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Abstract 

We construct an age-structured epidemic model to analyze the optimal vaccine allocation 

strategy in an epidemic. We focus on two topics: the first one is the optimal vaccination 

interval between the first and second doses, and the second one is the optimal vaccine 

allocation ratio between young and elderly people. On the first topic, we show that the 

optimal interval tends to become longer as the relative efficacy of the first dose to the 

second dose (RE) increases. On the second topic, we show that the heterogeneity in the 

age-dependent susceptibility (HS) affects the optimal allocation ratio between young and 

elderly people, whereas the heterogeneity in the contact frequency among different age 

groups (HC) tends to affect the effectiveness of the vaccination campaign. A 

counterfactual simulation suggests that the epidemic wave in the summer of 2021 in Japan 

could have been greatly mitigated if the optimal vaccine allocation strategy had been 

taken. 
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1. Introduction  

In the early stage of the coronavirus disease outbreak 2019 (COVID-19), people had to 

rely on non-pharmaceutical interventions (NPIs) such as lockdown. Although lockdowns 

were effective in temporary suppressing the epidemic [1], they brought serious damages 

to the socio-economic systems in many countries [2]. Vaccination is thought to be one of 

the most cost-effective pharmaceutical interventions and is often regarded as a game-

changer that returned our lives to less restrictive ones. 

In the early stage of COVID-19, the amount of available vaccines was limited in 

many countries. Hence, designing how to allocate them from the viewpoint of minimizing 

the epidemic damage was important [3]. To design the optimal vaccine allocation, one 

can consider two ways of optimization: the first one is to optimize the interval between 

the first and second doses, and the second one is to optimize the ratio of allocation among 

different age groups. In this study, we deal with these two optimization problems by using 

a mathematical model, and construct a general theoretical framework to assess the validity 

of vaccine allocation strategy in case of epidemic. 

For COVID-19, the vaccination interval between the first and second doses was set 

as 3-4 weeks in many countries including the US. In the UK, this interval was set as 12 

weeks in order to distribute the first doses to many people quickly [4]. Some papers 

constructed mathematical models to study how the vaccination interval affects the 

epidemic size [5,6]. In [5], it was shown that the relative efficacy (RE) of the first dose to 

the second one plays an important role in determining the optimal interval to minimize 

the total number of deaths. In [6], it was shown that the 12-week interval was highly 

beneficial to prevent the disease. A clinical study [7] showed that extending the 

vaccination interval from 3 weeks to 11-12 weeks boosts the peak antibody response by 

3.5-fold in elderly people. In this paper, we propose a new age-structured mathematical 

model to investigate the optimal interval to minimize the total number of cases, deaths 

and deaths weighted by the average life expectancy. By using this model, we will show 

that the long interval as adopted in the UK can be justified if the RE is sufficiently high. 

The ratio of vaccine allocation among different age groups is also important because 

the symptom and mortality of the disease and the pattern of social interactions during the 

epidemic highly depend on the individual’s age. Thus, some previous studies have 

focused on this topic [8-12]. For COVID-19, prioritizing elderly people seems optimal 

because the mortality of COVID-19 is much higher in elderly people [9]. However, 

prioritizing young people also seems optimal because they tend to spread the infection to 

many people [10]. Some other studies focused on optimal allocation among not only age 



groups but also geographical regions [11] and occupations [12]. In this paper, our model 

will be applied to investigate the optimal ratio of allocation among young and elderly 

people. We will show that, to reduce the number of deaths as well as the number of deaths 

weighted by the average life expectancy, prioritizing young people is optimal if the 

heterogeneity in the age-dependent susceptibility (HS) is high, whereas prioritizing 

elderly people is optimal if the HS is low. In addition, we will show that the heterogeneity 

in the contact frequency among different age classes (HC) affects the effectiveness of the 

vaccination campaign, for fixed basic reproduction number [13]. 

The organization of this paper is as follows: in section 2, we give an outline of our 

mathematical model (see Supplementary for details). We formulate an age-structured 

susceptible-exposed-infectious-recovered (SEIR) model with severe population (W). The 

vaccine efficacy is considered by introducing the class age structure into the vaccinated 

populations. In section 3, we investigate the optimal vaccination interval between the first 

and second doses. In section 4, we investigate the optimal vaccine allocation between 

young and elderly age groups. In section 5, we perform a counterfactual simulation that 

shows how the total number of COVID-19-related deaths in Japan from May 15, 2021 to 

November 30, 2021 could have been reduced if the optimal vaccine strategy had been 

taken. Finally, sections 6 and 7 are devoted to the discussion and conclusions, respectively. 

 

2. Outline of the model 

 

Let 𝑆, 𝐸, 𝐼, 𝑅  and 𝑊  denote the susceptible, exposed, infectious, recovered and 

severe populations, respectively. Let ℎ  and 𝑣  be subscripts representing the vaccine 

hesitant and vaccinated, respectively. Let 𝑡, 𝑎 and 𝜏 denote the time, chronological age 

and vaccine age (time elapsed since the first vaccination shot), respectively. For example, 

𝑆௩(𝑡, 𝑎, 𝜏) represents the susceptible population of age 𝑎 at time 𝑡 with vaccine age 𝜏, 

and 𝐼௛(𝑡, 𝑎)  represents the infectious population with vaccine hesitancy of age 𝑎  at 

time 𝑡. The transfer diagram of our model is shown in Figure 1. 

For the full details of our model, see Supplementary. In our model, the units of time 

and vaccine age are set as 1 day, and the unit of age is set as 1 year. All independent 

variables 𝑡, 𝑎  and 𝜏  are continuous and take values in [0, 𝑡௠௔௫] ,  [0, 𝑎௠௔௫]  and 

[0, 𝜏௠௔௫], respectively. We assume 𝑡௠௔௫ = 𝜏௠௔௫ = 232 so that 𝑡 = 0 corresponds to 

April 12, 2021, which is the day when the vaccination program for COVID-19 started in 

Japan, and 𝑡 = 232 corresponds to November 30, 2021, which is the last day when only 

the first and second doses are distributed in Japan5. We assume 𝑎௠௔௫ = 100. To run the 
 

5 Of course, by changing parameters, our model can be applied to other cases not restricted to 



simulation program, we use the standard Euler forward method (see Figure S10 in 

Supplementary for the main part of our MATLAB code). 

 

 

Figure 1. Transfer diagram of our model. 

 

 

The force of infection in our model is given by 

 

𝜆(𝑡, 𝑎) = න 𝛽(𝑎, 𝑏) ቈ𝐼(𝑡, 𝑏) + 𝐼௛(𝑡, 𝑏) + න 𝐼௩(𝑡, 𝑏, 𝜏)𝑑𝜏
ఛ೘ೌೣ

଴

቉ 𝑑𝑏
௔೘ೌೣ

଴

, 

 

where 𝛽(𝑎, 𝑏) denotes the transmission function between susceptible individuals aged 

𝑎 and infectious individuals aged 𝑏. We assume that 𝛽(𝑎, 𝑏) is expressed as 

 

𝛽(𝑎, 𝑏) = 𝜅𝛽ଵ(𝑎)𝛽ଶ(𝑎 − 𝑏), 

 

where 𝜅 is a scaling parameter adjusted to attain a fixed basic reproduction number ℛ଴ 

for different 𝛽ଵ and 𝛽ଶ. 𝛽ଵ = 𝛽ଵ(𝑎) is the susceptibility of those aged 𝑎, and 𝛽ଶ =

𝛽ଶ(𝑥) is the contact frequency among individuals whose age difference is 𝑥. The HS is 

quantified by 𝛽ଵ as shown in Figure 2 (left). We assume that 𝛽ଵ is higher for young 

people than for elderly people aged over 65. We adopt this assumption because elderly 
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people may be more likely to behave carefully and reduce their contact opportunities, 

taking into account the fact that the mortality of COVID-19 is higher for elderly people 

than for young people. The HC is quantified by 𝛽ଶ as shown in Figure 2 (right). We 

assume that 𝛽ଶ(𝑥) has five peaks at 𝑥 = 0, ±30, ±60. This assumpriotn means that the 

contact frequency across (i) children, (ii) their parents, and (iii) grandparents is higher 

than for other pairs. For the exact definition of 𝛽ଵ and 𝛽ଶ, see Supplementary. 

We consider three parameter configurations regarding 𝛽ଵ and 𝛽ଶ. They are shown 

in three lines in each panel of Figure 2. The relative value of 𝛽ଵ for young people (to 

that for elderly people) is larger in the “high HS” case than in the “low HS” case. People 

become more likely to contact to those with similar age—that is, the mixing becomes 

more heterogeneous—in the “high HC” case than in the “low HC” case.  

 

 
Figure 2. Age dependent susceptibility 𝛽ଵ(𝑎) (HS) and contact frequency 𝛽ଶ(𝑥) 

among individuals whose age difference is 𝑥 (HC). For panel, the three levels of 

heterogeneity (high, medium and low) are considered. 

 

The vaccine efficacies to reduce the infection and mortality risks are represented by 

𝜎(𝜏) ∈ [0,1] and 𝛿(𝜏) ∈ [0,1], respectively. They are assumed to be functions of 

vaccine age 𝜏, and reduce the force of infection 𝜆(𝑡, 𝑎) and the ratio 𝑑(𝑎) of which 

an infected individual becomes severe to [1 − 𝜎(𝜏)]𝜆(𝑡, 𝑎) and [1 − 𝛿(𝜏)]𝑑(𝑎), 

respectively. Specifically, they are defined as follows: 

 

𝜎(𝜏) = ൝  

0, 0 ≤ 𝜏 < 14,
𝜎ଵ[1 − 𝑘(𝜏 − 14)], 14 ≤ 𝜏 < 𝑇,

𝜎ଶ[1 − 𝑘(𝜏 − 𝑇)], 𝜏 ≥ 𝑇,
  𝛿(𝜏) = ൝  

0, 0 ≤ 𝜏 < 14,
𝛿ଵ[1 − 𝑘(𝜏 − 14)], 14 ≤ 𝜏 < 𝑇,

𝛿ଶ[1 − 𝑘(𝜏 − 𝑇)], 𝜏 ≥ 𝑇,
 

 

where 𝜎௜ and 𝛿௜ (𝑖 = 1,2) denote the efficacies of the 𝑖-th vaccination to reduce the 

infection and mortality risks, respectively. 𝑘 denotes the waning rate of vaccine-

induced immunity, and 𝑇 denotes the length of the vaccination interval between the 



first and second doses. 𝑘 is fixed as 1/600 so that the efficacies decrease to their half 

after about 300 days passed [14]. 𝜎௜, 𝛿௜ (𝑖 = 1,2) and 𝑇 are varied in the subsequent 

sections to discuss the optimal strategy. 

The per capita rate of vaccination in our model is defined by 𝑣 = 𝑣(𝑡, 𝑎) =

𝑣ଵ(𝑡)𝑣ଶ(𝑎), where 𝑣ଵ(𝑡) is a value estimated by using the vaccination data in Japan 

[15]. 𝑣ଶ(𝑎) is a function defined by 

 

𝑣ଶ(𝑎) = ൝  
0, 0 ≤ 𝑎 < 18,

1 − 𝑢, 18 ≤ 𝑎 < 65,
𝑢, 𝑎 ≥ 65,

 

 

where 𝑢 is the proportion of vaccine allocation to those aged over 65. Thus, a higher 

𝑢 means prioritizing the elderly people. In the subsequent sections, 𝑢 is also varied to 

investigate the optimal allocation ratio. 

 

3. Optimal interval between the first and second vaccination doses 

 

In this section, varying the vaccination interval between the first and second doses from 

3 weeks ( 𝑇 = 21 ) to 12 weeks ( 𝑇 = 84 ), we investigate the optimal interval that 

minimizes the total number of cases, deaths and deaths weighted by the average life 

expectancy. We assume that the basic reproduction number is fixed as ℛ଴ = 1.5, a sensible 

number for a disease like pandemic influenza [16] and set both of the HS and HC to 

medium (see Figure 2). In reality, the contact matrix evolved over time reflecting changes 

in policies and behaviors, but we abstract from such time-variation in our analysis. We 

compare two cases where the allocation ratio is 𝑢 = 0.1 (prioritizing young people) and 

𝑢 = 0.9 (prioritizing elderly people). To consider the relative efficacy (RE) of the first 

dose to the second one, we assume that 𝜎ଶ = 𝛿ଶ = 1, and compare three cases where 

𝜎ଵ = 𝛿ଵ = 0.2 (RE = 0.2);  0.5 (RE = 0.5);  0.8 (RE = 0.8).  



 

Figure 3. Reduction ratio in cases (A and B), deaths (C and D) and deaths weighted by 

the average life expectancy (E and F) versus the vaccination interval between the first 

and second doses. Proportion of vaccine allocation to the elderly people is 0.1 in A, C 

and E, and is 0.9 in B, D and F. RE implies the relative efficacy of the first dose 

compared to the second one. The filled circles represent that they are optimal. 

 

Figure 3 shows that the RE plays the central role in determining the optimal interval. 

In Figure 3, irrespective of the allocation ratio 𝑢, the optimal intervals for all objectives 

(cases, deaths and deaths weighted by the average life expectancy) tend to become long 

as the RE increases. We can interpret this as follows: if the RE is low, then the first dose 

is less effective, and thus, prioritizing the rollout of the second doses by shortening the 

interval is optimal; if the RE is high, then the first dose is sufficiently effective, and thus, 

prioritizing the rollout of the first doses by enlarging the interval is optimal. 

We next consider a more special case where the vaccine efficacies are selected for 

vaccines of Pfizer and AstraZeneca. By taking the mean of the data in [17], we set 

 

(𝜎ଵ, 𝜎ଶ, 𝛿ଵ, 𝛿ଶ) = ൜
(0.63, 0.90, 0.80, 0.94), Pfizer,
(0.62, 0.64, 0.80, 0.85), AstraZeneca.

 (1) 

 



In both of these two cases, the long interval is optimal to maximize the reduction ratio of 

all objectives (see Figure 4). This result suggests that the 12-week interval taken in the 

UK was reasonable. In addition, we can see from Figure 4 that the optimal intervals for 

Pfizer are shorter than those for AstraZeneca, reflecting the fact that the RE of 

AstraZeneca is higher than that of Pfizer. 

 

 

Figure 4. Reduction ratio in cases (A and B), deaths (C and D) and deaths weighted by 

the average life expectancy (E and F) versus the vaccination interval between the first 

and second doses (A, C and E: Pfizer; B, D and F: AstraZeneca). The filled circles 

represent that they are optimal. 

 

4. Optimal ratio of allocation among young and elderly people 

 

In this section, varying the ratio 𝑢 of vaccine allocation to the elderly people from 0.1 

to 0.9, we investigate the optimal ratio that minimizes the total number of cases, deaths 

and deaths weighted by the average life expectancy. We fix the basic reproduction number 

as ℛ଴ = 1.5, as in the previous section, and the vaccination interval between the first and 

second doses as 3 weeks. The vaccine efficacy is chosen as for Pfizer in Eq. (1). We vary 

the HS and the HC (see Figure 2), and investigate how they affect the optimal allocation 



ratio. 
 

 

Figure 5. Reduction ratio in cases (A-C), deaths (D-F) and deaths weighted by the 

average life expectancy (G-I) versus the ratio of vaccine allocation to the elderly people 

(𝑢). The filled circles represent that they are optimal. 

 

From Figure 5, A-C and Table 1, we see that, to reduce the total number of cases, 

prioritizing young people (𝑢 = 0.1) is always optimal. On the other hand, from Figure 

5, D-I and Table 1, we see that the optimal ratio to maximize the reduction ratio of deaths 

and deaths weighted by the average life expectancy is more sensitive to the HS: if HS is 

high, then prioritizing young people (𝑢 = 0.1) is optimal, whereas if HS is medium or 

low, then prioritizing elderly people (𝑢 = 0.9) is optimal. This seems natural because if 

young people are more likely to be infected (the HS is high), then prioritizing them 

becomes optimal to stop the disease spread. If the HS is low, then prioritizing elderly 

people is optimal because they have high mortality for COVID-19. In addition, from 

Figure 5 and Table 1, we can see that the HC does not affect the optimal allocation ratio 

in all cases. However, the effectiveness of the vaccination is reduced as the HC increases. 



From this result, we can conjecture that the vaccination program is more effective in a 

population well-mixed among different age groups. Here, note that the basic reproduction 

number ℛ଴  is fixed and just the contact frequency is changed in our simulation (see 

Supplementary for how to fix ℛ଴). 

Table 1. A summary on the results in Figure 5. 

Object (HS, HC) 𝒖 in 

optimal 

reduction ratio  

in optimal (%) 

cases (high, high) 0.1 (young) 48.63 

cases (high, medium) 0.1 (young) 62.58 

cases (high, low) 0.1 (young) 66.02 

cases (medium, high) 0.1 (young) 52.04 

cases (medium, medium) 0.1 (young) 62.99 

cases (medium, low) 0.1 (young) 65.84 

cases (low, high) 0.1 (young) 53.12 

cases (low, medium) 0.1 (young) 62.92 

cases (low, low) 0.1 (young) 65.26 

deaths (high, high) 0.1 (young) 62.89 

deaths (high, medium) 0.1 (young) 69.67 

deaths (high, low) 0.1 (young) 70.76 

deaths (medium, high) 0.9 (elderly) 77.39 

deaths (medium, medium) 0.9 (elderly) 80.36 

deaths (medium, low) 0.9 (elderly) 81.33 

deaths (low, high) 0.9 (elderly) 81.21 

deaths (low, medium) 0.9 (elderly) 82.38 

deaths (low, low) 0.9 (elderly) 82.77 

weighted deaths (high, high) 0.1 (young) 64.25 

weighted deaths (high, medium) 0.1 (young) 71.56 

weighted deaths (high, low) 0.1 (young) 72.72 

weighted deaths (medium, high) 0.9 (elderly) 71.87 

weighted deaths (medium, medium) 0.9 (elderly) 76.37 

weighted deaths (medium, low) 0.9 (elderly) 77.90 

weighted deaths (low, high) 0.9 (elderly) 76.98 

weighted deaths (low, medium) 0.9 (elderly) 79.23 

weighted deaths (low, low) 0.9 (elderly) 80.08 

 

 



5. Counterfactual simulation 

 

In this section, fitting our model to the real data of reported cases in Japan from April 12, 

2021 to November 30, 2021 [18], we estimate the time-varying transmission rate. 

Specifically, we compute the transmission rate on each day that minimizes the sum of the 

squares error between the real data of the newly reported cases in past 7 days and its 

simulation counterparts. To our knowledge, no previous study has used a similar method. 

In the estimation, we made the following assumptions (see Supplementary for more 

details):  

 

 The HS and the HC are medium; 

 The vaccination interval is 3 weeks; 

 The vaccine allocation ratio is 𝑢 = 0.9 (prioritizing elderly people); 

 The detection ratio (the ratio at which a newly infected individual is finally reported) 

is 0.5. 

 

We then change the vaccination interval and the allocation ratio, and investigate how 

the total number of deaths could be reduced in the optimal case. The curve fitted to the 

daily number of newly reported deaths is shown in Figure 6, bottom (see the red curve). 

In this case, the total number of deaths is 8,793. On the other hand, our simulation shows 

that the total number of deaths is minimized when the vaccination interval is 9 weeks and 

the allocation ratio is 𝑢 = 0.9 (see Figure 6, top). If such an optimal strategy is taken, 

then the total number of deaths is reduced to 7,176. In particular, the blue curve in the 

bottom panel of Figure 6 suggests that the epidemic wave of August 2021 could have 

been avoided if the optimal strategy had been taken. 

 



 

Figure 6. (Top) Total number of disease-induced deaths for different vaccination 

interval and allocation ratio 𝑢; (Bottom) Daily number of newly reported deaths with 

the fitted curve (red) and the curve for the optimal case (blue). 

 

6. Discussion 

 

In this paper, we have proposed an age-structured epidemic model and investigated the 

optimal vaccination interval between the first and second doses, and the optimal vaccine 

allocation among young and elderly people. Although we used the data of COVID-19 in 

Japan in this paper, our model can be applied to various infectious diseases in countries 

not limited to Japan. The methodology constructed in this paper would help us to design 

an appropriate vaccine rollout program promptly in case of a future pandemic. 

Our result on the optimal interval between the first and second doses has indicated 

that the RE plays the central role in determining the optimal interval: the short interval 

is optimal if the RE is low, whereas the long interval is optimal if the RE is high. This 

result is in line with the previous result in [5] that a longer interval can be optimal to 

minimize the number of deaths if the first dose presents a higher level of relative 

efficacy in the case of limited vaccine supply. 

Moreover, for both cases of the Pfizer and AstraZeneca vaccines, our simulation has 

suggested that the optimal interval is longer or equal to 8 weeks. More precisely, 8-9 

weeks interval can be optimal for the Pfizer vaccine and 10-12 weeks interval can be 

optimal for the AstraZeneca vaccine to reduce the number of cases, deaths as well as the 



number of deaths weighted by the average life expectancy. This result is in line with the 

previous result in [6] for the data in UK that the 12-week interval can be highly 

beneficial to reduce the number of hospital admissions and deaths. Hence, the 12-week 

interval taken in the UK for COVID-19 seems sensible. In case of a future pandemic, it 

is important to know accurate information on the vaccine efficacy to design efficient 

vaccine allocation strategies. If the amount of available vaccines is limited and the 

efficacy of the first dose is not low, then it would be worth considering about prolonging 

the vaccination interval. 

Our result on the vaccine allocation among young and elderly people has shown 

that the optimal allocation ratio to minimize the number of deaths as well as the number 

of deaths weighted by the average life expectancy depends importantly on the HS. 

Prioritizing young people can be justified if the HS is high, that is, young people are 

more likely to be infected as they tend to go out more. In [10], it was shown that 

prioritizing high-transmission (younger) age groups can minimize the number of deaths 

if the vaccine efficacy is higher than 60%. Our result is consistent with the previous 

result in [10] because the vaccine efficacy in our simulation is higher than 60% (see Eq. 

(1)). Our result has also shown that the effectiveness of the vaccination campaign 

increases as the HC decreases. This result has suggested that the vaccination program 

can be more effective in a population well-mixed among different age groups. 

Our counterfactual simulation has suggested that the epidemic wave in the summer 

of 2021 in Japan could have been avoided if the optimal vaccine strategy had been 

taken. In our simulation, we assumed that the HS and HC are medium and the detection 

ratio is 0.5. Comparing the number of deaths in simulation for different vaccination 

intervals and allocation ratios, our optimal strategy to minimize the number of deaths 

recommended the 9-week interval and prioritizing elderly people (𝑢 = 0.9).  

We end our discussion by pointing out several limitations of our study. 

First, as in any simulation studies, the optimal strategy would depend on the 

assumed parameter values. For example, the amount of available vaccines would affect 

the optimal interval because if there are many vaccines so that all people can get 

vaccinated twice soon, then shortening the interval to prioritize the second shot would 

be optimal. 

Second, we focus on the optimal allocation in a short time period (232 days from 

April 12, 2021 to November 30, 2021 in Japan) for the sake of simplicity. An extended 

optimization in a longer time period could be useful in designing suitable vaccination 

strategy, even though we might have to take into account the effect of booster shots and 

simulation might have to become more complex.  



Third, we abstracted from how the vaccination interval affects the immune 

response. However, as a clinical study [7] suggested, a long interval could help in 

increasing the peak of the antibody response. Thus, the long vaccination interval could 

be justified from not only mathematical but also clinical points of view.  

Fourth, we estimated the infection rate in our counterfactual simulation for Japan, 

2021 using data from a fixed past period. If we had taken an alternative vaccination 

strategy and the number of reported cases and deaths had changed as a result, people’s 

behavior could have also changed. In general, our assumption that the detection rate of 

infection was fixed over time is a useful starting point for analysis, but the infection rate 

can change according to policies, social norms, seasonality, and virus mutation. 

 

7. Conclusion 

 

We have constructed an age-structured epidemic model to evaluate the vaccination 

interval between the first and second doses and the vaccine allocation strategy between 

young and elderly age groups. The RE plays an important role in determining the 

optimal vaccination interval. The optimal interval tends to become longer as the RE 

increases. The HS tends to affect the optimal allocation between young and elderly 

people. On the other hand, the HC tends to affect the effectiveness of the vaccination 

campaign. The counterfactual simulation for COVID-19 in Japan in 2021 has indicated 

that the epidemic wave in the summer of 2021 in Japan could have been avoided if the 

optimal vaccine allocation strategy had been taken. 
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Mathematical model 

The main model in this study is the following PDEs system (see Figure S1)6: 

 

𝜕௧𝑆 = −𝜆(𝑡, 𝑎)𝑆 − 𝑣(𝑡, 𝑎)𝑆, 

𝜕௧𝐸 = 𝜆(𝑡, 𝑎)𝑆 − 𝜀𝐸 − 𝑣(𝑡, 𝑎)𝐸, 

𝜕௧𝐼 = 𝜀𝐸 − 𝛾𝐼 − 𝑣(𝑡, 𝑎)𝐼, 

𝜕௧𝑅 = [1 − 𝑑(𝑎)]𝛾𝐼 − 𝑣(𝑡, 𝑎)𝑅, 

𝜕௧𝑊 = 𝑑(𝑎)𝛾𝐼 − 𝜔𝑊, 

 

𝜕௧𝑆௛ = −𝜆(𝑡, 𝑎)𝑆௛, 

𝜕௧𝐸௛ = 𝜆(𝑡, 𝑎)𝑆௛ − 𝜀𝐸௛ , 

𝜕௧𝐼௛ = 𝜀𝐸௛ − 𝛾𝐼௛ , 

𝜕௧𝑅௛ = [1 − 𝑑(𝑎)]𝛾𝐼௛ , 

𝜕௧𝑊௛ = 𝑑(𝑎)𝛾𝐼௛ − 𝜔𝑊௛ , 

 

(𝜕௧ + 𝜕ఛ)𝑆௩ = −[1 − 𝜎(𝜏)]𝜆(𝑡, 𝑎)𝑆௩, 

(𝜕௧ + 𝜕ఛ)𝐸௩ = [1 − 𝜎(𝜏)]𝜆(𝑡, 𝑎)𝑆௩ − 𝜀𝐸௩ , 

(𝜕௧ + 𝜕ఛ)𝐼௩ = 𝜀𝐸௩ − 𝛾𝐼௩, 

(𝜕௧ + 𝜕ఛ)𝑅௩ = {1 − [1 − 𝛿(𝜏)]𝑑(𝑎)}𝛾𝐼௩ , 

𝜕௧𝑊௩ = න [1 − 𝛿(𝜏)]𝑑(𝑎)𝛾𝐼௩𝑑𝜏
ఛ೘ೌೣ

଴

− 𝜔𝑊௩, 

 

𝑆௩(𝑡, 𝑎, 0) = 𝑣(𝑡, 𝑎)𝑆(𝑡, 𝑎), 𝐸௩(𝑡, 𝑎, 0) = 𝑣(𝑡, 𝑎)𝐸(𝑡, 𝑎), 

𝐼௩(𝑡, 𝑎, 0) = 𝑣(𝑡, 𝑎)𝐼(𝑡, 𝑎), 𝑅௩(𝑡, 𝑎, 0) = 𝑣(𝑡, 𝑎)𝑅(𝑡, 𝑎), 

 
6 We disregard the aging process assuming 𝜕௔𝑆 = 0, 𝜕௔𝐸 = 0, …, etc., because the time span of 
our simulation is less than 1 year. 



𝑆(0, 𝑎) = [1 − ℎ(𝑎)]𝑆଴(𝑎), 𝐸(0, 𝑎) = [1 − ℎ(𝑎)]𝐸଴(𝑎), 

𝐼(0, 𝑎) = [1 − ℎ(𝑎)]𝐼଴(𝑎), 𝑅(0, 𝑎) = [1 − ℎ(𝑎)]𝑅଴(𝑎), 𝑊(0, 𝑎) = [1 − ℎ(𝑎)]𝑊଴(𝑎), 

𝑆௛(0, 𝑎) = ℎ(𝑎)𝑆଴(𝑎), 𝐸௛(0, 𝑎) = ℎ(𝑎)𝐸଴(𝑎), 𝐼௛(0, 𝑎) = ℎ(𝑎)𝐼଴(𝑎), 𝑅௛(0, 𝑎) = ℎ(𝑎)𝑅଴(𝑎), 

𝑊௛(0, 𝑎) = ℎ(𝑎)𝑊଴(𝑎), 𝑆௩(0, 𝑎, 0) = 𝐸௩(0, 𝑎, 0) = 𝐼௩(0, 𝑎, 0) = 𝑅௩(0, 𝑎, 0) = 𝑊௩(0, 𝑎) = 0, 

 

𝜆(𝑡, 𝑎) = න 𝛽(𝑎, 𝑏) ቈ𝐼(𝑡, 𝑏) + 𝐼௛(𝑡, 𝑏) + න 𝐼௩(𝑡, 𝑏, 𝜏)𝑑𝜏
ఛ೘ೌೣ

଴

቉ 𝑑𝑏
௔೘ೌೣ

଴

. 

 

The description of each symbol is as follows (see also Table S1): 

 𝑡 (0 ≤ 𝑡 ≤ 𝑡௠௔௫): time; 

 𝑎 (0 ≤ 𝑎 ≤ 𝑎௠௔௫): age; 

 𝜏 (0 ≤ 𝜏 ≤ 𝜏௠௔௫): vaccine age (time elapsed since the first vaccination); 

 𝑆 = 𝑆(𝑡, 𝑎): susceptible population; 

 𝑆௛ = 𝑆௛(𝑡, 𝑎): vaccinated susceptible population; 

 𝑆௩ = 𝑆௩(𝑡, 𝑎, 𝜏): susceptible population who have been vaccinated; 

 𝐸 = 𝐸(𝑡, 𝑎): exposed (pre-infectious) population; 

 𝐸௛ = 𝐸௛(𝑡, 𝑎): exposed population with vaccine hesitancy; 

 𝐸௩ = 𝐸௩(𝑡, 𝑎, 𝜏): vaccinated exposed population; 

 𝐼 = 𝐼(𝑡, 𝑎): infectious (with and without symptoms) population; 

 𝐼௛ = 𝐼௛(𝑡, 𝑎): infectious population with vaccine hesitancy; 

 𝐼௩ = 𝐼௩(𝑡, 𝑎, 𝜏): vaccinated infectious population; 

 𝑅 = 𝑅(𝑡, 𝑎): recovered population; 

 𝑅௛ = 𝑅௛(𝑡, 𝑎): recovered population with vaccine hesitancy; 

 𝑅௩ = 𝑅௩(𝑡, 𝑎, 𝜏): vaccinated recovered population; 

 𝑊 = 𝑊(𝑡, 𝑎): severe population; 

 𝑊௛ = 𝑊௛(𝑡, 𝑎): severe population with vaccine hesitancy; 

 𝑊௩ = 𝑊௩(𝑡, 𝑎): vaccinated severe population; 

 𝜆(𝑡, 𝑎): force of infection; 

 𝑣(𝑡, 𝑎): vaccination rate; 

 𝜀: transition rate from the exposed class to the infectious class; 

 𝛾: removal rate; 

 𝑑(𝑎): ratio at which an infected individual enters the severe class; 

 𝜔: mortality rate of severe individuals; 

 𝜎(𝜏): vaccine efficacy to reduce the infection risk; 

 𝛿(𝜏): vaccine efficacy to reduce the mortality risk; 

 ℎ(𝑎): vaccine hesitancy rate; 



 𝛽(𝑎, 𝑏) : transmission function between susceptible individuals of age 𝑎  and infectious 

individuals of age 𝑏. 

 

Parameter setting 

The unit time is set as 1 day. In Japan, the COVID-19 vaccination program for ordinary people started 

at April 12, 2021, and the booster (third) vaccination started at December 1, 2021. Because, in this 

study, we focus on the optimal interval between the first and second doses, we set the time range in 

our simulation from April 12, 2021 (𝑡 = 0) to November 30, 2021 (𝑡 = 𝑡௠௔௫ = 232). As the vaccine 

age does not exceed the calendar time, we set 𝜏௠௔௫ = 232. Let the unit age be 1 year, and the age 

interval be [0,100], that is, 𝑎௠௔௫ = 100.  

We set 𝜀 = 0.2 and 𝛾 = 0.1 so that the average incubation period is 1/𝜀 = 5 days [1,2] and 

the average infectious period is 1/𝛾 = 10 days [3]. We assume that the severe class is composed of 

individuals who will die due to COVID-19, and set 𝑑(𝑎) as shown in Figure S2 by dividing the 

cumulative deaths by the cumulative cases in each age class as of November 30, 2021, using the open 

data in [4]. The vaccine hesitancy rate ℎ(𝑎) is estimated as in Figure S3 using the vaccination data 

in [5]. 

For the initial condition, let 

 

𝑃଴(𝑎) = 𝑆଴(𝑎) + 𝐸଴(𝑎) + 𝐼଴(𝑎) + 𝑅଴(𝑎) + 𝑊଴(𝑎), 

 

be the population age distribution in Japan as of April 2021 (𝑡 = 0). Using the data in [6], we fix 

𝑃଴(𝑎)  as shown in Figure S4. Here, we normalize 𝑃଴(𝑎)  so that ∫ 𝑃଴(𝑎)𝑑𝑎
௔೘ೌೣ

଴
= 1 . Each 

population then describes a proportion to the total population. For simplicity, we assume that 

𝑊଴(𝑎) = 0, and fix 𝐸଴(𝑎), 𝐼଴(𝑎) and 𝑅଴(𝑎) as shown in Figure S5 using the data in [4]. 𝑆଴(𝑎) can 

then be calculated as 𝑃଴(𝑎) − 𝐸଴(𝑎) − 𝐼଴(𝑎) − 𝑅଴(𝑎).  

     We assume that the infection rate 𝛽(𝑎, 𝑏) has the following form: 

 

𝛽(𝑎, 𝑏) = 𝜅𝛽ଵ(𝑎)𝛽ଶ(𝑎 − 𝑏), 

 

where 𝜅 is the infection transmission rate, 𝛽ଵ(𝑎) is the age-dependent susceptibility, and 𝛽ଶ(𝑥) is 

a distance function representing the contact frequency among individuals whose age difference is 𝑥. 

More precisely, according to the three levels of heterogeneity (high, medium and low), we set 𝛽ଵ(𝑎) 

and 𝛽ଶ(𝑥) as follows (see Figure S6): 

 



𝛽ଵ(𝑎) = ቐ

Arctan(−(𝑎 − 65)/2)/𝜋 + 1/2, high,

  Arctan(−(𝑎 − 65)/20)/𝜋 + 1/2, medium,

  Arctan(−(𝑎 − 65)/80)/𝜋 + 1/2, low,

 

𝛽ଶ(𝑥) =  

⎩
⎪
⎨

⎪
⎧

 

𝑓଴,ସ(𝑥) + 0.15 ቀ𝑓ଷ଴,ସ(𝑥) + 𝑓 ଷ ,ସ(𝑥)ቁ + 0.1 ቀ𝑓଺଴,ସ(𝑥) + 𝑓 ଺଴,ସ(𝑥)ቁ , high,

𝑓଴,଻(𝑥) + 0.5 ቀ𝑓ଷ଴,଻(𝑥) + 𝑓 ଷ଴,଻(𝑥)ቁ + 0.25 ቀ𝑓଺଴,଻(𝑥) + 𝑓 ଺ ,଻(𝑥)ቁ , medium,

      𝑓଴,ଵ଴(𝑥) + 0.8 ቀ𝑓ଷ଴,ଵ଴(𝑥) + 𝑓 ଷ ,ଵ଴(𝑥)ቁ + 0.6 ቀ𝑓଺଴,ଵ଴(𝑥) + 𝑓 ଺ ,ଵ଴(𝑥)ቁ , low,

 

 

where 𝑓ఓ,ఙ(𝑥)  denotes the probability density function of normal distribution with mean 𝜇  and 

standard derivation 𝜎. 𝛽ଵ(𝑎) represents the heterogeneity in the age-dependent susceptibility (HS) 

and 𝛽ଶ(𝑥) represents the heterogeneity in the contact frequency among different age classes. The 

reason why we assume that 𝛽ଵ(𝑎) is higher in younger age group is that elderly people might be more 

careful and more likely to reduce the contact opportunity because the mortality of COVID-19 is quite 

high in those people. The reason why we assume that 𝛽ଶ(𝑥)  has five peaks is that the contact 

opportunity among children and their parents and grandparents might be high. In addition, we assume 

that if 𝛽ଶ(𝑥) (HC) is high, then people become more likely to contact with people in similar age 

group, whereas if 𝛽ଶ(𝑥) (HC) is low, then people become more likely to contact beyond age groups 

and the mixing becomes more homogeneous.  The parameter 𝜅  is modified to fix the basic 

reproduction number ℛ଴ for different 𝛽ଵ(𝑎) and 𝛽ଶ(𝑥). Following the classical theory [7], ℛ଴ is 

defined by the spectral radius 𝑟(𝐾) of the following next generation operator 𝐾: 

 

𝐾𝜑(𝑎) = 𝜅𝑃଴(𝑎) න 𝛽ଵ(𝑎)𝛽ଶ(𝑎 − 𝑏) න 𝑒
ି ∫ [ఊାௗ(ఎ)]ௗఎ

್

ഐ 𝜑(𝜌)
௕

଴

𝑑𝜌𝑑𝑏
௔೘ೌೣ

଴

. 

 

We can numerically compute 𝑟(𝐾) by using a discretization method as in [8]. If we consider the case 

of ℛ଴ = 1.5, then 𝜅 is modified so that 𝑟(𝐾) = 1.5 is attained (note that 𝑟(𝐾) is proportional to 

𝜅). 

     Let 𝑇 be the length of the vaccination interval between the first and second doses. Assuming 

that severe individuals would not be newly vaccinated, the number of the first vaccination shots at 

time 𝑡 is calculated as 

 

න 𝑣(𝑡, 𝑎)[𝑆(𝑡, 𝑎) + 𝐸(𝑡, 𝑎) + 𝐼(𝑡, 𝑎) + 𝑅(𝑡, 𝑎)]𝑑𝑎
௔೘ೌೣ

଴

× 𝑁, 

 

where 𝑁 = 1.26 × 10଼ is the total population in Japan as of 2021 [6]. The number of the second 

vaccination shots at time 𝑡 is given by 



න [𝑆௩(𝑡, 𝑎, 𝑇) + 𝐸௩(𝑡, 𝑎, 𝑇) + 𝐼௩(𝑡, 𝑎, 𝑇) + 𝑅௩(𝑡, 𝑎, 𝑇)]𝑑𝑎
௔೘ೌೣ

଴

× 𝑁. 

 

We assume that the vaccination rate is separable: 

 

(1) 𝑣(𝑡, 𝑎) = 𝑣ଵ(𝑡)𝑣ଶ(𝑎). 

 

It then follows that 

 

𝑣ଵ(𝑡) =
𝑉(𝑡)/𝑁 − ∫ [𝑆௩(𝑡, 𝑎, 𝑇) + 𝐸௩(𝑡, 𝑎, 𝑇) + 𝐼௩(𝑡, 𝑎, 𝑇) + 𝑅௩(𝑡, 𝑎, 𝑇)]𝑑𝑎

௔೘ೌೣ

଴

∫ 𝑣ଶ(𝑎)[𝑆(𝑡, 𝑎) + 𝐸(𝑡, 𝑎) + 𝐼(𝑡, 𝑎) + 𝑅(𝑡, 𝑎)]𝑑𝑎
௔೘ೌೣ

଴

, 

 

where 𝑉(𝑡) denotes the total number of vaccination at time 𝑡. We fix 𝑉(𝑡) as shown in Figure S7 

using the data of vaccine distribution for COVID-19 in Japan from April 12, 2021 to November 30, 

2021 [5]. 𝑣ଶ(𝑎) can be used to incorporate the priority of vaccine allocation to individuals aged 𝑎. 

We assume that 

 

𝑣ଶ(𝑎) = ൝  
0, 0 ≤ 𝑎 < 18,

1 − 𝑢, 18 ≤ 𝑎 < 65,
𝑢, 𝑎 ≥ 65,

 

 

where 𝑢 ∈ [0.1,0.9]  denotes the ratio of vaccine allocation to those aged over 65. The vaccine 

efficacy is set as 

 

(2) 𝜎(𝜏) = ൝  

0, 0 ≤ 𝜏 < 14,
𝜎ଵ[1 − 𝑘(𝜏 − 14)], 14 ≤ 𝜏 < 𝑇,

𝜎ଶ[1 − 𝑘(𝜏 − 𝑇)], 𝜏 ≥ 𝑇,
  𝛿(𝜏) = ൝  

0, 0 ≤ 𝜏 < 14,
𝛿ଵ[1 − 𝑘(𝜏 − 14)], 14 ≤ 𝜏 < 𝑇,

𝛿ଶ[1 − 𝑘(𝜏 − 𝑇)], 𝜏 ≥ 𝑇,
 

 

where 𝜎௜  and 𝛿௜  (𝑖 = 1,2 ) denote the efficacy of the 𝑖 -th vaccination in reducing the risk of 

infection and the risk of disease-related death, respectively. Here, according to [9], we assume that the 

vaccine efficacy linearly decreases with waning rate 𝑘 > 0. In this study, we fix 𝑘 = 1/600 so that 

the efficacy decreases to its half after 300 days passed [9]. We consider the Pfizer and AstraZeneca 

vaccines taking the mean of a dataset in [10]: 

 

(𝜎ଵ, 𝜎ଶ, 𝛿ଵ, 𝛿ଶ) = ൜
(0.63, 0.90, 0.80, 0.94), Pfizer,
(0.62, 0.64, 0.80, 0.85), AstraZeneca.

 

 



Objective functions 

To evaluate the effectiveness of vaccination program, we calculate the total number of cases as 

 

𝐻ଵ = න න 𝜆(𝑡, 𝑎) ቊ𝑆(𝑡, 𝑎) + 𝑆௛(𝑡, 𝑎) + න [1 − 𝜎(𝜏)]𝑆௩(𝑡, 𝑎, 𝜏)𝑑𝜏
ఛ೘ೌೣ

଴

ቋ 𝑑𝑎
௔೘ೌೣ

଴

𝑑𝑡 × 𝑁
௧೘ೌೣ

଴

, 

 

and the total number of disease-induced deaths as 

 

𝐻ଶ = 𝜔 න න [𝑊(𝑡, 𝑎) + 𝑊௛(𝑡, 𝑎) + 𝑊௩(𝑡, 𝑎)]𝑑𝑎
௔೘ೌೣ

଴

𝑑𝑡 × 𝑁
௧೘ೌೣ

଴

. 

 

Let ℓ(𝑎) be the average life expectancy at age 𝑎, which is estimated from the data in [11] as shown 

in Figure S8. The total number of disease-induced deaths weighted by the average life expectancy is 

as follows: 

 

𝐻ଷ = 𝜔 න න ℓ(𝑎)[𝑊(𝑡, 𝑎) + 𝑊௛(𝑡, 𝑎) + 𝑊௩(𝑡, 𝑎)]𝑑𝑎
௔೘ೌೣ

଴

𝑑𝑡 × 𝑁
௧೘ೌೣ

଴

. 

 

To compute the reduction ratio, we divide each of these functions by those without vaccination 

(𝑉(𝑡) = 0). 

 

Counterfactual simulation for Japan in 2021 

For the baseline scenario, we assume that the vaccination interval between the first and second doses 

is 3 weeks, the vaccine efficacy is as of Pfizer, the ratio 𝑢 of vaccine allocation to the elderly people 

is 0.9, and both 𝛽ଵ and 𝛽ଶ are medium. We then estimate the time-varying infection rate with 𝜅 =

𝜅(𝑡) by fitting the following function to the daily reported cases in Japan: 

 

𝑌(𝑡) ∶= 𝜒 න 𝜆(𝑡, 𝑎) ቊ𝑆(𝑡, 𝑎) + 𝑆௛(𝑡, 𝑎) + න [1 − 𝜎(𝜏)]𝑆௩(𝑡, 𝑎, 𝜏)𝑑𝜏
ఛ೘ೌೣ

଴

ቋ 𝑑𝑎
௔೘ೌೣ

଴

× 𝑁, 

 

where 𝜒 is the detection ratio, that is, the ratio at which a newly infected individual is finally reported. 

More precisely, to estimate the infection rate on a day, we compare the simulation result and the real 

data of the newly reported cases in past 7 days, and find the parameter that minimizes the sum of the 

squares error. In our simulation, we assume that 𝜒 = 0.5. The comparison of the curve of 𝑌(𝑡) and 

the real data [4] is shown in Figure S9, top. Note that this function 𝑌(𝑡) is uniquely calculated. For 

this estimated infection rate, we compare the daily number of newly reported deaths 



𝐷(𝑡) = 𝜔 න [𝑊(𝑡, 𝑎) + 𝑊௛(𝑡, 𝑎) + 𝑊௩(𝑡, 𝑎)]𝑑𝑎
௔೘ೌೣ

଴

× 𝑁, 

 

and the real data [4] as shown in Figure S9, bottom. Here, for a technical reason on the fitting of 𝐷(𝑡), 

we compare the total deaths in the period from May 15, 2021 to November 30, 2021. Regarding this 

setting as a baseline, we investigate how the total deaths could be reduced if the optimal vaccination 

interval and the optimal ratio of allocation to the elderly people had been taken.  

 

Numerical scheme 

To run the simulation program, we use the standard Euler forward method. See Figure S10 for the 

main part of the program code for MATLAB. 

 

References 

 

1. S.A. Lauer, K.H. Grantz, Q. Bi, F.K. Jones, Q. Zheng, H.R. Meredith, et al, The Incubation Period 

of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation 

and Application, Ann. Intern. Med., 172 (2020), 577-582. https://doi.org/10.7326/M20-0504  

2. N.M. Linton, T. Kobayashi, Y. Yang, K. Hayashi, A.R. Akhmetzhanov, S. Jung, et al., Incubation 

Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with 

Right Truncation: A Statistical Analysis of Publicly Available Case Data, J. Clin. Med., 9 (2020), 

538. https://doi.org/10.3390/jcm9020538 

3. A.W. Byrne, D. McEvoy, A.B. Collins, K. Hunt, M. Casey, A. Barber, et al., Inferred duration of 

infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for 

asymptomatic and symptomatic COVID-19 cases, BMJ Open, 10 (2020), e039856. 

https://doi.org/10.1136/bmjopen-2020-039856 

4. Ministry of Health, Labour and Welfare of Japan, Visualizing the data: information on COVID-

19 infections. 

Available from: https://covid19.mhlw.go.jp/en/ 

5. Digital Agency, Vaccination Record System (VRS).  

Available from: https://info.vrs.digital.go.jp/opendata/ (Japanese) 

6. Statistics of Japan, Re-calculated on the complete counts of the 2020 Population Census (Oct. 

2020 – June 2021).  

Available from: https://www.stat.go.jp/english/data/jinsui/2.html 

7. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic 

reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. 

Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 



8. T. Kuniya, Numerical approximation of the basic reproduction number for a class of age-

structured epidemic models, Appl. Math. Lett., 73 (2017), 106-112. 

http://dx.doi.org/10.1016/j.aml.2017.04.031 

9. S. Kodera, E.A. Rashed, A. Hirata, Estimation of real-world vaccination effectiveness of mRNA 

COVID-19 vaccines against delta and omicron variants in Japan, Vaccines, 10 (2022), 430. 

https://doi.org/10.3390/vaccines10030430 

10. SPI-M-O, Summary of further modelling of easing restrictions – Roadmap Step 2 (2021).  

Available from: 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fil

e/975909/S1182_SPI-M-

O_Summary_of_modelling_of_easing_roadmap_step_2_restrictions.pdf 

11. Ministry of Health, Labour and Welfare of Japan, Life Tables. 

Available from: https://www.mhlw.go.jp/english/database/db-hw/vs02.html 

 

 

 

Figures: 

 

 

 

Figure S1: Transfer diagram of our model. 

 

 



 
Figure S2: Age-specific probability at which a recovered individual becomes severe. 

 

 

 

Figure S3: Age-specific vaccine hesitancy rate ℎ(𝑎). 

 

 

 
Figure S4: Initial population age distribution 𝑃଴(𝑎). 

 

 



 

Figure S5: Initial age distributions of exposed 𝐸଴(𝑎), infectious 𝐼଴(𝑎) and recovered 𝑅଴(𝑎) 

populations. 

 

 

 

 

 
Figure S6: Age dependent susceptibility 𝛽ଵ(𝑎) (HS) and contact frequency 𝛽ଶ(𝑥) among 

individuals whose age difference is 𝑥 (HC). Three levels of heterogeneity (high, medium and low) 

are considered to each of them. 

 

 

 
Figure S7: Daily number of vaccination shots in Japan from April 12, 2021 to November 30, 2021. 



 

 

 

Figure S8: Age-specific average life expectancy ℓ(𝑎).  

 

 

 

 

Figure S9: Daily number of newly reported cases (top) and deaths (bottom). Functions 𝑌(𝑡) and 

𝐷(𝑡) are derived from our model. 

 



 

Figure S10: The main part of our simulation code for MATLAB. Some symbols are defined in other 

parts or files. 

  



Table 

Table S1: The parameter values in our model. 

Symbol Meaning Value Unit Reference 

𝑡 Time 0 – 232 day - 

𝑎 Age 0 – 100 year - 

𝜏 Vaccine age 0 – 232 day - 

𝑣(𝑡, 𝑎) Vaccination rate (1) day-1 [5] 

𝜀 
Transition rate from exposed to 

infectious 
0.2 day-1 [1,2] 

𝛾 Removal rate 0.1 day-1 [3] 

𝑑(𝑎) 
Probability at which an infected 

individual becomes severe 
Figure S2 

percent 

× 10ିଶ 
[4] 

𝜔 Mortality rate of severe individuals 0.1 day-1 Assumed 

𝜎(𝜏) 
Vaccine efficacy in reducing the 

risk of infection 
(2) 

percent 

× 10ିଶ 
 [9,10] 

𝛿(𝜏) 
Vaccine efficacy in reducing the 

risk of death 
(2) 

percent 

× 10ିଶ 
 [9,10] 

ℎ(𝑎) Vaccine hesitancy rate Figure S3 
percent 

× 10ିଶ 
[5] 

ℓ(𝑎) Average life expectancy Figure S8 Year [11] 

𝜅 Infection transmission rate 

Determined 

according to 

ℛ଴ 

- Assumed 

𝛽ଵ(𝑎) Age dependent susceptibility Figure S6 - Assumed 

𝛽ଶ(𝑥) 

Contact frequency among 

individuals whose age difference is 

𝑥 

Figure S6 - Assumed 

𝑁 Total population in Japan 1.26 × 10଼ person [6] 

𝜒 Detection ratio 0.5 
percent 

× 10ିଶ 
Assumed 
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