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A Structural Break Tests

A.1 Gregory-Hansen Tests

Gregory, Nason, and Watt (1996) and Gregory and Hansen (1996) point out that if a simple

cointegration test is used when some variables are cointegrated with structural breaks, the

result will be biased toward accepting the null of no cointegration. To investigate this issue

in more detail, we employ tests proposed by Gregory and Hansen (1996) that can detect a

cointegrating relationship allowing a single structural break in the intercept and the slope.

Following the procedure proposed by Gregory and Hansen (1996), we (1) consider the middle

70 percent of the sample as candidates for the timing of a structural break, which is denoted

by TB; (2) obtain the residual from a regression of lnmt on a constant, Dt, rt (or ln rt), and

Dt× rt (or Dt× ln rt), where Dt is 1 for t > TB and zero otherwise; (3) conduct unit root tests

for the residual and obtain test statistics ADF(TB), Zt(TB), and Zα(TB); and (4) look for the

minimal values of these test statistics over all possible break points. The test statistics thus

obtained are denoted by Inf-ADF, Inf-Zt, and Inf-Zα.

Table A1 shows the values of Inf-ADF, Inf-Zt, and Inf-Zα for the semi-log and log-log
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Table A1: Gregory-Hansen Tests

Inf-ADF Inf-Zt Inf-Zα

semi-log specification -4.521 -3.295 -21.222
log-log specification -4.875* -2.678 -16.109

Note: The three test statistics (Inf-ADF, Inf-Zt, and Inf-Zα) are computed
using the procedure proposed by Gregory and Hansen (1996). * indicates
that the null hypothesis of no cointegration is rejected at the 10% level. For
the ADF test, the lag length is chosen based on the AIC with the maximum
lag length set to 8. For the PP tests, the long-run variance is estimated
using a pre-whitened quadratic spectral kernel based on Andrews (1991)
and Andrews and Monahan (1992).

specifications. For the semi-log specification, the test statistics are much larger in absolute

value than in Table 2 in the main text, suggesting the possibility of structural breaks. However,

we still cannot reject the null hypothesis, implying that our test fails to detect a cointegration

relationship even when allowing for the possibility of a structural break.1 Turning to the log-log

specification, we see that the test statistics do not change that much from those in Table 2 in

the main text, implying that the likelihood of a structural break is negligible. The result from

the ADF test indicates that the null hypothesis of no cointegration is rejected at the 10 percent

significance level.2

A.2 Kejriwal-Perron Tests

Gregory-Hansen tests aim to detect a cointegrating relationship even when there is a structural

break but do not aim to examine whether there actually are structural breaks. In this subsec-

tion, we employ the test proposed by Kejriwal and Perron (2010) to check whether there are

any structural changes in the intercept and the slope coefficient of the money demand equation.

1The date associated with the minimal value of the test statistics is 2008:Q4, when the three month TB rate
fell below 1 percent (1.5% in 2008:Q3 to 0.3% in 2008:Q4).

2Note that the significance level associated with the ADF test is lower than that presented in Table 2 in the
main text. This may be due to a loss of statistical power of cointegration tests when the Gregory-Hansen test is
employed in cases where there exists a cointegration relationship with no breaks.
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Specifically, we consider the following money demand equation with k breaks (that is, there

are k + 1 different regimes):

lnmt = αi + βizt +

ιT∑
j=−ιT

δj∆zt−j + ut for Ti−1 < t ≤ Ti (A.1)

where i represents the regime (i = 1, . . . , k+1). By convention, T0 = 0 and Tk+1 = T , where T

represents the sample size. The explanatory variable zt is either rt in the case of the semi-log

form or ln rt in the case of the log-log form. We add leads and lags of ∆zt as auxiliary variables

to correct for potential endogeneity between zt and ut. The number of leads and lags is set to

2 (i.e., ιT = 2).

Let λ = {λ1, . . . , λk} denote the vector of break fractions with λi = Ti/T . Note that λ is an

element of the set Λϵ = {λ : |λi+1 − λi| ≥ ϵ, λ1 ≥ ϵ, λk ≤ 1− ϵ} for some ϵ > 0. Therefore, each

regime contains at least as many observations as [ϵT ], where [·] denotes the greatest integer

that is less than or equal to its argument. The trimming parameter ϵ is set to 0.15.

Kejriwal and Perron (2010) employ the sup Wald statistic to test the null of no break

against the alternative of k breaks in cointegrated models that allow for both I(1) and I(0)

regressors. The test statistic is defined as follows:

supF ∗
T (k) = sup

λ∈Λϵ

SSR0 − SSRk

σ̂2
(A.2)

where SSR0 and SSRk are the sum of squared residuals under the null of no break and the

alternative of k breaks, and σ̂2 is the long-run variance computed using the residuals from the

model estimated under the null of no break. Based on the sup Wald test shown above, Kejriwal

and Perron (2010) propose a double-maximum test in which the alternative hypothesis contains

an unknown number of breaks between 1 and the upper bound M :

UDmax(M) = max
1≤k≤M

supF ∗
T (k) (A.3)

This is known as the most useful test to determine if there are any structural changes. We set

the upper bound to 5 (M = 5).
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The other test proposed by Kejriwal and Perron (2010) is a test of the null hypothesis of

k breaks against the alternative of k + 1 breaks. This test makes it possible to identify the

number of breaks. We use the following sequential test procedure: We start by testing if there

are any structural breaks by applying either the supF ∗
T (1) test or the UDmax(5) test. If we

reject the null hypothesis of no break, we then test for one versus two breaks. We continue this

process until we fail to reject the null. The number of breaks estimated in this way, which is

equal to the number of rejections, is a consistent estimate of the true number of breaks.

Table A2: Kejriwal-Perron Tests

Semi-log form Log-log form
lnm = α+ βr lnm = α+ β ln r

supF ∗
T (1) 15311.634∗∗∗ 7.537

supF ∗
T (2) 4.850 4.481

supF ∗
T (3) 3.416 3.348

supF ∗
T (4) 2.626 2.613

supF ∗
T (5) 2.155 2.102

UDmax(5) 15311.634∗∗∗ 7.537

No. of breaks 1 0
Break dates 2007:Q4 No breaks

Note: The break dates are estimated by minimizing the
sum of squared residuals based on eq. (A.1). *** indicates
that the null hypothesis of no cointegration is rejected at
the 1% level.

Table A2 presents the test statistics supF ∗
T (k) and UDmax(5) for the semi-log and log-log

specifications. The table shows the number of breaks we detect as well as the break dates

estimated by minimizing the sum of squared residuals based on eq. (A.1). For the semi-log

specification, the null of no breaks is rejected for supF ∗
T (1) and UDmax(5), suggesting that

there is a single break. We also conduct the sequential procedure to confirm that the number

of breaks is one. The date of the single structural break estimated based on the minimization

of the sum of squared residuals is the fourth quarter of 2007, implying that a new regime starts

4



in 2008:Q1. On the other hand, for the log-log specification, none of the test statistics indicate

that there are structural breaks.

A.3 Rolling Regressions

Next, we conduct a rolling regression to see how the interest rate elasticity changed over time.

Figure A1 shows the result for the semi-log specification with the window length set to 20

quarters (i.e., we use observations from t to t− 19). The semi-elasticity estimated looks stable

up until 2009 but exhibits a substantial change afterward: it starts to decline from 2010 onward

and reaches -81 in 2013:Q4. The observed instability of the estimated coefficient reflects the

fact that the money-income ratio increased substantially after the third quarter of 2010, but the

semi-log form failed to track it. Turning to the log-log specification, Figure A2 shows that the

interest rate elasticity of money demand appears to be stable over the entire sample period.

In particular, it is noteworthy that in the log-log specification the interest rate elasticity of

money demand has remained very stable since 2010, which is in sharp contrast to the case of

the semi-log specification. This is consistent with the result from the Kejriwal-Perron test that

the null of no structural breaks is not rejected.

A.4 Extrapolation Tests

Finally, we conduct extrapolation tests to check the stability of the estimated parameters from

a slightly different perspective. Specifically, we first split the sample period into the period up

to 2009 (from the first quarter of 1980 to the fourth quarter of 2009) and the period after 2010

(from the first quarter of 2010 to the fourth quarter of 2013).3 Next, we use the data for the

first half of the sample period to estimate a money demand equation in semi-log and log-log

3In December 2008, the Fed lowered the federal funds target rate from 1.25% to 0-0.25% and then maintained
the target rate at near zero until December 2015, when it began to raise interest rates. Thus, in the second half of
the sample period, the federal funds target rate remained unchanged near zero throughout. However, the market
interest rate used by Ireland (2009) and our study (namely, the six-month commercial paper rate for 1980 to
1997 and the three-month AA nonfinancial commercial paper rate from 1998 onward) did not remain stuck at
zero but showed some, albeit small, fluctuations.
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Figure A1: Interest Rate Semi-elasticity of Money Demand
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Figure A2: Interest Rate Elasticity of Money Demand
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form with the money-income ratio as the dependent variable and the market interest rate as

the independent variable. We then calculate the money-income ratio for the second half of the
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Figure A3: Extrapolation

(a) Semi-log plot
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(b) Log-log plot

‐10

‐8

‐6

‐4

‐2

0

‐2
.2

‐2
.1

‐2
.0

‐1
.9

‐1
.8

‐1
.7

‐1
.6

‐1
.5

ln
 (
in
te
re
st
 r
at
e)

ln (money/income)

1980Q1‐2009Q4

2010Q1‐2013Q4

Fitted

sample period by substituting the actual values of the interest rate during the corresponding

period into the estimated equation.

Figure A3 shows the results for the semi-log specification (left) and the log-log specification

(right). Starting with the right panel, this shows that the observations since 2010 (depicted

by the red squares) are around the regression line estimated using data up to 2009, suggesting

that the money demand function in log-log form in the second half of the sample period is

essentially unchanged from that in the first half. Turning to the left panel, the observations

after 2010 deviate substantially from the regression line, indicating that the large increase

in the money-income ratio since 2010 is not captured well by the semi-log specification. An

important implication of this result is that, given the regression line estimated using data
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Figure B1: M1 vs. M1 Adjusted for Retail Sweeps
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through 2009, interest rates would have had to fall to -15% to create the observed increase in

the money-income ratio.

B Further Extension of the Sample Period

Ireland (2009) estimated the money demand function using data from the first quarter of 1980

to the fourth quarter of 2006, while in our analysis we changed the endpoint of Ireland’s sample

period to the fourth quarter of 2013. This allowed us to include more observations from periods

with low interest rates. Specifically, the sample period in our analysis includes 24 quarters with

interest rates below 1% compared to only three quarters in Ireland (2009). However, our sample

period ends in the fourth quarter of 2013 and does not include more recent data with a lot more

fluctuations in interest rates and the money-income ratio. The reason why we chose the fourth

quarter of 2013 as our endpoint is that the monetary aggregate we employed (“M1 adjusted

for retail sweeps”), which is the same as the one used by Ireland, is available only until that
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Figure B2: Extension of Sample Period
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(b) Log-log plot
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quarter. The series has not been extended since then. In this subsection, we extend the sample

period to the second quarter of 2022 by connecting the series to the M1 series.4/5 Series other

than the monetary aggregate (i.e., interest rates and nominal GDP) are the same as those used

by Ireland (2009) and in the main text, but extended to the second quarter of 2022.

Figure B2 shows the semi-log plot (left) and the log-log plot (right) for the extended sample

period. We see, first, that the data for Ireland’s (2009) sample period (1980:Q1 to 2006:Q4)

4Since January 1994, the Federal Reserve has allowed depository institutions to sweep retail customer trans-
action deposits, which are subject to statutory reserve requirement ratios as high as 10%, into savings deposits
that have a zero percent reserve requirement ratio. Given this regulatory reform, commercial banks have started
using deposit-sweeping software to dynamically reclassify the balances in checking accounts above a certain level
as money market deposit accounts (MMDAs) and to reclassify them back when the balances on the checking
accounts are too low. This software effectively creates a shadow MMDA for every checking account, and the
shadow MMDA is included in M2, but not in M1. Figure B1 shows “M1” and “M1 adjusted for retail sweeps.”
The difference between the two represents the total amount of sweeps of transaction deposits into the shadow
MMDAs, which is not trivial (more than 30% of M1) and fluctuates substantially over time.

5Note that M1 was redefined in May 2020 to include savings as well as checking deposits, so that the money-
income ratio we use is disconnected before and after 2020:Q2.
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depicted by the green squares are aligned on a straight line in the semi-log plot. Ireland (2009)

concludes, based on this fact, that the semi-log form is a better fit.

Second, looking at the data through the third quarter of 2015 (i.e., just before the Fed

raised the federal funds target rate from 0-0.25% to 0.25-0.50% in December 2015), we see that

the data no longer line up on a single straight line in the semi-log plot. This is consistent with

the results of the Kejriwal-Perron test in Section A that the semi-log form does not fit the

data well for this period unless a structural change is taken into account. In the log-log plot,

however, all points up to the third quarter of 2015 are on a straight line. Based on this fact, we

concluded in the main text that the log-log form performs better for this longer sample period.

Third, looking at the period through the second quarter of 2022, neither the semi-log form

nor the log-log form fits the data well. While it is probably not surprising that our specifications

do not track changes in the money-income ratio during the pandemic, the fit for earlier periods

is also not very good. The Fed began raising the federal funds target rate in December 2015

and subsequently raised it nine more times through December 2018. Nonetheless, the money-

income ratio rose during this period, albeit slightly, rather than falling. Neither the semi-log

nor the log-log specification can account for this positive correlation.

The most recent data show some very interesting patterns. That is, in the log-log plot on the

right, the money-income ratio has hardly decreased despite the upward trend in interest rates

since the second quarter of 2021. Although it would be hasty to rush to conclusions regarding

the most recent period, because many things are happening during the pandemic, it may not

be a coincidence that we find that the negative correlation between interest rates and money-

income ratio disappeared during the two phases of rising interest rates, 2015:Q3-2019:Q1 and

2021:Q2 onward.6

6In another study (Watanabe and Yabu, 2019) we use Japanese data for the period from 1985 to 2017 to
estimate a money demand function. We show that the demand for money did not decline in 2006 when the
Bank of Japan terminated quantitative easing and started to raise the policy rate, indicating that there was an
upward shift in the money demand schedule. We argued that this was similar (but in the opposite direction) to
the downward shift in the money demand schedule repeatedly observed in high inflation economies, where the
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C Money Demand Functions in an Economy with Non-negligible
Storage Costs of Money

Recent studies on negative interest rate policy, including Rognlie (2016) and Eggertsson et al.

(2019), argue that the cost of holding cash is not negligible. In this section, we introduce the

storage cost of money into Sidrauski’s (1967) model closely following Eggertsson et al. (2019)

to examine how the demand for money and the welfare gain of lowering interest rates differ

with and without the storage cost of money.

C.1 Log-log form

Let us start with a version of Sidrauski’s (1967) model. The representative household maximizes

the present value of the sum of utilities,

Ut =

∞∑
T=t

βT−tU(cT , zT )

where c and z denote consumption and real money balances. Following Lucas (2000), we assume

that the current period utility function is given by

U(c, z) =
1

1− σ

[
cφ

(z
c

)]1−σ
(C.1)

where σ > 0 and σ ̸= 1, and φ(·) is a strictly increasing and concave function. We will specify

φ(·) later.

The household faces the following flow budget constraint:

Mt + (1 + rt−1)Bt−1 =Mt−1 +Bt + Ptyt − Ptct − S(Mt−1) (C.2)

where Bt, rt, Pt, yt, and S(Mt−1) denote a one period risk-free bond held by the household, the

nominal interest rate associated with the bond, the price level, income, and the storage cost of

demand for money does not increase even after inflation has subsided. We also argued that the upward shift in
the money demand schedule in 2006 points to high switching costs between money and interest-bearing assets.
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money. Note that S(Mt−1) represents nominal storage costs and depends on nominal (rather

than real) money balances. The first order conditions for utility maximization imply

Uz

Uc
=

φ′ ( z
c

)
φ
(
z
c

)
− z

cφ
′
(
z
c

) = r + S′(M) (C.3)

Following Eggertsson et al. (2019), we assume that the marginal storage cost is positive and

constant, so that S′(M) = θ > 0.

Following Lucas (2000), we consider an endowment economy characterized by a balanced

growth equilibrium path, on which the money growth rate is constant, maintained by a constant

ratio of transfers to income. In this setting, the money-income ratio, given by m = z/y, is also

constant. Then eq. (C.3) can be rewritten as

φ′(m)

φ(m)−mφ′(m)
= r + θ

This implies that, if money demand is of log-log form, i.e.,

m(r + θ) = A(r + θ)α for r + θ > 0 (C.4)

with A > 0 and α < 0, then the function φ(·) solves a differential equation of the form

φ′(m)

φ(m)
=

ψ(m)

1 +mψ(m)
=

A−1/αm1/α

1 +mA−1/αm1/α

where ψ(·) is the inverse money demand function (i.e., (ψ(·) ≡ m−1(·)). The solution to this

differential equation is given by

φ(m) =
(
1 +A− 1

αm
1+α
α

) α
1+α

Conversely, if the utility function (C.1) is specified as

U(c, z) =
1

1− σ

[
c

(
1 +A− 1

α

( c
z

) 1+α
α

) α
1+α

]1−σ

(C.5)

then the money demand function derived from utility maximization is of log-log form.
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Starting from the utility function given by (C.5), we end up with a money demand function

of the following form:

m = A (r + θ)α (C.6)

or lnm = lnA+ α ln(r + θ)

which is close to a standard log-log form but differs from it in that a constant term, θ, is added

to r before taking the logarithm. Note that m takes a finite value even when r ≤ 0 as long as

r > −θ, which is an important difference from the case of no storage costs.

When the money demand function takes a log-log form, Bailey’s (1956) measure for the

welfare gain achieved by lowering the interest rate (and inflation) from r to zero is given by

w(r) =

∫ r

0
m(x)dx− rm(r)

=
A

1 + α

[
(r + θ)1+α − θ1+α

]
− rA(r + θ)

α
(C.7)

implying that w′(r) > 0 for r > 0, w′(r) < 0 for −θ < r < 0, and that w′(0) = 0 and w′′(0) > 0.

An important difference from the case without the storage cost of money is that there exists

a finite satiation level of money even for the log-log money demand function, at which the

marginal utility of money coincides with the marginal storage cost of money, and that the

satiation level is achieved by setting r = 0 (i.e., the Friedman rule). Any deviation from the

Friedman rule, whether r > 0 or r < 0, ends up with a suboptimal outcome.

C.2 Semi-log form

Following Cysne (2009), we assume the current period utility function by

U(c, z) = g [c+ λ(z)] (C.8)

where g
′
(·) > 0, g

′′
(·) ≤ 0, λ

′
(·) > 0, and λ

′′
(·) < 0. The first order conditions for utility

maximization imply

Uz

Uc
= λ′(z) = r + θ (C.9)
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If the money demand function is of semi-log form, i.e.,

m(r + θ) = B exp[α′(r + θ)] (C.10)

with B > 0 and α′ < 0, then the corresponding differential equation is given by

λ′(m) =
1

α′ (lnm− lnB)

and the solution to this differential equation is

λ(m) =
m

α′

[
1 + ln

(
B

m

)]
Conversely, if the utility function is specified as

U(c, z) = g

[
c+

z

α′

(
1 + ln

(
B

z

))]
(C.11)

then the money demand function derived from utility maximization is of semi-log form.

If we start from the utility function given by (C.11), we obtain a money demand function

of the form

m = B exp
[
α′ (r + θ)

]
(C.12)

or lnm =
(
lnB + α′θ

)
+ α′r

which reduces to a standard semi-log form when θ = 0. The welfare gain of lowering the interest

rate toward zero is given by

w(r) =

∫ r

0
m(x)dx− rm(r)

=
B

α′
[(
1− α′r

)
exp

(
α′(r + θ)

)
− exp

(
α′θ

)]
(C.13)

implying that w′(r) > 0 for r > 0, w′(r) < 0 for r < 0, and that w′(0) = 0 and w′′(0) > 0.

Again, any deviation from the Friedman rule (r = 0), whether r > 0 or r < 0, leads to a

suboptimal outcome.
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