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Abstract

Many countries have experienced multiple waves of infection during the COVID-19

pandemic. We propose a novel extension of the SIR model, a CSIR model, that can

endogenously generate waves. In the model, cautious individuals take appropriate

prevention measures against the virus and are not exposed to infection risk. Incau-

tious individuals do not take any measures and are susceptible to the risk of infection.

Depending on the size of incautious and susceptible population, some cautious peo-

ple lower their guard and become incautious—thus susceptible to the virus. When

the virus spreads sufficiently, the population reaches “temporary” herd immunity and

infection subsides thereafter. Yet, the inflow from the cautious to the susceptible even-

tually expands the susceptible population and leads to the next wave.
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Figure 1: Weekly number of new COVID-19 cases between January 2020 and November
2021 (Source: WHO Coronavirus Dashboard)

1 Introduction

The COVID-19 pandemic caused by a coronavirus SARS-CoV-2 rapidly spread around the
globe posing unprecedented health and economic challenges to mankind. Since its out-
break, the pandemic has given rise to waves of infection in many countries, as shown in in
Figure 1.1 The susceptible-infectious-removed (SIR) model, one of the most fundamental
and widely-used epidemic models, cannot generate waves of infection in its purest form.

In this paper, we propose a novel modification to the SIR model, a “CSIR” model, to
describe infection waves with constant population. The structure of our model is straight-
forward, yet it generates complex dynamics of infection. Key features of our CSIR model
are that people have different risk attitudes toward the virus and that these attitudes vary
over time. In the standard SIR model, those who have not been infected are homogeneous
in terms of their risk attitudes.

Our model starts when a new virus emerges, all members of society learn about it, and

1A notable exception is China, which seems to have contained the infection in the early phase of pan-
demic with strong lockdown policies.
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some individuals become “cautious”. Those cautious individuals (compartment C) take
appropriate measures against the virus—such as staying at home and wearing masks—
and are not subject to infection risk. Susceptible individuals are less vigilant about the
virus and vulnerable to infection. Depending on the size of the susceptible population,
some cautious people lower their guard and become less vigilant against, and hence sus-
ceptible to, the virus. When the virus spreads, it eventually reaches “local” herd immu-
nity and subsides thereafter. Nevertheless, the inflow from the cautious to the susceptible
regenerates the expansion of the susceptible population leading to the next wave of infec-
tion. This repeated process creates a finite number of infection waves.

The multiplicity of waves in the CSIR model before reaching the steady state means
that the size of each wave is smaller than the size of the wave in the SIR model when
the parameter of the CSIR model is calibrated to match the final epidemic size in the SIR
model. During the COVID-19 pandemic, the peak of many infection waves was substan-
tially lower than what the standard SIR would predict, even after taking into account
factors such as vaccination and NPIs. Our model provides a theory of why that was the
case that relies on heterogeneity in risk attitudes and their time-variation.

In addition to its ability to generate waves, the CSIR model possesses other intriguing
features that are distinct from those of the standard SIR model. For example, we show via
numerical analysis that a higher transmission rate leads to lower peaks of early infection
waves and higher peaks for late infection waves in the CSIR model. In the SIR model,
a higher transmission rate leads a higher peak. We also show, analytically, that a higher
transmission rate implies a lower epidemic final size in the CSIR model, whereas it implies
a higher final size in the SIR model.

As reviewed in Section 5, the existing literature has provided a variety of extensions
to—and modifications of—the standard SIR model that can generate waves—or oscilla-
tions in the terminology often used in the literature. Examples include reinfection, age-
structure, fear effects, seasonality, and network structures, among others. At the same
time, beyond the academic literature, there are several factors that might have contributed
to the generation of waves during the COVID-19 pandemic, such as the periodic emer-
gence of a more infectious variant of coronavirus SARS-CoV-2 and government lockdown
policies. Our CSIR model featuring heterogeneous risk attitudes and their time-variation
provides the literature with a novel mechanism for multiple waves as well as a plausi-
ble factor that might have contributed to the emergence of multiple waves during the
COVID-19 pandemic.

This paper is organized as follows. The next section reviews the standard SIR model
and shows why waves do not occur in its purest form. Section 3 presents the CSIR model
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and conditions to generate infection waves. Analytic properties are also discussed. Sec-
tion 4.1 highlights the difference between SIR and CSIR models when a more infectious
virus emerges. Section 6 concludes.

2 Review of the SIR Model

This section reviews the standard SIR model introduced in Kermack and McKendrick
(1927) and explains why it does not explain the waves of infection. Consider the following
SIR model

dS (t)
dt

= −βS (t) I (t)

dI (t)
dt

= βS (t) I (t)− γI (t)

dR (t)
dt

= γI (t) ,

where S, I, and R are susceptible, infectious, and removed populations respectively. Let
N (t) = βS (t) I (t) denote the number of new cases at time t. The removed population
can also be divided into recovered and dead classes, but we do not focus on the difference
in this paper since R (t) does not affect the dynamics of the system. The parameter β is
called a transmission rate, and governs the infectious force. γ denotes the removal rate,
where 1/γ is the average duration of infectiousness. We normalize total population to one

S (t) + I (t) + R (t) = 1

so that S, I, and R are corresponding population shares. Total population is preserved at
any time since dS

dt +
dI
dt +

dR
dt = 0. The basic reproduction number is defined as <0 = β

γ .
From the expression of dI

dt , if <0 < 1, then I (t) is decreasing regardless of S (t) and there is
no outbreak of infection. If <0 > 1, an outbreak occurs. In that case, it is useful to focus on
the effective reproduction number <t = <0 × S (t). If <t > 1, infection keeps spreading
whereas if <t < 1, the infectious population will decrease. Since S (t) is monotonically
decreasing, when it crosses 1

<0
= γ

β , the pandemic will converge to an end. Hence, 1
<0

is
called the herd immunity threshold.

We discretize the model and interpret time at a daily frequency. Throughout this paper,
we assume γ = 0.05 implying that the average infectious period is 20 days. Figure 2 de-
picts the time paths of S, I, R and N (new cases) for the initial values [S (0) , I (0) , R (0)] =
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Figure 2: Time paths of each population in the SIR model with γ = 0.05 and β = 0.1 (blue)
and β = 0.15 (red)

[0.999, 0.001, 0] and two values of transmission rate: β = 0.1 and β = 0.15.2 In the graphs
of I and N, we observe only one peak of infection in both cases. If the virus is more con-
tagious (red line), the peak of infection is higher and comes earlier. Also, the cumulative
number of infected people (R (∞)) will be higher if β is higher.

Figure 3 shows the phase diagram of S and I in the SIR model. The dynamics start
from the bottom right corner. Since β

γ > 1 and the number of susceptible people is large
enough, infection spreads. I (t) goes up and S (t) goes down. When S (t) crosses γ

β , I (t)
starts decreasing and the system will converge to the steady state with I (∞) = 0. Since
S (t) is monotonically decreasing, after crossing the herd immunity threshold, it cannot
generate the second wage of infection.

If we linearize the dynamic system around the steady state I (t) = 0, we obtain[
S (t + 1)
I (t + 1)

]
=

[
1 −βS
0 1 + βS− γ

] [
S (t)
I (t)

]
.

The eigenvalues of the Jacobian matrix are λ1 = 1 and λ2 = 1+ βS− γ. Since they are not

2We discretize a differential equation of a variable X by replacing dX(t)
dt with X (t + 1)− X (t).
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Figure 3: Phase diagram of the SIR model with β = 0.1 and γ = 0.05

complex conjugate, we know that this system generates only one peak of infection.
As reviewed in Section 5, the existing studies have shown that waves can emerge in

modified versions of the standard SIR model. In the sections that follow, we will present
a novel modification that features heterogeneity in risk attitudes and their time-variation.

3 CSIR Model and Waves of Infection

3.1 Model Description

In this section, we present the CSIR model and its properties. As described in Section 1,
we introduce a new class of population, the cautious people, to the standard SIR model.
We will denote the groups of cautious people by “C.” The dynamics are described by the
following system of differential equations:
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Figure 4: Flow chart of SIR and CSIR models

dC (t)
dt

= −αS (t)C (t) (1)

dS (t)
dt

= αS (t)C (t)− βS (t) I (t) (2)

dI (t)
dt

= βS (t) I (t)− γI (t) (3)

dR (t)
dt

= γI (t) . (4)

In the model, cautious individuals (compartment C) take appropriate prevention mea-
sures against virus such as staying at home and are not exposed to infection risk. Suscep-
tible individuals are incautious about virus and might get infected. In every period, some
fraction of the cautious people lower their guard and become susceptible. The transition
from C to S is modeled by αS (t)C (t). There is a peer effect of S on the outflow of C. The
more incautious people go out into the town, the more cautious people relax their efforts
and become incautious. We call α “a rate of slackening”. Unlike the SIR model, there are
both inflow and outflow of S (t), which allow the volume of the susceptible to expand and
shrink. Flow charts of the SIR and CSIR models are summarized in Figure 4.

3.2 Waves of Infection

Figure 5 depicts the time paths of the four variables with initial values C (0) = 0.95,
S (0) = 0.0495, I (0) = 0.0005, R (0) = 0, and parameters [α, β, γ] = [0.007, 1, 0.05] for

7



Figure 5: Time paths of C, S, I and R with α = 0.007, β = 1, and γ = 0.05

T = 2000. We assume that the news of an outbreak is shared by all individuals immedi-
ately so that 95% of people are cautious about the virus in the initial period. Around five
percent of population does not fear the risk of infection. Gradually, some of the cautious
people loosen infection control measures and flow into the susceptible class. Infection
spreads among the susceptible and reaches its first peak around the 200th day (bottom-
left panel of Figure 5). At this point, there are not enough susceptible people to spread
infection further, and the volume of infected population starts to decline leading to “lo-
cal” or “temporary” herd immunity. When the number of the infected remains at a low
level for a while, the susceptible population expands because the inflow from the cau-
tious class outweighs the outflow to the infected class. This expansion of the susceptible
population results in the next wave of infection. The above process repeats over time and
generates multiple waves of infection. In Appendix A, we consider other specifications
of dC(t)

dt and dS(t)
dt , and show that the generation of waves is a general feature of the CSIR

model.
In the early phase of the COVID-19 pandemic, infection begun to drop at a much lower

level than the herd immunity threshold predicted by the SIR model in many countries. It
is widely accepted that non-pharmaceutical interventions (NPIs) such as stay-at-home or-
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Figure 6: Phase diagrams of a CSIR model

ders and city-wide lockdowns played a key role to level off infection. We provide an
alternative mechanism to explain the earlier and lower peak of infection. In the CSIR
model, the spread of infection starts from a certain fraction of population who are incau-
tious about virus, and once enough of them are infected, infection starts to decline. This
threshold is much lower than that of the SIR model which assumes all agents are homo-
geneous and equally mixed. Yet, because risk attitudes of people change over time, the
CSIR model generates multiple waves. It is necessary that C (0) is sufficiently large and
C (t) gradually declines over time for the CSIR model to generate infection waves.3 This
trend is related to the misperception of infection risks considered in the SIR-macro model
of Hamano et al. (2020). In their model, people are overly cautious in the early periods of
pandemic but gradually let their guard down as more information becomes available to
explain the actual path of infection in Japan.

Figure 6 illustrates the phase diagrams of the CSIR model. The left panel is the phase
diagram on a S-I plane. The dynamics start at the red dot and move counterclockwise.
From the equation (2), we know that S is increasing when I < α

β C, and vice versa. Like-
wise from equation (3), I is increasing when S > γ

β . At the initial point, I is so small that S
starts increasing. Once S becomes larger than γ

β , I starts increasing (southeast part of the
graph). When I becomes sufficiently large (I > α

β C), S starts decreasing (northeast part
of the graph). Once S crosses the temporary herd immunity threshold γ

β depicted by a
vertical red dotted line, I starts decreasing (northwest part of the graph). When I shrinks
sufficiently, S starts increasing again (southwest part of the graph). This cycle repeats and

3In Appendix ??, we examine the number of waves for different values of C (0) with the same parameters.
When C (0) is below 0.7, multiple waves do not occur within 2000 periods. The extreme case of C (0) = 0
collapses to the SIR model, so there would not be any waves as shown in the previous section.
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Figure 7: Contour plot for the number of waves for T = 2000 with different values of α
and γ. Initial values are C (0) = 0.95, S (0) = 0.0495, I (0) = 0.0005, R (0) = 0 and β = 1.

gives rise to the waves of infection. The right panel of Figure 3 is a 3-D phase diagram
in a S-I-C space. The dynamics start at the top and move down a helix. The left panel
corresponds to an upper view of this 3-D phase diagram.

Given an initial condition, the number of waves generated by the CSIR system de-
pends on parameter values. Figure 7 displays a contour plot for the number of waves
within 2000 periods with different values of α and γ holding β = 1 and the same initial
condition as in Figure 5.4 If αand γ are relatively small, four waves occur. When α is large,
only one peak is observed because the inflow from C to S is too rapid that there will not be
enough C left to generate the next wave after the first peak. As α becomes large, the CSIR
model approaches to the SIR model since most of the population starts from the state S. A
larger value of γ also implies a lower number of waves because the volume of I shrinks
too quickly, and it will take time to pile up enough volume of S to generate the next wave.

4Waves are defined as the number of peaks of I.
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Figure 8: Initial population of the cautious C (0) and the number of waves

The above analysis also reveals that the initial population of the cautious group must
be large enough to generate multiple waves. Figure 8 plots the number of infection waves
in the CSIR model for different initial values of C (0) ranging from 0.05 to 0.95. The pa-
rameters are [α, β, γ] = [0.05, 1, 0.07] and T = 2000. For each C (0), other initial values are
set as S (0) = [1− C (0)]× 0.99, I (0) = [1− C (0)]× 0.01, and R (0) = 0. If C (0) is below
0.7, the model cannot generate any waves.

3.3 Steady-State Paths

Unlike the SIR model, the CSIR model described by equations (1) - (4) does not reach to
the steady-state level of S. Nonetheless, further analytical investigations are possible by
considering a new variable, and they provide more insights into the CSIR model.

Let Kt =
It
Ct

.5 The law of motion of this new variable is given by

dKt

dt
= (α + β)KtSt − γKt.

5Time subscripts are used to simplify notations.
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6 The differential equation for St can be written as

dSt

dt
= (α− βKt) StCt

The system of two differential equations dKt
dt and dSt

dt has an equilibrium point character-
ized by the following conditions

K∗ [(α + β) S∗ − γ] = 0

S∗ [α− βK∗] = 0

Thus, the equilibrium point is given by

K∗ =
α

β
and S∗ =

γ

α + β
.

The phase diagram of this system is described in Figure 9. When Kt is larger than α
β , St is

decreasing, and vice versa. When St is larger than γ
α+β , Kt is increasing, and vice versa. At

6We have

dKt = d
(

It

Ct

)
=

dItCt − ItdCt

C2
t

=
(βSt It − γIt)Ct − It (−αStCt)

C2
t

dt

=
(βSt It − γIt) + αItSt

Ct
dt =

[
β

(
It

Ct

)
St − γ

(
It

Ct

)
+ α

(
It

Ct

)
S
]

dt.
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Figure 10: Steady-state paths of the CSIR model when I0
C0

= α
β and S0 = γ

α+β .

the steady state (S∗, K∗) =
(

γ
α+β , α

β

)
, S∗ remains constant and Ct and It are decreasing at

the same rate so that It
Ct

is constant. Figure 10 illustrates the steady-state paths of the CSIR
model when the initial conditions correspond to the equilibrium point. We see that St is
constant over time, and Ct and It are declining at the same rate. On the steady-state paths,
the differential equation of Ct can be solved analytically as

C∗t = C0e−
αγ

α+β t (5)

Analogously, the path of I∗t is also given by I∗t = I0e−
αγ

α+β t.

3.4 CSIR Model as the SIR Formulation

Using the analytical results of the steady state, we can describe the CSIR model as an
extended SIR model.

Proposition 1. The dynamics of St, It, and Rt in equations (1) - (4) can be written as in the

13



following SIR formulation

dSt

dt
= αSt I

− α
β

t C0
(

I0e−γt) α
β − βSt It (6)

dIt

dt
= βSt It − γIt (7)

dRt

dt
= γIt (8)

Proof: See Appendix B.

A critical difference from the standard SIR model is the first term of equation (6), which
is complex. Because of this term, the CSIR model allows the susceptible population to
increase and decrease depending on the value of It. It can be verified that dSt

dt = 0 when It

is declining at a constant rate − αγ
α+β as shown in equation (5).

If we linearize the system around the steady state (S∗, K∗) =
(

γ
α+β , α

β

)
, we have

[
Ṡt

K̇t

]
=

 0 − βγ
α+β

(
β
α K0

) α
α+β C0e−

αγ
α+β t

α(α+β)
β 0

 [ St − S∗

Kt − K∗

]
.

Because diagonals of the Jacobian matrix are zero, eigenvalues are complex conjugate and
this system is characterized by a periodic solution. However, because of the term e−

αγ
α+β t,

as t→ ∞, the force to generate waves will slow down and approach to zero resulting in a
finite number of waves.

4 Comparison between SIR and CSIR models

4.1 Implications of a More Infectious Virus

This section analyzes implications of a more infectious virus in the CSIR model and con-
trast them to those in the SIR model.

Figure 11 presents the time paths of the CSIR model with two different values of β.
Red lines correspond to a 1.5 times higher transmission rate. Other parameter values and
initial conditions are the same as in the previous section. We extend the time horizon to
6000 periods to show long-run implications.

As can be seen in the bottom-left panel, a larger β does not necessarily imply higher
peaks of infection. In the first 2000 periods, red lines (higher β) exhibit lower peaks of
infection. When β is higher, the speed of infection spread is fast and the susceptible

14



Figure 11: Time path of the CSIR model with β = 1 (blue) and β = 1.5 (red)

population is exhausted sooner compared to the case of a lower β because the inflow
from C cannot keep up the rapid outflow from S. Therefore, temporary herd immunity is
achieved sooner at a lower peak. However, the height of peaks will be reversed as time
passes. From the top-left panel of Figure 11, we see that the higher β scenario depletes C
at a slower pace. Eventually, this will strengthen the power to pump up S, so the height
of infection peaks remains elevated.

This feature—a higher beta lowers the peak values of earlier waves but increases the
peak of later waves—is in contrast to what we observe in the SIR model. As we saw in
Figure 2, the peak of infection is higher if β is larger in the standard SIR model.

Another interesting contrast between the CSIR and SIR models lies in the epidemic
final size, R (∞) given an initial condition. In the SIR model described in Section 2, we
obtain dI

dS = −1 + γ
βS , which yields I (t) = −S (t) + γ

β ln S (t) + b where b is a constant.

Using I (∞) = 0 and assuming S(0) ≈ 1, we obtain S (∞) = e−
β
γ [1−S(∞)], or equivalently

R (∞) = 1− e−
β
γ R(∞).

The final size of cumulative infected population is increasing in β. This can be verified in

15



Figure 2 as well.7

In contrast, the opposite turns out to be true in the CSIR model.

Proposition 2. On the steady-state paths of the CSIR model,

dR∗ (t)
dβ

< 0,

so more infectious virus leads to a smaller size of cumulative infected population at any given time.
Proof: See Appendix C.

Holding α and γ, an increase in β leads to smaller cumulative infection as can be seen
in the bottom-right panel of Figure 11. As discussed above, a highly infectious virus (a
higher β) exhausts the susceptible population too quickly compared to the rate of inflow
from the cautious group, and hence, does not result in more cumulative infection. In
the bottom-left panel of the same figure, the area below the infection curves determines
to cumulative infection. The infection wave of a higher β exhibits steeper shapes and a
shorter period (more waves within a fixed time window), so the area under the red curve
is smaller than that under the blue curve.

In Figure 11, we overlay the steady-state paths of C and R as purple and green lines.
They are computed from the equations shown in subsection 3.3 with the same parameter
set, but initial values are replaced with the steady-state values. Given a set of parameters,
the paths of C and R can be approximated by the steady-state paths, and the waves of I
can be considered as a perturbation from those paths. If the initial conditions are close
to the steady state values (S∗, K∗) =

(
γ

α+β , α
β

)
, the system generates many waves. This

explains the contour plot of the number of waves in Figure 7. With the initial values
C (0) = 0.95, S (0) = 0.0495, I (0) = 0.0005, and β = 1, when α = 0.0005

0.95 = 0.000526
and γ = S (0)× (α + β) = 0.0495× 1.000526 = 0.049526, the initial conditions perfectly
coincide the steady state values. Thus, around those parameter values of α and γ, we
observe many waves.

4.2 A Large Wave versus Small Multiple Waves

Another contrast between SIR and CSIR models is the dynamics of infection over time. In
Figure 12, the paths of the infectious and recovered are depicted for SIR and two cases of
CSIR models (β = 1 and β = 1.5). Other parameters are set so that the final size will be

7See Miller (2012) for detailed discussions on the derivation of epidemic final sizes.
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Figure 12: The paths of the infectious and recovered in CSIR and SIR models

equal for all models.8 The SIR model generates a large wave of infection in the early phase
of pandemic, and quickly reaches to the herd-immunity steady state. In this parameter
specification, the number of new cases reaches more than 30% of total population at its
peak, and about 95% of total population get infected in the very early phase. On the other
hand, the CSIR model generates many small waves of infection over time, which is closer
to reality as shown in Figure 1.

5 Other Theories of Waves

In this section, we review other theories of waves in SIR-like compartment models to be
precise about our contribution.9

Some theories rely on people’s behavioral changes to explain infection waves. As the
number of infections and deaths increases, people restrain their activity or take appro-
priate prevention measures so as to reduce the risk of infection. Accordingly, when the
number of infections or deaths increases sufficiently, infection starts declining. As in-
fection or death counts fall, people start relaxing preventive measures, which eventually
leads to a rise in infection. Models in which the transmission rate inversely depends on
infection or deaths are consistent with this story, and some of these models can generate

8The final size of the CSIR model is determined by C0 + I0 as described in Appendix C. In the figure, we
show the time paths in the first 6000 periods.

9See also Kuniya (2021), which reviews some of the papers in this section in detail. Beyond the SIR
model, some have shown that network models of infection—such as scale-free network and small-world—
can generate multiple waves. See, for example, Ohsawa and Tsubokura (2020) .
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waves.10 Some theories emphasize the role of government policies in promoting people’s
behavioral changes. When medical resources are limited, a government may need to im-
pose NPIs to avoid collapse of medical system when infection rises and lift NPIs when
infection declines and medical pressures loosen. This cycle can also create waves (Fujii
and Nakata (2021), and Kurahashi (2021)).11

Models with the possibility of reinfection can also generate waves. One class of models
with reinfection is the SIRS model in which recovered people probabilistically lose their
immunity and become susceptible again. The existing studies have shown that SIRS mod-
els can generate waves under certain conditions, though they do not necessarily generate
waves.12 Another class of models with reinfection is age-structured model in which the ef-
fect of vaccines wane over time. Anderson (1995) , Franceschetti et al. (2012) , and Kuniya
(2019) , among others, have studies conditions under which periodic solutions emerge.

A more straightforward way to generate waves is to exogenize the transmission rate
and make it seasonal (Heathcote and Levin (1989) and Nakata and Kuniya (2010)). In a
similar vein, periodic appearance of a more infectious variant—which can be captured by
making the transmission rate increases over time in a step function—is likely to be able to
generate waves.

Our model differs from these existing theories of waves because it features heterogene-
ity in risk attitudes and their time-variation. Waves during the COVID-19 pandemic are
likely to reflect a mixture of these various forces.13 Which forces were more dominant in
reality likely depends on time and place. It would be useful to quantitatively investigate
such a question in future research.

6 Conclusion

Many countries have experienced multiple waves of infection during the COVID-19 pan-
demic. In this paper, we have presented a novel extension of the SIR model, the CSIR

10See Cochrane (2020) and Heathcote and Levin (1989) show that it is possible to generate wave in a
model in which the current force of infection depends on the past level of infected population. Xiao and
Ruan (2007) and Capasso and Serio (1978) show that it is not possible to generate waves in SIR models in
which the transmission rate continuously depends on I (t) in certain functional forms. Wang (2020) show
that it is possible to generate waves if the transmission rate is a jump function of I (t).

11Empirical literature distinguishes voluntary and forced lockdown/social-distancing, with some arguing
that the former was more important than the latter during the COVID-19 pandemic. See, for example, and
Watanabe and Yabu (2021).

12See Good and Hawkes (2020) and Kassa et al. (2020) for the applications of SIRS models to COVID-19.
13If new agents are continuously born, it is possible for the SIR model to generate periodic solutions, but

this does not account for what we have observed during the COVID-19 pandemic because multiple waves
occurred within a year or two.
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model, that can endogenously generate such multiple waves. Key features of our model
are heterogeneity in risk attitudes among those who have not been infected and time-
variation in these risk attitudes. We think that the mechanism in our model is a plausible
contributing factor to the emergence of multiple waves during the COVID-19 pandemic
and that it complements other theories of waves.

It would be interesting to examine the role of factors that are likely to have been impor-
tant during the COVDI-19 pandemic, such as the role of vaccines and NPIs, in our CSIR
model framework. It would be also interesting to extend the model to analyze the joint
dynamics of infection and economy—as done in the economics literature using macro-
SIR models—and examine the effects of various policy interventions on both infection
and economy.14 We leave these interesting extensions for future research.

14See, for example, Atkeson, Acemoglu et al. (2021) Alvarez et al. (2021), Eichenbaum et al., 2021, Far-
boodi et al. (2020) , Fujii and Nakata (2021), and Kaplan et al., 2020, among many others.
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A Alternative Specifications

The flow between the cautious and susceptible determines the dynamics of the CSIR
model. In the main text, we present a particular specification, but infection waves can
occur in other specifications. The laws of motion for C and S can be described by the
following equations

dC (t)
dt

= −FlowCS (t)

dS (t)
dt

= FlowCS (t)− βS (t) I (t) .

Consider the following cases where FlowCS (t) are characterized by

Model 1 :αC (t) S (t)

Model 2 :αC (t) S (t)− θS (t) I (t)

Model 3 :αC (t) S (t)− θ I (t)

Model 4 :αC (t)

Model 5 :αC (t)− θS (t)

Model 6 :αC (t)− θC (t) S (t)

Model 7 :αC (t)− θS (t) I (t) .

Model 1 corresponds to our baseline specification presented in Section 3. Models 2 and 3
allow a reverse flow from S to C, which is increasing in the current infectious populations.
These models intend to capture the “fear” effect, by which a certain fraction of the sus-
ceptible become cautious again when infection spreads in the society. Models 4 through 7
assume that a constant fraction of the cautious individuals become susceptible over time
regardless of the current susceptible population (no peer effect). Models 5 through 7 allow
a reverse flow from S to C in different forms.

Figures 13 and 14 show that infection waves can be generated in all models.15 In Model
2, a temporary increase of the cautious can be observed, which implies a monotonic de-
cline of C is not a necessary condition to generate the waves of infection. Of course, the
generation of waves are not guaranteed for any parameter values, but we can find a set of
parameters to generate waves in all specifications.

15Note that these figures show that there exist a set of parameter values that generates multiple waves;
they do not necessarily show that waves emerge under any parameter values, as in the baseline model.
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Figure 13: Infection waves in Models 2, 3, 4
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Figure 14: Infection waves in Models 5, 6, 7
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B Proof of Proposition 1

At the steady state paths,
Ct = C∗t , S∗ =

γ

α + β
, K∗ =

α

β
.

Define a deviation of Ct from the steady state path as εt =
Ct
C∗t

. Then,

dεt = d
(

Ct

C∗t

)
=

dCtC∗t − CtdC∗t
C∗2t

=
(−αStCt)C∗t − Ct

(
− αγ

α+β C∗t
)

C∗2t
dt =

(
−αSt

Ct

C∗t
+

αγ

α + β

Ct

C∗t

)
dt,

which can be written as
dεt

dt
= α

(
γ

α + β
− St

)
εt.

Hence, we obtain the following system

dεt

dt
= α

(
γ

α + β
− St

)
εt

dSt

dt
= (α− βKt)C0εtSte

− αγ
α+β t

dKt

dt
= [(α + β) St − γ]Kt

We have dKt
γKtdt =

(α+β)
γ St − 1 and dεt

αεtdt =
γ

α+β − St. Then,

α + β

αγ

dεt

εtdt
= 1− (α + β)

γ
St = −

dKt

γKtdt

⇒α + β

αγ
ln εt = −

1
γ

ln K0 + C ⇒ 0 =
α + β

αγ
ln ε0 = − 1

γ
ln K0 + C

⇒C =
1
γ

ln K0 =
1
γ

ln
I0

V0
⇒ α + β

αγ
ln εt = −

1
γ

ln Kt +
1
γ

ln K0

⇒α + β

α
ln εt = ln

K0

Kt
⇒ ε

α+β
α

t =
K0

Kt

Thus,

εt =

(
K0

Kt

) α
α+β
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Because εt =
Ct
C∗t

,

Ct = C
∗ α+β

β

t

(
I0

C0

) α
β

I
− α

β

t =
(

C0e−
αγ

α+β t
) α+β

β

(
I0

C0

) α
β

I
− α

β

t

= C0

(
I0

It
e−γt

) α
β

The differential equation of St can be written as

dSt

dt
= αStCt − βItSt = αStC0

(
I0

It
e−γt

) α
β

− βItSt

= αSt I
− α

β

t C0
(

I0e−γt) α
β − βSt It

which is the expression in Proposition 1.

C Proof of Proposition 2

On the steady-state path,C∗t and I∗t evolve as

C∗t = C0e−
αγ

α+β t

I∗t =
α

β
C∗t =

α

β
C0e−

αγ
α+β t

Because the differential equation of Rt is given by

dRt

dt
= γIt,

at the steady state, it can be written as

dR∗t
dt

= γ
α

β
C0e−

αγ
α+β t

Integrating both sides yields

R∗t = −γI0
α + β

αγ

(
e−

αβ
α+β t − 1

)
= I0

α + β

α

(
1− e−

αγ
α+β t
)
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Since I0 = α
β C0, we can also write the above equation as

R∗t = (C0 + I0)
(

1− e−
αγ

α+β t
)

Differentiating R∗t with respect to β yields

dR∗t
dβ

= − αγ

(α + β)
t (C0 + I0) e−

αγ
α+β t

< 0,

which concludes the proof.
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