Can Deficits Finance Themselves?

George-Marios Angeletos¹ Chen Lian² Christian Wolf³

¹Northwestern and NBER

²UC Berkeley and NBER

³MIT and NBER

June 6, 2024

Question: how are fiscal deficits, e.g., transfers to households, financed?

Basic answer: Fiscal adjustment: raise tax/cut spending in the future

This paper: Self-financing in NK with finite lives/liquidity constraints [break Ricardian Equivalence]

- Deficit \Rightarrow Keynesian boom \Rightarrow tax base \uparrow and debt erosion ($P_0 \uparrow$)
 - improve budget without tax rate adjustment
- Q: How important is such self-financing? Can there ever be full self-financing?

How Big Can "Self-financing" Be? [r>g]

Environment: finite lives (or liquidity constraints) + nominal rigidities [OLG-NK, HANK...] Policy: full delayed fiscal adjustment promised at future date H + monetary policy "neutral" (fix $\mathbb{E}[r]$) or mildly active

- Main result: as fiscal adjustment is delayed more, converge to full self-financing
 - Monotonicity: as H increases, the actual required future tax hike gets smaller and smaller
 - Limit: the future tax hike vanishes, i.e., we converge to full self-financing
 - Split depends on price rigidities. [All via tax base ↑ if rigid, all via prices ↑ if approx. flexible.]

How Big Can "Self-financing" Be? [r>g]

Environment: finite lives (or liquidity constraints) + nominal rigidities [OLG-NK, HANK...] Policy: full delayed fiscal adjustment promised at future date H + monetary policy "neutral" (fix $\mathbb{E}[r]$) or mildly active

• Main result: as fiscal adjustment is delayed more, converge to full self-financing

- Monotonicity: as H increases, the actual required future tax hike gets smaller and smaller
- · Limit: the future tax hike vanishes, i.e., we converge to full self-financing
- Split depends on price rigidities. [All via tax base ↑ if rigid, all via prices ↑ if approx. flexible.]
- Intuition: finite-lives/liq. constraints: "discount" far-future tax & front-loaded Keynesian cross
- **Practical relevance**: holds in many environments & quantitatively powerful [general AD (incl. HANK), active monetary policy, investment, distortionary taxation, ...]

Outline

Environment: OLG-NK

- 2 Equilibrium Characterization
- Self-financing of Fiscal Deficits
- 4 Extensions & Generality
- **5** Quantitative Analysis
- 6 Conclusion

Households and Firms

Continuum of perpetual youth consumers with survival rate ω [$\omega = 1$: RANK; $\omega < 1$: proxy for HANK, later]

$$\mathbb{E}_t\left[\sum_{k=0}^{\infty} \left(\beta\omega\right)^k \left[u(C_{i,t+k})-v(L_{i,t+k})\right]\right],$$

• Invests in actuarially fair annuities

$$A_{i,t+1} = \underbrace{\frac{I_t}{\omega}}_{\text{annuity}} \left(A_{i,t} + P_t \cdot \left(\underbrace{\frac{W_t L_{i,t} + Q_{i,t}}{Y_{i,t}}}_{Y_{i,t}} - C_{i,t} - T_{i,t} + \text{Transfer to Newborns} \right) \right),$$

where transfer to newborns makes sure that all cohorts have the same C in steady state [r > g].

• Tax and transfer

Firms as in textbook NK model: standard NKPC [in log: $\pi_t = \kappa y_t + \beta \mathbb{E}_t[\pi_{t+1}]$]

Policy, Market Clearing, and Log-Linearization

• Government budget [no G_t, T_t is real tax/transfer]

$$\frac{1}{l_t}B_{t+1} = B_t - P_t T_t \qquad (\text{plus no Ponzi})$$

and define $D_t = B_t/P_t$ as real value of public debt outstanding.

• Market clearing
$$Y_t = \int C_{i,t} di$$
 and $\int A_{i,t} di = B_t.$

Initial condition

$$A_{i,0}=B_0$$

• Log-linearization: a lower case capture log-deviations from steady state [with the exception of fiscal variables, e.g., $d_t = \frac{d_t - D^{SS}}{V^{SS}}$, to accommodate $D^{SS} = 0$]

Monetary Policy

• Baseline: no monetary accommodation [expected real rate in variant to debt & deficit]

$$r_t \equiv i_t - E_t[\pi_{t+1}] = 0$$

• Extension: different degrees of monetary accommodation

$$r_t = \phi y_t$$

- $\phi < 0$: an "accommodative" monetary authority
- $\phi > 0$: leans against the wind [Taylor principle holds]
- Baseline ($\phi \approx 0$) consistent with IRFs to identified fiscal shocks [Ramey; Caldara & Kamps; Wolf]

Fiscal Policy

• Baseline: Markovian Fiscal Policy [extension of Leeper (1991)]

(1)

(2)

• Variant: a Non-Markovian FP with delayed full fiscal adjustment

 $t_t = \begin{cases} \tau_y y_t - \varepsilon_t & t < H & \text{initially no fiscal adjustment} \\ d_t & t \ge H & \text{eventually full fiscal adjustment (lump sum)} \end{cases}$

• High H, similar to low τ_d , captures delay in fiscal adjustment

Outline

Environment: OLG-NK

2 Equilibrium Characterization

Self-financing of Fiscal Deficits

4 Extensions & Generality

5 Quantitative Analysis

6 Conclusion

Aggregate Demand

• Optimal consumption + aggregation + $r_t = 0$

$$c_{t} = \underbrace{(1 - \beta \omega)}_{\mathsf{MPC}} \times \left(\underbrace{a_{t}}_{\mathsf{wealth}} + \underbrace{\mathbb{E}_{t} \left[\sum_{k=0}^{\infty} (\beta \omega)^{k} (y_{t+k} - t_{t+k}) \right]}_{\mathsf{post-tax income}} \right),$$

• $\omega < 1$: (i) elevated MPC; (ii) discounting future y & t, breaking Ricardian Equiv.

• Using fiscal policy (1) and market clearing

$$y_t = \mathscr{F}_1 \cdot (d_t + \varepsilon_t) + \mathscr{F}_2 \cdot E_t \left[\sum_{k=0}^{+\infty} (\beta \omega)^k y_{t+k}
ight],$$

(3)

with $\mathscr{F}_1 = \frac{(1-\beta\omega)(1-\omega)(1-\tau_d)}{1-\omega(1-\tau_d)}$ and $\mathscr{F}_2 = (1-\beta\omega)\left(1-\tau_y\frac{1-\omega}{1-\omega(1-\tau_d)}\right)$.

- \mathscr{F}_1 captures PE effect of debt/deficits on AD
 - ★ $\mathscr{F}_1 > 0$ iff $\omega < 1$ (failure of Ricardian Equiv)
 - * deficits are transfer from future generations to current generations
- \mathscr{F}_2 captures GE effect through intertemporal Keynesian cross
 - ★ jointly governed by FP (τ_d and τ_y), and MPC (ω)

Equilibrium Characterization

4 AD: (3).

- **3 AS:** NKPC, $\pi_t = \kappa y_t + \beta \mathbb{E}_t [\pi_{t+1}]$.
- **②** Evolution of real value of public debt:

$$d_{t+1} = \beta^{-1} \left(d_t + \varepsilon_t - \underbrace{\tau_d \cdot (d_t + \varepsilon_t)}_{\text{fiscal adjustment}} - \underbrace{\tau_y y_t}_{\text{self financing: tax base}} \right) - \underbrace{\frac{D^{ss}}{Y^{ss}} \left(\pi_{t+1} - \mathbb{E}_t \left[\pi_{t+1} \right] \right)}_{\text{self financing: debt erosion}}$$

Theorem

Let $\omega < 1$ and $\tau_{\gamma} > 0$. There exists **unique bounded eq'm** taking the form:

$$y_t = \chi (d_t + \varepsilon_t), \quad E_t [d_{t+1}] = \rho_d (d_t + \varepsilon_t).$$

(4)

Moreover, $\chi > 0$ (deficits trigger boom) and $0 < \rho_d < 1$ (debt converges to steady state).

Outline

Environment: OLG-NK

- 2 Equilibrium Characterization
- Self-financing of Fiscal Deficits
- Extensions & Generality
- **5** Quantitative Analysis
- 6 Conclusion

Channels of Self Financing

- Start with $d_0 = 0$ (steady state) and consider $\varepsilon_0 > 0$ (one-time unexpected positive deficit shock)
- $\bullet\,$ Gov's intertemporal budget constraint $\Rightarrow\,$

where $v \equiv$ fraction of deficit that is self-financed, contrast with fiscal adjustment.

- RANK benchmark ($\omega = 1$): zero self financing, $\nu = 0$ [standard eq'm ($\phi \rightarrow 0^+$)]
- Now ($\omega < 1$): full self financing $\nu \rightarrow 1$ with delayed fiscal adjustment $[\tau_d \rightarrow 0 \text{ or } H \rightarrow +\infty]$

The Self Financing Result

Theorem

Suppose that $\omega < 1$ and $\tau_y > 0$. The self-financing share \mathbf{v} has the following properties.

- [Monotonicity] ν increases in the delay of fiscal adjustment (i.e., it is increasing in H and decreasing in τ_d).
- [Limit] As fiscal financing is delayed further (i.e., as H→∞ or τ_d→0), there is complete self financing: ν converges to 1.
 - In this limit, self-financing is strong enough to return d to the steady state.
 [τ_d → 0 : lim_{k→∞} E_t [d_{t+k}] → 0; H → ∞ : lim_{H→∞} E₀ [d_H] → 0]

The Self Financing Result

Theorem

Suppose that $\omega < 1$ and $\tau_y > 0$. The self-financing share \mathbf{v} has the following properties.

- [Monotonicity] ν increases in the delay of fiscal adjustment (i.e., it is increasing in H and decreasing in τ_d).
- [Limit] As fiscal financing is delayed further (i.e., as H→∞ or τ_d→0), there is complete self financing: ν converges to 1.
 - In this limit, self-financing is strong enough to return d to the steady state. $[\tau_d \rightarrow 0: \lim_{k \rightarrow \infty} \mathbb{E}_t [d_{t+k}] \rightarrow 0; H \rightarrow \infty: \lim_{H \rightarrow \infty} \mathbb{E}_0 [d_H] \rightarrow 0]$
- **9 [Split]**. With rigid price ($\kappa = 0$), all self-financing occurs through tax base ($v_y = v$); as prices become more flexible (a higher κ), more self-financing occurs through debt erosion

Economic Intuition [Fully Rigid Price, $\kappa = 0$]

- To illustrate, consider the total adj. of tax base from an ad-hoc static Keynesian cross
 - Transfer ε at t = 0, static Keynesian cross at t = 0, tax (if needed) at t = 1.

$$y = \mathsf{MPC} \cdot y_{\mathsf{disp}}$$
 and $y_{\mathsf{disp}} = (1 - \tau_y)y + \varepsilon \Longrightarrow y = \frac{\mathsf{MPC}}{1 - (1 - \tau_y)\mathsf{MPC}} \times \varepsilon$

- \$1 increase in transfer leads to \$MPC increase in AD
- \$1 increase in AD leads to $(1 \tau_y)$ GE increase in post-tax income
- $(1 \tau_y)$ increase in post-tax income lead to $MPC \times (1 \tau_y)$ increase in AD
- Self-financing through tax base adjustment: $v \equiv \frac{\tau_y y}{\varepsilon} = \frac{\tau_y MPC}{1 (1 \tau_v) MPC}$ is increasing in the MPC
 - t = 1 tax hike needed: $R(1-v)\varepsilon$
- Full self-financing would require MPC = 1, giving $y = \frac{1}{\tau_y} \times \varepsilon$. [Hint: Dynamic: cumulative MPC = 1]

Our th'm: features of static model have analogues in dynamic economy

1. Static: expected "future" tax hike does not affect "current" spending behavior \implies Dynamic: discount ($\omega < 1$) \implies far future *H*-tax's impact on short-run consumption vanishes

[IKC matrix: income change at $t + \ell$ has a vanishing effect on t consumption: $\lim_{\ell \to \infty} \beta^{-\ell} \mathscr{M}_{t,t+\ell} = 0$]

Economic Intuition [$\kappa = 0$, PE effect of transfer-and-tax vector $\mathcal{M} \cdot t^{PE}$, with $t^{PE} = (-1, \dots, \beta^{-H})$]

t

Economic Intuition [Fully Rigid Price, $\kappa = 0$]

Our th'm: features of static model have analogues in dynamic economy

- 1. Static: expected "future" tax hike does not affect "current" spending behavior \implies Dynamic: discount ($\omega < 1$) \implies far future *H*-tax's impact on short-run consumption vanishes [IKC matrix: income change at $t + \ell$ has a vanishing effect on *t* consumption: $\lim_{\ell \to \infty} \beta^{-\ell} \mathcal{M}_{t,t+\ell} = 0$]
- 2. Static: "current" transfer & additional GE income are fully spent currently (MPC ightarrow 1)
 - \implies Dynamic: front-loaded MPCs (ω < 1) \implies cumulative short-run MPCs approach 1 far before H

[IKC matrix: income change at $t + \ell$ has a vanishing effect on t consumption: $\lim_{\ell \to \infty} \beta^{-\ell} \mathscr{M}_{t,t+\ell} = 0$]

- \implies Transfer receipt (and higher-order GE income) is fully spent before the tax hike at H
- \implies Thus debt stabilizes on its own before *H*, and tax hike at *H* is not needed.

Economic Intuition [$\kappa = 0$, PE and GE effect of tax-and-transfer vector]

t

The Role of Nominal Rigidities, $\kappa > 0$

A simple rescaling of the perfect rigid price case $\kappa=0$

• From NKPC, self financing through debt erosion proportional to tax base expansion

$$\pi_0 - E_{-1}[\pi_0] = \kappa \cdot \mathsf{NPV}(y) = \kappa \cdot \sum_{k=0}^{+\infty} \beta^k E_0[y_k]$$

• Split between sources of self financing:

tax base:
$$v_y = \frac{\tau_y}{\tau_y + \kappa \frac{D^{ss}}{Y^{ss}}} v$$
 & debt erosion: $v_\rho = \frac{\kappa \frac{D^{ss}}{Y^{ss}}}{\tau_y + \kappa \frac{D^{ss}}{Y^{ss}}} v$

Outline

Environment: OLG-NK

- 2 Equilibrium Characterization
- Self-financing of Fiscal Deficits
- 4 Extensions & Generality
- **5** Quantitative Analysis
- 6 Conclusion

Extensions & Generality

- Monetary policy:
 - full self-financing remains to hold with mildly active MP when the Taylor principle holds
 - partial self-financing with very active MP
- More general aggregate demand
 - Discounting + front-loaded MPCs
- Fiscal policy
 - full self-financing result unaffected if far-ahead fiscal adjustment is distortionary
 - result applies with little change to gov't purchases instead of transfers
- Allow for investment, limit result unaffected [same IKC among consumers]

Outline

Environment: OLG-NK

- 2 Equilibrium Characterization
- Self-financing of Fiscal Deficits
- 4 Extensions & Generality
- Ountitative Analysis

Model & Calibration Strategy

Key targets: (i) consumer spending behavior [iMPCs] & (ii) fiscal adjustment speed

• Model: generalize demand block to OLG-spender hybrid

[Why? disentangles level & slope of dynamic MPC profile, consistent with evidence.]

Results based on full-blown one-asset HANK similar

Calibration strategy

- Match evidence on iMPCs to lump-sum income receipt in Fagereng-Holm-Natvik [Later: other calibration targets, behavioral models, and a full-blown HANK model...]
- Consider range of τ_d consistent with literature on fiscal adjustment estimation [Galí-López-Salido-Vallés, Bianchi-Melosi, Auclert-Rognlie, ...]
- Flat NKPC [Hazell-Herreno-Nakamura-Steinsson]; steeper NKPC [later]

Quantitative Relevance of Self-financing

Outline

Environment: OLG-NK

- 2 Equilibrium Characterization
- Self-financing of Fiscal Deficits
- 4 Extensions & Generality
- **5** Quantitative Analysis

Conclusion

• Key: delayed fiscal adjustment \Rightarrow strong self-financing (esp. from tax base adjust.)

Implications:

- Theory: grounded in a failure of Ricardian equivalence + nominal rigidities [consistent with Taylor principle & promise to return *d* to SS]
- **②** Practice: self-sustaining stimulus may be less implausible than commonly believed
- Our analysis here is entirely positive, not normative.
 - If start at an efficient SS, self-financing stimulus never optimal
 - If output is inefficiently low, self-financing stimulus can be a benefitial stabilization tool