Productivity and Trade Dynamics in Sudden Stops

Felipe Benguria

Hidehiko Matsumoto

Felipe E. Saffie

University of Kentucky

GRIPS

University of Virginia

July 28, 2022 TWID International Finance Conference

Introduction

- Sudden stops in emerging economies:
 - Sudden reversal of current account.
 - Sharp drops in output, consumption, investment, and asset prices.
 - Modeled as SOE-RBC model with occasionally binding borrowing constraint.
- Empirical studies on sudden stops show:
 - Persistently low output suggests slowdown of productivity growth.
 - Depreciation has differential impacts on non-exporters and exporters.
- Questions:
 - How do sudden stops affect firm-level innovation and trade dynamics?
 - What are the implications of these dynamics for aggregate economy?

This Paper

• Model:

- Embed innovation and trade dynamics into a model of sudden stops.
 - Firms invest in innovation to introduce new products and start exporting.
- Sudden stops have differential impacts on non-exporters and exporters.
- Quantitative analysis:
 - Match the model with Chilean product-level data.
 - Test model predictions about firm-level innovation and trade dynamics.
 - Examine implications for aggregate economy.

Main Results

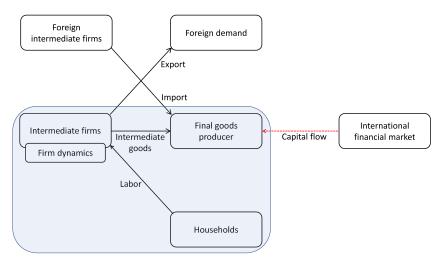
• Calibrated model replicates innovation and trade dynamics in the data:

- Exporters' profits drop less than non-exporters' profits during sudden stops.
- Exporting innovation declines less than domestic innovation.
- Implications for aggregate dynamics:
 - Declined domestic innovation accounts for most of growth slowdown.
 - Boosted export entry promotes recovery and mitigates growth slowdown.

Related Literature

- Sudden stops with occasionally binding borrowing constraint: Mendoza (2010), Bianchi (2011), Benigno et al. (2013), Benigno et al. (2016), Bianchi and Mendoza (2018), Jeanne and Korinek (2020), Ma (2020), Matsumoto (2022)
- Endogenous growth with heterogeneous firms:

Klette and Kortum (2004), Acemoglu et al. (2018), Akcigit and Kerr (2018), Ates and Saffie (2020)


• Trade and growth:

Sampson (2016), Alfaro et al. (2018), Buera and Oberfield (2020), Akcigit et al. (2021), Perla et al. (2021)

Model

Model Overview

- Small open economy with Schumpeterian growth.
- Occasionally binding borrowing constraint triggers sudden stops.

Final Goods Producer

Production function:

$$Y_t = \exp\left(\varepsilon_t^{\mathcal{A}}\right) \exp\left[\int_0^1 \ln y_t(i) di\right]$$

Borrow from abroad, subject to occasionally binding collateral constraint.

$$-B_t + \phi\left[\int_0^1 p_t(i)y_t(i)di\right] \le \kappa Q_t L$$

• Demand for each type of intermediate good *i*:

$$y_t(i) = \frac{Y_t}{p_t(i)} \frac{1}{1 + \phi \mu_t / \lambda_t}$$

 μ_t : Lagrange multiplier on the borrowing constraint

Final Goods Producer

• Production function:

$$Y_t = \exp\left(\varepsilon_t^{\mathcal{A}}\right) \exp\left[\int_0^1 \ln y_t(i) di\right]$$

• Borrow from abroad, subject to occasionally binding collateral constraint.

$$-B_t + \phi\left[\int_0^1 p_t(i)y_t(i)di\right] \le \kappa Q_t L$$

• Demand for each type of intermediate good *i*:

$$y_t(i) = \frac{Y_t}{p_t(i)} \frac{1}{1 + \phi \mu_t / \lambda_t}$$

 μ_t : Lagrange multiplier on the borrowing constraint

FOC

Final Goods Producer

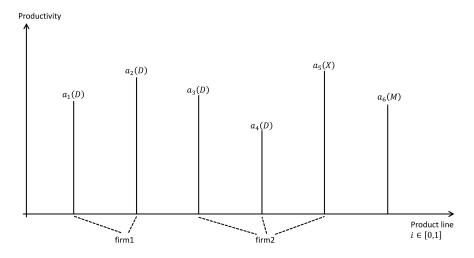
• Production function:

$$Y_t = \exp\left(\varepsilon_t^{\mathcal{A}}\right) \exp\left[\int_0^1 \ln y_t(i) di\right]$$

• Borrow from abroad, subject to occasionally binding collateral constraint.

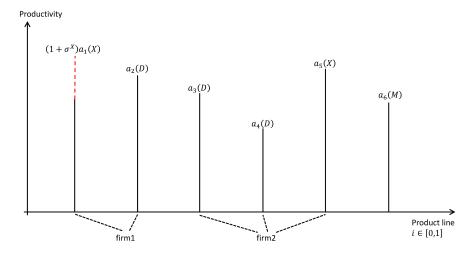
$$-B_t + \phi\left[\int_0^1 p_t(i)y_t(i)di\right] \le \kappa Q_t L$$

• Demand for each type of intermediate good *i*:

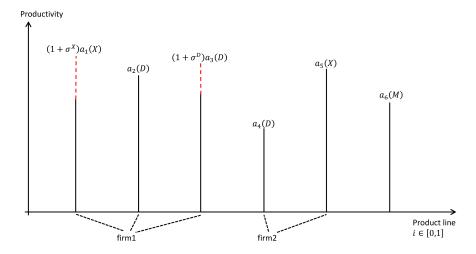

$$y_t(i) = \frac{Y_t}{p_t(i)} \frac{1}{1 + \phi \mu_t / \lambda_t}$$

 μ_t : Lagrange multiplier on the borrowing constraint.

FOC


Intermediate Sector: Schumpeterian Growth

- Each product is produced by the firm with the highest productivity.
- Each firm is a collection of domestic (D) and exporting (X) lines.


Intermediate Sector: Export Entry

- Firms invest in their own domestic lines to start exporting.
- Products are sold domestically before being exported.

Intermediate Sector: Domestic Product Entry

- Firms invest in other firms' products to replace other firms.
- Firms' product portfolios endogenously expand and shrink over time.

Intermediate Sector: Production and Profit

- Production uses capital and labor: $y_t(i) = a_t(i) \left(\ell_t(i)\right)^{\alpha} \left(h_t(i)\right)^{1-\alpha}$
- Profit in the domestic market (s = D, X):

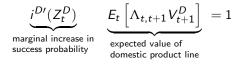
$$\pi_t^{\mathsf{s}} = \left(\frac{\sigma^{\mathsf{s}}}{1 + \sigma^{\mathsf{s}}}\right) \frac{Y_t}{1 + \phi \mu_t / \lambda_t}$$

Profits from export sales:

$$\pi_t^* = \underbrace{\left(1 - \frac{\left(1 + \xi\right) \left(R_t^L\right)^{\alpha} \left(W_t\right)^{1 - \alpha}}{\left(1 + \sigma^X\right) \left(R_t^{L*}\right)^{\alpha} \left(W_t^*\right)^{1 - \alpha}}\right)}_{\text{1 - relative marginal cost}} \underbrace{Y_t^*}_{\text{Foreign}}$$

- Two differences during sudden stops:
 - Sudden stop negatively affects domestic demand but not foreign demand.
 - Lower factor prices increase export profits.

Intermediate Sector: Innovation


- Consider a firm with n^D domestic lines and n^X exporting lines.
- Assumptions for innovation opportunity:
 - This firm has $n^D + n^X$ domestic innovation opportunities.
 - ▶ This firm has *n*^D exporting innovation opportunities.
- Total investment by this firm: $(n^D + n^X)Z_t^D + n^D Z_t^X$.
- Total profit of this firm: $n^D \pi^D_t + n^X (\pi^X_t + \pi^*_t)$
- Value function of a firm is linear in the number of product lines:

$$V_t(n^D, n^X) = n^D V_t^D + n^X V_t^X$$

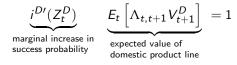
value

Intermediate Sector: Investment in Innovation

• Invest final goods Z_t^D to make domestic innovation:

• Invest final goods Z_t^X to make exporting innovation:

$$\underbrace{(1-d_t)i^{X'}(Z_t^X)}_{\text{marginal increase in}} \underbrace{E_t \left[\Lambda_{t,t+1} \left(V_{t+1}^X - V_{t+1}^D \right) \right]}_{\text{gap in expected value}} = 1$$


success probability

gap in expected value

- Key mechanism:
 - During sudden stops, domestic profit declines whereas export profit increases
 - Differentiated impacts on profits affect two types of innovation differently.

Intermediate Sector: Investment in Innovation

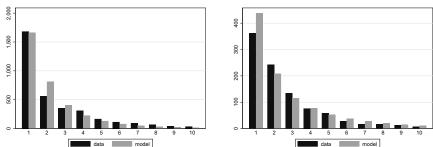
• Invest final goods Z_t^D to make domestic innovation:

• Invest final goods Z_t^X to make exporting innovation:

$$\underbrace{(1-d_t)i^{X'}(Z_t^X)}_{\text{marginal increase in success probability}} \underbrace{E_t \left[\Lambda_{t,t+1} \left(V_{t+1}^X - V_{t+1}^D \right) \right]}_{\text{gap in expected value}} = 1$$

• Key mechanism:

- During sudden stops, domestic profit declines whereas export profit increases.
- Differentiated impacts on profits affect two types of innovation differently.


Quantitative Analysis

Data and Calibration

- Chilean plant-and-product level data (ENIA).
 - Covers all manufacturing plants that employ at least ten workers.
 - Contains product-level data that distinguishes domestic and export markets.
 - ▶ We use data in 1996 1999, which includes sudden stop in 1998.
- Calibrate the model to aggregate and micro-level data:
 - Share of single-product non-exporters.
 - Share of exporters in single-product firms.
 - O Average number of products by non-exporters.
 - Average number of exported products by exporters.

Product Distribution across Firms

- Compute the stationary product distribution for 5,000 firms in the model.
- Only single-product firm and the average are targeted by model parameters.

Product Portfolio and Product Transition

• How are the number of products and product transitions related?

 $Y_f = \beta_1 \cdot X_f + \phi_s + \epsilon_f$

	Domestic entry	Export entry	Domestic exit	Export exit
Panel A: Data				
Number of Products	0.042*** (0.006)			
Number of Domestic Products	(0.000)	0.017***	0.181***	
Number of Exported Products		(0.004)	(0.006)	0.047*** (0.011)
Observations	3996	3996	3996	870
Panel B: Model				
Number of Products	0.175***			
Number of Domestic Products	(0.007)	0.022***	0.266***	
Number of Exported Products		(0.003)	(0.006)	0.027**
Observations	4478	4478	4478	(0.013) 1120

Benguria, Matsumoto, Saffie

Exporting Firms' Premia

• How much is the exporting firms' premia over non-exporting firms?

$$\log Y_f = \beta_1 \cdot \mathsf{Exporter}_f + \phi_s + \epsilon_f$$

	Revenue	Employment	Productivity
Data			
Exporter	1.07***	1.12***	0.61***
	(0.03)	(0.03)	(0.03)
Observations	5185	5185	4923
Model			
Exporter	1.02***	0.92***	2.19***
	(0.03)	(0.03)	(0.142)
Observations	4937	4937	4937
Observations	4931	4937	4937

Product Innovation during Sudden Stop

- Compute average crisis dynamics from 10,000-period simulation, then simulate 5,000 firms using the crisis dynamics of innovation rates.
- How does sudden stop affect domestic and export innovation?

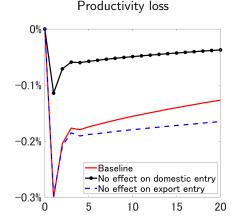
$$Y_{ft} = \beta_1 \times \mathbf{1}[\text{Sudden Stop}_t] + \phi_f + \epsilon_{ft}$$

• Export innovation rate drops much less than domestic innovation rate.

	Da	ata	Model		
	Domestic Export		Domestic	Export entry	
	entry	entry entry entry			
$1[Sudden\ Stop_t]$	-0.083*** (0.006)	-0.018*** (0.003)	-0.091*** (0.008)	-0.003 (0.004)	
Observations	15523	15523	12533	12533	
Observations	15525	15525	12555		

Exporters' Performance during Sudden Stop

• How does sudden stop affect non-exporters' and exporters' performance?


 $\log Y_{ft} = \beta_1 \times \mathbf{1}[\mathsf{Sudden } \mathsf{Stop}_t] \times \mathbf{1}[\mathsf{Exporter}_{ft}] + \phi_f + \delta_t + \epsilon_{ft}$

- Sudden stops have negative impacts on firm performance.
- Exporting firms survive better than non-exporting firms.

		Data			Model	
	Revenue	Profits	Productivity	Revenue	Profits	Productivity
SS×Exporter	0.040***	0.063***	0.093***	0.115***	0.120***	0.091***
	(0.006)	(0.010)	(0.016)	(0.016)	(0.013)	(0.009)
Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Firm Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Observations	21213	20797	19547	18711	18711	18711

Productivity and Welfare Loss by Sudden Stop

- Productivity loss is mostly due to low domestic innovation.
- Export innovation is boosted after crisis and promotes recovery.

Welfare loss in consumption

Baseline	4.62%
No loss in productivity	3.24%
No effect on domestic entry	3.49%
No effect on export entry	5.04%

Conclusion

• Embed heterogeneous firm dynamics into non-linear sudden-stop model.

- Calibrate the model to Chilean manufacturing product-level data:
 - Replicates product distribution across firms.
 - Innovation and trade dynamics are consistent with the data.
- Growth and trade dynamics have important implications for welfare cost.
- Capital controls discourage investment, bringing limited welfare gains.

Appendix

Final Goods Sector **back**

• Maximization problem:

$$\max_{\{\{y_t(i)\}_{i=0}^1, B_t, K_t\}} E_0 \sum_{t=0}^{\infty} \left[\beta^t \lambda_t \Pi_t^T\right]$$
$$\Pi_t = \underbrace{Y_t - \int_0^1 p_t(i)y_t(i)di}_{\text{output - cost}} \underbrace{-B_t + R_{t-1}B_{t-1} - Q_t K_t + (Q_t + R_t^k)K_{t-1}}_{\text{ret foreign asset}} \underbrace{-Q_t K_t + (Q_t + R_t^k)K_{t-1}}_{\text{capital holding and return}}$$
$$-B_t + \phi \left[\int_0^1 p_t(i)y_t(i)di\right] \le \kappa Q_t K_{t-1}$$

• FOCs:

$$y_t(i) = \frac{Y_t}{p_t(i)} \frac{1}{1 + \phi \mu_t / \lambda_t}$$
$$\lambda_t - \mu_t = \beta R_t E_t [\lambda_{t+1}]$$
$$Q_t = \frac{\beta E_t \left[\lambda_{t+1} \left(Q_{t+1} + R_{t+1}^k\right) + \kappa \mu_{t+1} Q_{t+1}\right]}{\lambda_t}$$

Intermediate Firms' Profit Lack

• Marginal cost for production:

$$MC_t(i) = \frac{1}{a_t(i)} \alpha^{-\alpha} (1-\alpha)^{-(1-\alpha)} \left(R_t^k\right)^{\alpha} (W_t)^{1-\alpha}$$

• Intermediate firms' profit:

$$\pi_t^s(i) = p_t(i)y_t(i) - R_t^k k_t(i) - W_t \ell_t(i)$$

• Using optimal price $p_t(i) = \widetilde{MC}_t(i)$ and demand function $y_t(i) = Y_t/p_t(i)$,

$$\pi_t^{s}(i) = p_t(i)y_t(i) - MC_t(i)y_t(i) = Y_t - MC_t(i)\frac{Y_t}{p_t(i)}$$
$$= \left(1 - \frac{MC_t(i)}{\widetilde{MC}_t(i)}\right)Y_t$$

Value of Product Lines (back)

• Value of a firm satisfies:

$$V_t(n^D, n^X) = n^D V_t(1, 0) + n^X V_t(0, 1)$$

• Value of each product line:

$$\begin{split} V_t(1,0) &= & \max_{Z_t^D, Z_t^X} \pi_t^D - Z_t^D - Z_t^X \\ &+ \left[i^D (Z_t^D) + (1 - d_t) \left(1 - i^X (Z_t^X) \right) \right] E_t \left[\Lambda_{t,t+1} V_{t+1}(1,0) \right] \\ &+ \left[(1 - d_t) i^X (Z_t^X) \right] E_t \left[\Lambda_{t,t+1} V_{t+1}(0,1) \right] \\ V_t(0,1) &= & \max_{Z_t^D} \pi_t^X + \pi_t^* - Z_t^D \\ &+ \left(i^D (Z_t^D) + i^{FX} \right) E_t \left[\Lambda_{t,t+1} V_{t+1}(1,0) \right] \\ &+ (1 - i^{FX}) E_t \left[\Lambda_{t,t+1} V_{t+1}(0,1) \right] \end{split}$$

• Maximization problem:

$$\max_{\{C_t, H_t, Z_t^E, Z_t^{EX}\}_{t=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \beta^t \ln\left(C_t - A_t \frac{(H_t)^{\omega}}{\omega}\right)$$

subject to

$$\begin{aligned} C_t + Z_t^E + Z_t^{EX} &= W_t H_t + \Pi_t \\ &+ \theta_{t-1}^D \left(\pi_t^D - Z_t^D - Z_t^X \right) + \theta_{t-1}^X \left(\pi_t^X + \pi_t^* - Z_t^D \right) \end{aligned}$$

• FOCs:

$$A_t(H_t)^{\omega-1} = W_t$$
$$\lambda_t = \frac{1}{C_t - A_t(H_t)^{\omega}/\omega}$$

Transition of Product Lines **Dec**

• Share of domestic lines:

$$\begin{split} \theta^{D}_{t} &= \theta^{D}_{t-1} + (e^{D}_{t} + (\theta^{D}_{t-1} + \theta^{X}_{t-1})i^{D}_{t}) \frac{1 - \theta^{D}_{t-1} - \theta^{X}_{t-1}}{1 - \theta^{X}_{t-1}} + \theta^{X}_{t-1} i^{FX} \\ &- \theta^{D}_{t-1} (1 - d_{t})i^{X}_{t} - \theta^{D}_{t-1} i^{FD} - e^{X}_{t} \frac{\theta^{D}_{t-1}}{1 - \theta^{X}_{t-1}} \,. \end{split}$$

• Share of exporting lines (extensive margin of export):

$$\theta_t^X = \theta_{t-1}^X + \theta_{t-1}^D (1 - d_t) i_t^X + e_t^X - \theta_{t-1}^X i^{FX}$$

• Share of importing lines (extensive margin of import): $1 - \theta_t^D - \theta_t^X$

Aggregation of Intermediate Sector 💷

• Growth in aggregate productivity:

$$\frac{A_{t+1}}{A_t} = 1 + g_t = (1 + \sigma^D)^{e_t^D + (\theta_{t-1}^D + \theta_{t-1}^X)i_t^D} (1 + \sigma^X)^{e_t^X + \theta_{t-1}^D (1 - d_t)i_t^X} (1 + \sigma^X)^{i^{FD}}$$

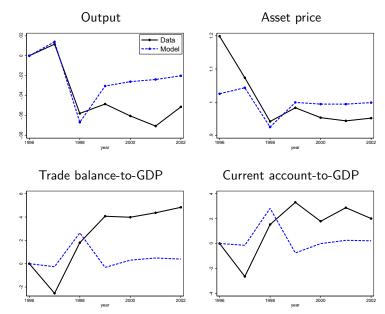
• Replacement rate:

$$d_{t} = \left(e_{t}^{D} + e_{t}^{X} + (\theta_{t-1}^{D} + \theta_{t-1}^{X})i_{t}^{D}\right)\frac{1}{1 - \theta_{t-1}^{X}} + i^{FD}$$

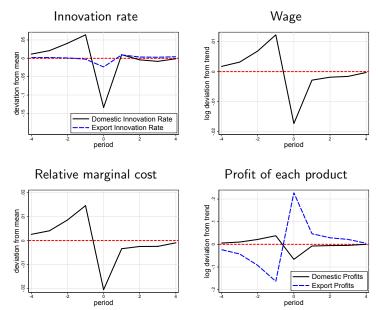
• Asset and labor allocations:

$$L = \theta_{t-1}^{D} \ell_{t}^{D} + \theta_{t-1}^{X} \left(\ell_{t}^{X} + \ell_{t}^{*} \right)$$
$$H_{t} = \theta_{t-1}^{D} h_{t}^{D} + \theta_{t-1}^{X} \left(h_{t}^{X} + h_{t}^{*} \right)$$

Variable		Value	Source
β	β Discount factor		Standard
R	Foreign bond interest rate	1.05	Standard
ω	Frisch elasticity $1/(\omega - 1)$	1.455	Mendoza (1991)
α	Asset share in production	0.08	Capital to Output ratio (Chile)
ξ	Iceberg trade cost	0.21	Anderson and van Wincoop (2004)
φ	Fraction of input subject to WK	0.2	Total credit to GDP ratio (Chile)
κ	Coefficient on borrowing constraint	0.2	Mendoza (2010)
L	Amount of productive asset	0.6	Frequency of Sudden Stops
ρ	Concavity of innovation investment	1.5	Median value from literature


Internally Calibrated Parameters

	Variable	Value	Target	Model	Data
σ^{D}	σ^D Domestic innovation step size		Aggregate growth rate	2.5%	2.5%
σ^X	Export innovation step size	0.30	Relative profit of non-exporters to exporters	27.8%	26.2%
η^{ED}	Non-exporter entry coefficient	1.46	Share of single-product non-exporters	37.1%	38.3%
η^{EX}	Exporter entry coefficient	0.31	Share of exporters in single-product firms	20.8%	21%
η^D	Domestic innovation coefficient	2.97	Avg. $\#$ of products by non-exporters	2.24	2.56
η^X	Export innovation coefficient	0.52	Avg. $\#$ of exported products by exporters	1.05	1.7
<i>y</i> *	Foreign demand	0.74	Export revenue share for exporters 30.5%		35.9%
i ^{FX}	Foreign innovation rate on X lines	0.23	Domestic innovation rate by domestic firms		
i ^{FD}	Foreign innovation rate on D lines	0.01	Export innovation rate by domestic firms		


back

Aggregate Dynamics

back

Aggregate Dynamics

Macroprudential Capital Controls (Lack

Consumption crisis dynamics

- Welfare effect is very small positive or can be even negative.
- Capital control discourages investment and growth in normal times.

0.01% 4% Total No policy ••• Cyclical Policy Exogenous growth 2% 0.005% 0% 0% -2% -0.005% -4% -0.01%-0.12-2 $^{-1}$ 0 2 3 -0.11-0.1-0.09-0.08

Welfare gain/loss by policy

Reference I

- Acemoglu, D., Akcigit, U., Alp, H., Bloom, N., and Kerr, W. R. (2018). Innovation, Reallocation, and Growth. *American Economic Review*, 108(11):3450–3491.
- Akcigit, U., Ates, S. T., and Impullitti, G. (2021). Innovation and Trade Policy in a Globalized World.
- Akcigit, U. and Kerr, W. R. (2018). Growth through Heterogeneous Innovations. Journal of Political Economy, 126(4).
- Alfaro, L., Cuñat, A., Fadinger, H., and Liu, Y. (2018). The Real Exchange Rate, Innovation and Productivity: Regional Heterogeneity, Asymmetries and Hysteresis. *mimeo*.
- Anderson, J. E. and van Wincoop, E. (2004). Trade Costs. *Journal of Economic Literature*, 42(3):691–751.
- Ates, S. T. and Saffie, F. (2020). Fewer but Better: Sudden Stops, Firm Entry, and Financial Selection. *American Economic Journal: Macroeconomics*.
- Benigno, G., Chen, H., Otrok, C., Rebucci, A., and Young, E. R. (2013). Financial crises and macro-prudential policies. *Journal of International Economics*, 89(2):453–470.

Reference II

- Benigno, G., Chen, H., Otrok, C., Rebucci, A., and Young, E. R. (2016). Optimal capital controls and real exchange rate policies: A pecuniary externality perspective. *Journal* of *Monetary Economics*, 84:147–165.
- Bianchi, J. (2011). Overborrowing and Systemic Externalities in the Business Cycle. American Economic Review, 101(December):3400–3426.
- Bianchi, J. and Mendoza, E. G. (2018). Optimal Time-Consistent Macroprudential Policy. Journal of Political Economy, 126(2).
- Buera, F. J. and Oberfield, E. (2020). The Global Diffusion of Ideas. *Econometrica*, 88(1):83–114.
- Jeanne, O. and Korinek, A. (2020). Macroprudential Regulation versus mopping up after the crash. *Review of Economic Studies*, 87(3):1470–1497.
- Klette, T. J. and Kortum, S. (2004). Innovating Firms and Aggregate Innovation. Journal of Political Economy, 112(5):986–1018.
- Ma, C. (2020). Financial stability, growth and macroprudential policy. *Journal of International Economics*, 122.

Reference III

- Matsumoto, H. (2022). Foreign reserve accumulation, foreign direct investment, and economic growth. *Review of Economic Dynamics*, 43:241–262.
- Mendoza, E. G. (1991). Real business cycles in a small open economy. American Economic Review, 81(4):797–818.
- Mendoza, E. G. (2010). Sudden Stops, Financial Crises, and Leverage. American Economic Review, 100(5):1941–1966.
- Perla, J., Tonetti, C., and Waugh, M. E. (2021). Equilibrium technology diffusion, trade, and growth. American Economic Review, 111(1):73–128.
- Sampson, T. (2016). Dynamic selection: An idea flows theory of entry, trade, and growth. *Quarterly Journal of Economics*, 131(1):315–380.