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Abstract 

 

To prevent global catastrophes that would cause irreversible and enormous damage to 

the humanity and environment, we should not expect that only philanthropy and tacit 

collusion suffice without taking any measures. While global citizens are under a lack of 

strong coercive power, it is necessary to carefully design explicit negotiation procedures 

that make effective use of the limited social order. In doing so, it is necessary to design 

institutional rules that are robust against unforeseen circumstances where many citizens 

happen to be irrational and adhere to uncooperative attitudes. We show a possibility that, 

under a constraint of sovereignty protection, there are commitment rules in a global 

negotiation forum that can uniquely elicit incentives for cooperative behavior from agents 

while coping with such unforeseen circumstances. 
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1. Introduction 

 

We examine the design of social institutions to prevent global catastrophes. The 

following recent experience of not making a desired progress in solving the climate change 

problem are behind the motivation of this study. 

The climate change problem implies that excessive CO2 (or greenhouse gases) 

emissions will catastrophically and irreversibly damage global citizens’ living 

environments, species diversity, and ecosystems (Nordhaus, 1994, 2005, 2013; Victor, 

2001; Stern, 2007; Wagner and Weitzman, 2015; Cramton et al., 2017; Tirole, 2017; 

Blanchard and Tirole, 2021). The international community has been working for a long 

time to resolve this global issue. For example, the UN provided the Conference of the 

Parties (COP) as a forum for international negotiation about global emission reduction. The 

UN also formulated the Sustainable Development Goals (SDGs) that supports campaign 

activities that stimulate environmental concerns. Thereafter, global citizens became more 

concerned about future generations, species diversity, and ecology, as well as how much 

information and knowledge about environmental damage has been acquired. They also 

became more tolerant of their effort for contributing to emission reductions through their 

lifestyles and behavior patterns, such as recycling habits, consumption boycotts, and 

interest in ESG investing, as well as the technological progress of energy and circular 

engineering. 

Despite a long period of awareness-raising activities, ongoing international 

negotiations, and a growing public interest in environmental issues, they have so far failed 

to produce sufficient results. For example, although the COP has been proceeding with 

negotiations, the negotiations are proving to be extremely difficult. Our bitter experience 

can be summerized: 

 

1. Agents (citizens, countries, or companies) recognize climate change as a serious 

problem and have latent prosocial motives, but succumb to their selfish motives and 

are unable to escape the free-rider problem by relying solely on self-help. 
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2.  Even if agents have a long-term relationship as members of the international 

community and are gradually able to monitor their emission reductions to a large 

extent albeit imperfectly, behavior patterns to sanction free riders were not generated 

spontaneously. 

3.  We sometimes fail to predict actual agents’ reduction behaviors due to the emergence 

of unforeseen contingencies that are not considered in advance but influence their 

behavioral attitudes. 

4.  Agents change their own specific commitments midway through when such 

unforeseen circumstances arise. This change discourages other agents to reduce 

emissions one after another. 

 

From the above, we do not have high hopes for tacit collusion to be spontaneously 

established and provide a solution to a global catastrophe. Surely, in a repeated game, a 

behavior pattern that voluntarily penalizes free riders can be described as a noncooperative 

equilibrium, even when monitoring is imperfect and the state fluctuates over time. 

Counting on this, the COP did not seriously attempt to install any explicit incentive scheme. 

However, in the repeated game, there are multiple heterogeneous equilibria, and no 

satisfactory foundation has been provided for which of them can be realized (Aumann and 

Shapley, 1976; Fudenberg and Maskin, 1986; Abreu, 1988; Farrell and Maskin, 1989; 

Fudenberg et al., 1994; Barrett, 1994, 2003; Kandori and Matsushima, 1998; Finus, 2001; 

Matsushima, 2004; Dutta and Radner, 2004, 2009; Dal Bó and Fréchette, 2018; Sugaya, 

2022). The experience of the confusion surrounding climate change exposes this 

equilibrium selection as a serious problem that cannot be pegged. Both from theoretical 

and empirical standpoints, it is mere wishful thinking to believe that a convenient 

equilibrium will be chosen. 

Nor is the cooperative game approach, which presupposes a broad-based binding 

agreement on players’ activities, appropriate for this resolution. Rather, we need to limit 

the binding force to a scope that infringes as little as possible on the inherent sovereignty. 

Specifically, binding force should be limited at most to the extent that it is grounded in a 



4 

 

commonly recognized social order such as the Westphalian system. In order to make a 

broad agreement binding, we must use means of individual sanctions such as boycotts. An 

example in climate change is the response measure such as the Carbon Border Adjustment 

Mechanism (Nordhaus, 2015) to address the carbon leakage that makes the gain from free 

riding unduly high. The problem is that allowing such individual sanctions excessively may 

be in effect a violation of citizen sovereignty (Cramton et al., 2017). Hence, in terms of 

consistency with the protection of citizen sovereignty, there are limits to solving the free-

rider problem through such individual sanctions. 

Because of the limited availability of coercive force in the international community, 

the COP has long neglected to set up any explicit negotiation procedure with incentive 

concerns by taking the pledge-review approach. However, this neglect by the COP is wrong. 

We show that even under such limited enforcement power, it is possible to design 

institutions that are robust against unforeseen circumstances, preventing global 

catastrophes with the help of philanthropy and tacit collusion. We investigate an abstract 

single-period model of global catastrophes and demonstrate a method of designing an 

explicit negotiation procedure that satisfies the following requirements: 

 

i.   Agents behave cooperatively as unique equilibrium behavior. 

ii. Even in unforeseen circumstances where non-negligible number of agents happen to 

be irrational and adhere to uncooperative attitudes, many of the remaining agents are 

still willing to behave cooperatively. 

iii. Each agent is not forced by others to make decisions about the content of their own 

commitment. They can offer to change what they have committed at any time if 

necessary. 

 

We assume that while agents are not forced to make specific commitments, they can 

commit in advance to a particular negotiation procedure to determine their commitments 

collectively, which we call a commitment rule, to the extent that they are in accordance 

with the social order. Here, the social order is defined as a combination of sovereignty 



5 

 

protection and adherence to commitments. That is, the combination of the norm that any 

agent is not forced to make commitments that they do not like, and the norm that any agent 

does not silently break their own commitment. This definition is modeled after the 

international order of the Westphalian system. 

We consider how to discourage free riding by explicitly incorporating a mechanism 

to link each agent’s tolerance for their own commitment to the other agents’ commitments. 

We show a positive result, such that there exists a commitment rule that satisfies the above-

mentioned requirements, i.e., the requirements i, ii, and iii. 

Following McKay et al. (2015), we let agents announce their respective upper limit 

of commitments that they can tolerate, and then decide what they actually commit within 

the range below their upper limit (sovereignty protection). That is, McKay et al. (2015) 

proposed a commitment rule according to which each agent’s actual commitment is tied to 

the other agents’ upper limits. McKay et al. (2015) designed the rule so that as an agent 

raises their own upper limit, the actual commitment levels of the other agents would 

increase in tandem. Under adherence to commitments, McKay et al. (2015) proposed that 

this linkage would have a synergetic effect that discourages the temptation to free-ride and 

moves everyone toward cooperation. See also Cooper (2008), Cramton and Stoft (2012), 

Cramton, Ockenfels, and Stoft (2015), and Cramton et al (2017). 

 However, the commitment rule designed by McKay et al. (2015) is inadequate, 

because it fails to meet the requirements for appropriate handling of unforeseen 

circumstances where a non-negligible number of agents happen to be irrational and adhere 

to the uncooperative attitudes. Thus, a commitment rule must be redesigned so that even if 

such uncooperative agents exist, the remaining agents keep their commitments close to 

their upper limits. Moreover, a commitment rule must be redesigned so that even if such 

unforeseen circumstances arise, (a large proportion of) the remaining agents have no 

incentive to change their upper limits downward. Neither of these requirements is met by 

the rule of McKay et al. (2015). 

 We propose a new design method of commitment rule, which satisfies all the above 

requirements, as follows. Each agent’s commitment is lowered as the number of 
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uncooperative agents increases. However, to deal with the unforeseen circumstances, we 

must always keep the lowering width sufficiently small. To reduce this lowering width, we 

will categorize the number of uncooperative agents, and set the commitment rule so that 

the lowering width depends only on which category the number of uncooperative agents 

belongs to. This design method makes it possible to keep the lowering widths as small as 

possible while dealing with the unforeseen circumstances. We show that if the number of 

agents is sufficiently large and they have prosocial motives in a minimal (i.e., 

lexicographical) sense, cooperative behavior can be explained as unique equilibrium 

behavior, and it is robust against the unforeseen circumstances. 

Thus, the novelties of this paper are as follows: 

 

1)   The resolution of the free-rider problem in global catastrophes is considered through 

a design of commitment rules under sovereignty protection and adherence to 

commitments. 

2)  We demonstrate a design method of commitment rule to incentivize agents to behave 

cooperatively as unique equilibrium behavior and make their cooperation robust 

against unforeseen circumstances where a non-negligible number of agents happen 

to be irrational and adhere to the uncooperative attitudes. 

 

 We further investigate a dynamic in which agents repeatedly negotiate about 

catastrophe prevention. We do not consider dynamic resource management of the global 

commons such as Harstad (2012) and Harrison and Lagunoff (2017), but we instead 

formulate the dynamic as an repeated game whose component game is given by our single-

period model with commitment rule. We assume that the next round of negotiation is 

inevitably postponed if someone violates the social order. We then argue that this inevitable 

postponement provides an incentive for rouge agents to voluntarily maintain the social 

order. We also consider the possibility that the next round of negotiation is artificially 

postponed if some agents behave uncooperatively. We then argue that this artificial 
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postponement serves to help a commitment rule to meet the robustness requirement against 

the unforeseen circumstances. 

Moreover, we consider the possibility of artificially changing the shape of 

commitment rule depending on the past history of play. That is, if some agents are found 

to adhere to the uncooperative attitudes from the past history of play, the commitment rule 

will be temporally changed to cover only the remaining agents. We then argue that with 

such history-dependence, the uniqueness of cooperative behavior is restored even in the 

unforeseen circumstances. 

The remainder of this paper is organized as follows. Section 2 defines the model and 

commitment rules. Section 3 shows the main theorems. Section 4 discusses about our 

results. Section 5 considers the dynamic model. Finally, section 6 concludes this study. 

 

2. Commitment Rule 

 

Let {1,..., }N n  denote the set of all agents. Each agent i N  has a set of actions 

[0,1]iA   and a utility function :iu A R , which is specified as: 

( )i j i
j N

u a a ca


   for all i N  and a A , 

where ii N
A A


  , ( )i i Na a A  , c  is a real number that is considered as the (constant 

marginal) cost, and 

1 c n  . 

Each agent 'i s   action i ia A   implies their voluntary contribution to prevent global 

catastrophes, which has positive externality to all agents’ welfares. Thus, j
j N

a

  expresses 

the expected gain (relative to the cost c ) resulting from all agents’ contributions. 

These agents experience the following free-rider problem. As 1c  , in the strategic 

game defined as a triple ( , ,( ) )i i NN A u   , any agent i N   prefers to select zero as a 
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dominant strategy. As c n , each agent prefers to increase their action level if the other 

agents simultaneously increase their action levels by the same amount. 

To overcome this free-rider problem, we explore a commitment rule ( )i i N    , 

where :i iM A   for each i N , and ii N
M M


  . Each agent i N  contains a set of 

messages [0,1]iM  . A message i im M  announced by agent i  defines the upper limit 

of commitments that they can tolerate. The action level ( )i im A   of agent i  implies the 

commitment of action selection that agent i   must keep. Each agent 'i s   commitment 

( )i m  depends not only on their own message im  but also on the other agents’ messages 

im . 

Following McKay et al. (2015), we assume that ( )i m  is nondecreasing in the n -

dimensional vector 1( ,..., )nm m m . We have in mind that the commitment rule should be 

set so that if an agent allows a higher commitment by raising their own upper limit, the 

commitments imposed on other agents are higher in tandem. 

We assume adherence to commitments in that every agent i N   will keep their 

commitment ( )i im A   . Therefore, if agents announce a message profile m M  , the 

resultant action profile is given by ( )a m A  . Notably, we can permit each agent to 

change their upper limit to lower their commitment at their discretion. They are forbidden 

only to silently breaking their commitment. If a player does not want to keep the 

commitment, they should just let everyone know by replacing their upper limit with a lower 

one. 

To maintain the social order, each agent sacrifices their own self-interest to some 

degree. Each agent could make a higher commitment and raise the bar for other agents' 

commitments as well, while themselves benefiting selfishly by silently breaking their own 

commitment. However, if their agreements are violated in this manner, the social order is 

disturbed, and the future risk of conflict in their society generally increases. Therefore, we 

assume that when agents agree to a commitment rule, they are accepting adherence to 

commitments. See Subsections 4.3 and 5.1.1 for further discussions. 



9 

 

We have in mind that n  is fixed sufficiently large, and therefore, 
c

n
 is fixed close 

to zero. Since each agent earns the utility n c  from the full cooperation in society, we 

can consider the catastrophe as a tremendous damage (large n ) to each agent relative to 

their cost c . 

Fix an arbitrary triple ( , , )w z , where 0   is a positive real number, 2w   is a 

positive integer, and {1,..., 1}z w  . For convenience of arguments, we assume that n  is 

an integer multiple of w . We have in mind that   is close to zero, w  is large but less 

than n , and 
z

w
 is close to zero. 

Based on the triple ( , , )w z  , we require a commitment rule    to satisfy the 

following four requirements: sovereignty protection (SP), virtual upper limits (VUL), 

uniqueness (U), and robustness (R). SP implies that each agent’s commitment does not 

exceed their announced upper limit. 

 

Sovereignty Protection (SP): For every i N  and m M , 

( )i im m  . 

 

VUL implies that the commitment rule always makes each agent commit to a level 

close to their announced tolerance. 

 

Virtual Upper Limits (VUL): For every i N  and m M , 

( )i im m   . 

 

We define the commitment game as a triple ( , , )N M v  , where ( )i i Nv v   , 

:iv M R  for each i N , and 

( ) ( ( )) ( ) ( )i i j i
j N

v m u m m c m  


    for all i N  and m M . 
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We assume that each agent announces the maximal best response. An interpretation is that 

while each agent is prosocial in a minimal (i.e., lexicographical) sense, their prosocial 

motives are always outweighed by their selfish motives. Another interpretation is that 

although an explicit "stick-carrot" mechanism is mounted, its effects are limited and can 

be only likened to the prosocial motives such as lexicographic preferences. See Subsection 

4.4 for further discussions. Thus, a message profile m M   is said to be a Nash 

equilibrium in the commitment game if for every i N , 

( ) ( , )i i i iv m v m m  for all i im M , 

and 

( ) ( , )i i i iv m v m m  for all i im m  . 

We define the maximal message profile as ( )i i Nm m M   by 

1im   for all i N . 

U implies that m  is the unique Nash equilibrium and it achieves the full cooperation. 

 

Uniqueness (U): The maximal message profile m  is the unique Nash equilibrium in the 

commitment game, and 

( ) 1i m   for all i N . 

 

We further define a Nash equilibrium for each subset of agents N N   in the 

commitment game as a message profile m M  so that every agent who belongs to N  

selects the maximal best response to m , whereas any other agent (irrationally) adheres to 

zero: for each i N  , 

    ( ) ( , )i i i iv m v m m  for all i im M , 

and 

( ) ( , )i i i iv m v m m  for all i im m  , 

and for each \i N N  , 

   0im  . 
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R implies that even if a non-negligible number of agents (i.e., \N N  ) happen to be 

irrational and adhere to uncooperative attitudes (i.e., even in the unforeseen circumstances), 

a large proportion of the remaining agents (i.e., N N   ) are willing to behave 

cooperatively. Recall that we have in mind that w  is sufficiently large, and 
z

w
 is close to 

zero. 

 

Robustness (R): Consider an arbitrary subset N N , where 

1Nl l

w n w


 


 for some { 1,..., }l z w   

A Nash equilibrium m  for N  and a subset N N   exist, such that 

N l

n w
 , 

and 

    1im   for all i N . 

 

 VUL and R are similar in that they deal with cases where there are uncooperative 

agents as an unforeseen circumstance. However, VUL and R are essentially different for 

the following reason. VUL requires a level of cooperation close to agents’ acceptable upper 

limits to be always achieved, irrespective of their message profile. In contrast, R deals with 

a possibility that each agent would change their upper limit as a countermeasure to the 

unforeseen circumstances. Hence, R requires that even if a non-negligible number of agents 

happen to be irrational and adhere to the uncooperative attitudes (unforeseen 

circumstances), a large proportion of the remaining agents will maintain their cooperation 

as equilibrium behavior without changing behaviors in response. 

 

3. Main Theorems 
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The following theorem shows a necessary and sufficient condition for the existence 

of a commitment rule that satisfies SP, VUL, U, and R. For this proof, we specify a 

commitment rule *  and show that the necessary and sufficient condition implies that *  

satisfies SP, VUL, U, and R. 

We define :{0,..., }w R   as follows. Let (0) 0  . Recursively, for each integer 

{1,..., 1}x w  , we define ( )x  by the following equation: 

1
( 1){ ( ) ( 1)} {1 ( 1)}( 1)
w x

n x x x c
w

   
       . 

Note that ( )x  is increasing in {0,..., 1}x w  . Let ( ) ( 1)w w   . We can show the 

calculated values as follows: for every {1,..., 1}x w  , 

(1)        
1

1
( ) 1 (1 )

1
1

x

x

c
x

w x
n

w





    


 . 

For each m M , the number of agents whose messages are less than one is denoted 

by: 

( ) { | 1} {0,..., }iy m i N m n    . 

We specify ( ) {0,..., }x m w  as follows: 

    ( ) 0x m     if ( ) 0y m  , 

and for each {1,..., }x w , 

    ( )x m x    if 
1 ( )x y m x

w n w


  . 

By using ( ) {0,..., }x m w , we classify the message space M  into 1w   categories. Each 

category {0,..., }x w  includes all message profiles m  such that the number of agents 

whose messages are less than one is between 
( 1)x n

w


 and 

xn

w
 (i.e., 

1 ( )x y m x

w n w


  ). 

We consider ( )x   as the lowering width of agents’ commitments when the message 

profile m  belongs to the category x  (i.e., ( )x m x ). 
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Based on ( ( ( ), ( ))x    , we specify the commitment rule *   as follows. For every 

i N  and m M , let 

*( ) max[ ( ( )),min , ]i j i
j N

i m m x m m m  


   , 

that is, 

* ( ) ( ( ))ii m m x m    if ( ( )) max[min , ]i j i
j N

m x m m m 


   , 

*( ) min j
j N

i m m


   if min min[ ( ( )), ]j ij N
m m x m 


  , 

and 

*( )i im m      if max[min , ( ( ))]i j i
j N

m m m x m 


   . 

If a message profile changes from category 1x    to category x  , the increase in the 

lowering width of an agent’s commitment is given as ( ) ( 1)x x    . However, the 

lowering width is limited by   and the minimal upper limit min j
j N
m


. If a message profile 

changes but the category remains unchanged, the lowering width remains the same. 

 

Theorem 1: A commitment rule exists that satisfies SP, VUL, U, and R, if and only if: 

(2)      ( )w z   . 

 

Proof: The ‘if’ part of Theorem 1 is proved by showing that, under the inequality (2), the 

commitment rule *   satisfies SP, VUL, U, and R. Clearly from its specification, *  

satisfies SP and VUL. 

We show that *   satisfies U as follows. Consider the maximal message profile 

(1,...,1)m    and show that it is a Nash equilibrium. Note that ( ) 0x m   , 

( ( )) (0) 0x m    , and *( ) 1i m    for all i N  . Suppose that agent 1 selects 1 1m   

instead of 1 1m  . Note that 1 1( , ) 1x m m  , 1 1

1
( ( , )) (1)

1

c
x m m

n
 


 


, 1

*
1 ( )m m  , and 

1 1
*

1( ) max[1 ( ), ]( , )i m x mm m     for all 1i  . 

If 
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1 1 11 ( ( , ))m x m m   , 

then any agent’s commitment decreases from 1 to 1m  . Hence, agent 1 has the gain 

1( 1)(1 )c m   and the loss 1( 1)(1 )n m  . As n c , we have 

1 1( 1)(1 ) ( 1)(1 )n m c m     , 

which implies that agent 1 decreases its utility. Next, if 

1 1 11 ( ( , ))m x m m   , 

then any other agent’s commitment decreases from 1 to 1 11 ( ( , )) 1
1

1c
x m m

n
 


  


 . 

Hence, agent 1 has the gain 1( 1)(1 )c m   and the loss 
1

( 1)
1

c
n

n





. Since 

1

1
( 1) 1 ( 1)(1 )

1

c
n c c m

n


     


, 

agent 1 decreases their utility. We can make the same argument even if we replace agent 1 

with any other agent. Therefore, we have proved that m   is a Nash equilibrium. By 

definition, we obtain *( ) 1i m   for all i N . 

We show that m  is the unique Nash equilibrium as follows. Consider an arbitrary 

message profile \{ }m M m  . There exists an agent i N   such that min 1i jj N
m m


   . 

Suppose that m  is a Nash equilibrium. We can show that any other agent 'j s  message 

must be commonly equal to min[1, ( ( )), ]i im x m m    as follows. Note that if agent j  

selects this message, their commitment is equal to im . If min[1, ( ( )), ]j i im m x m m    , 

then we have *( )j im m   , and therefore, agent j   has an incentive to increase their 

message up to min[1, ( ( )), ]i im x m m     due to minimal prosociality. Next, if 

1 min[1, ( ( )), ]j i im m x m m     , then we have 

*( ) max[ ( ( )), ]j j j j im m x m m m      . 
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In this case, agent j  has an incentive to lower their message because ( )x m  is unchanged. 

Moreover, if 1jm    for all j i  , each agent j i   has an incentive to lower their 

message: ( ) 1y m    only changes to 2, and therefore, ( )x m   and ( ( ))x m   are 

unchanged. (Recall that w n   and n   is an integer multiple of w  .) Accordingly, any 

other agent message is commonly equal to min[1, ( ( )), ]i im x m m   , their commitment 

is equal to im , and it is less than their upper limit. In this case, however, agent i  has an 

incentive to increase their message because any other agent’s commitment increases 

simultaneously. This is a contradiction. Thus, we have proved that *  satisfies U. 

 We show that *  satisfies R as follows. Consider an arbitrary subset N N , where 

we assume that 
( 1)l l

n N n
w w


    for some { 1,..., }l z w   . We can select a subset 

N N   where 
l

N n
w

 . We specify a message profile m  as 

    0im   for all \i N N  , 

    1im   for all i N , 

and 

( ( ))im x m  for all \i N N  . 

Note that 
( )

( )
w l

y m n
w


   and ( )x m w l   . Note from the inequality (1) that 

( ( ))x m   . We can prove that this message profile is a Nash equilibrium for N   as 

follows. Note that no agent \i N N   influences the category. Hence, they prefer to set 

their commitment equal to zero; because of (2), their maximal best response is ( ( ))x m . 

Next, note that any agent i N  can influence the category. In other words, by selecting 

their message to be less than one, they can change the category from ( )x m w l    to 

( ) 1 1x m w l    . This change decreases the commitment of any other agent in N  from 

1 ( ( ))x m  to 1 ( ( ) 1)x m  , that is, by the amount of 
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{1 ( ( ))}( 1)
{ ( ( ) 1) ( ( ))}

1

x m c
x m x m

l
n

w

   
  


. 

As 
l

N n
w

 , this change decreases the agent 'i s  utility by the amount of 

)( {1 ( ( ))}1){ ( ( ) 1) ( ( ) ( 1)}N x m x m x m c      . 

This equality implies that agent i  have no incentive to deviate, because they only earn 

{1 ( ( ))}( 1)x m c    from deviation and prefer the maximal message. Hence, we have 

proved that the specified message profile is a Nash equilibrium for N , and therefore, *  

satisfies R. From these observations, we have proved the ‘if’ part of Theorem 1. 

Next, we show the proof of the ‘only if’ part of Theorem 1 as follows. Suppose that a 

commitment rule   exists that satisfies the SP, VUL, U, and R. Note that any commitment 

rule derived from this commitment rule and a permutation on N   also satisfies these 

requirements. Moreover, any commitment rule derived from a weighted sum of these 

commitment rules also satisfies these requirements. Thus, without loss of generality, we 

can assume that the commitment rule    is symmetric in that for every permutation 

: N N   and m M , 

    ( )( ) ( )i im m    for all i N , 

where we denote ( )j j Nm m    and ( )i im m   for all i N . 

 Fix an arbitrary { 1,..., }l z w   . Let {1,..., }
l

N n
w

  . From R, N N    must hold, 

and therefore, we have a Nash equilibrium lm  for N  such that 

1l
im   for all i N  , 

and 

0l
im   for all \i N N  . 

From the symmetry of  , if an agent 
l
n N

w
   announces zero instead of one, they earn 

1( )( 1)lm c   from this deviation. Hence, each of the other agents in N  (i.e., each of the 
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1
l
n

w
  agents) must decrease their commitments at least by 1( )( 1)

1

lm c
l
n

w

 




. Hence, we 

have 

    1
1 1 1

( ){ 1} 1
( ,0) ( ) ( ){1 }

1 1

l
l l l
ln
w

m c c
m m m

l l
n n

w w

  


 
   

 

   . 

Since 1( )m  is nondecreasing, we have 

    1
1 1 ( 1)( ) ( ,0)l l

l n
w

m m  


  . 

Moreover, we have 

    1 1 1

1 1
( ,0) ( ,0) ( ){1 } 1

11

w
wn n
w

c c
m m m

w nn
w

  

 
    


 . 

From these observations, we have 

    
1

1
1

1
( ,0) (1 ) 1 ( 1)

1
1

w l
l
ln
w x

c
m w l

w x
n

w

 
 





      


 , 

and therefore, 

    1
1 ( 1)( ) 1 ( ,0)z

z n
w

w z m  


    . 

From 1
1 1zm    and VUL, the inequality (2) must hold. 

 From these observations, we have completed the proof of Theorem 1. 

Q.E.D. 

 

To help understanding Theorem 1, we consider an infinite sequence 1( ( ))nc n 
 , where 

( ) 1c n   and there exists [0,1]  such that 

    
( )

lim
n

c n

n



 . 
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We assume that n  is fixed sufficiently large and 
c

n
 is approximated by  . The following 

theorem states that irrespective of ( , , )w z , there exists a commitment rule that satisfies 

SP, VUL, U, and R. 

 

Theorem 2: For a sufficiently large n , there exists a commitment rule that satisfies SP, 

VUL, U, and R, if 

(3)      
1

1 {1 }
1

w z

x

w

w x
 





  
  . 

For a sufficiently large n , there is no commitment rule that satisfies SP, VUL, U, and R, if 

(4)      
1

1 {1 }
1

w z

x

w

w x
 





  
  . 

 

Proof: Since 

    
1 1

1
lim{1 (1 )} 1 {1 }

1 11

w z w z

n
x x

c w
w x w xn
w


 

   


       
  , 

it follows from (1) that if the inequality (3) holds, then for a sufficiently large n  , the 

inequality (2) also holds. Moreover, if the inequality (4) holds, then for a sufficiently large 

n , the inequality (2) does not hold. Hence, from Theorem 1, Theorem 2 can be proved. 

Q.E.D. 

 

To help understanding the case with 0  , i.e., a special case with inequality (4), we 

specify a commitment rule ̂ , which is a simpler version of the commitment rule * , as 

follows. For every i N  and m M , 

( )
( ) max[ ,min ]ˆ

i ji jN

x m
m m m

w
 


  , 

that is, 

ˆ
( )

( ) ii

x m
m m

w
    if 

( )
mini jj N

x m
m m

w



  , 
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and 

mˆ ( ) in j
N

i
j

m m


   if 
( )

mini j
j N

x m
m m

w



  . 

If the category rises by one unit, the lowering width )ˆ (i im m   rises by the constant 

amount 
w


  within the range defined by the minimal upper limit min jj N

m


 . Clearly, ̂  

satisfies SP, VUL, and ˆ ( ) 1i m   for all i N . 

Similarly to *  , we can show that ̂   satisfies R. Consider an arbitrary message 

profile m M   where ( ) 1x m w    and 
( )

( )
x m n

y m
w

  . The 
( )

( 1)
x m n

th
w

    deviant, 

whose gain from deviation is 
( )

(1 )( 1)
x m

c
w


  , will change the category, and therefore, 

will be penalized from the remaining 
( )

1
w x m

n
w


  agents’ commitment reductions by 

the amount of 
w


 for each. Since n  is sufficiently large and 0  , we have 

(5)    
( ) ( )

1} (1 )( 1){
w x m x m

n c
w ww

 
    , 

because 

    ]
1

lim [ {
( ) ( )

1} (1 )( 1)
n w

w x m x m
n c

wn w

 



     

}lim[ {
( ) 1 ( ) 1

(1 )( )]
n

w x m x m c

w n w n nw







     

( ) ( )
} (1 ){

w x m x m

w ww

  
   

( )
} 0{

w

w x m

w

 
  . 

The inequality (5) discourages such deviations. This observation implies that ̂  satisfies 

R. 
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We can also show that ̂  satisfies U. Note that m  is a Nash equilibrium; from (5) 

and ( ) 0x m  , we have 

1) 1(n c
w


   . 

Consider an arbitrary \{ }m M m  , where an agent i N   exists such that 

min 1i j
j N

m m


  . Suppose that m  is a Nash equilibrium. Due to minimal prosociality, in 

the same manner as *  , any other agent’s message must be commonly equal to 

( )
min[1, ]i

x m
m

w
  , which is greater than im  . Accordingly, their commitment must be 

equal to min j
N

i
j

m m


 , which is less than their announced upper limit. However, in this 

case, agent i   has an incentive to increase their message because any other agent’s 

commitment increases simultaneously. This is a contradiction. Thus, m  is the unique Nash 

equilibrium, that is, ̂  satisfies U. 

 From the above, we have shown that if 0    and n   is sufficiently large, the 

commitment rule ̂  satisfies SP, VUL, U, and R. 

 

4. Discussion 

 

4.1. Robustness 

 

R requires that even if a nonnegligible number of agents irrationally adhere to the 

uncooperative attitudes, a large proportion of the remaining agents are willing to behave 

cooperatively. As a more stringent requirement, we introduce exact robustness (ER), which 

requires that even if a nonnegligible number of agents irrationally adhere to the 

uncooperative attitudes, all the remaining agents are willing to behave cooperatively. Fix 

an arbitrary positive real number (0,1)  , which has a similar role to 
1z

w


  in the 

definition of R. 
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Exact Robustness (ER): Consider an arbitrary subset N N , where it is assumed that 

N

n



. 

There exists a Nash equilibrium m  for N  such that 

    1im   for all i N  . 

 

 The following proposition states that if we replace R with ER, we can no longer 

prevent global catastrophes through commitment rule design, even if we do not require U. 

 

Proposition 1: If 

(6)      
1

(1 )( 1) lnc 


   , 

then, for a sufficiently large n , there exists no commitment rule   that satisfies the SP, 

VUL, and ER. 

 

Proof: Suppose that a commitment rule    exists that satisfies the SP, VUL, and ER. 

According to the same logic as in the proof of the “only if” part of Theorem 1, we can 

assume without loss of generality that the commitment rule   is symmetric. 

 From ER, m   must be a Nash equilibrium for N N  . If agent n   announces 0 

instead of 1, it follows from VUL that they earn at least (1 )( 1)c   from this deviation, 

and each of the other agents must decrease their commitments at least by 
(1 )( 1)

1

c

n

 


. 

Therefore, their commitment must be at most 
(1 )( 1)

1
1

c

n

 



 . Next, consider 

{1,2,..., 1}N n   and the Nash equilibrium for N  where every agent in N  selects the 

maximal message 1. If agent 1n    announces 0 instead of 1, they earn at least 

(1 )( 1)c   from this deviation, and each of the other agents in N  must decrease their 
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commitments at least by 
(1 )( 1)

2

c

n

 


. Since   is nondecreasing, their commitment must 

be at most 
(1 )( 1) (1 )( 1)

1
1 2

c c

n n

    
 

 
. Recursively, for each {2,..., 1}l n  , consider 

{1,2,..., }N n l   and the Nash equilibrium for N  where every agent in N  selects the 

maximal message 1. If agent n l  announces zero instead of one, each of the other agents 

in N   must decrease their commitments at least by 
(1 )( 1)

1

c

n l

 
 

 . Hence, their 

commitment must be at most 
0

(1 )( 1)
1

1

l

l

c

n l




 


  . 

From VUL, for each (1 )l n  , 
0

(1 )( 1)

1

l

l

c

n l

 


 


   must hold. For a sufficiently 

large n , we can approximate 
(1 ) 0

(1 )( 1)
sup

1

l

l n l

c

n l


  

 
   by 

1
(1 )( 1) lnc


  , which is greater 

than zero. (Note that 
(1 ) 0

1
sup

1

l

l n l n l      is approximated by 
1

ln( )
2

n

n



.) 

From the above observations, given a sufficiently large n  , 1 1max{ ( )}
m M

m m


   is 

approximated by 
1

(1 )( 1) lnc


    or more. Hence, 
1

(1 )( 1) lnc 


     must hold. 

However, this notion contradicts the inequality (6). Hence, we have proved Proposition 1. 

Q.E.D. 

 

For a commitment rule to satisfy ER, the remaining sane agents must reduce their 

commitments by at least (1 )( 1)c    in total for each additional deviant. If n   is 

sufficiently large, then each agent’s reduction could be large, and each agent therefore 

needs to reduce their commitment by 
1

(1 )( 1) lnc


   or more in the worst-case scenario. 

With the inequality (6), this is a contradiction of VUL. 
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From Proposition 1, if 0   is close to zero and n  is sufficiently large, there is no 

commitment rule   that satisfies SP, VUL, and ER. If 0   is close to zero and n  is 

sufficiently large, there is no commitment rule   that satisfies SP, VUL, and ER. Hence, 

we can consider Proposition 1 as an impossibility result. However, in contrast to ER, R 

only requires commitment reductions for a limited number of deviants. Thus, by weakening 

ER to R, we can save dramatically on commitment reductions, making a robust 

commitment rule successfully consistent with VUL. 

 

4.2. Role of Minimal Upper Limits 

 

The commitment rules designed in this study such as ̂   and *   impose on any 

agent a commitment not to go below the minimum of the announced upper limits across 

all agents min jj N
m


. This dependence of a commitment rule on this minimal upper limit 

(MUL) will play a crucial role in satisfying U (uniqueness) if this rule satisfies VUL (virtual 

upper limit). 

To understand this point, we first define the unanimity rule   : for each i N  , 

( ) 1i m  , and 

( ) 0m   for all m m . 

The unanimity rule   does not depend on MUL and does not satisfy VUL. Nevertheless, 

it satisfies U; due to minimal prosociality, the maximal message profile m  is the unique 

Nash equilibrium. 

If we limit the scope to commitment rules that satisfy VUL, then MUL will have a 

crucial role for U. We specify another commitment rule †  as follows: for each i N , 

†( ) 1i m  , and 

†( ) max[ ,0]i im m    for all m m . 

This rule is a modification of the unanimity rule   and satisfies VUL, but does not depend 

on MUL. Surely, the maximal message profile m  is a Nash equilibrium. However, the 
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message profile m̂  specified by ˆ im   for all i N  is also another Nash equilibrium, 

failing to satisfy U. 

We further specify a commitment rule †̂  by: 

†ˆ ( ) max[ ,min ]i i j
j N

m m m 


   for all m M  and i N . 

The commitment rule †̂  is a modification of † , which depends on MUL and satisfies 

SP and VUL. Importantly, †̂  satisfies U; due to minimal prosociality, many agents prefer 

to select messages that are greater than MUL. This also motivates the agent who announces 

MUL to increase their message, because many agents’ commitments are increased 

simultaneously. Thus, agents can ascend MUL like climbing stairs. Consequently, the 

maximal message profile is the only equilibrium that will survive through this stair-

climbing procedure. 

Finally, we consider the commitment rule ††   that McKay et al. (2015) 

demonstrated as the common commitment rule, which is defined to emulate the lowest 

price guarantee clause and to assign the minimal upper limit to every agent as their 

commitment: 

†† ( ) mini j
j N

m m


  for all m M  and i N . 

Note that both the unanimity rule   and the common commitment rule ††  satisfies U. 

Both rules do not satisfy VUL. While the common commitment rule ††   depends on 

MUL, the unanimity rule   does not depend on it. Thus, the dependence on MUL is non-

essential for satisfying U in the common commitment rule †† . 

 See the Table to understand the difference between all the commitment rules 

investigated in this study. We can consider †̂   as a hybrid of †   and ††  . We can 

consider ̂  as a modification of †̂  to satisfy R. 
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The Table: Various Commitment Rules 

 

 
 

SP VUL U R MUL 

( ) 0m   for m m  (Unanimity) 
 

Y N Y N N 

†† ( ) mini j
j N

m m


  (Common Commitment) 

 

Y N Y N Y 

†( ) max[ ,0]i im m    for m m  

 

Y Y N N N 

†ˆ ( ) max[ ,min ]i i j
j N

m m m 


   for m m  

 

Y Y Y N Y 

*( ) max[ ( ( )),min , ]i j i
j N

i m m x m m m  


    

 

Y Y Y Y Y 

( )
( ) max[ ,min ]ˆ

i ji jN

x m
m m m

w
 


   

Y Y (Y) (Y) Y 

 

 

4.3. Adherence to Commitments 

 

 We have assumed adherence to commitments so that all agents keep their own 

commitments unless they publicly offer to change their own commitments. In this 

subsection, we weaken this assumption and consider a robustness against unforeseen 

circumstances where there exist rogue agents who do not want to uphold the social order. 

Suppose that the society is mixed with such rogue agents who declare their upper 

limits to be one but actually choose zero. Then, the fear arises that the sincere agents who 

uphold the social order will no longer have sufficient incentive backing for cooperative 

behavior. 

However, if the catastrophe is sufficiently enormous, the commitment rules such as 

̂  and *  are resistant to the appearance of such rogue agents. In fact, as long as each 

agent is expected to keep their commitment with a positive (but less-than-one) probability, 

the positive result implied by the second part of Theorem 2 remains valid for a sufficiently 
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small  . Even when it is known in advance who the rogue agents are, the sincere agents 

do not lose their incentives to cooperate; the mere lowering of the commitments of the 

sincere agents, which is the mechanism included in ̂  and *  for the satisfaction of R, 

is also a sufficient penalty for those who are sincere but turned uncooperative even in this 

situation. 

 

4.4. Prosocial Motives 

 

We have assumed that any agent’s prosocial motive is outweighed by their selfish 

motive. However, if there is a high level of awareness of being engaged in resolving the 

catastrophe issue, the prosocial motive can be stronger and even outweigh the selfish 

motive (Hirschman, 1970; Matsushima, 2008; Abeler et al., 2019; Hart and Zingales, 2019). 

We can expect the following two effects of stronger prosocial motives. One, even if 

the catastrophe is not severely damaging, the commitment rule can be complemented by 

this stronger prosocial motive to resolve the free-rider problem. The other is the case where 

the prosocial motive is enhanced by concerns not only about humanity but also about 

biodiversity and ecological crises. In this case, it could be expected to further enhance the 

goal of catastrophe control beyond one. 

 

5. Dynamics 

 

 We have investigated the single-period model. In this section, we consider a 

continuous time horizon in which the agents are repeatedly faced with negotiations at a 

fixed interval 0  . In this section, we argue about postponement of the next round of 

negotiation, history-dependent commitment rule design, and history-dependent 

equilibrium behavior. 

 

5.1. Postponement 



27 

 

 

 In the case of ongoing free-rider problems surrounding catastrophe prevention, the 

continued use of the commitment rule will allow the problem to be resolved over the long 

term. Importantly, explicit consideration of long-term relationships makes problem-solving 

easier in the following two ways, both of which relate to the possible postponement of the 

next round of negotiation. 

 

5.1.1. Adherence to Commitments Revisited 

 

First, it avoids the contingency of having rogue agents who do not adhere to their 

commitments (i.e., do not uphold the social order). A rogue agent can earn a gain 1c   

without the other agents’ commitment reductions, by declaring upper limit one as a lie but 

actually selecting zero so that other companies are not aware of it. However, if such a 

disruptive behavior is discovered, it will be difficult to adopt the commitment rule with a 

nonchalant face at the next round, because this rule was designed on the premise of the 

social order maintenance. Thus, inevitably, it becomes impossible to take measures to 

prevent catastrophes for a certain period. Because of this inevitable postponement of the 

next round of negotiation, a selfish incentive to keep one's word will sprout even for those 

rouge agents who have no ethical hesitation in disrupting the social order. 

To clarify this point, we consider the following continuous time horizon with discount 

rate 0  . The negotiations are held and adopt the commitment rule ̂  every fixed time 

interval    (unless there are special circumstances explained later). The utility at each 

round is discounted by the discount factor exp( ) (0,1)     . If there exists a rouge 

agent who silently breaks their commitment, this breach of trust is immediately discovered, 

and therefore, the next round of renegotiation is inevitably postponed from   to t   

later. In this case, the future payoff, which is defined as the discounted sum of the utilities 

in the future rounds, is changed from ( )
1

n c






  to ( )
1

n c






 , where we denote 
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exp( ) (0,1)t    . In this case, the rogue agent has the instantaneous gain 1c   from 

deviation and has the future loss given by 

(1 )
( ) ( ) ( )

1 1 1
n c n c n c

   
  


    

  
. 

Hence, the rogue agent hesitates to silently break their own commitment if and only if 

   
(1 )

1 ( )
1

c n c
 



  


. 

This inequality is approximated by 

( ) 1 (1 )
lim

( ) 1 1n

c n

n c n

  
 

 
 

  
, 

that is, 

(6)    
(1 )

1 (1 )

 
  



  

. 

Note that if the fixed time interval   is short enough, only a slight postponement (small 

t ) will be sufficient for such rouge agents’ adherence to commitments, because the right-

hand side of (6) is close to one. 

 

5.1.2. Robustness and Uniqueness 

 

Second, an artificially designed postponement device will help with the incentive 

effects inherent in the commitment rule ̂   concerning R, i.e., the robustness against 

unforeseen circumstances where a non-negligible number of agents happen to be irrational 

and adhere to the uncooperative attitudes. If the agents select the message profile 

\ { }m M m   and sincerely adhere to their commitments, then the next round will be 

artificially postponed by the time interval ( ) 0t m   , which we define by the following 

equation: 

( )
exp( ( )) 1

x m
t m

w
    , 
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where we assume (0,1)  . If the category of the message profile is increased by one, the 

future payoff is further discounted by 
w


. With this artificial postponement device, we can 

maintain the robustness in the substantial sense even if the commitment rule ̂  fails to 

satisfy R. 

The 
( )

( 1)
x m n

th
w

   deviant (agent i ), whose gain from deviation is ˆ ( )( 1)i m c  , 

will be penalized by the future loss generated by the artificial postponement, which is given 

by ( )
1

n c
w

 





 , as well as the remaining 
( )

1
w x m

n
w


   agents’ commitment 

reductions by the amount of 
w


  for each. Hence, the incentive constraint we need to 

require for R can be replaced with: 

   
( )

ˆ1} ( ) ( )( 1){
1 i

w x m
n n c m c

w ww

   



    


. 

Since n  is sufficiently large, we have 

2

{ }
ˆ(1 ) ( )

1 i

w x
m

w w

     



  


 for all {0,..., 1}x w z   . 

Hence, the commitment rule ̂  can maintain the robustness in the substantial sense if 

(7)    
(1 )w


 


 

. 

Note that if    is fixed close to one, we can maintain the robustness irrespective of 

[0,1)   , because the right-hand side of (7) is close to one irrespective of degree of 

postponement  . In this case, the robustness requirement is not met by the design of the 

commitment rule, but entirely by the ingenuity of the artificial postponements. 

On the other hand, the achievement of U still relies on the ingenuity of the design of 

the commitment rule. Consider the commitment rule ̂   with 0   . Without artificial 

postponement device, the maximal message profile m  is never a Nash equilibrium. With 

the artificial postponement device, if the inequality (7) holds, that is, 



30 

 

( ) 1
1

n c c
w

 


  


, 

then m  is a Nash equilibrium in the corresponding dynamic model. However, it is not 

unique; all agents announcing zero is also another one. 

To restore U, we consider using †̂  specified in Subsection 4.2 and adopting the 

artificial postponement device. We assume the inequality (7) and 

(8)      . 

Given a sufficiently large n , it follows from (8) that 

( 1) 1n c    , 

which guarantees U irrespective of whether an artificial postponement device is installed. 

Since the inequality (8) is less restrictive than the inequality (2), by utilizing the artificial 

postponement device, we can dramatically extend the range of catastrophe problems that 

we can resolve. 

However, we should not overestimate the ingenuity of such artificial postponement 

devices. Artificial postponements bring social costs because the catastrophe cannot be 

stopped for that period. Artificial postponements are thwarted by renegotiation, because 

the social order is still maintained for that period. While the commitment rule ̂  can be 

replaced with a simpler one such as †̂ , devising artificial postponements still requires 

detailed design using the categorization of message profiles as the design of the 

commitment rule ̂ . 

 

5. 2. History-Dependent Commitment Rules 

 

 We have required a commitment rule to satisfy R, which implies that many agents are 

willing to behave cooperatively as an equilibrium behavior even if non-negligible number 

of agents happen to be irrational and adhere to the uncooperative attitudes. However, we 

did not require the uniqueness of this equilibrium behavior in such accidental cases. In fact, 

all rational agents committing to action zero by announcing lower upper limits is another 

Nash equilibrium outcome. The reason for the failure of uniqueness in the unforeseen 
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circumstances is that since the minimal upper limit inevitably stays at zero, the 

commitment rules (such as ̂ ) lose the impetus to derive the uniqueness (see Subsection 

4.2). 

 However, if agents can foresee who will be irrational and adhere to action zero from 

the past history of play, we can dramatically change the situation in the following manner. 

Suppose that, based on the past history of play, the agents in a subset N N   are judged 

to be irrational and adhere to the uncooperative attitudes. In this case, instead of the 

commitment rule ̂ , we adopt a modified version, which is specified as follows. Select a 

subset N N  so that N  is a integer multiple of w  and its members are rational (i.e., 

N N     ). We then replace the minimal upper limit min jj N
m


  with min j

j N
m

 
  for each 

agent i N   , which eliminates the irrational agents’ upper limits (i.e., zero) from the 

minimal upper limit assessment for each agent in N . In contrast, we do not make this 

replacement for any agent in \N N . We do not make any replacement concerning the 

categorization for all agents at all. This modification successfully restores the function of 

the minimal upper limit among N . We can therefore show in the same manner as U (with 

no irrational agent) that all agents in N  behave cooperatively as the unique equilibrium 

behavior. 

If these irrational agents are freed from the spell of uncooperative attitudes, we can 

expect them to make the maximal best response that is greater than zero. This would state 

that they are no longer irrational. Thus, in the end, we can revert back to the original 

commitment rule ̂ . 

 

5.3. History-Dependent Behavior 

 

 We have assumed that agents do not consider the past history of play to determine 

their announcement behaviors at each round of negotiation. If we remove this assumption, 

we are faced with the multiplicity of equilibrium behaviors as the Folk theorem indicates. 
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Not only on the subject of this paper, but in general, whether multiple equilibria can 

be eliminated by introducing explicit negotiation procedures is an important open question. 

For example, Matsushima (2012) considered a repeated prisoners’ dilemma where a long-

term binding side-payment contract is negotiated between agents, as follows. First, the 

agents agree that a particular strategic profile is the goal to be realized. Next, they agree to 

a long-term contract that individually punishes only the agent who deviates from this 

strategy at the final round. Matsushima (2012) then proved that there exists a strategy 

profile that achieves the full cooperation and is the unique subgame perfect equilibrium in 

the repeated prisoners’ dilemma associated with the long-term side-payment contract. 

In a repeated game in which each agent has the means to sanction other agents 

individually, there is an equilibrium that can prevent catastrophes even in situations where 

agents are not at all concerned about this catastrophe. In such situations, they do not see 

the catastrophe as a problem, nor do they even recognize it as a free rider problem. Despite 

this seemingly hopeless situation, Abreu (1988) presented a way to forcefully prevent the 

catastrophe by defining an individual penalty code for each agent and creating a mechanism 

as a tacit collusion to individually punish each agent who does not exercise the penalty 

codes for other agents. 

Such rather means-less methods of accomplishment are not well supported by 

experiments. Relevant literature includes Kayaba et al. (2020), which experimentally 

considered situations where monitoring accuracy is imperfect, and reported that subjects 

tend to reinforce behaviors that sanction others even beyond their self-interest as 

monitoring accuracy increases. This reinforcement is, however, not motivated by the fact 

that they would otherwise be sanctioned by others, but rather by a growing anger against 

violators (Matsushima, 2019). 

 

6. Conclusion 

 

We have experienced many crises in the past such as financial crises, pandemic crises, 

and international conflict crises, and we have been able to apply the lessons learned to some 
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extent. However, global catastrophes are devastating and irreversible, so that they must be 

strictly prevented before they occur. Therefore, in this study, we examined the institutional 

design that can achieve appropriate responses to unforeseen circumstances and stable 

coordination without infringing on citizen sovereignty. 

We demonstrated an explicit mechanism as a commitment rule, whereby if an agent 

increases its tolerance for their own commitment, the level of actual commitments of other 

agents is increased in tandem. We proved that the well-designed commitment rule spurs all 

agents to voluntary cooperative behavior if they correctly perceive the global catastrophe 

to be severely damaging. This function is not dented by the emergence of irrational agents 

who persist in uncooperative attitudes, or by the emergence of rogue agents who do not 

uphold the social order. These properties are further strengthened by considering dynamic 

aspects. 

It is important to develop future research in various directions as follows. We assumed 

that negotiations take place only in one place as a global negotiation forum, and that in 

principle all agents participate in it. It should be considered that only some agents come 

together to establish a local negotiation forum, separately from the global one. Such local 

negotiation forums can use coercion by local communities. We could view the global forum 

as a place in which only local representatives participate. Thus, a global system should be 

considered whereby the procedure to global consensus building is hierarchical thereby 

utilizing local consensus-building ability for global consensus building. 

We assumed that agents are homogeneous. We should analyze situations where agents 

are heterogeneous and vary over time in their types, because such heterogeneity is 

considered as one of the main obstacles in resolving the tragedy of the global commons. 

Hence, we need a model in which the pattern of fluctuations in types is assessed as a 

stochastic phenomenon. 

We need a more in-depth discussion about how to define a dynamic model. Activities 

that prevent catastrophe could be effective when they accumulate through time. If there is 

sufficient accumulation in the past, the severity of damage will temporarily decrease. Such 
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path-dependence should be explicitly analyzed by considering the global catastrophe 

problem as a dynamic resource management of the global commons. 

There are various incentive issues concerning ex-ante investments that were not 

discussed in this study; that is, investments in preventing global catastrophes, investments 

in technological innovation to reduce the cost, investments in improving sustainable 

lifestyles, investments in early detection of suspected catastrophes, and investments that 

each agent make in saving only themselves from the catastrophe that has occurred. These 

will be the possible subjects of future research, beyond the scope of this study. 
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