In this subsection, we briefly explain the pricing of barrier and lookback options where the
payoff depends on the maximum value of an underlying asset price process.

Assume frictionless markets and the absence of arbitrage opportunities. We consider the
probability measure Q as a risk-neutral measure. Suppose that an underlying asset price
process (St)t≥0 under the risk-neutral measure is given by

St = S0e
Yt , for every t ≥ 0, (5.3)

where Yt is defined by (4.1). Parameter r in (4.1) is interpreted as an instantaneous risk-
free rate. Note that the discounted asset price process (e−rtSt)t≥0 is an F-martingale. The
maximum of the underlying asset price in finite time interval [0, T ] is written as

ST := sup
0≤t≤T

St = S0e
Y T .

The price of an option that has a payoff function H(ST , ST ) and expires at T can be
represented as

E
[
e−rTH(ST , ST )

]
= e−rTE

[
h(YT , Y T )

]
, (5.4)

where h(y, y) := H(S0e
y, S0e

y). Therefore, we only need to evaluate the expected payoff
E
[
h(YT , Y T )

]
by the Monte Carlo simulation with moment-matching samples to obtain the

option price. In numerical experiments, three types of options are addressed as follows.
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Example 1 (Up-and-out put) An up-and-out put option is a type of barrier options.
The payoff with maturity T , strike price K, and barrier level L is

H(ST , ST ) = (K − ST )
+1{ST<L}.

Equivalently,

h(YT , Y T ) = S0(e
k − eYT )1{YT<k}1{Y T<l},

where k := lnK/S0 and l := lnL/S0.

Example 2 (Fixed-strike lookback call) A fixed-strike lookback call option is a type of
lookback options. The payoff with maturity T and fixed strike price K is

H(ST , ST ) = (ST −K)+.

Equivalently,

h(YT , Y T ) = S0(e
Y T − ek)1{Y T>k}.

Example 3 (Floating-strike lookback put) A floating-strike lookback put option is also
a type of lookback options. The payoff with maturity T is

H(ST , ST ) = ST − ST .

Equivalently,

h(YT , Y T ) = S0(e
Y T − eYT ).

5.3 Numerical Experiments

The purpose of this subsection is to see to what extent the Monte Carlo simulation with
moment-matching samples can reduce the discretization errors in barrier and lookback option
pricing. Adopting the NIG process (4.2) as the driving factor of the underlying asset price,
we calculate the prices of up-and-out put, fixed-strike call, and floating-strike put options.
The parameters of the model are Cases 1 and 2 in Table 1, the initial price of the underlying
asset is S0 = 100, and the maturity of all options is T = 1. The conditions for the Monte
Carlo simulation are the same as in Section 4.1. That is, 10 million sample paths are
generated for each option pricing, and the numbers of time steps per year are set to 23,
27, 211, and 215. For comparison, we also evaluate these option prices by the Monte Carlo
simulation without moment-matching samples.

Tables 2 and 3 show the prices of up-and-out put options in Cases 1 and 2, respectively.
These options have strike prices K = 100, 110, and 120 and barrier levels L = 105 and
110. In the tables, MCMM and MC denote the results of the Monte Carlo simulation with
and without moment-matching samples, respectively. The values in parentheses are the
standard errors of the estimated prices. Recall that the larger the number of time steps, the
smaller the discretization error, but the longer the computation time. In our estimation,
the discretization errors almost disappear in 215 time steps. As can be seen from the tables,
the discretization errors of MCMM are smaller than those of MC. Even with 27 time steps,
the Monte Carlo simulation with moment-matching samples yields option prices that are
acceptable accuracy for practical use. On the other hand, the Monte Carlo simulation
without moment-matching samples requires at least 211 time steps to obtain option prices
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with the same level of accuracy as MCMM with 27 time steps. Therefore, by applying our
simulation method, we can achieve a significant reduction in computation time. Incidentally,
the computation time for 27 time steps is about 140 seconds, while that for 211 time steps
is more than 28 minutes.

Tables 4 and 5 show the prices of lookback options in Cases 1 and 2, respectively. In the
tables, FIC represents fixed-strike call options, and FLP denotes floating-strike put options.
The strike prices of the fixed-strike call options are K = 100, 110, and 120. It can be seen
from the tables that our simulation method dramatically reduces the discretization errors
in lookback option pricing. In most cases of MCMM, only 23 time steps are sufficient to
obtain accurate option prices. The computation time for 23 time steps is only 40 seconds.
In contrast to MCMM, the Monte Carlo simulation without moment-matching samples
produces large discretization errors in such cases.

We conduct the same numerical experiments under the variance gamma (VG) process,
which is also one of the most popular Lévy processes in finance applications. That is, the
VG process is adopted as (Xt)t≥0 in (4.1). The characteristic exponent of the VG process is

ψX(θ) =
1

κ
ln

(
1 +

1

2
σ2κθ2 − iµκθ

)
, (5.5)

where σ, µ, κ are some constants. This process is a time-changed Brownian motion sub-
ordinated by the gamma process. It has a finite variation with infinite small jumps, but
relatively low activity. The parameters of the VG process play a similar role to those of the
NIG process. The values of the VG parameters are taken from Table 1.

Figures 3 and 4 plot the prices of up-and-out put and lookback options, respectively,
with error bars. From the figures, it can be seen that our simulation method can sufficiently
reduce the discretization errors, even when the VG process is employed.

6 Conclusion

This paper proposes an analytical method to calculate mixed moments between the terminal
value and the maximum of a Lévy process. This method is applicable to the class of Lévy
processes with the Boyarchenko-Levendorskĭi representation. Numerical experiments show
that our analytical method provides sufficiently accurate values of the mixed moments.
However, we also find that the convergence of the approximate density function based on
the moments is very slow.

As an application of our moment calculation method, we propose a Monte Carlo simu-
lation with moment-matching samples to evaluate barrier and lookback options with con-
tinuous monitoring. The numerical results show that our simulation method can reduce the
time discretization error. In particular, the error in the estimates of the lookback option
prices is dramatically reduced. Hence, by using our simulation method in financial practice,
the computation time for option pricing can be greatly reduced.

Our moment calculation method should be a general-purpose tool for a variety of ap-
plications. Future research directions will include applications to fields other than option
pricing, such as physics, economics, and insurance.

A Gaver-Stehfest Algorithm

This appendix briefly explains the Gaver-Stehfest algorithm proposed by Stehfest (1970),
which is for the computation of the inverse Laplace transform. This algorithm is straight-
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Table 2: Up-and-out put option prices under NIG process (Case 1)
time steps

K L 23 27 211 215

100 105 MCMM 0.781 0.718 0.714 0.716
(0.001) (0.001) (0.001) (0.001)

MC 0.883 0.743 0.717 0.716
(0.001) (0.001) (0.001) (0.001)

110 105 MCMM 2.061 1.881 1.871 1.874
(0.002) (0.002) (0.002) (0.002)

MC 2.398 1.959 1.880 1.877
(0.002) (0.002) (0.002) (0.002)

120 105 MCMM 4.109 3.723 3.704 3.708
(0.003) (0.003) (0.003) (0.003)

MC 4.931 3.899 3.724 3.714
(0.003) (0.003) (0.003) (0.003)

100 110 MCMM 0.945 0.931 0.930 0.930
(0.001) (0.001) (0.001) (0.001)

MC 0.991 0.941 0.931 0.931
(0.001) (0.001) (0.001) (0.001)

110 110 MCMM 2.615 2.567 2.563 2.564
(0.002) (0.002) (0.002) (0.002)

MC 2.786 2.602 2.567 2.565
(0.002) (0.002) (0.002) (0.002)

120 110 MCMM 5.499 5.373 5.365 5.366
(0.003) (0.003) (0.003) (0.003)

MC 5.977 5.467 5.376 5.370
(0.003) (0.003) (0.003) (0.003)
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Table 3: Up-and-out put option prices under NIG process (Case 2)
time steps

K L 23 27 211 215

100 105 MCMM 0.941 0.883 0.879 0.879
(0.001) (0.001) (0.001) (0.001)

MC 1.071 0.907 0.882 0.880
(0.001) (0.001) (0.001) (0.001)

110 105 MCMM 2.169 2.031 2.024 2.023
(0.002) (0.002) (0.002) (0.002)

MC 2.511 2.091 2.030 2.025
(0.002) (0.002) (0.002) (0.002)

120 105 MCMM 4.131 3.855 3.845 3.842
(0.003) (0.003) (0.003) (0.003)

MC 4.886 3.982 3.857 3.846
(0.003) (0.003) (0.003) (0.003)

100 110 MCMM 1.190 1.169 1.166 1.166
(0.001) (0.001) (0.001) (0.001)

MC 1.249 1.179 1.167 1.167
(0.001) (0.001) (0.001) (0.001)

110 110 MCMM 2.833 2.777 2.773 2.774
(0.002) (0.002) (0.002) (0.002)

MC 3.001 2.806 2.776 2.775
(0.002) (0.002) (0.002) (0.002)

120 110 MCMM 5.631 5.504 5.496 5.498
(0.003) (0.003) (0.003) (0.003)

MC 6.037 5.571 5.503 5.500
(0.003) (0.003) (0.003) (0.003)
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Table 4: Lookback option prices under NIG process (Case 1)
time steps

Type K 23 27 211 215

FIC 100 MCMM 17.435 17.432 17.432 17.432
(0.005) (0.005) (0.005) (0.005)

MC 14.526 16.984 17.387 17.413
(0.005) (0.005) (0.005) (0.005)

FIC 110 MCMM 9.559 9.581 9.581 9.581
(0.004) (0.004) (0.004) (0.004)

MC 7.789 9.291 9.553 9.566
(0.004) (0.004) (0.004) (0.004)

FIC 120 MCMM 4.913 4.875 4.872 4.873
(0.003) (0.003) (0.003) (0.003)

MC 3.853 4.700 4.857 4.862
(0.003) (0.003) (0.003) (0.003)

FLP MCMM 14.384 14.379 14.381 14.407
(0.003) (0.004) (0.004) (0.004)

MC 11.476 13.930 14.336 14.388
(0.004) (0.004) (0.004) (0.004)

Table 5: Lookback option prices under NIG process (Case 2)
time steps

Type K 23 27 211 215

FIC 100 MCMM 16.772 16.771 16.771 16.771
(0.005) (0.005) (0.005) (0.005)

MC 14.463 16.459 16.741 16.762
(0.005) (0.005) (0.005) (0.005)

FIC 110 MCMM 8.968 8.978 8.980 8.978
(0.004) (0.004) (0.004) (0.004)

MC 7.591 8.781 8.960 8.973
(0.004) (0.004) (0.004) (0.004)

FIC 120 MCMM 4.431 4.399 4.398 4.398
(0.003) (0.003) (0.003) (0.003)

MC 3.640 4.285 4.387 4.395
(0.003) (0.003) (0.003) (0.003)

FLP MCMM 13.723 13.725 13.723 13.739
(0.004) (0.004) (0.004) (0.004)

MC 11.414 13.414 13.693 13.730
(0.004) (0.004) (0.004) (0.004)

17



Figure 3: Up-and-out put option prices under VG process

Panel A: K = 100, L = 105 Panel B: K = 110, L = 105

Panel C: K = 120, L = 105 Panel D: K = 100, L = 110

Panel E: K = 110, L = 110 Panel F: K = 120, L = 110
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Figure 4: Lookback option prices under VG process

Panel A: FIC with K = 100 Panel B: FIC with K = 110

Panel C: FIC with K = 120 Panel D: FLP
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forward. For any bounded real-valued function f defined on [0,∞) that is continuous at y,
the inverse Laplace transform f̃ of f is given by

f̃(x) = lim
p→∞

1

2πi

∫ c+ip

c−ip
exyf(y)dy = lim

n→∞
f̃n(x),

where c > 0 is a constant, and

f̃n(x) :=
ln 2

x

(2n)!

n!(n− 1)!

n∑
k=0

(−1)k
n!

k!(n− k)!
f

(
(n+ k)

ln 2

x

)
.

To accelerate the convergence, an n-point Richardson extrapolation is applicable. More
precisely, f̃ can be approximated by f∗n for sufficiently large n, where

f∗n(x) :=

n∑
k=1

(−1)n−k
kn

k!(n− k)!
f̃k(x).

See Stehfest (1970) for details.

B Cumulant Expansion to Joint Density Function

This appendix provides a general formula for the cumulant expansion to an arbitrary two-
dimensional joint density function around a known density function.

Suppose that there are arbitrary mixed moments and cumulants of a pair of random vari-
ables (X,Y ), all of which are finite. Let ϕX,Y be the joint characteristic function of (X,Y ).
Then the mixed moments (mn1,n2

)n1,n2≥0 of (X,Y ) are defined as constants satisfying the
following equation:

ϕX,Y (θ1, θ2) = 1 +

∞∑
d=1

∑
n1+n2=d

mn1,n2

n1!n2!
(iθ1)

n1(iθ2 )n2 , for θ1, θ2 ∈ R. (B.1)

On the other hand, the mixed cumulants (cn1,n2)n1,n2≥0 of (X,Y ) are defined as constants
satisfying the following equation:

lnϕX,Y (θ1, θ2) =

∞∑
d=1

∑
n1+n2=d

cn1,n2

n1!n2!
(iθ1)

n1(iθ2 )n2 , for θ1, θ2 ∈ R. (B.2)

B.1 Cumulants as Polynomials of Moments

Applying the Taylor expansion to lnϕX,Y (θ1, θ2) combined with (B.1) and comparing it with
(B.2), we obtain the following relations:

• n1 + n2 = 0 or 1

c0,0 = 0, c1,0 = m1,0, c0,1 = m0,1.

• n1 + n2 = 2

c2,0 = −m2
1,0 +m2,0, c1,1 = −m1,0m0,1 +m1,1, c0,2 = −m2

0,1 +m0,2.
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• n1 + n2 = 3

c3,0 = 2m3
1,0 − 3m1,0m2,0 +m3,0,

c2,1 = 2m0,1m
2
1,0 − 2m1,0m1,1 −m0,1m2,0 +m2,1,

c1,2 = 2m2
0,1m1,0 −m0,2m1,0 − 2m0,1m1,1 +m1,2,

c0,3 = 2m3
0,1 − 3m0,1m0,2 +m0,3.

• n1 + n2 = 4

c4,0 = −6m4
1,0 + 12m2

1,0m2,0 − 3m2
2,0 − 4m1,0m3,0 +m4,0,

c3,1 = −6m0,1m
3
1,0 + 6m2

1,0m1,1 + 6m0,1m1,0m2,0 − 3m1,1m2,0 − 3m1,0m2,1 −m0,1m3,0 +m3,1,

c2,2 = −6m2
0,1m

2
1,0 + 2m0,2m

2
1,0 + 8m0,1m1,0m1,1 − 2m2

1,1 − 2m1,0m1,2

+2m2
0,1m2,0 −m0,2m2,0 − 2m0,1m2,1 + c2,2,

c1,3 = −6m3
0,1m1,0 + 6m0,1m0,2m1,0 −m0,3m1,0 + 6m2

0,1m1,1 − 3m0,2m1,1 − 3m0,1m1,2 +m1,3,

c0,4 = −6m4
0,1 + 12m2

0,1m0,2 − 3m2
0,2 − 4m0,1m0,3 +m0,4.

B.2 Moments as Polynomials of Cumulants

Applying the Taylor expansion to exp (lnϕX,Y (θ1, θ2)) combined with (B.2) and comparing
it with (B.1), we obtain the following relations:

• n1 + n2 = 0 or 1

m0,0 = 1, m1,0 = c1,0, m0,1 = c0,1.

• n1 + n2 = 2

m2,0 = c21,0 + c2,0, m1,1 = c1,0c0,1 + c1,1, m0,2 = c20,1 + c0,2.

• n1 + n2 = 3

m3,0 = c31,0 + 3c1,0c2,0 + c3,0, m2,1 = c0,1c
2
1,0 + 2c1,0c1,1 + c0,1c2,0 + c2,1,

m1,2 = c20,1c1,0 + c0,2c1,0 + 2c0,1c1,1 + c1,2, m0,3 = c30,1 + 3c0,1c0,2 + c0,3.

• n1 + n2 = 4

m4,0 = c41,0 + 6c21,0c2,0 + 3c22,0 + 4c1,0c3,0 + c4,0,

m3,1 = c0,1c
3
1,0 + 3c21,0c1,1 + 3c0,1c1,0c2,0 + 3c1,1c2,0 + 3c1,0c2,1 + c0,1c3,0 + c3,1,

m2,2 = c20,1c
2
1,0 + c0,2c

2
1,0 + 4c0,1c1,0c1,1 + 2c21,1 + 2c1,0c1,2

+ c20,1c2,0 + c0,2c2,0 + 2c0,1c2,1 + c2,2,

m1,3 = c30,1c1,0 + 3c0,1c0,2c1,0 + c0,3c1,0 + 3c20,1c1,1 + 3c0,2c1,1 + 3c0,1c1,2 + c1,3,

m0,4 = c40,1 + 6c20,1c0,2 + 3c20,2 + 4c0,1c0,3 + c0,4.

We represent the above relations by the following mapping.

In1,n2
: c = (cl1,l2)l1,l2≥0 7−→ In1,n2

(c) = mn1,n2
. (B.3)
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B.3 Approximate Density Function

Suppose that a pair of random variables (X,Y ) has a joint density function g, but its closed-
form representation is unknown. Let ĝ be a known joint density function of a pair of random
variables (Z,W ). Since

ln
ϕX,Y (θ1, θ2)

ϕZ,W (θ1, θ2)
=

∞∑
d=1

∑
n1+n2=d

cn1,n2 − ĉn1,n2

n1!n2!
(iθ1)

n1(iθ2)
n2 ,

we have

ϕX,Y (θ1, θ2) = exp

{ ∞∑
d=1

∑
n1+n2=d

cn1,n2 − ĉn1,n2

n1!n2!
(iθ1)

n1(iθ2)
n2

}
ϕZ,W (θ1, θ2)

=

{
1 +

∞∑
d=1

∑
n1+n2=d

In1,n2(κ)

n1!n2!
(iθ1)

n1(iθ2)
n2

}
ϕZ,W (θ1, θ2)

= ϕZ,W (θ1, θ2) +

∞∑
d=1

∑
n1+n2=d

In1,n2
(κ)

n1!n2!
(iθ1)

n1(iθ2)
n2ϕZ,W (θ1, θ2), (B.4)

where κ := (cl1,l2 − ĉl1,l2)l1,l2≥0, and In1,n2 is defined in (B.3). Applying the inverse Fourier
transform to the both sides of (B.4), we have

g(x, y) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
e−ixθ1−iyθ2ϕX,Y (θ1, θ2)dθ1dθ2

=
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
e−ixθ1−iyθ2ϕZ,W (θ1, θ2)dθ1dθ2

+

∞∑
d=1

∑
n1+n2=d

In1,n2
(κ)

n1!n2!

1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
e−ixθ1−iyθ2(iθ1)

n1(iθ2)
n2ϕZ,W (θ1, θ2)dθ1dθ2

= ĝ(x, y) +

∞∑
d=1

∑
n1+n2=d

In1,n2
(κ)

n1!n2!
(−1)d (∂n1,n2

ĝ) (x, y).

C Partial Derivative of (4.4)

The joint density function (4.4) can be rewritten as

ĝ(x, y) = Ae
a
b2
xze−z

2

, for x ≤ y.

Here, we put

A :=
2√
πb2T

e−
a2

2b2
T ,

and define the function z := z(x, y) = (2y − x)/λ, where λ :=
√
2b2T . Then it holds

(∂n1,n2
ĝ) (x, y) = A

∂n1

∂xn1

[
e

a
b2
x ∂

n2

∂yn2
ze−z

2

]
= A

∂n1

∂xn1

[
e

a
b2
x (−1)n2

2
Hn2+1(z)e

−z2
(
2

λ

)n2
]

=
A

2

(
−2

λ

)n2 n1∑
m=0

(
n1
m

)( a
b2

)m
e

a
b2
x

(
1

λ

)n1−m

Hn1+n2−m+1(z)e
−z2 ,
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where Hn(x) denotes the n-th Hermite polynomial.
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