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HOW SHOULD WE TAX INCOMES?

Large literature on optimal tax design

• theory: Ramsey (1927), Mirrlees (1971)
• applications: Diamond and Saez (2011), Golosov et al. (2016), Heathcote et al. (2017)

Key predictions depend on hard to measure objects

• distribution of earning potentials (labor productivity)
• distribution of preferences (labor supply elasticity)
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THIS PAPER

Optimal tax design acknowledging uncertainty about distribution of individual characteristics

• build on decision theory under ambiguity to model welfare consequences of statistical
uncertainty about type distributions with Mirrlees (1971)

• quantify uncertainty using information from administrative and survey data

Key source of uncertainty

• tails of the productivity distribution with scarce information relative to their welfare
implications

Main finding

• concerns for uncertainty call for substantially lower tax progressivity for high incomes
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FRAMEWORK



GENERAL FRAMEWORK

A continuum of households indexed with productivity type z ∼ F(z).

Households choose labor supply n(z) subject to an income tax function T (y) where y(z) = zn(z).

A utilitarian government with Pareto weight function ψ (z) chooses T(y) to maximize social welfare.

• trades off redistributive motives and efficiency
• faces uncertainty about the type distribution F(z) and considers a set of distributions
statistically close to F
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HOUSEHOLDS

Given a labor income tax function T(y), household of type z solves

max
c,n

U(c,n; z)

subject to the budget constraint

c = zn− T (zn)

Indirect utility function U(z; T) and decision rules C (z; T), N (z; T), Y (z; T).
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GOVERNMENT

Without uncertainty concerns, the utilitarian government solves

max
T

∫
ψ (z)U(z; T)dF (z) + V (G)

subject to the government budget constraint∫
T(Y (z; T))dF (z) = G.
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UNCERTAINTY ABOUT HOUSEHOLD CHARACTERISTICS

The government is concerned that distribution F(z) may be misspecified.

• it considers alternative distributions F̃ (z) that are statistically close to F (z)

A measure of statistical closeness is the relative entropy (Kullback–Leibler divergence)

E(F, F̃) =
∫
m (z) logm (z)dF (z)

• m (z) = dF̃(z)
dF(z) be the Radon–Nikodým derivative of F̃ with respect to F

For a given benchmark F and entropy bound κ, the set of statistically close distributions is

F(F, κ) =
{
F̃ : E(F, F̃) ≤ κ

}
• the set F(F, κ) is large and the government does not put a prior on that set
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ROBUST GOVERNMENT

A robust utilitarian government solves the max-min problem

max
T

min
F̃∈F

∫
ψ (z)U(z; T)dF̃ (z) + V(G)

subject to ∫
T(Y (z; T))dF̃ (z) = G.

• utilitarian concern: low weight m (z) on households with high contribution to welfare
• budgetary concern: low weight m (z) on households with high contribution to the budget
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ROBUST GOVERNMENT

A robust utilitarian government solves the max-min problem

max
T

min
m:̃F∈F

∫
ψ (z)U(z; T)m (z)dF (z) + V(G)

subject to ∫
T(Y (z; T))m (z)dF (z) = G.

• utilitarian concern: low weight m (z) on households with high contribution to welfare
• budgetary concern: low weight m (z) on households with high contribution to the budget
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THEORETICAL ANALYSIS



UNCERTAIN PRODUCTIVITY DISTRIBUTION

The optimal tax problem can be cast as a mechanism design problem (Mirrlees (1971))

• revelation principle allows to focus on direct mechanisms
• workers provide a report z′ of their type z
• government offers a menu of allocations (c (z′) , y (z′)) that incentivizes truthtelling, z′ = z
• implied tax function T (y (z)) = y (z)− c (z)
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MECHANISM DESIGN APPROACH

The robust government solves

max
c,y

min
m:̃F∈F

∫
ψ (z)U

(
c (z) , y (z)z

)
m (z)dF (z) + V (G)

subject to incentive compatibility constraints

U
(
c (z) , y (z)z

)
≥ U

(
c
(
z′
)
,
y (z′)
z

)
∀z, z′

and the government budget constraint∫
(y (z)− c (z))m (z)dF (z) = G.
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EX-POST BAYESIAN INTERPRETATION

Fixing m (z) (fixing a distribution F̃ (z)), the problem is as in Mirrlees (1971), now under F̃ (z).

• ex-post Bayesian interpretation of F̃ (z) (min and max can be interchanged)

Incentive-compatibility constraints are type-by-type, do not depend on the distribution.

• misspecification concerns do not alter incentive compatibility

Optimal allocation and the minimizing ‘worst-case’ distribution determined jointly.
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WORST-CASE DISTRIBUTION

The worst-case distribution is given by f̃ (z) = m (z) f (z) with

m (z) = m̄ exp

(
− 1
θ (κ)

[ψ (z)U (z) + µT (y (z))]
)

• utilitarian concern: lower weight on households with high welfare contribution ψ (z)U (z)
• budgetary concern: lower weight on households who generate high tax revenue T (y (z))
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CHARACTERIZATION OF TOP TAX RATES

We first focus on the theoretical characterization of top marginal tax rates.

• here, we for simplicity assume quasilinear utility

U (c,n) = c− n1+γ

1+ γ

• insights carry over to general separable preferences

We then provide a quantitative evaluation.

• concave utility, type distribution calibrated to data
• discipline the amount of uncertainty the planner faces
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OPTIMAL TAX SCHEDULE

Optimal marginal tax schedule is given by the Diamond (1998)–Saez (2001) ‘ABC’ formula

T′ (y (z))
1− T′ (y (z)) = (1+ γ)︸ ︷︷ ︸

(A)

Ψ̃ (z)− F̃ (z)
1− F̃ (z)︸ ︷︷ ︸

(B)

1− F̃ (z)
z̃f (z)︸ ︷︷ ︸
(C)

.

• (A): adverse effect of taxes on labor supply via labor supply elasticity
• (B): desire to redistribute

Ψ̃ (z) =
∫ z ψ (ζ) f̃ (ζ)∫

ψ (ξ) f̃ (ξ)dξ
dζ

• (C): tradeoff between labor supply distortion at z and revenue from taxing types above z
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PROTOTYPICAL EXAMPLE

Assume planner puts zero welfare weight on top households

• ψ (z) = 0 for z ≥ ẑ where ẑ is some threshold

Benchmark distribution in the tail above ẑ is Pareto with shape parameter α

Without misspecification concerns, the tax formula for z ≥ ẑ simplifies to

T′ (y (z))
1− T′ (y (z)) =

1+ γ

α
.

• with a fat-tailed type distribution, taxes at the top are nonzero and quantitatively possibly
large (Diamond–Saez)

• intuition: the tax revenue from types above z outweighs the labor supply distortion at z
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MISSPECIFICATION CONCERNS

With misspecification concerns, the tax schedule and distribution F̃ (z) are determined jointly.

• Distribution F̃ (z) pins down tax schedule by

T′ (y (z))
1− T′ (y (z)) = (1+ γ)

1− F̃ (z)
z̃f (z)

• Tax schedule determines distribution F̃ (z) by

T (y (z)) = T (y (z)) +
∫ y(z)

y(z)
T′ (η)dη

m (z) = m̄ exp
(
−µ
θ
T (y (z))

)
The optimal tax schedule is a fixed point of this argument.
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OPTIMAL TAX RATES AT THE TOP

Theorem 1.1
Assume preferences are quasilinear and κ > 0. Then the marginal tax rate vanishes to zero at the
top:

lim
y→∞

T′ (y) = 0. (1.1)

Moreover, if the right tail of z is Pareto distributed with shape parameter α, then

lim
y→∞

d log T′ (y)
d log y = − 1

2 . (1.2)

Top rate level and the speed of convergence are independent of

• the magnitude of misspecification concerns κ
• shape of the Pareto tail α of the benchmark distribution
• labor supply elasticity γ
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GENERALIZATIONS: BEYOND THE QUASILINEAR RAWLSIAN CASE

Results carry over to

• general (isoelastic) separable utility

U (c,n) = c1−ρ

1− ρ
− χ

n1+γ

1+ γ

• general welfare weights
• other statistical discrepancy functions
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QUANTITATIVE APPLICATION



CALIBRATION

Preferences and technology

• isoelastic preferences: U (c,n) = c1−ρ

1−ρ
− υ n1+γ

1+γ
with ρ = 1, υ = 1, γ = 2

• government spending V (G) = v̄G

Benchmark distribution F

• log z has exponentially modified Gaussian (EGM) distribution (Heathcote and Tsujiyama (2021))
• left tail of z distribution is lognormal (parameters µ, σ)
• right tail approximately Pareto (parameter α)

Entropy bound κ

• use time-series variation in observed income distributions (World Income Database)
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QUANTIFYING UNCERTAINTY IN INCOME DISTRIBUTIONS

1. For each year t, we fit the EGM distribution to obtain parameters (µt, σt, αt).
2. For each 5-year window {t, . . . , t+ 4}, we construct F (Ft, κt) as the set that

• includes all fitted EGM distributions from years {t, . . . , t+ 4}
• has the smallest entropy radius κt

3. Baseline calibration uses the median of {κt}.

The set F (Ft, κt) is rich:

• it contains all distributions that are close to Ft
• not only the parameterized EGM family
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QUANTIFYING UNCERTAINTY IN INCOME DISTRIBUTIONS
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OPTIMAL MARGINAL TAX SCHEDULES
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• with misspecification concerns, marginal tax rate is maximized at 55% at income levels 5X
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WORST-CASE DISTRIBUTIONS
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• Worst-case distribution thins out more quickly than the benchmark distribution
• The optimal marginal tax rates are lower at the right tail due to smaller tax gain above z.
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INSURANCE PROVISION AND BUDGETARY CONCERNS

The worst-case density is characterized by the distortion

m (z) = m̄ exp

(
− 1
θ
[U (z) + µT (y (z))]

)
Right tail of the type distribution

• dominated by budgetary concerns

Left tail of the type distribution

• without redistribution, we would have limz→0 U (z) = −∞, and limz→0m (z) = ∞

• but redistributive transfers bound U (z) from below, and so m (z) is bounded above
• this makes misspecification concerns at the bottom quantitatively small
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CONCLUSION



CONCLUSION

Acknowledging distributional uncertainty points toward lower progressivity.

• especially at the top, where budgetary concerns (per household) are most severe
• the left tail is well insured, leading to only modest concerns
• insights robust to variation in underlying distributions and preferences

Magnitude of misspecification concerns can be disciplined using

• administrative data: time-series variability in income distributions
• survey evidence: measure distinguishability in finite samples
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