| Introduction | Empirical analysis | Model    | Conclusion |
|--------------|--------------------|----------|------------|
| 00000        | 000000             | 00000000 | 0          |
|              |                    |          |            |

# The Signaling Effects of Fiscal Announcements

### Leonardo Melosi<sup>1</sup>, Hiroshi Morita<sup>2</sup>, and Francesco Zanetti<sup>3</sup>

<sup>1</sup>Federal Reserve Bank of Chicago, <sup>2</sup>Hosei University, and <sup>3</sup>University of Oxford

#### 28 July 2022 TWID International Finance Conference

The views in this paper are solely those of the authors and should not be interpreted as reflecting the views of the Federal Reserve Bank of Chicago or the Federal Reserve System.

| Introduction      | Empirical analysis | Model     | Conclusion |
|-------------------|--------------------|-----------|------------|
| •0000             | 000000             | 000000000 | O          |
| Signaling effects |                    |           |            |

- Established literature on the signaling effects in "**Monetary Policy**" (Melosi, 2017; Nakamura and Steinsson, 2018; Jarocinski and Karadi, 2020)
  - Central bank announcements provide powerful signals on the future of the economy
  - Signals influence the expectations of market participants
- No studies on the signaling effects in "Fiscal Policy"
  - Fiscal interventions transfer government's negative outlook to the private sector (e.g., A sizable fiscal packages are announced to weather a possible recession)
- Our question: Do fiscal announcements entail "signaling effects"?

| Introduction   | Empirical analysis | Model     | Conclusion |
|----------------|--------------------|-----------|------------|
| 0000           | 000000             | 000000000 | 0          |
| Motivation and | d challenges       |           |            |

- Estimation of signalling effects in fiscal policy is inherently difficult
- Need to establish a benchmark with exogenous fiscal announcements that forego signalling effects
- Compare benchmark against fiscal announcements that might contain signalling effects
- Ideal announcements with signalling effects are those of *unanticipated* and *large* fiscal packages designed to *combat a recession* whose severity is largely *uncertain* at the time of the announcement

| Introduction | Empirical analysis | Model     | Conclusion |
|--------------|--------------------|-----------|------------|
| 00000        | 000000             | 000000000 | O          |
| What we do   |                    |           |            |

- Construct a novel dataset with narrative records from press releases about supplementary fiscal packages in Japan (2011-2020)
- Study the effect on fiscal announcements on daily stock prices using the local projection method
  - Exogenous fiscal announcements (benchmark)
  - Supplementary fiscal policy measures (signalling)
  - Chief role of macroeconomic uncertainty
- Develop a simple model with imperfect information and signalling effects to explain empirical evidence

| Introduction | Empirical analysis | Model | Conclusion |
|--------------|--------------------|-------|------------|
| 00000        | 000000             |       | O          |
| Results      |                    |       |            |

# Empirical findings

- Announcements of exogenous fiscal spending positive effect on stock prices
- Announcements of supplementary budget negative or insignificant effect on stock prices
- Uncertainty critical to signaling effects

### Theoretical findings

- The model shows expansionary fiscal announcements entail two opposing effects on the economy
  - Demand stimulus vs signal of reduction in productivity
- The strength of the signaling effect depends on the prior uncertainty, signal precision, degree of countercyclical fiscal policy, degree of nominal rigidities and risk aversion

| Introduction | Empirical analysis | Model     | Conclusion |
|--------------|--------------------|-----------|------------|
| 0000●        | 000000             | 000000000 | O          |
| Road map     |                    |           |            |

- Empirical analysis
- Theoretical model
- Conclusion

| Introduction     | Empirical analysis | Model     | Conclusion |
|------------------|--------------------|-----------|------------|
| 00000            | •00000             | 000000000 | O          |
| Empical analysis |                    |           |            |

### • Data

- Novel dataset that uses narrative records on fiscal announcements
- ► Sample period: January 2011 December 2020
- Sixteen supplementary fiscal announcements for 2011 to 2020 supplementary budget
  - \* The timing of news releases is identified by reading Nikkei newspaper
  - ★ Critical news: release of the size of fiscal intervention
- Daily returns of Nikkei225 average
- Uncertainty index: Nikkei Volatility Index (Nikkei VI)

Model 0000000000 Conclusion O

# Supplementary fiscal stimulus packages ( empirical analysis

| Ratification (1) | Type of fiscal packages                | Fiscal spending (3) | News release<br>(4) | Indicator<br>(5)                        |
|------------------|----------------------------------------|---------------------|---------------------|-----------------------------------------|
|                  | ction from earthquake and nuclear disa |                     | (1)                 |                                         |
| 22/04/2011       | First supplementary budget             | 4 trillion          | 09/04/2011          | $\mathbb{I}\{A_{1,t}^{\text{final}}\}$  |
| 05/07/2011       | Second supplementary budget            | 2 trillion          | 25/06/2011          | $\mathbb{I}\{A_{2,t}^{\text{final}}\}$  |
| 21/10/2011       | Third supplementary budget             | 12.1 trillion       | 15/10/2011          | $\mathbb{I}\{A_{3,t}^{\text{final}}\}$  |
| (b) Against ye   | n appreciation and earthquake reconstr | uction              |                     | 0,1                                     |
| 26/10/2012       | First economic measures                | 422.6 billion       | 25/10/2012          | $\mathbb{I}\{A_{4,t}^{\text{final}}\}$  |
| 30/11/2012       | Second economic measures               | 880 billion         | 27/11/2012          | $\mathbb{I}\{A_{5,t}^{\text{final}}\}$  |
| (c) Abenomic:    | s policies                             |                     |                     | 0,1                                     |
| 11/01/2013       | Emergency economic measures            | 10.3 trillion       | 08/01/2013          | $\mathbb{I}\{A_{6,t}^{\text{final}}\}$  |
| 05/12/2013       | Economic measures                      | 5.5 trillion        | 04/12/2013          | $\mathbb{I}\{A_{7,t}^{\text{final}}\}$  |
| 27/12/2014       | Immediate economic measures            | 3.5 trillion        | 19/12/2014          | $\mathbb{I}\{A_{8,t}^{\text{final}}\}$  |
| 02/08/2016       | Economic measures                      | 7.5 trillion        | 29/07/2016          | $\mathbb{I}\{A_{9,t}^{\text{final}}\}$  |
| 05/12/2019       | Comprehensive economic measures        | 13 trillion         | 03/12/2019          | $\mathbb{I}\{A_{10,t}^{\text{final}}\}$ |
| (d) Against Co   | OVID-19 pandemic                       |                     |                     |                                         |
| 14/02/2020       | First emergency package                | 15.3 billion        | 14/02/2020          | $\mathbb{I}\{A_{11,t}^{\text{final}}\}$ |
| 10/03/2020       | Second emergency package               | 43 billion          | 11/03/2020          | $\mathbb{I}\{A_{12,t}^{\text{final}}\}$ |
| 07/04/2020       | Supplementary budget                   | 39 trillion         | 07/04/2020          | $\mathbb{I}\{A_{13,t}^{\text{final}}\}$ |
| 20/04/2020       | Supplementary budget (modified)        | 48.4 trillion       | 16/04/2020          | $\mathbb{I}\{A_{14,t}^{\text{final}}\}$ |
| 27/05/2020       | Second supplementary budget            | 33 trillion         | 27/05/2020          | $\mathbb{I}\{A_{15,t}^{\text{final}}\}$ |
| 08/12/2020       | Third supplementary budget             | 40 trillion         | 08/12/2020          | $\mathbb{I}\{A_{16,t}^{\text{final}}\}$ |

| Introduction | Empirical analysis | Model    | Conclusion |
|--------------|--------------------|----------|------------|
| 00000        | 00000              | 00000000 | 0          |

# Preliminary evidence: exogenous vs supplementary fiscal announcements

(a) Exogenous fiscal spending

#### (b) Supplementary budgets

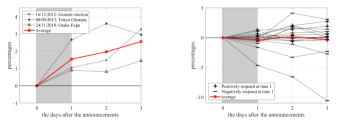


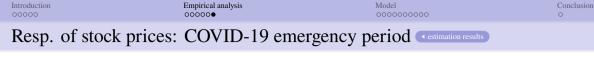

Figure 1: Response of stock prices to fiscal announcement

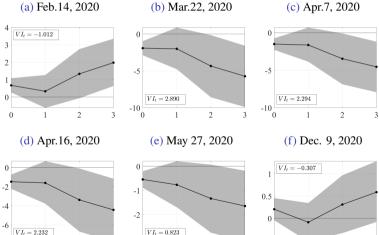
Exogenous fiscal events in Figure 1a

- Abe wins the General Election: Dec. 16, 2012.
- Host the Tokyo Olympic: Sep. 8, 2013
- Host the Universal Exposition in Osaka: Nov. 24, 2018

| Introduction     | Empirical analysis | Model     | Conclusion |
|------------------|--------------------|-----------|------------|
| 00000            |                    | 000000000 | O          |
| Estimation model |                    |           |            |

$$\sum_{j=0}^{h} \Delta s_{t+j} = \alpha_h \mathbb{I}\{A_t^{\text{final}}\} + \underline{\beta_h} \mathbb{I}\{A_t^{\text{final}}\} \times VI_t + Z_{t-1}\gamma' + \delta_h + e_{t+h}$$
(1)


- $\sum_{j=0}^{h} \Delta s_{t+j}$ : the cumulative response of the change in stock prices for the horizons h
- $\mathbb{I}\{A_t^{\text{final}}\}$ : an indicator variable of the fiscal announcements
- $VI_t$ : normalized so as to have zero mean and unit variance
- $Z_{t-1}$ :  $\Delta VI_{t-1}$ ,  $\Delta DJIA_{t-1}$ ,  $\Delta spread_{t-1}^{sl}$ ,  $\Delta spread_yield_{t-1}$ ,  $\Delta neer_{t-1}$ ,  $\Delta s_{t-1}$
- $\alpha_h + \beta_h \cdot VI_t$ : the cumulative response of stock prices at time t + h


| Introduction | Empirical analysis | Model     | Conclusion |
|--------------|--------------------|-----------|------------|
| 00000        | 000000             | 000000000 | 0          |
|              |                    |           |            |

Impact effects of fiscal announcements on stock prices • Impulse responses

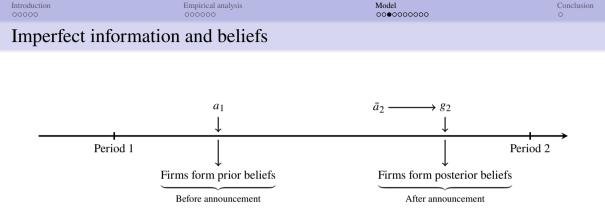
| VARIABLES                  |          | $\Delta s_t$ |         |
|----------------------------|----------|--------------|---------|
| VARIADLES                  | (1)      | (2)          | (3)     |
| Π(Λ)                       | 0.002    | -0.308       | -0.081  |
| $\mathbb{I}\{A_t\}$        | (0.228)  | (0.322)      | (0.292) |
|                            | -0.660** |              | -0.070  |
| $\mathbb{I}\{A_t\} * VI_t$ | (0.330)  |              | (0.322) |
| Control                    | yes      | yes          | no      |
| Interaction term           | yes      | no           | yes     |
| Observations               | 2,445    | 2,445        | 2,445   |
| Adj. R-squared             | 0.210    | 0.208        | -0.000  |

*Notes*: Newey-West HAC standard errors are in parentheses. The 1%, 5% and 10% significant levels are denoted by \* \* \*, \*\* and \*, respectively.





-0.5


\_3

Introduction 00000 Empirical analysis 000000 Model •000000000 Conclusion O

# Model

| Introduction        | Empirical analysis | Model    | Conclusion |
|---------------------|--------------------|----------|------------|
| 00000               | 000000             | 00000000 | O          |
| Sketch of the model |                    |          |            |

- Two period model
- Agents: private sector, benevolent government (countercyclical policy)
- Sticky prices (future productivity important for profits)
- Imperfect information on *a*<sup>2</sup>
- Govt receives signal on  $a_2$  and announces  $g_2$
- Private sector uses the announcement to update beliefs on  $a_2$
- Stock prices depends on beliefs about *a*<sub>2</sub>



- 1. Private sector observes productivity  $a_1$  and forms prior belief on  $a_2$
- 2. Government receives a noisy signal on  $a_2$ , sets  $g_2$  and announces it
- 3. Private sector updates their posterior beliefs on productivity for period 2

| Introduction          | Empirical analysis | Model      | Conclusion |
|-----------------------|--------------------|------------|------------|
| 00000                 | 000000             | ○○○●○○○○○○ | O          |
| Information structure | 2                  |            |            |

### Prior belief on productivity

$$a_2 = a_1 + u, u \sim N(0, \sigma_u^2)$$
(2)

 $(\sigma_u^2)^{-1}$ : prior confidence of private agents in their own belief

– Noisy signal received by government -

$$\tilde{a}_2 = a_2 + v, v \sim N(0, \sigma_v^2)$$
 (3)

 $(\sigma_v^2)^{-1}$ : precision of the information received by the government

- Government sets the spending plan for period 2 based on the received signal
- Private sector can recover the signal received by government from public announcement

| Introduction          | Empirical analysis | Model      | Conclusion |
|-----------------------|--------------------|------------|------------|
| 00000                 |                    | 0000€00000 | O          |
| Information structure | e (cont'd)         |            |            |

- Posterior distribution of beliefs on period 2's productivity -

$$a_2 \mid g_2 \sim N(\hat{a}_2, \hat{\sigma}^2) \tag{4}$$

where

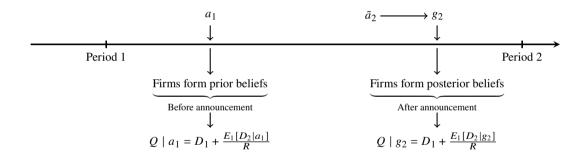
$$\hat{a}_2 = \frac{\hat{\sigma}^2}{\sigma_u^2} a_1 + \frac{\hat{\sigma}^2}{\sigma_v^2} \tilde{a}_2$$
, and  $\hat{\sigma}^2 = \left(\frac{1}{\sigma_u^2} + \frac{1}{\sigma_v^2}\right)^-$ 

#### **Proposition 1**

Given the fiscal announcement  $(g_2)$ , the expected level of productivity in period 2  $(\hat{a}_2)$  increases with the signal of productivity received by the fiscal authority  $(\tilde{a}_2)$  and it decreases with the confidence of private agents in their own beliefs  $(1/\sigma_u^2)$ .

| Introduction | Empirical analysis | Model      | Conclusion |
|--------------|--------------------|------------|------------|
| 00000        | 000000             | 0000000000 | O          |
|              |                    |            |            |

# Countercyclical fiscal policy rule


$$\left(\frac{g_t}{g_{ss}}\right) = \left(e^{\tilde{\alpha}_t}\right)^{\psi}, \ \psi < 0 \tag{5}$$

- Government spending for period 2 is set based on the noisy signal  $\tilde{a}_2$  in period 1
- Assume that fiscal authority adopts counter-cyclical fiscal rule by setting  $\psi < 0$
- $\psi$ : the strength in counter-cyclical fiscal policy

households & firms

| Introduction | Empirical analysis | Model      | Conclusion |
|--------------|--------------------|------------|------------|
| 00000        | 000000             | 0000000000 | 0          |

# Stock prices change to reflect the announcement



- Derive analytical properties
  - Log-linearizing the system around the stationary steady state

| Introduction     | Empirical analysis | Model     | Conclusion |
|------------------|--------------------|-----------|------------|
| 00000            |                    | ○○○○○○●○○ | O          |
| Signaling effect |                    |           |            |

#### Proposition 2

The response of dividends in period 2  $(\hat{D}_2^g)$  and stock prices in period 1  $(\hat{Q}^g)$  to the announcement of government spending for period 2  $(\hat{g}_2)$  are equal to:

$$\hat{D}_{2} = \frac{1}{\Psi} \left\{ \kappa^{No \ Signal} + \kappa^{Signal} \right\} \hat{g}_{2}, \tag{6}$$

$$\hat{Q} = \frac{\beta}{1+\beta} \hat{D}_{2}, \tag{7}$$

where:

$$\Psi = \{\varepsilon + (1-\varepsilon)\alpha\}\{(1-\theta)(1-\alpha)(1-\zeta) + \alpha\gamma\} > 0, \tag{8}$$

$$\kappa^{No\ Signal} = \gamma \theta \left\{ (1-\alpha)(1-\zeta)\varepsilon + \alpha \right\} > 0, \tag{9}$$

$$\kappa^{Signal} = \left[ (1-\theta)(1-\zeta) \{ \varepsilon + (1-\varepsilon)\alpha \} + \gamma \{ (\varepsilon-1)\alpha - \varepsilon(1-\zeta) \} \right] \cdot \frac{\omega}{(1+\omega)\psi} \gtrless 0, \tag{10}$$

and  $\omega = \sigma_u^2 / \sigma_v^2$  is the prior uncertainty of the private sector relative the imprecision of the signal received by the government.

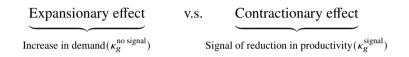
| Introduction |  |
|--------------|--|
| 00000        |  |

Model 00000000000

# Strength of the signaling effect

#### **Proposition 3**

The (negative) signaling effects of fiscal policy on stock prices increase with:


- (i) the prior uncertainty of agents for a given precision of the information received by the government ( $\omega = \sigma_u^2 / \sigma_v^2$ ), and
- (ii) the cyclicality in the systematic response of fiscal policy ( $\psi$ ).

#### Lemma 1

The signaling effects of fiscal policy increase in the degree of nominal rigidities ( $\zeta$ ) and risk aversion ( $\gamma$ ).



# Two opposing effects of fiscal announcement



- The strength of the signaling effects is determined by
- 1. prior uncertainty of agents and precision of information received by the government
- 2. the counter-cyclicality of fiscal policy rule
- 3. price rigidities and risk aversion

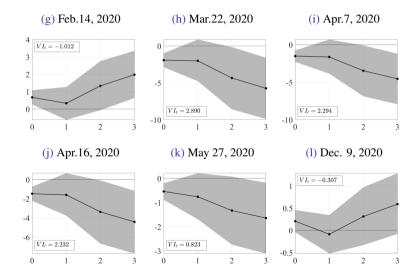
| Introduction | Empirical analysis | Model     | Conclusion |
|--------------|--------------------|-----------|------------|
| 00000        | 000000             | 000000000 | •          |
| Conclusion   |                    |           |            |

### Results

- We find evidence of signaling effect linked with uncertainty
- Empirical results consistent with a simple model of imperfect information

### Future work

- Is signaling effect important for alternative fiscal tools (debt, taxes) and what's the role of credibility?
- Is communication important for the signaling effect? Can strategic communication alleviate signaling effects?


#### Appendix ●0000

# Supplementary fiscal stimulus packages ( empirical analysis)

| Ratification (1) | Type of fiscal packages                | Fiscal spending (3) | News release (4) | Indicator<br>(5)                                           |
|------------------|----------------------------------------|---------------------|------------------|------------------------------------------------------------|
|                  | ction from earthquake and nuclear disa |                     | (1)              |                                                            |
| 22/04/2011       | First supplementary budget             | 4 trillion          | 09/04/2011       | $\mathbb{I}\{A_{1,t}^{\text{final}}\}$                     |
| 05/07/2011       | Second supplementary budget            | 2 trillion          | 25/06/2011       | $\mathbb{I}\{A_{2,t}^{\text{final}}\}$                     |
| 21/10/2011       | Third supplementary budget             | 12.1 trillion       | 15/10/2011       | $\mathbb{I}\{A_{3,t}^{\text{final}}\}$                     |
| (b) Against ye   | n appreciation and earthquake reconstr | uction              |                  | - ,-                                                       |
| 26/10/2012       | First economic measures                | 422.6 billion       | 25/10/2012       | $\mathbb{I}\{A_{4,t}^{\text{final}}\}$                     |
| 30/11/2012       | Second economic measures               | 880 billion         | 27/11/2012       | $\mathbb{I}\{A_{5,t}^{\text{final}}\}$                     |
| (c) Abenomic:    | s policies                             |                     |                  | 0,1                                                        |
| 11/01/2013       | Emergency economic measures            | 10.3 trillion       | 08/01/2013       | $\mathbb{I}\{A_{6,t}^{\text{final}}\}$                     |
| 05/12/2013       | Economic measures                      | 5.5 trillion        | 04/12/2013       | $\mathbb{I}\{A_{7,t}^{\text{final}}\}$                     |
| 27/12/2014       | Immediate economic measures            | 3.5 trillion        | 19/12/2014       | $\mathbb{I}\{A_{8,t}^{\text{final}}\}$                     |
| 02/08/2016       | Economic measures                      | 7.5 trillion        | 29/07/2016       | $\mathbb{I}\{A_{9,t}^{\text{final}}\}$                     |
| 05/12/2019       | Comprehensive economic measures        | 13 trillion         | 03/12/2019       | $\mathbb{I}\left\{A_{10,t}^{\text{final}}\right\}$         |
| (d) Against Co   | OVID-19 pandemic                       |                     |                  |                                                            |
| 14/02/2020       | First emergency package                | 15.3 billion        | 14/02/2020       | $\mathbb{I}\{A_{11,t}^{\text{final}}\}$                    |
| 10/03/2020       | Second emergency package               | 43 billion          | 11/03/2020       | $\mathbb{I}\{A_{12,t}^{\text{final}}\}$                    |
| 07/04/2020       | Supplementary budget                   | 39 trillion         | 07/04/2020       | $\mathbb{I}\left\{A_{13,t}^{\tilde{\text{final}}}\right\}$ |
| 20/04/2020       | Supplementary budget (modified)        | 48.4 trillion       | 16/04/2020       | $\mathbb{I}\{A_{14,t}^{\text{final}}\}$                    |
| 27/05/2020       | Second supplementary budget            | 33 trillion         | 27/05/2020       | $\mathbb{I}\{A_{15,t}^{\text{final}}\}$                    |
| 08/12/2020       | Third supplementary budget             | 40 trillion         | 08/12/2020       | $\mathbb{I}\left\{A_{16,t}^{\text{final}}\right\}$         |

Appendix 00000

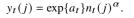
# Resp. of stock prices: COVID-19 emergency period stimution results



#### **Households and Firms**

Households

$$E_1\left[\left\{\frac{c_1^{1-\gamma}}{1-\gamma}-\chi n_1\right\}+\beta\left\{\frac{c_2^{1-\gamma}}{1-\gamma}-\chi n_2\right\}\right]$$


s.t.

$$P_1c_1 + \frac{P_2c_2}{R_1} = W_1n_1 + \frac{W_2n_2}{R_1} + D_1 + \frac{D_2}{R_1} - P_1\tau_1 - \frac{P_2\tau_2}{R_1}.$$

- Production functions
- Final good firm

$$y_t = \left(\int_0^1 y_t(j) \frac{\epsilon-1}{\epsilon} dj\right)^{\frac{\epsilon}{\epsilon-1}}.$$

- Intermediate goods firms



## **Price setting**

- $P_2(j)$  is set at t = 1 before observing  $a_2$ .
- $1 \zeta$  of the firm can reset the price optimally.
- Profit maximization problem

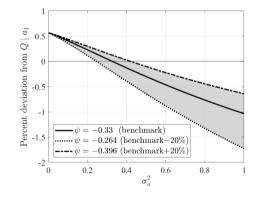
 $\max_{P_2^*(j)} E_1\left[(1/c_2)\left\{P_2^*(j)y_2(j) - W_2n_2(j)\right\}\right],$ 

$$y_t(j) = \left(\frac{P_t(j)}{P_t}\right)^{-\varepsilon} y_t.$$

 $\rightarrow$  Optimal price

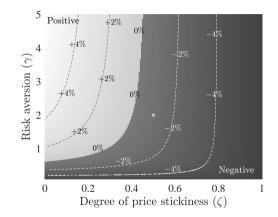
s.t.

$$P_2^* = \frac{\epsilon}{\epsilon - 1} E_1 \frac{W_2}{\alpha \exp\{a_2\} n_2^{\alpha - 1}}.$$


 $\rightarrow$  Aggregate price

$$P_2^{1-\varepsilon}=\zeta P_1^{1-\varepsilon}+(1-\zeta)(P_2^*)^{1-\varepsilon}.$$

Appendix 000●0


# Stock prices and prior uncertainty: $P_1 = 1$ and $\sigma_v^2 = 1$ (analytical results)

5% increase in government spending:  $(g_2/g_{ss} = 1.05)$ 



#### Appendix 00000

# Signaling effects, risk aversion and price stickiness: $\sigma_u^2 = 1$ (analytical results)



• The combination of  $\zeta$  and  $\gamma$  in the dark-shaded area generate negative signaling effects on stock prices