International Diversification, Reallocation and the Labor Share

Joel M. David	Romain Ranciere	David Zeke
FRB Chicago	USC & NBER	USC

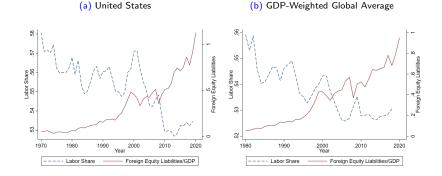
Summer 2022

Disclaimer: The views expressed here do not necessarily reflect the views of the Federal Reserve Bank of Chicago or the Federal Reserve System.

How does globalization affect labor market outcomes/income distribution?

How does globalization affect labor market outcomes/income distribution?

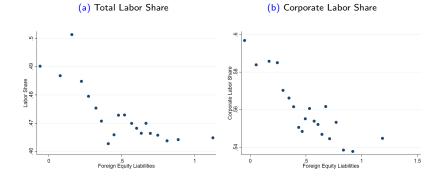
• Recent decades: \uparrow financial integration, \downarrow labor's share of income



 \Rightarrow Links between int'l diversification and labor's share of income?

How does globalization affect labor market outcomes/income distribution?

• Recent decades: \uparrow financial integration, \downarrow labor's share of income



 \Rightarrow Links between int'l diversification and labor's share of income?

What we do: heterogeneous firms choose labor facing aggregate risk

- Price of risk affects allocation and micro/macro labor shares
- Int'l diversification reduces the price of risk, dual micro effects:
 - 1. Increases within-firm labor shares
 - 2. Reallocation towards risky/low labor share firms
 - \Rightarrow Effect on agg LS depends on price x amount x heterogeneity of risk

What we find: verify key predictions using cross-country firm-level data

- 1. Riskier firms have lower labor shares
- 2. \uparrow Int'l diversification \Rightarrow reallocation to riskier, low LS firms

 \Rightarrow Agg LS \downarrow , effect sizable

What we do: heterogeneous firms choose labor facing aggregate risk

- Price of risk affects allocation and micro/macro labor shares
- Int'l diversification reduces the price of risk, dual micro effects:
 - 1. Increases within-firm labor shares
 - 2. Reallocation towards risky/low labor share firms
 - \Rightarrow Effect on agg LS depends on price x amount x heterogeneity of risk

What we find: verify key predictions using cross-country firm-level data

- 1. Riskier firms have lower labor shares
- 2. $\uparrow\,$ Int'l diversification $\,\Rightarrow\,$ reallocation to riskier, low LS firms

 $\Rightarrow \mathsf{Agg} \mathsf{LS} \downarrow, \mathsf{effect sizable}$

1. Financial liberalization, international diversification & risk-taking Obstfeld (1994); Thesmar & Thoenig (2011); Levchenko (2005, 2009)

2. Decline of the labor share

Karabarbounis & Neiman (2014); Hartman-Glaser et al. (2019); Kehrig & Vincent (2021); Autor et al. (2020); Lashkari et al. (2018); Acemoglu & Restrepo (2018, 2020); Autor & Salomons (2018); Elsby et al. (2013); Barkai (2020); Benmelech et al. (2020); Stansbury & Summers (2020); Grossman & Oberfield (2021)

3. Risk premia and input allocations

Donangelo, Gourio, Kehrig & Palacios (2018); David, Schmid, & Zeke (2021); David & Zeke (2022)

The model

Heterogeneous firms produce single good $Y_i = A_i K_i^{\alpha_1} L_i^{\alpha_2}$

- Choose L_i and K_i one period in advance to max market value
- Wage/rental rate cannot condition on next period shock realizations
- SDF Λ; for now, take as exogenous (endogenize later)

Firm value maximization: $\max_{L_i,K_i} \mathbb{E} \left[\Lambda \left(A_i K_i^{\alpha_1} L_i^{\alpha_2} - WL_i - RK_i \right) \right]$

Optimality condition yields micro-level (expected) labor share:

$$\frac{WL_{i}}{\mathbb{E}\left[Y_{i}\right]} = \alpha_{2}\left(1 - \kappa_{i}\right) \quad \text{where} \quad \kappa_{i} = -\text{cov}\left(\frac{\Lambda}{\mathbb{E}\left[\Lambda\right]}, \frac{A_{i}}{\mathbb{E}\left[A_{i}\right]}\right)$$

- $\Rightarrow \kappa_i$ captures firm-specific risk premium in labor choice
 - If A_i procyclical, Λ countercyclical $\rightarrow \kappa_i > 0, \downarrow LS_i$
 - More procyclical firms: $\uparrow \kappa_i$, $\downarrow LS_i$

Other production functions

The model

Heterogeneous firms produce single good $Y_i = A_i K_i^{\alpha_1} L_i^{\alpha_2}$

- Choose L_i and K_i one period in advance to max market value
- Wage/rental rate cannot condition on next period shock realizations
- SDF Λ; for now, take as exogenous (endogenize later)

Firm value maximization: $\max_{L_i,K_i} \mathbb{E} \left[\Lambda \left(A_i K_i^{\alpha_1} L_i^{\alpha_2} - WL_i - RK_i \right) \right]$

Optimality condition yields micro-level (expected) labor share:

$$\frac{WL_i}{\mathbb{E}\left[Y_i\right]} = \alpha_2 \left(1 - \kappa_i\right) \quad \text{where} \quad \kappa_i = -\operatorname{cov}\left(\frac{\Lambda}{\mathbb{E}\left[\Lambda\right]}, \frac{A_i}{\mathbb{E}\left[A_i\right]}\right)$$

- $\Rightarrow \kappa_i$ captures firm-specific risk premium in labor choice
 - If A_i procyclical, Λ countercyclical $\rightarrow \kappa_i > 0, \downarrow LS_i$
 - More procyclical firms: $\uparrow \kappa_i$, $\downarrow LS_i$

Other production functions

The model

Heterogeneous firms produce single good $Y_i = A_i K_i^{\alpha_1} L_i^{\alpha_2}$

- Choose L_i and K_i one period in advance to max market value
- Wage/rental rate cannot condition on next period shock realizations
- SDF Λ; for now, take as exogenous (endogenize later)

Firm value maximization: $\max_{L_i,K_i} \mathbb{E} \left[\Lambda \left(A_i K_i^{\alpha_1} L_i^{\alpha_2} - WL_i - RK_i \right) \right]$

Optimality condition yields micro-level (expected) labor share:

$$\frac{WL_{i}}{\mathbb{E}\left[Y_{i}\right]} = \alpha_{2}\left(1 - \kappa_{i}\right) \quad \text{where} \quad \kappa_{i} = -\text{cov}\left(\frac{\Lambda}{\mathbb{E}\left[\Lambda\right]}, \frac{A_{i}}{\mathbb{E}\left[A_{i}\right]}\right)$$

- $\Rightarrow \kappa_i$ captures firm-specific risk premium in labor choice
 - If A_i procyclical, Λ countercyclical $\rightarrow \kappa_i > 0, \downarrow LS_i$
 - More procyclical firms: $\uparrow \kappa_i$, $\downarrow LS_i$

Other production functions

Aggregate expected labor share:

$$\frac{WL}{\mathbb{E}[Y]} = \sum_{i} \frac{\mathbb{E}[Y_i]}{\mathbb{E}[Y]} \frac{WL_i}{\mathbb{E}[Y_i]}$$

 $\Rightarrow~$ Depends on joint dist. of micro-level output and labor shares

Allocations:

• Inputs:
$$\frac{L_i}{L} = \frac{K_i}{K} = \frac{\left(\mathbb{E}[A_i](1-\kappa_i)\right)^{\frac{1}{1-\alpha_1-\alpha_2}}}{\sum_i \left(\mathbb{E}[A_i](1-\kappa_i)\right)^{\frac{1}{1-\alpha_1-\alpha_2}}}$$

• Output:
$$\frac{\mathbb{E}[Y_i]}{\mathbb{E}[Y]} = \frac{\mathbb{E}[A_i]^{\frac{1}{1-\alpha_1-\alpha_2}} (1-\kappa_i)^{\frac{\alpha_1+\alpha_2}{1-\alpha_1-\alpha_2}}}{\sum_i \mathbb{E}[A_i]^{\frac{1}{1-\alpha_1-\alpha_2}} (1-\kappa_i)^{\frac{\alpha_1+\alpha_2}{1-\alpha_1-\alpha_2}}}$$

 \Rightarrow Output and labor shares both \downarrow in κ_i , effects of risk on agg LS ambiguous

Neat expression for agg LS

Aggregate expected labor share:

$$\frac{WL}{\mathbb{E}[Y]} = \sum_{i} \frac{\mathbb{E}[Y_i]}{\mathbb{E}[Y]} \frac{WL_i}{\mathbb{E}[Y_i]}$$

 $\Rightarrow~$ Depends on joint dist. of micro-level output and labor shares

Allocations:

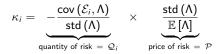
• Inputs:
$$\frac{L_i}{L} = \frac{K_i}{K} = \frac{(\mathbb{E}[A_i](1-\kappa_i))^{\frac{1}{1-\alpha_1-\alpha_2}}}{\sum_i (\mathbb{E}[A_i](1-\kappa_i))^{\frac{1}{1-\alpha_1-\alpha_2}}}$$

• Output:
$$\frac{\mathbb{E}[Y_i]}{\mathbb{E}[Y]} = \frac{\mathbb{E}[A_i]^{\frac{1}{1-\alpha_1-\alpha_2}} (1-\kappa_i)^{\frac{\alpha_1+\alpha_2}{1-\alpha_1-\alpha_2}}}{\sum_i \mathbb{E}[A_i]^{\frac{1}{1-\alpha_1-\alpha_2}} (1-\kappa_i)^{\frac{\alpha_1+\alpha_2}{1-\alpha_1-\alpha_2}}}$$

 \Rightarrow Output and labor shares both $~\downarrow~$ in $\kappa_i,$ effects of risk on agg LS ambiguous

Neat expression for agg LS

Decompose the risk premium:



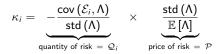
- Quantity of risk: firm-specific, exogenous
- Price of risk: common across firms, endogenous

Consider a change (fall) in the price of risk, i.e., \mathcal{P} \downarrow

- Within effect: firm-level labor shares increase
- Reallocation effect: resources shift towards riskier/low LS firms
- Formally:

 \Rightarrow Net effect ambiguous, but can gain intuition from simple examples

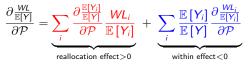
Decompose the risk premium:



- Quantity of risk: firm-specific, exogenous
- Price of risk: common across firms, endogenous

Consider a change (fall) in the price of risk, i.e., $\mathcal{P}~\downarrow$

- Within effect: firm-level labor shares increase
- Reallocation effect: resources shift towards riskier/low LS firms
- Formally:



 $\Rightarrow~$ Net effect ambiguous, but can gain intuition from simple examples

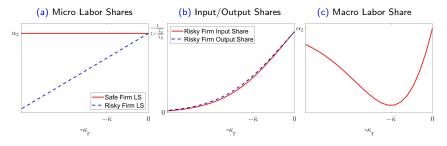
Example: two firms, one risky, one safe

Two types, risky and safe: A_r stochastic, $A_s = \mathbb{E}[A_s]$

•
$$\kappa_r > 0$$
, $\kappa_s = 0$

Fall in κ_r (i.e., \mathcal{P}):

- Within effect > 0; reallocation effect < 0
- Aggregate LS falls iff $\kappa_r > \overline{\kappa}$



Gaussian Example

Two agent types

- 'Workers': provide labor, cannot participate in asset markets
- 'Capitalists': own firms (and capital), trade financial assets, CRRA utility

Two firm types, risky and safe; continuum of mass zero countries

- Risky productivity A_j uncorrelated across countries
- Proportional cost τ_j on foreign holdings of country j assets
- Costless trade in risk-free bond

Three equilibria, depends on level of τ_j :

- $\tau_j = 0$: Complete diversification risk neutral pricing
- $\tau_j \in (0, \overline{\tau}_j)$: Interior risky firm held by domestic and foreign capitalists
- $au_j \geq \overline{ au}_j$: Autarky risky firm held only by domestic capitalist

Two agent types

- 'Workers': provide labor, cannot participate in asset markets
- 'Capitalists': own firms (and capital), trade financial assets, CRRA utility

Two firm types, risky and safe; continuum of mass zero countries

- Risky productivity A_j uncorrelated across countries
- Proportional cost τ_j on foreign holdings of country j assets
- Costless trade in risk-free bond

Three equilibria, depends on level of τ_j :

- $\tau_j = 0$: **Complete diversification** risk neutral pricing
- $au_j \in (0, \overline{ au}_j)$: Interior risky firm held by domestic and foreign capitalists
- $\tau_j \geq \overline{\tau}_j$: Autarky risky firm held only by domestic capitalist

Risk premia and labor share in interior equilibria

Valuations: $P_{rj} = \mathbb{E} \left[\Lambda_j \Pi_{rj} \right] = \frac{1}{1 + \tau_j} \mathbb{E} \left[\Lambda_h \Pi_{rj} \right]$

• Risk premium pinned down by τ_j :

$$-\kappa_{rj} \equiv \operatorname{cov}\left(\frac{\Lambda_{j}}{\mathbb{E}\left[\Lambda_{j}\right]}, \frac{A_{j}}{\mathbb{E}\left[A_{j}\right]}\right) = -\frac{\tau_{j}\left(1 - \alpha_{1} - \alpha_{2}\right)}{1 + \tau_{j}\left(1 - \alpha_{1} - \alpha_{2}\right)}$$

 \Rightarrow Resource allocation, micro and macro labor shares affected by τ_j

Risk premia and labor share in interior equilibria

Valuations: $P_{rj} = \mathbb{E} \left[\Lambda_j \Pi_{rj} \right] = \frac{1}{1 + \tau_j} \mathbb{E} \left[\Lambda_h \Pi_{rj} \right]$

Risk premium pinned down by *τ_j*:

$$-\kappa_{rj} \equiv \operatorname{cov}\left(\frac{\Lambda_{j}}{\mathbb{E}\left[\Lambda_{j}\right]}, \frac{A_{j}}{\mathbb{E}\left[A_{j}\right]}\right) = -\frac{\tau_{j}\left(1 - \alpha_{1} - \alpha_{2}\right)}{1 + \tau_{j}\left(1 - \alpha_{1} - \alpha_{2}\right)}$$

 \Rightarrow Resource allocation, micro and macro labor shares affected by τ_i

Fall in cost of foreign investment, $\tau_i \Rightarrow$ foreign investors hold more equity:

- 1. Price of risk, risk premium decrease
- 2. Within effect increases the aggregate labor share
- 3. Reallocation effect decreases the aggregate labor share
- 4. Agg labor share falls iff $\tau_j > \hat{\tau_j}$ (price of risk high enough)

Risk premia and labor share in interior equilibria

Valuations: $P_{rj} = \mathbb{E} \left[\Lambda_j \Pi_{rj} \right] = \frac{1}{1 + \tau_j} \mathbb{E} \left[\Lambda_h \Pi_{rj} \right]$

• Risk premium pinned down by τ_j :

$$-\kappa_{rj} \equiv \mathsf{cov}\left(\frac{\Lambda_j}{\mathbb{E}\left[\Lambda_j\right]}, \frac{A_j}{\mathbb{E}\left[A_j\right]}\right) = -\frac{\tau_j\left(1 - \alpha_1 - \alpha_2\right)}{1 + \tau_j\left(1 - \alpha_1 - \alpha_2\right)}$$

 \Rightarrow Resource allocation, micro and macro labor shares affected by τ_j

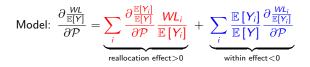


Key implications of model:

1 Trends: Reallocation lowers labor share, within-firm changes raise it

- Verified in Orbis, Compustat Countries
- 2 Risky firms have lower labor share
 - High market risk firms have lower labor share (Compustat Global/US)
- ${\it (3)}$ Rise in foreign equity liabilities \Rightarrow reallocation to riskier firms
 - Verified using data on foreign equity liabilities + Compustat Global/US

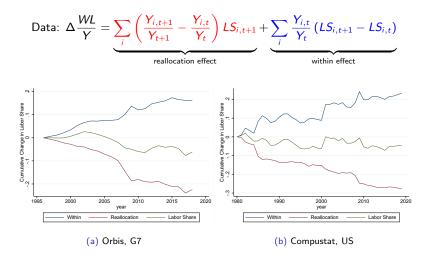
Cumulative effect of reallocation, within components



Cumulative effect of reallocation, within components

$$\begin{split} \mathsf{Model:} \ & \underbrace{\frac{\partial \frac{\mathsf{WL}}{\mathbb{E}[Y]}}{\partial \mathcal{P}} = \underbrace{\sum_{i} \frac{\partial \frac{\mathbb{E}[Y_{i}]}{\mathbb{E}[Y]}}{\partial \mathcal{P}} \frac{\mathsf{WL}_{i}}{\mathbb{E}[Y_{i}]}}_{\mathsf{reallocation effect} > 0} + \underbrace{\sum_{i} \frac{\mathbb{E}[Y_{i}]}{\mathbb{E}[Y]} \frac{\partial \frac{\mathsf{WL}_{i}}{\mathbb{E}[Y_{i}]}}{\mathsf{within effect} < 0}}_{\mathsf{within effect} < 0} \end{split}$$
$$\mathsf{Data:} \ & \Delta \frac{\mathsf{WL}}{Y} = \underbrace{\sum_{i} \left(\frac{Y_{i,t+1}}{Y_{t+1}} - \frac{Y_{i,t}}{Y_{t}}\right) LS_{i,t+1}}_{\mathsf{reallocation effect}} + \underbrace{\sum_{i} \frac{Y_{i,t}}{Y_{t}} \left(LS_{i,t+1} - LS_{i,t}\right)}_{\mathsf{within effect}} \underbrace{LS_{i,t} = \frac{\mathsf{Labor Compensation}}{\mathsf{Value Added}}}_{\mathsf{Y}_{i,t}} = \mathsf{Value Added} \end{split}$$

Cumulative effect of reallocation, within components



More Countries

Reallocation Across vs Within Industries

Firm-level risk and labor share: evidence from Compustat Global

Key ingredient for theory: risky firms have lower relative labor share

• Firm risk: country market beta relative to industry

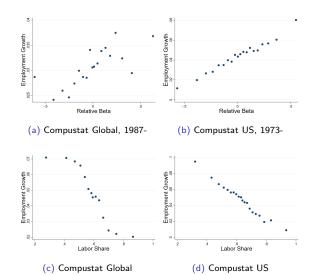
$$r_{ijt} - r_{jt}^{f} = \beta_{it} \left(r_{jt}^{m} - r_{jt}^{f} \right) + \epsilon_{it}, \text{ residualize on country-ind-year } Petales$$
Labor share = $\frac{\text{Labor Compensation}}{\text{Value Added}}, \text{ well reported in Compustat Global } Petales$

$$u = \frac{1}{\sqrt{1 - 1}} + \frac{1}{\sqrt{1 - 1}} +$$

Magnitude: one std. dev. $\uparrow \beta_i \Rightarrow LS_i \downarrow 4 - 8\%$

Risk, labor share, and reallocation

Model: \uparrow diversification \rightarrow reallocation towards risky/low LS firms Data: Reallocation over time towards firms that are risky, have low labor share



Model: $\uparrow\,$ diversification $\,\rightarrow\,$ reallocation towards risky/low LS firms

$$\Delta \log \frac{Z_{ijt}}{Z_{indjt}} = \gamma_{\beta, \textit{FEL}} \beta_i \Delta \textit{FEL}_{jt} + \gamma_x X_{ijt} + \varepsilon_{ijt}$$

FEL = Foreign Equity Liabilities/GDP (from *External Wealth of Nations*)

	Sales Labor		or	
	(1)	(2)	(1)	(2)
	OLS	IV	OLS	IV
Relative Beta \times ΔFEL	0.146***		0.0803***	
	(4.43)		(4.21)	
Observations	73101		71288	
ind \times yr \times cty F.E.	Х		х	
Firm-specific trend	Х		Х	

Magnitude: US FEL since 1980 \uparrow 1.7%/year

 \Rightarrow One std. dev. higher beta firm grew $\approx 0.1-0.2\%$ faster every year

Construct IV to address possible endogeneity of foreign equity liabilities

- Isolate variation exogenous to domestic financial conditions
- Idea: Liabilities of one country are assets of others
- Identity: $FEL_{j,t} = \sum_{s \neq j} H_{s,j,t} FEA_{s,t}$
 - $FEA_{s,t}$ = total foreign equity assets of country s
 - $FEA_{s,j,t}$ = foreign equity assets of country *s* from country *j* issuers

•
$$H_{s,j,t} = \frac{FEA_{s,j,t}}{FEA_{s,t}}$$
 share of country *j* equity in country *s* FEA

Construct IV to address possible endogeneity of foreign equity liabilities

- Isolate variation exogenous to domestic financial conditions
- Idea: Liabilities of one country are assets of others
- Identity: $FEL_{j,t} = \sum_{s \neq j} H_{s,j,t} FEA_{s,t}$
 - FEA_{s,t} = total foreign equity assets of country s
 - $FEA_{s,j,t}$ = foreign equity assets of country *s* from country *j* issuers
 - $H_{s,j,t} = \frac{FEA_{s,j,t}}{FEA_{s,t}}$ share of country *j* equity in country *s* FEA

Instrument: lagged portfolio share, change in other countries FEA

$$\widehat{\Delta FEL_{j,t}} = \sum_{s \neq j} \underbrace{H_{s,j,t-1}}_{laged} \Delta \left(FEA_{s,t} - \underbrace{FEA_{s,j,t}}_{exclusion} \right)$$

Variation coming from heterogeneous cross-border equity patterns Data Source: IMF CPIS/CDIS surveys, sample 1999-

Model: $\uparrow\,$ diversification $\,\rightarrow\,$ reallocation towards risky/low LS firms

$$\Delta \log \frac{Z_{ijt}}{Z_{indjt}} = \gamma_{\beta, \textit{FEL}} \beta_i \Delta \textit{FEL}_{jt} + \gamma_x X_{ijt} + \varepsilon_{ijt}$$

FEL = Foreign Equity Liabilities/GDP (from *External Wealth of Nations*)

	Sales		Lab	or
	(1)	(2)	(1)	(2)
	OLS	IV	OLS	IV
Relative Beta $\times \Delta FEL$	0.146***	0.245***	0.0803***	0.121***
	(4.43)	(4.36)	(4.21)	(3.75)
Observations	73101	56330	71288	55220
ind \times yr \times cty F.E.	Х	Х	Х	Х
Firm-specific trend	Х	Х	Х	Х

Magnitude: US FEL since 1980 \uparrow 1.7%/year

 \Rightarrow One std. dev. higher beta firm grew $\approx 0.1-0.2\%$ faster every year

Diversification and aggregate labor share - cross country regression

First-order approximation of model yields:

$$\Delta \log LS_{j} = \alpha_{j} + \underbrace{\gamma_{FEL} \Delta FEL_{j,t}}_{\text{Int'l diversification}} + \underbrace{\gamma_{tfp} \Delta \left(tfp_{j,t} - \mathbb{E}_{t-1} \left[tfp_{j,t} \right] \right)}_{\text{TFP shocks}} + \varepsilon_{j,t}$$

	(1)	(2)	(3)	(4)	
	OLS	IV	OLS	IV	
ΔFEL	-0.0298***	-0.0427***			
	(-3.46)	(-3.26)			
ΔTFP shock	0.0244	-0.0359			
	(0.46)	(-0.70)			
Δ Average hours					
Δ Rel. price of investment					
Country trend F.E.	Х	Х			
Observations	439	302			

Extension to CES:

Int'l diversification	n	Productivity shocks		K/L determinants
	(1)	(2)	(3)	(4)
	OLS	ĪV	OLS	ĪV
ΔFEL	-0.0298***	* -0.0427***	-0.0136	-0.0316**
	(-3.46)	(-3.26)	(-1.48)	(-2.43)
ΔTFP shock	0.0244	-0.0359	0.0556	-0.00770
	(0.46)	(-0.70)	(1.04)	(-0.15)
Δ Average hours			-0.0609	0.00175
			(-0.52)	(0.01)
$\Delta Rel.$ price of investment			0.0391***	0.0243*
			(3.08)	(1.86)
Country trend F.E.	Х	Х	Х	Х
Observations	439	302	382	248

Magnitude: US FEL/GDP 1970 to 2020 \uparrow 5% to 100% \Rightarrow LS \downarrow 2-3 p.p.

Theory linking int'l diversification to the aggregate labor share

- Increasing diversification can reduce the labor share
- Consistent with within and reallocation effects observed in micro-data
- Economic magnitudes significant

Grossman & Oberfield (2021) - will labor share stabilize ...?

• Our mechanism suggests it may!

Thank you!

ORBIS country components:

- G7 countries in years with >= 500 obs to compute components
- UK, Germany, France, Italy, Japan (US, Canada have too few)
- · Results qualitatively unchanged if we include other advanced countries

Compustat Global

- Advanced countries with >= 500 obs in at least one year
- Australia, Germany, France, UK, Singapore, Sweden, Taiwan
- Australia, & European Countries have > 50% report labor comp.

Back

Measuring firm exposure to aggregate risk

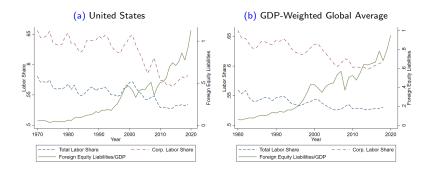
- **1** Compute firm market beta: $r_{ijt} r_{jt}^{f} = \beta_{it} \left(r_{jt}^{m} r_{jt}^{f} \right) + \epsilon_{it}$
- 2 Residualize on industry-year fixed effects, compute avg over firm life
- 3 Results in measure of *relative* exposure to risk vs other firms in industry

Why this procedure?

- If systematic reallocation, market portfolio changes, so do measured betas
- By definition, **mkt cap weighted avg beta** = 1
- Reallocation towards riskier firms doesn't mean average mkt beta increases
- Our measure corrects for this time invariant firm beta, relative to industry

Back

Corporate sector labor share



More general production functions

CES Production:
$$Y_i = A_i \left((1 - \theta) K_i^{\rho} + \theta L_i^{\rho} \right)^{\frac{\nu}{\rho}}$$

Firm-level labor share:

$$\frac{WL_{i}}{\mathbb{E}\left[Y_{i}\right]} = \frac{\nu\theta}{\left(\frac{\kappa}{L}\right)^{\rho}\left(1-\theta\right)+\theta}\left(1-\kappa_{i}\right)$$

More generally:

$$\frac{WL_{i}}{\mathbb{E}[Y_{i}]} = \frac{\mathbb{E}[MRPL_{i}]L_{i}}{\mathbb{E}[Y_{i}]} \left(1 \underbrace{+ \operatorname{cov}\left(\frac{\Lambda}{\mathbb{E}[\Lambda]}, \frac{MRPL_{i}}{\mathbb{E}[MRPL_{i}]}\right)}_{\text{Risk adjustment}}\right)$$

Aggregate labor share:

$$\frac{WL}{E[Y]} = \alpha_2 \frac{\sum_i A_i^{\frac{1}{1-\alpha_1-\alpha_2}} \left(1-\kappa_i\right)^{\frac{1}{1-\alpha_1-\alpha_2}}}{\sum_i A_i^{\frac{1}{1-\alpha_1-\alpha_2}} \left(1-\kappa_i\right)^{\frac{\alpha_1+\alpha_2}{1-\alpha_1-\alpha_2}}}$$

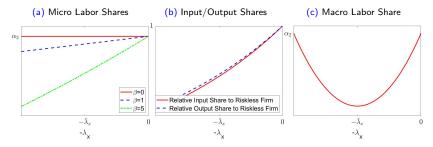
Example 2

Gaussian distributed firm types: $\log A_i = \log \overline{A}_i + \beta_i \log X$

- SDF: $\log \Lambda = \log \overline{\Lambda} \lambda_x \log X$
- $Q_i = \beta_i \sigma(x)$, $\mathcal{P} \approx \lambda_x \sigma(x)$

Fall in λ_x (i.e., \mathcal{P}):

• Aggregate LS falls iff $\lambda_x > \overline{\lambda}_x = \frac{1}{\sigma_\beta^2 \sigma_x^2} \frac{1 - \alpha_1 - \alpha_2}{1 - (\alpha_1 + \alpha_2)^2}$



Firm-level risk and labor share - data

Compustat data - publicly traded US firms, 1973-2020

Firm-level risk exposure

- Proxy for risk exposure using stock market (CAPM) beta
- Compute using daily returns
- Residualize on industry-year FE to calculate *relative* beta

Firm-level labor share

- Challenge: only small subset of firms report labor expense
- Use labor intensity (L/Y) and measures from Donangelo et al. (2018)
- ELS uses avg. industry-year wage

Measures following Donangelo, Kehrig, Gourio, Palacios (2018 JFE):

 $\label{eq:Labor Share} \text{Labor share (LS)} = \frac{\text{Labor Expense}}{\text{Operating Income before Dep.} + \Delta(\text{Inventories} - \text{Finished Goods}) + \text{Labor Expense}}$

- Well reported in Compustat Global
- Only a fraction of firms in Compustat US report this

Extended labor share (ELS)

- Set equal to LS for firms who report labor expense
- For firms who don't, Labor expense = Employees x avg. $\left(\frac{\text{Labor expense}}{\text{Employees}}\right)$

Back

Diversification and industry heterogeneity

Extend model to multiple industries

- More heterogeneity in risk/LS \Rightarrow larger reallocation effect
- Higher average risk/(lower) average LS \Rightarrow larger within effect

Cross-country firm-level data from Orbis

- Measure industry-country-year mean and std. dev. of firm labor shares
- No measures of risk exposure

Diversification and industry heterogeneity

Extend model to multiple industries

- More heterogeneity in risk/LS \Rightarrow larger reallocation effect
- Higher average risk/(lower) average LS \Rightarrow larger within effect

Cross-country firm-level data from Orbis

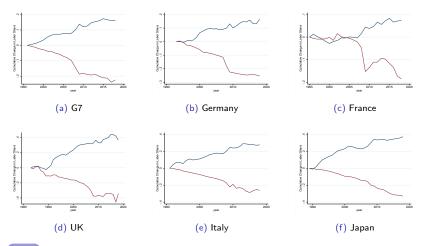
- Measure industry-country-year mean and std. dev. of firm labor shares
- No measures of risk exposure

To first-order approximation:

$\log LS_{s,j,t} = \underbrace{\gamma_{\sigma}}_{\sigma} \sigma_{s,j,t-1}^{LS} FEQ_{j,t} + \underbrace{\gamma_{\mu}}_{\sigma} \mu_{s,j,t-1}^{LS} FEQ_{j,t} + controls + \varepsilon_{i,t}$							
<0							
	(1)	(2)	(3)				
Foreign Equity Liabilities \times L.stdev log(LS)	-0.0983*	-0.0513**	-0.0592**				
	(-1.95)	(-2.40)	(-2.26)				
Foreign Equity Liabilities × L.mean log(LS)	-0.127*	-0.0869**	-0.0940**				
	(-1.86)	(-2.74)	(-2.62)				
Foreign Equity Liabilities $ imes$ L.stdev log(sales)			-0.00992				
			(-1.22)				
Foreign Equity Liabilities $ imes$ L.mean log(sales)			-0.00471				
			(-1.07)				
Industry-year, industry-country, country-year F.E.	no	yes	yes				
R^2	0.485	0.791	0.804				
Observations	71346	69431	57325				

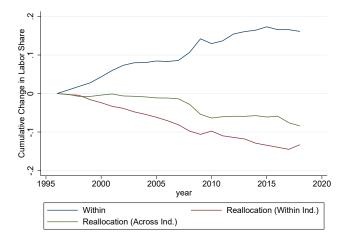
More dispersion/higher mean LS \rightarrow larger response to \uparrow diversification \bigcirc Back

Effect of Reallocation, Within Components

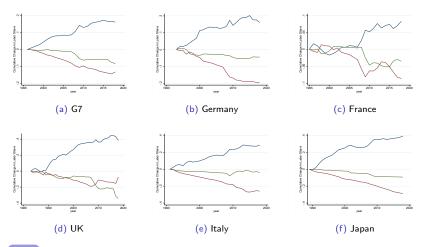


Effect of Reallocation, Within Components - ORBIS, G7

Can also separate reallocation into within, across industry



Effect of Reallocation, Within Components



Firm-level risk and labor share - regression

Model: firms more exposed to aggregate risk have lower LS

	(1)	(2)	(3)	(4)	(5)	(6)
Relative Beta	-0.171***	-0.166***	-0.196***	-0.131***	-0.118***	-0.127***
	(-5.96)	(-7.07)	(-11.49)	(-7.42)	(-5.93)	(-5.73)
F.E.	yr	cty imes yr	$\mathit{ind} imes \mathit{cty} imes \mathit{yr}$	yr	cty imes yr	ind $ imes$ cty $ imes$ yr
Controls				yes	yes	yes
Observations	51223	51214	38486	35534	35522	25839

 $\log LS_{i,t+1} = \gamma_{s,t} + \frac{\gamma_{\beta}\beta_i}{\gamma_{\beta}\beta_i} + \gamma_X X_{i,t} + \varepsilon_{i,t}$

Magnitude: one std. dev. $\uparrow \beta_i \Rightarrow LS_i \downarrow 4$ - 8%

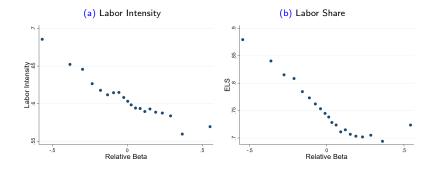
Controls: age and size

Robust to inclusion of global relative beta (Ken French developed mkt factor)

Back

Firm-level risk and labor share - evidence

Model: firms more exposed to aggregate risk have lower LS



 \Rightarrow Risky/high beta firms have lower labor shares \bigcirc Back

Firm-level risk and labor share - results

Model: firms more exposed to aggregate risk have lower LS

 $\log LS_{i,t+1} = \gamma_{s,t} + \gamma_{\beta}\beta_i + \gamma_X X_{i,t} + \varepsilon_{i,t}$

	(1)	(2)	(3)	(4)	(5)	(6)
	$\log\left(\frac{L}{Y}\right)$	$\log(ELS)$	$\log(LS)$	$\log\left(\frac{L}{Y}\right)$	$\log(ELS)$	$\log(LS)$
γ_eta	-0.238***	-0.241***	-0.105***	-0.336***	-0.176***	-0.166***
	(-12.57)	(-16.24)	(-3.16)	(-16.35)	(-14.62)	(-5.77)
Industry-year F.E.	yes	yes	yes	yes	yes	yes
Firm Controls	no	no	no	yes	yes	yes
R^2	0.677	0.405	0.718	0.716	0.510	0.797
Observations	153676	126730	11536	142760	118455	10039

Magnitude: one std. dev. $\uparrow \beta_i \Rightarrow LS_i \downarrow 3-10\%$

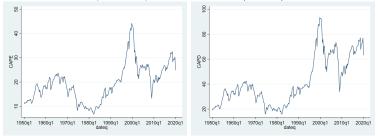
Controls: age and size

Back

No great moderation in profits

Price of risk: price/earnings and price/dividend ratios:

Cyclically adjusted P/E and P/D proxies for the (inverse) of the price of risk:



Both have risen meaningfully in the past half century