CENTER FOR
ADVANCED
RESEARCH
INFINANCE

CARF Working Paper

CARF-F-551

A multi-agent incomplete equilibrium model and its
applications to reinsurance pricing and life-cycle investment

Keisuke Kizaki
Graduate School of Economics, The University of Tokyo

Taiga Saito
Graduate School of Economics, The University of Tokyo

Akihiko Takahashi
Graduate School of Economics, The University of Tokyo

First version: December 14, 2022
This version: August 24, 2023

CAREF is presently supported by Nomura Holdings, Inc., Sumitomo Mitsui Banking Corporation, The
Dai-ichi Life Insurance Company, Limited, The Norinchukin Bank, MUFG Bank, Ltd. and Emnst &
Young ShinNihon LLC. This financial support enables us to issue CARF Working Papers.

CARF Working Papers can be downloaded without charge from:
https://www.carf.e.u-tokyo.ac.jp/research/

Working Papers are a series of manuscripts in their draft form. They are not intended for circulation
or distribution except as indicated by the author. For that reason Working Papers may not be
reproduced or distributed without the written consent of the author.



A multi-agent incomplete equilibrium model
and its applications to
reinsurance pricing and life-cycle investment

Keisuke Kizaki®*! Taiga Saito®, Akihiko Takahashi®

*Graduate School of Economics, The University of Tokyo
7-8-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
Life Insurance Analytics Department, Mizuho-DL Financial Technology Co., Ltd.
Kojimachi-odori Building 12F, 2-4-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan

® Graduate School of Economics, The University of Tokyo
7-8-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

¢ Graduate School of Economics, The University of Tokyo
7-8-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

This paper develops an incomplete equilibrium model with multi-agents’ different risk attitudes and heterogeneous in-
come/payout profiles. Particularly, we apply its concrete and computationally tractable model to reinsurance derivatives
pricing and life-cycle investment, which are important for insurance and asset management companies in practice. In numer-
ical experiments, we explicitly obtain endogenously determined expected returns of the risky asset in equilibrium, agents’
specific reinsurance prices with their stochastic discount factors (SDF) and optimal life-cycle trading strategies. Moreover,
we investigate how each agent’s degree of risk aversion and income/payout profile, and correlations between an insurance or
economic factor and the risky asset price affect reinsurance claims pricing and optimal portfolios in life-cycle investment.
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JEL classification codes:

D15; G11; G12; G13; G22.

1 Introduction

This study proposes a multi-agent’s incomplete equilibrium model, which characterizes an excess return process of
a risky asset, each agent’s optimal portfolio and stochastic discount factor (SDF), equivalently, an agent’s specific
risk-neutral probability measure in equilibrium. Moreover, when state processes are of square-root types, those
variables are explicitly obtained, which are effectively applied to reinsurance claim pricing and life-cycle investment
in numerical experiments.

Insurance companies manage large portfolios for their insurance payments, exposing them to risks that cannot be fully
hedged with market instruments. Reinsurance is a tool used by insurance companies to hedge their insurance risk, and
how to price the risk is an important issue. Since insurance and reinsurance companies face risks with heterogeneous
risk preferences and income or payout profiles, those companies have different risk-neutral probability measures for
contingent claim pricing. Then, it is not always possible for them to agree on the reinsurance claim pricing. Therefore,
it is essential to price reinsurance claims under heterogeneous risk-neutral measures to investigate conditions when
insurance and reinsurance companies can agree on the price to trade. Particularly, we show reinsurance pricing for
the financial stop loss contract using a marginal pricing approach, where the pricing of reinsurance claims is done
with given the equilibrium expected return process as a result of the original individual portfolio optimization.
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Also, on behalf of individuals who aim to optimize their financial portfolios with considering their lifetime income
and payment, pension funds plan and offer products that suit individuals’ life cycles, and optimally trade by taking
into account the markets’ and individuals’ net income movement, which is also a central topic in the insurance
industry.

Since the risks insurance companies face and changes in economic factors affecting individuals’ income and payment
cannot be completely hedged with tradable securities, pricing a contingent claim and investigating an optimal
investment with such risks and factors are quite important problems. Moreover, as the expected return of a risky
asset is a key element in pricing associated financial products and determining relevant asset allocations in portfolio
management, considering an equilibrium model where the excess expected return process is endogenously determined
seems also useful in practice.

Hence, the motivation of this study is to develop a computationally tractable equilibrium model to evaluate contingent
claims and investigate optimal portfolios with an endogenously determined expected return process in an incomplete
market setting with multi-agents’ different risk attitudes and heterogeneous income/payout profiles. In detail, we
incorporate the heterogeneity of agents into the modeling of equilibrium in an incomplete market, namely, risk
aversion parameters of exponential utilities, income/payout profiles at maturity driven by a common economic
factor through functional specific to respective agents, and individual income factors, which are sources of market
incompleteness. Specifically, we solve the problem through a transformation of the probability measure, which enables
us to reduce the dimension of the problems substantially. As examples including numerics, we present computationally
tractable cases with the common and individual-specific factors following square-root processes.

The contribution of this study is to develop a concrete multi-agent equilibrium model in an incomplete market to
investigate practically important problems for insurance and asset management companies. In particular, we apply
the model to reinsurance claim pricing and life-cycle investment, extracting the essence from practical situations. In
numerical experiments we explicitly obtain agents’ specific reinsurance prices and optimal trading strategies with
endogenously determined expected returns of a risky asset in equilibrium. Moreover, we investigate how each agent’s
degree of risk aversion and income/payout profile, and correlations between an insurance or economic factor and the
risky asset price affect reinsurance claim pricing and optimal portfolios in life-cycle investment, whose implications
agree with the insights from practice.

For related literature, Choi and Larsen (2015) develop exponential-quadratic models with the motivation of ap-
proximating a general class of incomplete Radner equilibrium models. Kizaki et al. (2022) consider a multi-agent
equilibrium in an incomplete market with conservative views on Brownian motions by a backward-stochastic differ-
ential equation approach. These studies focus on equilibrium in the sense of the financial market that satisfies market
clearing conditions. Another approach can be found in the game-theoretic literature, which examines the multi-agent
equilibrium model. Xia (2004) investigated a cooperative investment game and provided a characterization of Pareto
optimal cooperative strategies in incomplete markets. Bensoussan et al. (2014) addressed a non-zero-sum stochastic
differential investment and reinsurance game between two insurance companies. They solved the game problem by
applying the dynamic programming principle. Han et al. (2022) developed a dynamic model to study the effect of
relative performance evaluation (RPE) in delegated portfolio management. They introduced a non-zero-sum game
among managers, in addition to the hierarchical Stackelberg game between the shareholders and managers.

For reinsurance pricing, Becherer (2003) deals with an indifference pricing, and for the life-cycle investment, Hen-
derson (2005) investigates an optimal investment problem with stochastic income, where those studies consider a
single agent model with an exogenously given expected return of a risky asset. Our study is different from Becherer
(2003) and Henderson (2005) in that we consider a multi-agent model in an incomplete market, where the expected
return process is endogenously determined in equilibrium. Namely, we introduce insurance and reinsurance parties
with different risk profiles before their contract’s agreement, or a representative of individuals considering life-cycle
investment and the other market participants, whose different optimization behaviors determine an equilibrium
expected return of a risky asset and provide agents’ specific reinsurance prices or optimal life-cycle investment
strategies.

The organization of the paper is as follows: Section 2 introduces the setting of a multi-agent equilibrium model in
an incomplete market, Section 3 solves the problem of each agent’s optimal investment and an equilibrium expected
return process of the risky asset. Section 4 investigates the case where state factors’ processes are of square-root types
and provide a computational procedure, which enables us to concretely obtain each agent’s optimal trading strategy
and the equilibrium expected return of the risk asset. By applying this method, Section 5 presents numerical examples
for reinsurance pricing and life-cycle investments. Finally, Section 6 concludes. Appendix A discusses another example
of a multi-agent equilibrium in an incomplete market setting in a log utility case.



2 Settings
2.1 FEconomy and financial market

Firstly, we describe the settings of the economy and financial market in this study.

Let (92, F,P) be a probability space, [0,T] be the time horizon, and W = (Wy, Ws, Wy,...,W;)T be an I + 2-
dimensional standard Brownian motion, where I > 2. Let {F;}o<¢<7 be the augmented filtration generated by W.
We consider an economy consisting of I agents endowed with income at maturity and the financial market, where
there are two tradable assets, a money market account and a risky asset whose price processes are denoted by
{Bi}o<t<r and {S:}o<i<T, respectively. Particularly, we assume B, = 1, which indicates the risk-free interest rate
is 0 for simplicity in this study.

Let Y;, i = 1,...,I be the individual income process of agent i, and Y be a factor process that drives the final
income/payment. We assume that there are two types of exogenous state variables in this economy, a common factor
process {Y; }o<i<r and individual factor processes {Y;:}o<i<r (i = 1,...,I), and both the individual income Y;
and the final income or payment F;(Yr) are given at maturity 7', where F; : R — R are continuous functions.

We assume that Y, Y; and S satisfy the following stochastic differential equations (SDEs)

dYy = pydt + oy, dWy i, Yo = yo, (1)

AYi s = pipdt + 054 (pi e AWy + pidWis), Yio =vio (i =1,...,1), (2)

ds, R

o = Hsadt + 054 (ps AWy + psdWsr), So = s0 >0, (3)
t

where py, li, s, Oy, 0, Os, Pis Pis Ps, Ps are {F }-progressively measurable processes, the volatility coefficients
Ov,t,0it,0s; > 0, and the correlation coefficients, p;, p;, psg, and pg satisfy |p; | <1, [p;] <1 with p; ¢ = /1 — pit,

. . . / T T T

1= 17 ce 7I7 ‘pS,t| < 1; ‘pS,t| < 1 with ps;t = 1- p257t for all t € [OvT} AlSO, fo |,uY,s|d87f0 |/”'i,s|d8a fo |/-LS',s|d8 <
00, fOT loy s|?ds, fOT o s|?ds, fOT loss|?ds < o0, i=1,...,1, P —a.s.

We further suppose that py, p;, oy, o0:, pi(pi), ps(ps), 0 := g—z are functions of ¢ and Y;, which indicates that these
coefficients are driven by the common factor Y and can be stochastic.

In the following, given the volatility process of the risky asset g, we aim to obtain the representation of the expected
return process pig, or equivalently the market price of risk 6 in equilibrium where a market clearing condition is
satisfied, which will be defined later.

2.2 Individual optimization problem and market equilibrium

Next, we introduce individual optimization problems of the agents and market equilibrium. Firstly, let {X z‘(,?)}OStST

be the wealth process of the i-th agent. We consider the situation where the i-th agent invests its wealth Xi(;i),
where the initial wealth is set to be 0 for simplicity, into the money market account and the risky asset over the time
horizon [0,T] and receives its income Y; 7, which is inherent to the agent, and the income/payment F;(Yr), which
is driven by the common factor Y, at maturity 7.

Next, let {m; ; }o<i<7 be a portfolio process of the i-th agent for the risky asset, which is R-valued {F; }-progressively

measurable satisfying fOT 7ri27sds < 00, P —a.s. Here, we express the portfolio process ; ; in terms of the value of the
risky asset position at ¢, the number of units the i-th agent holds times the risky asset price per unit, and assume

the trading strategy to be self-financing. Since the risk-free interest rate is 0, the SDE of Xi(m) is as follows.

dXi(;i) = 7ri7t,lls7tdt + 7Ti7tUS,t(ps,tdWy7t + [)S,tdWS,t), Xi(jsi) =x;0= 0. (4)
Particularly, in terms of the market price of risk 6, = Z z:, the SDE of Xi(”l') is expressed as
dXi(’Tt”) = T,405,0¢dt + 7 1054 (ps AWyt + ps,edWsye). (5)
We suppose that each agent has an exponential utility U;(x) = —e™ 7% with its absolute risk aversion (ARA)
parameter 0 < ; < oo and set the market ARA parameter I' as
1
'=s ——. (6)
T
Yic1 o
Then, we introduce the individual optimization problem of the i-th agent, i =1,...,1, as
) x(m)  y
sup B |U; (X3 +YVir - Fi(YT))} = sup E [—G_WZ(X*T T Fl(YT))} ; (7)
T €EA; ’ mEA;

where F; : R — R is continuous and A; is a set of admissible portfolio strategies defined below.



Definition 1 For the i-th agent, a portfolio strateqy m; € R is admissible if Xi(m) is a supermartingale under Q;,
where Q; is a probability measure equivalent to P such that the risky asset price process S is a local martingale under
Q;, which will be specified in each individual optimization problem.

We denote the set of i-th agent’s all admissible strategies as A;.

Here, we define an admissible strategy such that the wealth process is a supermartingale, which ensures that an
arbitrage opportunity is excluded. In detail, if a strategy m; is an arbitrage strategy, the corresponding wealth process
X i(m) is not a supermartingale under Q;. Since X 1(76) =0 and Xi(j;) > 0 is strictly positive with a positive probability
under P, and Q; is equivalent to P, Xi(j;) > 0 is also strictly positive with a positive probability under Q;, leading
to EQi [XZ(ZZ)] > 0 which indicates XZ-(T”') is not a supermartingale under Qj.

We note that the expectation in (7) is well-defined in the sense that it is bounded by zero and may take the value
—o0. This individual optimization problem indicates that the i-th agent aims to maximize its expected utility on the
total amount of its wealth, the income, and the final payment at maturity. Then, we aim to obtain a representation
of the instantaneous Sharpe ratio  in equilibrium, where we define the market equilibrium as follows.

Definition 2 We call the financial market is in an equilibrium if (i)for each i = 1,...,I, mf € A; attains the

supremum in the individual optimization problems (7), and (#) the following market clearing conditions for the risky
asset and the money market are satisfied.

I I
ZZ‘=0’ZX(” ) =0, (8)
=1 =1

for allt €10,T).
First of all, the first equation indicates that the total of the risky asset positions among the agents is zero and the
second equation shows that the total of the money market position is also zero, where 77, is a risky asset position

of agent ¢ and X 1(7;1) — m; 4, which is a difference between the wealth and the risky asset position, is a money market
position of agent i. We remark that we assume a net zero position for the risky asset and the money market, meaning
net zero supply in the pure exchange economy. This assumption is reasonable when opposing interests exist among
agents. In the log utility case discussed in Appendix A, we consider a case where a nonzero dividend at maturity
is provided, which complies with the positive wealth restriction in the log utility. Extending the exponential utility
model to the one with a net nonzero supply of the risky asset is a future research topic.

3 Solving individual optimization problems and equilibrium by an HJB method

In this section, we obtain the optimal portfolio processes 7}, ¢ = 1,...,I and the Sharpe ratio  in equilibrium by
an HJB approach. Specifically, after providing the transformation of probability measures to solve the individual
optimization problems, we show that given the Sharpe ratio in equilibrium, the optimal portfolio processes attain
the supremum in each individual optimization problem, then show that the market clearing conditions are satisfied.

Hereafter, we assume the following.
Assumption 1 The local martingale ZY) defined as

_ 2 ! t t
Zt(l’Y) — exp (_’g / O—'L'Q,sds — Y / Ui,sﬁi,dei,s — i / pi,sgi,deY,s)> (9)
0 0 ’

is a martingale under P.

Remark 1 When o; is nonrandom and fOT o 2 ds < oo, since pz s T ,0z s = 1, Novikov’s condition is satisfied and
Assumption 1 holds. When o; is stochastic, we need to check if Assumption 1 holds, which depends on the form of
0;. When o; is stochastic, Assumption 1 holds if a weak version of Novikov’s condition (e.g., Corollary 3.5.14 in
Karatzas and Shreve (2012)) is satisfied, for example; there exists a partition of [0,T], 0 =ty <t1 <--- <ty =T,

such that
1 tn
exp f/ y2 o; 2ds || < o0,
2 tn 1

forall1 <n < N. (10)
We remark that as mentioned in Section 4.1, the weak version of Novikov’s condition is used to confirm that As-
sumption 1 holds in the square-root case, where the condition is satisfied by Theorem 3.2 of Shirakawa (2002).

E

Assumption 2 For u; and o;, i =1,...,1, there exists a nonrandom process c; such that

2
Vilbit — %Jzt = ¢;(t), Vt €[0,T]. (11)



This indicates that we assume pu; to be of the form %ci(t) + %027“ which enables us to simplify the individual
optimization problem that includes Y;, the individual income of the agent i at maturity, by transformation of a
probability measure in the next section.

3.1  Transformation of a probability measure

Firstly, to simplify the individual optimization problem (7), by Assumption 1, we define a probability measure | )
by % = Zq(f ’Y), which corresponds to measure transformation based on each agent’s income profile.

Noting that

d(v:Yi) = Vi pdt + vios (i 1 dWyp + pi 1 dW 1), (12)

and
T

2 s
XD = Fiv) _ e (X =R . o (”’i“if?‘“i»s)dszg,n,
by Assumption 2, we have
E ,e—w(xi‘}i%n,T—Fi(YT))} _ g6y {76—7,5(X522>—F¢(YT))} o~ Ir ci(s)ds (13)
Also, by Girsanov’s theorem, (W}(,Z "tY), Wéf;y)) defined by
AW = AWy + yipigoiedt, dWS;) = dWs,, (14)

is a two-dimensional Brownian motion under P(&Y),
Thus, the individual optimization problem (7) becomes

sup EY) [—e—MXffT”‘Fi(YT))} ) (15)
T €A;
where 4 _
d}/t = [j,g/’tdt + UY,tdW}(/f%Y)’ (16)
ds i i R i
o = Osalilsdt + 05 (ps Wy + s d W), (17)
t
dX(7) = 71 405 4t + 734050 (ps. AW + pg i dW D). (18)
Here, we set ‘
[j’lY,t = Kyt — ViPi,t0i,t0Y t, (19)
fis s = 0t — Vips,tpitTit- (20)

3.2 Candidate of optimal trading strategies by an HJB method
Next, we define the value function V;(x,y,t) for (15) as

. (73) )
V;($,y,t) = Sup EU’Y) |:_€*’Yi(Xi,T 7Fi(YT))|Xi(7;1) = JJ,Y',{ = yj| . (21)
T €A; ’
First noting that
dY; = iy dt + oy, W), (22)
AX7) = 740541 4dt + 14050 (ps AWy, + psdWy ), (23)
we obtain the following HJB equation:
2,2 o2 p p
sup | E75(0,014) + 0, 18) + psprsov (0, Vi) + poris(O.V0) + i 0,10 + 01| =0. (24
pe

Then, a candidate of optimal portfolio is given by the following lemma.

Lemma 1 Suppose that there exist f; : R x [0,T] = R, i =1,...,1 of class C? for y and class C* for t, satisfying
a system of partial differential equations (PDEs)

o2 . iO'Q . 1
%(ayyfi) + p?g7 2Y 0y f:)* + [(ny — vipepioioy) — psoy 8] (Oyfi) + Oufi — > [0 — vipspioi]® =0, (25)
with terminal conditions
fily, T)=F;(y), i=1,...,T. (26)
Let
Vi(z,y,t) = —exp (—vi(z — fi(y, 1)) - (27)



V; in (27) is a solution of HIB equation (24). Particularly,

« 1 ,al 1 0 ,t — YiPit04
Piy = —— < o~ +PS,tUY,t(ayfi)> =— ( W,£) = %iPisTips, +PS,tUY,t(3yfi)) ) (28)
08t Vi gst Yi
attains the supremum in (24).
Proof. Noting that each partial derivatives of V; are given by
6;8‘/1 = _’Yi‘/zi 8.’,8:8‘/2 = ’Y?Vvu (29)
OyVi =1Vi(0yfi), OyyVi = ’sz(a fz) + 7 Vi(Oyy fi) (30)
axy‘/z - - i 1(ayfz)a (31)
Vi = 1iVi(Ofi), (32)
and —v;V; > 0, we substitute these partial derivatives into the left hand side of the HJB equation (24) and obtain
2 9
vip*ol  of o
_'Yi‘/i X SEUE - 9 S 2Y(< yy.fz) + %(3 fz) ) + '7ipSpUSUY(ayfi) -HUUSMls - :ugf(ayfz) - atfz:| (33)
p i
Since this is a quadratic function of p and the first order condition with respect to p becomes
—70%P + Yipsosoy (Oy fi) + osits =0, (34)
the supremum is attained at p;, = U; ; (ﬂs L+ ps, ta'Yt(ﬁyfz)). Then, we calculate
2 (0 #)2 2 i
Y05 (P; viog 1 ( (i HspPsoy
- 2o 208 S (B oo, 07+ 2B g, )
US i 7
i \2 2 2
H ViP5 i
= ST DT 0,12 pay il 0,1, (35)
Vipsp; 050y (0yfi) = psoy fis(0y fi) + ipsoy (9y fi)?, (36)
~i )2
* ~1 1% ~1
iasits = B 4 ooy (0,10, (37)
the sup part in (33) becomes
i \2 2 2 o2
i YiP%0o )
— 5L DY (3, 12 — psov ity (0,5 — (@) + 1(0,50°)
Aia‘ ‘228'2 (IU’S) ) Aia‘_a_
+ psoy fis(Oy fi) +7ip5oy ny) +PSUYNS( y fi) — iy (9y fi) i fi- (38)
1
Rearranging this, we have
o? . %0 i
T (O + 3L O+ (i psovik] (0,50 + 0t~ B (39)
where we used p% + p% = 1.
Since
iy = py —7ipioioy, (40)
fq 0 —vipioips, (41)
(39) is rewritten as
2
~2 Vi0 . 1
%(ayyfz) + P 2Y 0y f:)? + [(ny — vipspioioy) — psoy 0] (Oyf;) + O fi — o [0 —vipspioi]? (42)
which is 0 by (25). O
3.8 Verification of the optimality
As we have observed in Section 3.2, the candidate for the optimal trading strategy is given by
x * 1 (0 —vipioi
e =i int) = o (BT 0y, (0, 1)) (13)
085t Yi

Then, as we will observe in a square-root case in Section 4, it easily follows that if {n;;}o<i<r set as

2V Y )
nl7t N ‘/;(xi,07y070) ’ -

is a local martingale under Q;, where Q; i

is a martingale under P, Xi(ﬂi*)

Qi __
ap — T

Moreover, if Xi(m*) is a martingale under Q;, we confirm that 7 is the optimal trading strategy for a given market



price of risk 6; = 0(Y3, ).
Furthermore, if the market price of risk 6 is set so that the clearing conditions (8) are satisfied for =}, i =1,...,I
in (43), we can confirm that the financial market is in equilibrium, which is summarized as follows.

Theorem 1 Suppose that there exist f; : Rx[0,T] =R, i =1,...,1 of class C? for y and class C' for t, satisfying
a system of partial differential equations (PDEs)

o2 o Y02 . 1
%(ayyfi) + P%Py 2Y 0y f1)* + [(uy — vib%pioioy) — psoy 0] (0, fi) + O fi — 2 [0 — vipspioi]” =0, (45)
with terminal conditions
fily, T)=Fi(y), i=1,...,1, (46)
where
I
0(y,t) = =T - psi- Y (0v,Dyfr) = PriTn.t) - (47)
k=1

Suppose that {n; ¢+ yo<e<r 0 (44) with Vi(z,y,t) = —exp (—vi(z — fi(y,1))) is a martingale under P and Xi(ﬂ;) is a

martingale under Q;, where Q; is defined by dd%i =17

Then, the Sharpe ratio and the optimal trading strategies in equilibrium are given by

I
0p = 0(Ye,t) = —T - pse- Y (ovady fu(Ye,t) = praons), (48)
k=1
and
% 1 9 — YiPit0;
o= o (AT (0, 1121 ). (49
t i

Proof. Firstly, we show that 7} attains supremum of each agent’s expected utility in (15).
Lemma 2 7 € A; attains supremum of the expected utility for agent i in (15).

Proof. First, we set the convex conjugate of U; as Uj,

Ui(y) = blelg(Uz(x) —xy), for y > 0. (50)

Then, it holds that :
Ui(z) < Ui(y) + ay, (51)
Ui(e) = Ui(U}(x)) + 2U;(x), (52)

for any z € R and y > 0.

For any m; € A;, let us set x = XZ-(vﬂTi) — F(Yy) and y = EGY) [U;(XI(ZZ*) - Fi(YT))]% in (51).

Then, we have
BOU (X — F(vYr)

i) |77 i r dQi \] i - i) [_dQi X
<EGY) |7, (E( ,Y>[U{(X§,f>_Fi(YT))}dpu,w) +ECVWIGT — F(yr)ECY) 2P0 (X"(’T)_Fi(YT))]
) 7 (@) ) dQi ] @Y 7 x (70 ) [
<ECO\O (BECOUIGT - (Yo oy ) |+ BT - FO))ECY | S5 (@0 — Fi(Yr)
_gY [ (6@ dQi ] @Y7 x (79 ) [ 4Qi )
—E U | EM VN0 (X 77 — Fi(Yr))] mpavy )| TE Ui(Xiz" — E(Yr))E dP®Y) (Kig” = ()
— EG®Y) [Uz(Xz(T;") — Fi(Yr))]. o

The second inequality and the first equality follow from the fact that Xi(m) is a supermartingale and Xi(wf) is a
martingale in Q;, respectively. In the last equality, we used (52) and

4Q; _ dQq (aPUVNT ViXE Ve T) UG - F(r) 54
dPGY) — qP ( dP ) - Vi(®i0,%0,0) E(Ly)[U{(Xi(,ﬂT;) _ Fz(YT))] (54)

This shows that 7} attains supremum the expected utility. O
Secondly, we show that «}, ¢ =1,...,I satisfy the market clearing condition with the instantaneous Sharpe ratio 0



n (48). Substituting (49) into the market clearing Condition in (8), we have

I I

1

ZW o5 (9 Z;_pSthztUzt‘FpStUYtZ yfz)zo- (55)
t i=1 '* =1

This completes the proof of Theorem 1. O

Remark 2 We can also confirm that XZ-(M) and S are local martingales under Q; for a general factor process Y and
income processes Y;,i = 1...,1 satisfying Assumptions 1 and 2 as follows.

. z( Y)V(X I)Yt,t) ) .
Suppose that {n; o<i<r M Miy = Vo 0 <t <T, with Vi(z,y,t) = —exp (—yi(z — fi(y,1))) is a

martingale under P.

By Ito’s formula, dn; is expressed as

0. Vi 0. Vi
dnie = N ( v 7 105,t05,tdWs 1 + ( V.

Then, by Girsanov’s theorem, W;;Q’ and Wg** defined by

AW = AWy, — (a%c/%

A 9 Vi
dWS(v?; - dWS,t - ?

Vi
T 08,tPst + oyt — %‘Uz‘,tpi,t> dWY,t> . (56)

VZ

V.
Z‘I/Z_LGY,t — ’YiUi,tpi,t> dt,

ﬂztagvtﬁ&tdt, (57)

.
T 108,tPS,t +

are Brownian motions under Q;, and thus

o | ) 0,V . 0,V;
Ps,tdW;}?Z + Ps,tdWé’Z = psdWy,i + ps,dWs s — (mﬂ'i 05t + L0y ipst — 'Yio'i,tpi,tps,t> dt

v, sty
= pstdWy,t + ps1dWs s + (vim] 1050 — Y0y fioy,eps.e + Viditpitps.t)dt
= ps,dWy,s + ps:dWs, s + Oidt, (58)

where we used the relation between w}, and 0; in (49).
Hence, we have
dXZ-(,?) = 7;,105,40¢dt + ;1051 (ps AWyt + ps,edWs t).
= Wi,tJS,t(pS,tdW;%Z + ﬁS,tdwgg)v
ds, . R
?t = pugdt + 051 (pstdWy s + ps1dWs 1) = 05,:(0:dt + ps,edWy s + ps:dWs 1)
t
= 05,4(ps, AW + psdW ). (59)
Therefore, Xi(m) and S are local martingales under Q;.
We can interpret the optimal trading strategy of the i-th agent

1 01 — i pi +0;
rt = ( L YiPiritPs ps,tay,t(é’yfi(Yt,t))) , (60)
gsS,t Yi
and the Sharpe ratio in equilibrium
I
O = —T - psi- > (0v0y fi(Yert)) = prsonr) (61)
k=1
which yields the expected return pg; = 0;0g+:
I
st =—-T-(psios.:) Z ((oy,e0y fr(Yi, 1)) — pr,tOrt) (62)
k=1

as follows.

First, the optimal trading strategy of the é-th agent (60) consists of the mean-variance term 6;/(+;0s,), proportional
to the market price of risk 6, and the hedging term pg 0y, (0y fi(Ys, 1)) /05t — pi.t0itPS,t/TS,t-

The hedging term describes the demand for hedging risks arising from the movement of Y and Y;. As an interpre-
tation, suppose (0, f;) > 0 and pg > 0 for instance, noting that 9,V; = v;V;(9,f;) and V; < 0, the value function V;
decreases when the economic factor Y increases. Then, since the risky asset price S is positively correlated with Y,
the long position of the risky asset, psoy(0yfi(Y:,t))/0s can have a hedging effect on the risk arising from the
movement of the economic factor Y.

Moreover, since the individual income Y; 7 is included in the agent’s expected utility in (7) and the risky asset price S



is positively correlated with the income process Y; as p;ps > 0, the short position of the risky asset, —p; 10:,105.¢/0s.1
has a hedging effect on the risk arising from Y;. The other cases can be explained in the same manner.

Next, the Sharpe ratio € in equilibrium in (61) indicates that the market price of risk is set so that it offsets

the aggregate hedging demand. For example, if pg¢ Zi:l ((oy,t0y fr(Ye, 1)) — pr,tor,e) > 0, which indicates excess
aggregate hedging demand, then 6 is negative, which implies that the excess return process pg is negative and the
selling demand in the mean-variance term increases.

4 Square-root case
4.1  Settings and result

In this section, we introduce a square-root model below as a specific case of the settings (1)-(3) in Section 2, which
will be used in the numerical examples in Section 5. We assume that {F;}-progressively measurable processes Y,
Y;, i=1,...,1, S satisfy the following SDEs,

dYy = (uy Yy + p3)dt + 5y / YedWyy, (63)
AYi s = pipdt + 0/ Yi(pidWy s + pidW; ), (64)
ds .
Tt = psdt + 05 (psdWy s + psdWs 1), (65)
t
where pi-,u?, 6y,0; € R are constant, particularly 5y,5; > 0, and also p;, pi, ps,ps satisfying |p;|,|ps| < 1,

pi = /1 —p3, ps = /1 — p% are constant for simplicity. We assume that p; is given by p; ; = %5?3@ + ? for some
nonrandom function ¢(t), which satisfies Assumption 2, ug and og are {F; }-progressively measurable processes with

o5t >0,0<t<T, and F;(y) = g} (0)y+g¢2(0) with g}(0),g?(0) € R, i = 1,..., 1. We can interpret this as a special
case of (1)-(3) where py,s = p3 Yy + pi3, pie = L67Y; + %, oyt =0vyVYs, 05y = 0:VYy, and pi g, Pit, ps,e, Ps,t are
set to be constant. We also note that Assumption 1 follows from the weak version of Novikov’s condition, which is
satisfied by Theorem 3.2 in Shirakawa (2002). Then, the market price of risk and the optimal trading strategies of
the agents are given as follows.
Theorem 2 There exists Tpiow-up > 0 such that for 0 < 7 < Thipw-up, a solution {(g},9?)}i=1,...1, for the system
of ODEs
=2
L2 Vi0
.91 = BITE (g2
- (—psﬁy,u%/ + %’P%Pﬁﬁy) 9
2

I
1 - — —
2y —Leps- Z (ovg; — pjaj) —vipspioi | (66)
1 le
3793 = /U‘%/gila (67)

with initial value conditions g} (0),g?(0) € R i =1,...,I uniquely exists.

Moreover, if T' < Tgiow-up the instantaneous Sharpe ratio § in equilibrium and the optimal trading strategies of the
i-th agent 7, 1 =1,...,1 are given by

1
0o =T -ps-y_ (avgj(T —t) = p;o;) Vi, (68)
j=1

and

. VY <—F ps - Yoy (avgH(T —1) = p;o;) — vipitips

T,y — ——
1
Vi

0S5t
Proof. For each i, the right-hand side of (66) is C'-class in g1, ..., g}. Thus, the right-hand side of the system of
ODE:s is locally Lipschitz continuous as a function of (g1, ..., g+). Then, by Picard-Lindelf theorem (e.g., Theorem
2.2 in Teschl(2012)), the system of ODEs has a unique local solution. Moreover, by the extensibility of the solution
(e.g., Theorem 2.13 in Teschl(2012)), there exists a constant, blow-up time, Tgiow-up € (0, 0] such that the ODE
system (66) has a unique solution for 0 < 7 < TRiow-up-

First, we show that f;(y,t) = g} (7)y + ¢g2(), i = 1,..., I, where 7 = T — t, satisfy the system of PDEs (45).

+psoyg; (T — t)) : (69)



Noting that

ayfi(yvt) = gil(T)v yyfz(ya ) =0,
3 fi(y,t) = —ydrg; (1) — -7 (7), (70)
and 6(y,t) in (47) becomes
. 0(y.t) = Vyo(t), (71)
o(t)=-T"pg - Z aygj —t)— pjorj) (72)

we calculate the left hand side of (45) as

y|p% %2 (91 (7)) = (psy (T — 1) — uy +7ip2piGioy) gi (1) — =— (B(T — 1) — Yipspias)” — -3 (7)

+ 159 (1) = 093 (7)] (73)
which is 0 due to (66) and (67), and the terminal conditions (46) hold. Thus, f;(y,t) = g} (T)y + ¢2(7), i=1,...,1
satisfy the system of PDEs (45).

Next, we show that #; in (44) with V;(x,y,t) = —exp (—y:(z — fi(y,t))) and 7 in (69) is a martingale under P for
1=1,...,1.

Applying Ito’s formula to V; (X )Y, t), since the drift term of dV; is 0, we have
= V)05 s AW+ psaW L) + 0,V WY
)

= ((0.Vi)(m7,05.0)ps + (0,Vi) oy, ) AW + (8,Vi) (w105, psdW
= (—Va)(m,05.0)ps + (Va0 £:))ov) AW, + (—7:Vi) (05,0 psdW ;)
= Vi | —7il(m405.0)ps — Dy fi) oy ) AW — w;itas,tmsdvvéf;“] (74)
Moreover, by (69),
nt 05 = VT (‘“’””””5 T psoval (T - t>) . (75)
Since ¢(t) given by '
I
NT —7)=¢(t)=-T-ps->_ (ovg}(r) - pio;), (76)
j=1

is a linear combination of g} (T — t), which is bounded in [0, 77,

t) = Yipi0i _

(W +psoygi (T — t)) : (77)
K3

is also bounded in [0,T]. Then, by (74) and (75), V; is a martingale in P(*Y) since the weak version of Novikov’s

condition holds by Theorem 3.2 in Shirakawa (2002) as Y is a square-root process satisfying an SDE

dYy, = (@ Y: + 13 — vipidiay Y )dt + Gy /Y dWis"). (78)
Thus, we have
28X Yo, 1)
Vi(zi.0, Y0, 0)
2 BOOWVXE Y, T)|F
Vi(zi,0,90,0)
ZVIX T Y

E[ni,7|Fi]

t

T Viwios ;Jo, 0 " (79)
which indicates that 7; is a martingale under P
By (9), (74), and Girsanov’s theorem, W?t, W?t defined as
AW = AWy + 7:{(7} ,05.0)ps — ov4(Oyfi) + 0s.epi}dt, (80)
AW = dWs, + (] ,05.0)psdt, (81)
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are Brownian motions under Q;.
Substituting

0, — ~:pi 10
ﬁMM=(t%?”Mw+mwm@m>7 (82)

we calculate

psdW¥ + psdW = psdWy + psdWs,e + Odt. (83)
Thus,

dXi(jtri) = watas’tetdt + W;,tUS,t(PSdWY,t + ﬁSdWS,t)
= 77,05, (psdW 3 + psdW ). (84)

Lemma 3 For w} in (69), Xi(f) is a martingale under Q.
Proof. Since XZ.(W:) satisfies (84), it is sufficient to show that EQ [fOT |} 05| *dt] < oo
First, we note that

. O(t) — vipi0i _ 2
wt osal? = v | A 00T0S L oghr )| (85)
where )
t) — vipio; _
‘W +psoygi (T —t)| , (86)

is bounded in [0, T'] since ¢(t) given by (76) is a linear combination of g} (T — t) which is bounded in [0, 7T7.
Next, under Q;, Y; is also a square root process with time-varying parameters
dY: = {iy + (15 — %pitioy s — Oy psd(t) + 705 p3g! (T — 1) Yi}dt + oy /YidWid;. (87)
Then, there exists C' > 0 such that EQ[Y;] < C, Vt € [0, 7], which is proved as follows.
Setting
dY; = {a(t) — Bi(t)Yi dt + Gy /Y dWy 3, (88)

where a(t) = p} and B;(t) = —(u3, — VipiGioy p% — Oy psd(t) + 1o pZgl (T —t)), by Ito’s formula, we calculate

d(efo ﬁi(u)d“Yt) = ﬁi(t)efo ﬁi(u)qu}dt + efo ﬁi(u)dudYt

= aft)edo Oy 4 Gy el BN S (89)
Thus, we have
4 t . ¢ .
e B [ T [ Lo g
0 0
We define stopping times 7), k € N by
") —inf{s >0:Y, >k} AT, for k € N. (91)

Then, we have

0 e T Bwa S T .
Vipsi = e Jo 0y, g [T g T 00y [T gy ST w02

Since Y; < k for s € [0, A 7(®)], the stochastic integral part in (92) is a martingale and its expectation under Q; is
0. Hence,

EQ[Y,\,w] <C, (93)
for some C' > 0 and by Fatou’s lemma, we obtain
EQ[y;] < lim inf EQ[Y,\,.m] < C. (94)
—00

Thus EQ: [fOT |} 105,e[2dt] < oo and Xi(;r:) is a martingale under Q;. O

Therefore, by Theorem 1, 6 in (68) and 7}, i = 1,...,I in (69) are the Sharpe ratio and the optimal trading strategy
of the i-th agent in an equilibrium. O

Remark 3 We will estimate the blow-up time Tpjoy-up numerically for each concrete problem by an arc-length
transformation method proposed by Hirota and Ozawa (2006). See Section 4.2 for the computation procedure. Then,
if we set the maturity T < TBiow-up, which can be estimated by a numerical method for given parameters, the ODE
system has a unique bounded solution g} () in [0,T]. We also note that the system is described as a collection of I
quadratic ordinary differential equations (ODEs), where the variables interact through the common term —TI - pg -
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ZJI':1 (6yg]1(7) — p;0;) denoted by ¢(T —7) in (76), which is not expressible in the matriz form of Riccati equations.
(For the comparison principle used to establish the well-posedness of the Riccati system, see Lemma 1 of Ma et al.

(2019) or Theorem 4.1.4 of Abou-Kandil et al. (2012), for example).
4.2 Computation procedure

In the following numerical examples, we will use the square-root model, where we compute the instantaneous Sharpe
ratio and the optimal portfolios by the following procedure.

(1) First, we exogenously set the common parameters T, u3-, i3, Gy, ps and the individual parameters v;, 7;, pi,
and ¢} (0), g7 (0) satisfying F;(y) = g} (0)y + ¢7(0) in (15).

(2) Second, we solve the system of ODEs (66) in [0,7] by some numerical methods. In this study, we use the
explicit Runge-Kutta method of order 5(4)implemented in scipy.integrate.solve_ivp of SciPy package (see
the reference of Scipy package (2022) for details).

(3) Finally, we compute ¢(t) by (72), which also determines the instantaneous Sharpe ratio 6; = ¢(t)\/Y; and the
optimal portfolio 7}, in (69).

We note that the solution may blow up at some TBiow-up, I Blow-up < I  depending on the given parameters. In this
case, we estimate the blow-up time Tgiow-up Numerically by an arc-length transformation method in Hirota and
Ozawa (2006). Then, we reset T' so that T' < Tgiow-up and solve the system of ODEs again in the reset [0, 1.

5 Examples

In this section, we present numerical examples for two important topics in practice, reinsurance claim pricing and
life-cycle investment, as applications of the square-root model for the multi-agent equilibrium in an incomplete
market in Section 4. Specifically, we consider two agent cases and investigate the effect of an economic factor Y and
the individual income factors Y;, i = 1,2, sources of incompleteness in the market on a reinsurance claim price and
agents’ trading strategies.

5.1 Reinsurance pricing

Reinsurance is a tool used by insurance companies to hedge their insurance risk. The insurance risk is generally
non-tradable, and how to price the risk is an important issue for both insurance and reinsurance companies. For
instance, there are some reinsurance contracts that transfer both insurance risk and investment risk from an insurer
to a reinsurer (e.g., Allianz (2021)). In addition, catastrophe equity put options are also traded to transfer losses
from insurance risk (e.g., Arnone et al. (2021)). Payoffs of insurance risk transferred to a reinsurer are classified into
proportional (linear payoff) and non-proportional (nonlinear payoff) (see Chapter 2 in Albrecher et al. (2017)), and
pricing such payoffs can be complex.

In the following sections, we present numerical examples for financial stop-loss reinsurance introduced in Mgller
(2003) and Becherer (2003). Financial stop-loss reinsurance is a contract where an insurance company receives a
guarantee within certain limits from a reinsurance company at maturity when the insurance company is unable to
compensate for payment on insurance claims (insurance risk denoted as Y') by investing in a risky asset whose price
is expressed as S. Then, this contract has the following payoff,

CI)(YT7 ST) = min {max(YT + (S(S() - ST) - K170), (K2 - Kl)} s (95)
where § > 0 is a constant that determines the degree of investment in the risky asset, and K7 and Ko, K1 < Ky < o0,
describe the guarantee level the insurer requires from the reinsurer. In detail, only if the insurance risk Yr hedged
by the return from investment in the risky asset exceeds K1, §(So — St), the exceeding amount capped at K5 is paid
to the insurance company.

In our model, the agents’ stochastic discount factors (SDFs) in market equilibrium 7; 7, ¢ = 1,...,1 are obtained
and can be used to calculate the price for a reinsurance claim.

5.1.1 Settings in our model

We consider two agent cases where there are an insurance company (agent 1) and a reinsurance company (agent 2)
in the economy. We suppose that agent 1 owns some dynamic insurance risk (liability) and aims to transfer some of
the risks by purchasing a reinsurance contract from agent 2.

We use the square-root model in Section 4 for pricing and assume each variable describes the following. Xi(fqrf)
is the wealth of agent i’s portfolio at maturity with the trading strategy m;. We assume Y; = 0, ¢ = 1,2 and
—F1(Yr) = =Yy, —F»(Yr) = —Y7 or 0, which indicate exogenous payoffs at maturity on the insurance risk Y of
agents 1 and 2. The state variable Y expresses the insurance risk that drives the insurer’s and reinsurer’s exogenous
payoft.

For the reinsurance contract whose payoff is given by (95), noting that the interest rate is assumed to be 0 for

simplicity, under the risk-neutral measure for each agent i, Q; defined by ‘fi%' = n;,1, the present value of this claim
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(with zero interest rate) is given by

pi = E[n; 7@ (Y, S7)] = E¥ [@(Y7, S7)], (96)
where agent i’s SDF 7, satisfies
dn; . _ _ R
= VEl0ipidWia = 3P Ops = 0yl (T = 1) + aipikdWye = 3P (0)psdWs., mo =1 (97)
it
Here, P;(t) is defined as
Pi(t) = (t) + i (1), (98)
t
(=20, (99)
7H(1) = psoy g (T — ) — piips. (100)

We note that this valuation method may be regarded as marginal indifference pricing or fair pricing (e.g., Section
33.2 in Bjork (2020) or Chapter 6 in Karatzas (1997) , respectively).

Then, we can obtain the prices for both agents by simulating the payoft ®(Yr, Sr) and each SDF 7; r under P with
the equations above. In fact, as Y; = 0 (i = 1,2) in the current example, we set ; = 0 (i = 1,2) when solving the
system of corresponding ODEs (66) and implementing the Monte Carlo simulations with equations (96)-(100).

Thus, a transaction price of the reinsurance claim p can be agreed between the two agents as long as their prices
p1,p2 and the transaction price p satisfy

p2 <p<pi, (101)
which implies that the insurer can buy the reinsurance claim at a lower price than p; and the reinsurer sells it at a
higher price than ps.

In the following, we conduct a Monte-Carlo simulation to calculate the expectation (96) for each agent’s price, where
we divide 1 year into 250 grids and adopt 100,000 paths. We set the volatility process og of the risky asset price in
(65) as a constant og; = g and the parameters in the model in accordance with Example 4.9 in Becherer (2003). In
this case, the optimal trading strategies 77, in (69) can be decomposed into the mean-variance part 74 to maximize
the expectation of the terminal wealth with the insurance risk and the hedging part w7 to reduce the terminal
insurance risk as

my = ——(m () + 7l (1). (102)

Here, ¢(t), which also determines the expected return on the risky asset by ps: = 5s¢(t)y/Ys, is expressed as
I
o) = -1 3wl () (103
i=1

5.1.2  Numerical results
Table 1 shows the prices of agents 1 and 2 for sets of parameters in the square-root model in (65).

For Set 1 as a base case to set parameters, where the correlation pg between the insurance risk and the risky asset
price process is 0, it is confirmed that the prices of two agents are the same, since the parameters related to each
agent are identical, and its price is consistent with the one for § = 0.4 in Figure 3 of Example 4.9 in Becherer (2003).

For Sets 2-7, we consider cases where the insurance company has to pay insurance risk at (g (0) = 1) maturity T,
while the reinsurance company has no insurance risk to pay (ga(0) = 0). Then, we investigate the change in their
prices when the correlation between the risky asset price process S and the insurance risk Y or the level of risk
aversion +; is shifted.

Firstly, agent 2’s price py in Set 3 with no payout of Y7 (ga(0) = 0) is lower than the one in Set 1 with the payout of
Yr (g3(0) = 1), since in pricing agent 2 puts a larger weight, i.e. agent 2’s SDF 7, 1 on the payoff ® in bad states,
namely large Y7 and small Sr. In fact, Figure 1 shows the scatter plot of S and Y7 with the colored values of 73 7,
where the larger 7o 1 corresponds to the right bottom area in the left panel (Set 1) than in the right one (Set 3).
On the contrary, we note that the payoffs in Sets 1 and 3 are the same since the expected return of the risky asset
pst = 0sp(t)v/Yy is 0 due to ¢(t) =0 by (100) and (103) with ps =0 and &; = 0.

In the following, we describe the effects of other parameters. Figure 2 shows the histogram of the payoff ®(Yr, St)
for Sets 2-7 when the payoff is simulated by Monte-Carlo simulation under P. Moreover, Figure 3 exhibits the scatter
plot of Y7 and St with colored values of agent 1’'s SDF n; p for Sets 2-7.

First, we observe that agent 1’s price is higher than agent 2’s in Sets 2-7. This agrees with the intuition that agent
1 with the insurance risk at maturity is willing to pay for a reinsurance claim to hedge the risk, and agent 2 with
no insurance risk can sell it at a lower price.
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Table 1

Parameter sets and the prices for agent 1 and agent 2. Parameters in bold show the differences from Set 1.
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7
1y -1 -1 -1 -1 -1 -1 -1
ui 0.83 0.83 0.83 0.83 0.83 0.83 0.83
Oy 0.14 0.14 0.14 0.14 0.14 0.14 0.14
01 0 0 0 0 0 0 0
02 0 0 0 0 0 0 0
Gs 0.25 0.25 0.25 0.25 0.25 0.25 0.25
p1 0 0 0 0 0 0 0
p2 0 0 0 0 0 0 0
ps 0 0.5 0 -0.5 0.5 0 -0.5
ps 1.00 0.87 1.00 0.87 0.87 1.00 0.87
al1 1 1 1 1 10 10 10
Yo 1 1 1 1 1 1 1
g1(0) 1 1 1 1
g5(0) 1 0 0 0 0 0 0
Yo 0.83 0.83 0.83 0.83 0.83 0.83 0.83
S0 1 1 1 1 1 1 1
K, 0.85 0.85 0.85 0.85 0.85 0.85 0.85
K> 1.15 1.15 1.15 1.15 1.15 1.15 1.15
1) 0.4 0.4 0.4 0.4 0.4 0.4 0.4
T 1 1 1 1 1 1 1
p1 0.0447 | 0.0306 | 0.0447 | 0.0544 | 0.0589 | 0.0827 | 0.0802
D2 0.0447 | 0.0283 | 0.0414 | 0.0520 | 0.0286 | 0.0414 | 0.0523
p1 — P2 0 | 0.0023 | 0.0033 | 0.0024 | 0.0303 | 0.0412 | 0.0279
Setl Set3

1.4
12
1.0

0.8 &
0.6
. 0.4
0.2
06 08 10 12 06 08 10 12 00

Yr Yr

Fig. 1. Set 1 and Set 3 : Scatter plots for Yr and St with colored values of 1z 7.

Next, we observe that each agent’s price in Set 4 is the highest among Sets 2-4, which can be interpreted as follows:
We note that the price p; in (96) is the expectation of the payoff ®(Yr, Sr) in (95) weighted by the SDF ), . Figure
2 shows that the payoff ®(Yr, St) with ps < 0 in Sets 4 and 7, is distributed at higher values than in other sets.
Figure 3 shows that agent 1’s SDF values (darkness of the color) in Sets 2-4 are close, which also holds for agent
2. Thus, the payoff’s distribution is the main determinant in each agent’s price p; (i = 1,2) for Sets 2-4, and Set 4
provides the highest prices among Sets 2-4 in Table 1.

However, we observe that agent 1’s price in Set 6 is the highest among Sets 5-7 with higher risk aversion parameter
v1 = 10. Figure 2 shows that the payoff’s distributions are almost unchanged among Sets 2-7 with different ;. On
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Fig. 2. Histogram for the reinsurance payoff ®(Yr, Sr): We show ®(Yr, Sr) > 0.001.

Set2 Set3 Set4
3.0 q q
254 60
50

2.0
L 40
w15 30

1.04 20

0.5 10

- - - - - - - - - - - - 0
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Fig. 3. Scatter plots for Y7 and St with colored values of n1,7: Upper panels shows Set 2-4 (y1 = 1) and lower panels show
Set 5-7 (y1 = 10).

the contrary, Figure 3 indicates that the agent 1’s SDF value with 7, = 10 is higher (darker colors) at the area where
Yr is relatively large and St is small in Sets 5-7, particularly in Set 6 (ps = 0), which results in the highest price p;
shown in Set 6 among Sets 5-7 (v, = 10).

Finally, we examine the price difference between agents 1 and 2, namely p; — ps appearing in the last row of Table
1, which is caused by the difference in each agent’s SDF. We find that the price difference is much larger in Sets 5-7
with agent 1’s higher risk aversion parameter (y; = 10) than in Sets 2-4. This agrees with the intuition that if agent
1 has a higher risk aversion parameter, agent 1 is more willing to pay for a reinsurance claim to hedge its insurance
risk. Moreover, we observe that the price difference in Set 3 (Set 6) with ps = 0 is larger than Sets 2 and 4 (Sets
5 and 7). This is because when ps = 0, agent 1 is not able to hedge the insurance risk at maturity by trading the
risky asset, and hence, agent 1 pays a higher premium for the reinsurance claim to agent 2 with no insurance risk.

5.2 Life-cycle investment

Next, we provide numerical examples of life-cycle investment as an application of the square-root model in Section
4. When individuals consider long-term investments for their retirement, it is important to take labor income (also
called human capital) into account in addition to investment in financial assets. This is called life-cycle investment.

Since labor income is volatile and not tradable though correlated with financial asset prices, it is difficult for individ-
uals to hedge the fluctuations on their own. For this reason, asset management companies including subsidiaries of
life insurance companies offer individual investors funds that are designed to substitute life-cycle investment, which
is called life-cycle funds or target-year (date) funds.

For related literature, Henderson (2005) deals with an optimal portfolio problem of an individual who receives labor
income and invests in a risky asset with the exogenously given constant expected return. Bruder et al. (2012) also
consider an optimal portfolio problem for life-cycle funds, where the expected returns of risky assets are exogenously
given a function of time.

As mentioned in Bruder et al. (2012) , the expected return on a risky asset has a significant impact on the construc-
tion of the optimal portfolio. Thus, in the following numerical examples, we suppose the equilibrium model in an
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incomplete market, where the expected return of the risky asset is determined endogenously by the market clearing
condition of the financial assets and investigate the impact of the expected return on the optimal trading strategies,
which helps asset management firms to establish life-cycle funds.

5.2.1 Setting

As in the reinsurance pricing in Section 5.1, we consider a two-agent case in the square-root model in Section 4,
where agent 1 represents individual investors or asset management companies for the life-cycle fund, and agent 2
does the other market participants.

Moreover, we suppose that at retirement date 7', agent 1 receives Y7 r that stands for his or her specific lifetime
income, and —F;(Yr) = —g}(0)Y7 — ¢2(0) with Fj(y) in (1) of Section 4.2, which is agent 1’s net income directly
linked to Y7 representing the economic condition for Cases A and B in Section 5.2.2 and the inflation for Case C in
Section 5.2.3, respectively.

As for Cases A and B, we set positive net income —F;(Yr) = Yr with g{(0) = —1 and ¢7(0) = 0 in Case A, and
negative net income —F; (Yr) = —Y7 with g}(0) = 1 and ¢2(0) = 0 in Case B for simplicity. On the contrary, agent
2 does not have F5(Yr), that is, F»(Yr) = 0 in both cases. However, we assume that agent 2 receives Y2 p with a
large volatility coefficient Go. As seen in Section 5.2.2, the resulting equilibrium expected return of the risky asset is
positive.

As for Case C we suppose that agent 1 receives Y7 1 and negative net income —F(Yr) = —Yr with g{(0) = 1 and
g3(0) = 0, while agent 2 does not have those income, namely F5(Y7r) =0 and Y5 = 0.

In addition, we set og; = /Y, in (65), and c(t) = 0, which implies y1;; = L2V, + % = 252V, in (64).

5.2.2  Numerical results in Case A and B
In the following, we investigate the optimal trading strategies and the excess return process of the risky asset in
equilibrium for the parameter sets of Cases A and B in Table 2.

Table 2

Settings of parameters of life-cycle investment example.

py | By | oy | a1 | G2 | pi| p2| ps | m |72 | 9i(0) | gi(0) | T
Case A | -0.2 | 0.4 | 04 | 0.2 210308105 3 1 -1 01 10
Case B | -0.2 | 04 | 0.4 | 0.2 210310805 3 1 1 0| 10

In both cases, we assume that the economic condition Y has the positive correlations with the risky asset return and
the change in the individual’s specific income, pg = 0.5 and p; = 0.3, po = 0.8, respectively. The difference between
Case A and Case B is just the sign of agent 1’s net income associated with Y. Particularly, in Case A, agent 1
receives a fund (—gi (0) = +1) thanks to a retirement allowance, for instance. In Case B, there is a payout at agent
1’s retirement (—gi(0) = —1) due to mortgage repayment, for example.

Figures 4 and 5 exhibit ¢, the determinant of the expected return process ug, and the optimal trading strategies of
agents 1 and 2 in equilibrium 7} (¢ = 1,2) in (69), given as
Y,
i = Y (1) 421 8)) = e 0) + (), (104)
S,

)

for Cases A and B, respectively, where o5, = v/Y; and, 7 () and 7 (t) are defined in (99) and (100). In particular,

we note that ¢(¢) determines the equilibrium expected return of the risky asset by ps; = 05,0, = 05:1VYi9(t) =
M () = o)
Vi

i

@(t)Y;, and agent i’s mean-variance portfolio as 7

— @(t) 0.151 0.75

0.72 — 1 =) + ()

070 1 me=nfo e | | T

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Fig. 4. Case A : ¢, determinant of the expected return process us, and optimal trading strategies ] and 5.

Firstly, we can interpret the positive expected return process determined by ¢(¢) > 0 from a general equilibrium
perspective. Since agent 2 representing other market participants takes a short position on the risky asset (7r§,t <0)
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Fig. 5. Case B : ¢, determinant of the expected return process ps, and optimal trading strategies 7] and 75.

to hedge the realization of Y5 7 due to paps > 0, which has a relatively large volatility o2, agent 1 needs to take an
opposite position, that is long, so that the market is cleared. Therefore, the expected return of the risky asset has
to be positive for agent 1 to take a long position (77, > 0).

Next, we examine the decreasing or increasing behavior of agent 1’s long position on the risky asset towards maturity
T, which can be explained in terms of the hedging portfolio for agent 1, 7 (¢) as follows:

Figure 4 shows that agent 1 reduces its long position towards maturity 7', which corresponds to life-cycle funds
where the asset management companies invest more in stocks when the customers are young, while they shift the
allocation to bonds as the customers’ ages become closer to retirement. In Case A, since agent 1 receives a fund Y7,
agent 1 reduces its hedging demand 7{ () towards maturity 7 to hedge the realization of Y7 due to pg > 0.

On the contrary, we find that Figure 5 shows that agent 1 increases its long position towards maturity 7', since agent
1 has a payout of Y7 in Case B.

5.2.8 Numerical results in Case C

In the following, we investigate the optimal trading strategies and the excess return process of the risky asset in
equilibrium for the parameter set of Case C in Table 3.

Table 3
Setting of parameters of life-cycle investment example.

wy | pd | ey o1 | 02 pr | p2 ps | | 2 | g (0) g (0) T
Case C | -0.2 | 04 | 0.2 | 04 0108 0| -0.5 3 1 1 0| 10

Particularly, Case C is where Y representing inflation has a negative correlation with the change in the stock price
(ps = —0.5), while agent 1’s specific income positively correlates with ¥ mainly by inflation allowance, and hence
has a negative correlation with the stock price movement (p;ps = —0.4) as in the last year, 2022. In addition, there
is a payout at agent 1’s retirement (—gi (0) = —1) due to mortgage repayment, for example.

Figure 6 exhibits ¢, the determinant of the expected return process ug, and the optimal trading strategies of agents
1 and 2 in equilibrium as in Cases A and B.

—_— g T | oa15d T M

(0 0.10 0157 T TTTTTTmea N my'(t)

006 ~ ()

) o.10 - mfn)
0.05

-0.08 — ;= ai(t) + ()

me=mO+m0 | .00

-0.10 —0.05 -

-0.12

0 2 4 3 8 10 0 2 4 6 s 10 0 2 4 6 s 10
Fig. 6. Case C : ¢, determinant of the expected return process s, and optimal trading strategies 77 and 7.

Figure 6 illustrates that agent 1 takes a long position for the risky asset (77, > 0) and gradually reduces this long
position as maturity 7' approaches. In the right panel breakdown, it can be observed that the hedging portfolio 7
mainly contributes to 7] due to the higher risk-aversion parameter v; than 7,. This observation can be understood
by considering the correlation between the risky asset (S) and agent 1’s total terminal labor income (Y1 17 — Y7).

The correlation between the risky asset and the total terminal labor income is quantified and calculated as &1p1ps —
gyps = —0.16 — (—0.1) = —0.06 < 0. The negative sign in the first term, 1p1ps = —0.16 < 0, indicates that agent
1 takes a long position to hedge against the realization of Y; 7. Conversely, the positive sign in the second term,
—oyps = —(—0.1) > 0, suggests that agent 1 takes a short position to hedge against the payout —Yr in Case C.

Thus, although the resulting net total hedging portfolio 7 gradually reduces its long position towards maturity T,
it remains in a long position at 7' due to the overall negative correlation, 61p1ps —dy ps = —0.06 < 0. Consequently,

the resulting net total position remains long, 7} , = m" (t) + 7{' (t) > 0, with 7{’ accounting for the majority of 7.
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Next, we observe that agent 2 takes a short position for the risky asset (75 < 0) under the negative expected return
on the risky asset (¢(¢) < 0) in Case C. This is because the mean-variance portfolio part 737 that aims to increase
agent 2’s profit accounts for the majority of agent 2’s portfolio 7}, which is due to the low risk-aversion parameter
v5 = 1 and no terminal payoffs to hedge.

Moreover, we can interpret the negative expected return process ¢(t) < 0 from a general equilibrium perspective.
Since agent 1 has a demand to take a long position on the risky asset to hedge the total terminal labor income
in both cases, agent 2 needs to take an opposite position, i.e. short, so that the market is cleared. Therefore, the
expected return of the risky asset has to be negative for agent 2 to take a short position.

Finally, as mentioned in Bruder et al. (2012) , determining the expected returns on risky assets are essential in life-
cycle investment. In this study, we have used the market clearing condition to set the expected return endogenously
and confirmed that the relationship among individuals’ optimal portfolios, the risky asset return and the labor
income is consistent with the results in Henderson (2005) , which analyzes an individual’s optimal portfolio with
an exogenously given expected return of the risky asset and stochastic labor income. Thus, our model provides a
theoretical basis for setting the expected return of a risky asset in life-cycle investment.

6 Conclusion

This study has developed a dynamic incomplete equilibrium model with multi-agents of exponential utilities. More-
over, in numerical experiments, we have explicitly obtained agents’ optimal trading strategies, their stochastic dis-
count factors (SDFs) and expected returns of the risky asset in equilibrium.

Our research is new in that we propose a concrete equilibrium model for an incomplete market with heterogeneous
income/payout profiles and different risk attitudes of agents, which is applied to two meaningful examples in prac-
tice for insurance and asset management companies, namely, reinsurance claim pricing and life-cycle investment.
Particularly, our model endogenously determines an equilibrium excess return process of the risky asset, which has
been exogenously given in previous works and has been considered to affect the optimal trading strategies largely.

The implications of this study are as follows: The model can be used in pricing reinsurance claims with estimations
of the relevant factors and those correlations with stock prices, and in predicting how the reinsurance price changes
when those correlations shift. Also, pension funds and asset management companies may utilize our model in life-
cycle investment /target-year (date) funds to construct portfolios by incorporating the effects of individuals’ income
and payout profiles, economic factors and, their correlations with stock prices.

As for future studies, introducing intermediate consumption to determine an equilibrium stochastic interest rate in
an incomplete market will be one of the important research topics. Moreover, while two examples in the current
paper have extracted the essence from practical situations, developing more detailed and realistic modeling with
empirical analyses will be even more useful in practice. In addition, when securities related to unhedgeable factors
are newly issued and the market becomes complete, investigating how the equilibrium return process and the optimal
portfolios change will be a future research topic.
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A Equilibrium in an incomplete market with log utility settings

In this section, as another example of solving the equilibrium in an incomplete market, we present a case that each
agent has a different state-dependent log utility, which may be interpreted as a log utility with an agent-specific
subjective probability measure.

First, suppose that the zero net supply money market account with a risk-free interest rate r exists.
Suppose also that one unit of a stock is issued and that its price process is the solution to the SDE:

ds — .
T = pedt + o5 dWs = rdt + o, {(“ta "yt + (ped WY + ptthS)} : (A1)
¢ t
where o5+ = a4(pt, pr) with pp = /1 — p? and dW; = (dW)Y ,dW)T.
Let
_ -Tr ~
0 = Og,t(Us,tog,t) 1(Ht — 1) = Kt t (ptvpt)T € Rang@(ag), (A.2)

and note that og 0 = p1; — 7, and hence 0 is a market price of risk.
We assume agent i’s expected utility as E[n log X] with i = exp UOT AL AW — 4 fOT |/\§|2ds}, where
M= M) i=1,2,-- L

s 1,80
Particularly, we can make A\ depend on a factor H common among all agents or/and agent i’s specific factor Hj,
namely’ )‘l(H’ Hl) = ()‘ll(Ha Hz)a )‘é(Ha Hi))—ru 1= 17 2u e 7I'
We define the agent’s wealth process as the riskless asset amount 75 plus (tradable) risky asset amount 7t € A; ,
namely, for ¢ € [0,T], X{ = mj, + 7.
Here, we consider admissible strategies as the set of progressively measurable processes such that

/T(ﬂi)2oids] < oo} . (A.3)
0

dX{ = re X{dt + 7y (e — r0)dt + 705 AW,

A; = {ﬂ'i X! >0, as., te[0,T], E

Then, the wealth dynamics is given as follows.

= X/ [rdt + Fjos, {0:dt + AW, Y], X{ = 2§ >0, (A.4)
where 7l = 7 X}
Particularly, with 0, := Bete and By = efo/ rads,
. . o ~ 1 L o
X{ =x,Brexp [/ Teos0sds — 5/ (7ioy)2ds —|—/ ﬁ;os)des} . (A.5)
0 0 0

Then, applying a well-known result for the log utility that is, the optimal portfolio is always given by the (instan-
taneous) mean-variance portfolio, with the measure change by 0%, we obtain agent ’s optimal stock holding for the
problem as follows.

(Problem)

sup E[nhlog Xt] = E'[log X%, under the wealth dynamics
WieAi

dX? = ri Xidt + 7l (je — m)dt + wiog  [dW] + Nidt]
= X [radt + Fo{ (B + poXL, + peX )t + (e, p) W] (A.6)

where Ef [-] denotes the expectation operator under the probability measure P? induced by 7%, and Wg = Wi— fg Aids
is a two-dimensional Brownian motion under P*.
We obtain agent i’s optimal stock holding as 7{ = ;" X} by the (instantaneous) mean-variance portfolio with the

; N . i O+ (pe A 4Pl A _
excess expected return {p; + o¢(p A} ; + peAy ;) — 7} and variance o7, where 7" = = (PeXi. i 2”'), 0, = tre,

and the optimal money market account holding is 7g , = X; — 7. Then, by (A.5), we obtain the optimal wealth X*
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as

Xi Zg
B, —g» With A.
B, te wit (A7)
1/t 9
= 9 AW, =3 | 10.fds| (A.8)
Z} = exp { Aiys - dWs — 7/ Ais| ds} , (A.9)
where

T T -1 i ~\T 4 Ht — Tt

by = 054(05,t05)" (e —11) = Ou(pe, pr) , O = P (A.10)
t

Xie = (peNL e + PeXo ) (pes pr) T (A.11)

Here, note that o0 = p — ¢, and hence 6 € Range(ag) is a market price of risk. We also see 5\,- in terms of an
orthogonal decomposition of A\’: That is, A = \; @A, where \; € Range(ad) and A\ € Kernel(og) = {x : 0gz = 0}.
Finally, for the market clearing condition, exogenously given a terminal dividend, Fp-measurable £ > 0 which an
agent holding one unit equity at T receives, the market clearing condition is given by

=Y mp=Y Xp—> mor=) X (A.12)
since the sum of the optimal money market account holding should be zero, that is >, 7T(i),T =0.

Similarly, at ¢ € [0,7) it should hold that Sy = >, X}.
Hence, we obtain

. ZiBr , . ZiBr

€= zi:xogig, that is, Z5 = zi:aro Tg ; (A.13)

and since Z? should be a martingale, we have
Br i rzi i Br

z! = B, + ZIOZT = Zi:xOEt [ng] . (A.14)
Based on this equation we will derive 6; = #-="*(py, )T
Remark 1 The following condition must be satzsﬁed att=0:

B o ) B
Z8=1=FE ?szgzg; :ngE{ gTZT] (A.15)
i i

Moreover, given a constant interest rate r, this is rewritten as

1 iw[Zr]. 1 i
B = Z%E [5] ;le, T = —Tlog (ZxOE [

3

Zi

T] (A.16)

£
Thus, we have the following two choices to satisfy the condition.
(i) Given & >0, x> 0, Xl = (X, 08) T, (p, p), (and hence Z*), the condition determines By = e"T, namely r.
(ii) Given & > 0, \' = (M, 5T, (p,p), r, the condition provides an allocation of the initial wealth, x} > 0
(i=1,2,...,1).
Remark 2 The stock price dynamics in equilibrium is also obtained and thus, we can solve for the wvolatility og
along with the market price of risk 6.

Since Z' is a martingale, and the market clearing condition implying that & = > Xi = > ) ZlTZ]fT and Sy =
T

ZiB
S Xi=> tth, we have

= ZxéZ}, and (A.17)

= Yz = 3 abBilZy) = Bz ) (A1)
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Thus, Z%S/B is a martingale as empected and we have

S
é =7 Z%Zl = ZQE [z"Bg | = E*[E’fT} (A.19)

where Ef[-] denotes the conditional empectatwn operator under a risk-neutral measure induced by 6. In particular,

SQ = El 336

Moreover, using Sy = % S wbZi, we obtain the stock volatility os = o(p, p) and hence the expected return p, given
t

n—_r
=
Concretely, we have

d(f}i)(zle)ﬁt Z:co 0t+)\,t]dt+< >{Zx0 7t+9t]}~th, (A.20)

a(sy/By |0 SirhZHOw + 00}t + {Siab Zi O + 60 - a7

= = . A2l
(St/Bt) > T2y 2l
Then, setting
T Zi(Niy + 0 THZiA;
U,—S'rt: szo t(i 7ti+ t) _ szo it iﬂf +0t, (A22)
’ 2o o2t 2o o2
we obtain
dsS;
?t — Ttdt = O'S’t(etdt + th) (A23)
Moreover, recalling os = o(p,p) T, hi = (pAL + pA5)(p, )T and 6 = B=L(p,p)", we define o as
) izi )\1 + A )\1 _
S szo t (Pt zltz Pt 2,t) n M Tt. (A.24)
> T2 Ot
Then, we have dgt redt = oy | FtdE A+ (prdW)Y + p}thS)} , which is consistent with (A.1).
Next, we confirm that the market clearing condition holds. Let X; := Y, X;. Then, on one hand, by (A.4),
dXt = TtXtdt + (Z Wz)[(/JJt - ’/‘t)dt + US,tth}; XQ = Z JUB (A25)
On the other hand, by (A.1),
dS; = Sifpedt + o5, dWy] = 7:Spdt + Si[(pe — 1) dt + 0.5.,dWy]; Zxo (A.26)

Hence, thanks to X; = S, for all ¢ € [0, 77, it holds that S, = Y, 7} for all t € [0, 77, partlcularly, &r =Y, mh, which
shows that the market clearing condition is satisfied.

In the following assuming a specific form for &, we aim to obtain the market price of risk 6 = #==(p, p). First, let
& = &7, and suppose that
]

g = /Jg)tdt + O¢it dWy; fo > 0, <A27)
t
dé; _ -
EA = ué’tdt + Ogy- AWy, (§:=1/¢), (A.28)
t
where
O¢,t = (Uitﬂ Ug,t) v HEr = THe + 05 4 Ogt = (Jit)z + (Ug,t)25 O¢t —O¢t (A'29)

We calculate Z¢ = E; [% > xE)ZT} =E; [?—T > .%‘OZT} to obtain 6 = £ (p, p) .
Namely, we calculate dZ¢ /Z? with

; Br . . i i Brér Z
Z° =B ‘B, | =——ZL| =B LR, | ==L A.30
t t;xo t {Btﬁ T:| tftgxo it B, £, Zi ( )
where
Br & Zf /T 1 s Lo /T .
Ei|—5—>—;| =E s s o— —log |7 — = his]7)d : Nis) - dWy , A.31
B, &, 2 ¢ exp{ t (rs + pg s = 5log o7 = 51Ais|")ds + ) (0g o+ Aiys) - AW, (A.31)

and compare the volatility term of (A.30) with the one in dZ! = —Z?0; - dW; to obtain 6.
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A.1  Ezample

As an example, we suppose that o¢, r, p are nonrandom, and for some constants ay,ag, we set

He, = —Hes + 02, = ayWY +asWs, i, pes =02, — (ay W +asWy). (A.32)
Moreover, for A\, setting )‘i,t = thﬁ,t and )\§7t = H,; éjt (bli7 bé: nonrandom), we have
Xiy = (peXSs + D5 ) (pe, pr) = Hi(pebl 4 + pebs ) (i, o7 (A.33)
where for pff = pff, + pdl, Hy (pfl,, pdl,: nonrandom) and nonrandom off, we define
’ ’ o dHy = pdt + o' - dWy; Hy = h. (A.34)

Under this setting where y¢ and A! are random, we calculate dZ? with (A.30) and (A.31) to obtain 6.

Firstly, using
T T T
/ WYds = / WY + (WY —w))}yds = (T - )W) + / (T —w)dw,y, (A.35)
t t t
we have
T T T
/ e ods = (ay WY +asWE)(T — ) + / ay (T — $)dWY + / as(T — s)dWS. (A.36)
t t

t

Then, when we define 0¥ := (ay (T — 5),as(T — s)) T, with oe = ( is,ags)T and \; , = (PsAY o+ PsXh ) (ps ps) T

we express (A.31) as follows:

; Brér Z%
Cl =E; | =— > —
t "B, § 7
Br Y S T 2 Lo o g 3
= T oxp{(T ~ )(ay WY+ asWi)}B, |exp / (~5loe? — i P)ds +/ (07 + ¢+ Ais) - dW, b
t t t
(A.37)
Let
) T . T R
D*(t,T) = exp ‘/t —§|ag +oz + Nis|2ds + /t (0 + 0z +Ais) - dWs o (A.38)
Then,
dHy = pidt + of" - (AW} + (o} + 0g , + Aig)dt)
= [uff +of' (o} + 0z + Ni)ldt + ot - dW] = dH}; Hj=h, (A.39)
where we use the fact that W is a Brownian motion under P?, the probability measure induced by D*(0,7T'), and
AW} = dW, — (o} + 0, + Ni)dt. (A.40)

Hence, we have

E,

T T
1 1< :
exp {/ (—§|0578|2 _ §|/\i75|2)ds +/t (08 + 0z + Nijs) - dWs}]
t
T
A 1 .
D*(t,T) exp {/ <20§/|2 + oY - Ogst (c? + Ué,s) . Ai,S) ds}]
¢

T T
1 , .
= exp {/t <2|cr’§’|2 +a¥- 0578) ds} E; [exp {/t (0 +og,): )\iysds}] , (A.41)

where E:[-] denotes the conditional expectation operator under P*.

=E;

Since . ) ) )
(09 1 0¢) - Ai = Hilo¥ + ) - (b} + 7). 7) T (A42)
is a Gaussian process under P?, we know that for some nonrandom function A*(¢t,T) and B%(t,T) in Remark 3 below,

T
exp {/ (CHEX N S\i’sds}
t

dP'(t,T) = P'(t, T)[~{(0f + 0¢,) - ix}dt + B'(t, T)of" - dW/]. (A.44)

Eé = exp[Ai(t,T) + Bi(th)Hf] = Pi(th)a (A'43)
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Hence, we have

Cl = %t exp {/t (;|U§2 +o¥-o; ) ds} exp{(T — t)(ay WY + asW)}Pi(t,T). (A.45)

Therefore, with

B . . . | Brér Zi . o
7! = E, 577: a2 | =B Y ahZiE, JQT?T =Bi& > x4ZiC}, (A.46)
i i t =t i
and o}, , := B'(t,T)o{!, we obtain
dz¢ = B,&, Z 24 ZiCllot + g, + Ny + 0h ] - AW,
ZlCl N .
— 70 Z i [0} — ¢, — Aie — b ] - AW, = —Z08, - AW, (A.47)

M, xhZicy

where § = £="(p, p) 7. Hence, Wlth Ai = (pAi 4 pA5)(p, p)T we have
x{ ZiC} i U . i r .
*Ut —0¢ Z Z OxOZzCz (Pt)\u + Pt)\z,t)(ﬂta Pt)T - p,t} =0, = ‘ (Ptvpt)T- (A.48)
Then, for some nonrandom {7 € R, we set
oft =l (pe.pr) " (A.49)
By using o} = (ay (T —t),as(T —t))" and Ogy = (O’it, O’S,t)—r,
(—of —0g,) = —(ay(T —t),as(T — 1)) = (07,,05,,), (A.50)
and, to satisfy (A.48) it should hold that there exists some nonrandom k; # 0 such that
(—of —o0g,) = —(ay (T —t),as(T — 1)) = (0% 1,05 ,) = ke(pe, fr)- (A.51)
Specifically, given o} and O¢, = —Og,t, We set k: and (p¢, pr) as follows:
ke = [(—of — ¢, (A.52)
) 1
(pts pt) = E(—Uf —0¢,) (A.53)
Then, we obtain
M e LG (LN p + B TIOE) Y (o) (A54)
Z ZOZZCZ ’ ’
x4y Z;Cy i Ay i -
{kt Z = OxOZZC“ PiAL s+ PN, + B (t,T)atH)} . (A.55)
Let us recall by (A.1) and (A.24) that
T ANT ZZ %ij\i,t 9 ZZ x%ﬁZZ(Pt)\Zi,t + ﬁtAé,t) e — Tt ANT A
= = £ 0ttt = il . .56
0= 0t(pt, Pr) S a7 +0; S 7] + o (pts Pt) ( )
Thus,
oy = DEVA (pt/\ll,t + f’t)‘l2,t) n e — Ty
Z- I%)ZZ Ot
- 2y Z{C} i Y i -
= Z Z xOZl pt)‘l,t + Pt>‘2 ¢ {kt Z 5 O:EOZ’C” ptAl + peAs + B (t,T)UtH)} ) (A.57)

and given ry, the expected return p; is determend with this oy and (A.55) as u; = r¢ + o (M> In addition, the
equation (A.19) provides Sy = Y, z§. Consequently, the equilibrium price of the risky asset is completely specified.

We note that in the current model, the source of incompleteness is the expected return pe = 6§7t —(ay WY +asW7)
of the stochastic process (A.27) of the exogenously given dividend £ for the risky asset, and that heterogeneity

of the agents is reflected in £’s and hence the risky asset’s expected return through i which determines agent
i’s specific state dependence (or subjective probability measure) in the expected utility E[n} log X% with n} =
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T \; T\
exp | [y X+ dW, = 3 [ AL Pds).
Adopting case (i) in Remark 1, we summarize our equilibrium model in the following;:

(1) Given a terminal dividend, Fpr-measurable random variable £ > 0 that an agent holding one unit equity at T
receives, and £ is determined by the stochastic process (A.27).

The volatility and expected return of &; are specified as nonrandom process o¢; = (Jit, Jg’t)T, and
Het = 6§7t — (ay W)Y + asW}) with Tet = (Uit)2 + (ag,t)2 and some R-valued constants ay, ag, respec-
tively. ‘
(2) Given each agent 4’s initial wealth zf, > 0, and the determinat of state dependence (subjective probability) of
each agent ¢’s utility,
7 = exp { SN aw, = LT |xg\2ds} with
A= (X[, %), AL, = Hybi, and X, = Hybb , (bi, bh: nonrandom).
H € R is a given stochastic process defined by (A.34)
pi' = pf'y + s Hy (i), pdly: nonrandom) and
ol =5H(p,p¢)" (6 : nonrandom).
(pt, pr) is specified by (A.52) and (A.53).
(3) The constant equilibrium interest rate r is given by (A.16), where Z and \; are given by (A.9) and (A.33),
respectively. 4 4
(4) The equilibrium market price of risk ¢, is given by (A.54), where C} is obtained by (A.45). In addition, P*(¢,T) =
exp[A"(t,T)+ B'(t,T)H}] in C} is concretely given in Remark 3 below, and the stochastic process Hj is defined
in (A.39).
(5) The equilibrium risky asset price process is obtained as follows:
initial price: So = ), .
volatility: os+ = o¢(pt, pr) with (A.57), (A.52) and (A.53).
expected return p:

p=r+0 (“ﬂ) with (A.16), (A.57) and (A.55).

Ot

We finally remark that a similar result can be obtained by setting I (1e) as a general Gaussian process.

Also, when we adopt case (ii) in Remark 1, the risk-free interest rate r can be exogenously given as a general Gaussian
process.

Considering practical applications with numerical experiments will be a future research topic.

Remark 3 Calculation of A*(t,T) and B'(t,T) in (A.43) :

First, let us define a nonrandom function f* as fi = —(o} + Ogy) (pebl 4 + pebh ) (pes o) T

Hence,

and we have

T
exp {/ (0¥ +o0z,) /\mds}
¢

Hti(Uf + Ug,t) : (Ptbi,t + ﬁtbé,t)(phﬁt)-r = —Hfff» (A.58)
T . . T ~ .
exp f/ fiHlds exp 7/ Hlds |, (A.59)
t t
where we define Hi= fiH!. Then, we obtain
dH} = (0. f{)H,dt + f;dH;

= [fz{ﬂﬁt + s Hi + ol - (o + ozt Xie)}+ (atfti/fti)ftiHZ] dt + fiof - dW}

E; —E; _E

= [aHi7t + 6m,tﬁg} dt + 0., - AW}, (A.60)
where we assume fi # 0 for all t € [0,T) and define the following nonrandom functions;
agi, =t + ol (of + 0z, + i)}, (A.61)
5}”[1‘715 = (OS] 17 + Ngt)a (A.62)
Oy = ol (A.63)
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Then, straightforward calculation with Gaussianity of fItZ shows that

E;

T
exp {/ CHETIE )\i,sds}
t

= E!

where we defined nonrandom functions

T s
Bi(t,T) = _/ exp{/ ﬁﬁi,udu} ds,
t t

1 (T .
du—i—f/ 0570 0 2B (u, T) 2
t

T
A, T) = / ag. ,B'(u,T)
t

Finally, noting fIZ = fiH}, we obtain

where

E}

T
exp [ (o2 oz,
t

)\i st

s
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}

exp {— /tT ﬁ;ds}l = exp [Ai(t,T) + Bi(t,T)fIti] ,

2

= exp [Ai(tv T) + Bz(taT)HZ] )

(A.64)

(A.65)

(A.66)
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