Interest rate shocks and the composition of sovereign debt

Eugenia Gonzalez-Aguado

Toulouse School of Economics

Fiscal Policy and Sovereign Debt IMF-CARF-TCER-Waseda University Conference June 2024, Tokyo

Motivation

- Emerging countries borrow large share of their government debt from foreign investors
 → they are exposed to world interest rate fluctuations
- Increase in US interest rates associated with large declines in output in emerging countries
- Why not borrow *domestically* instead?
 - would avoid external shocks that affect interest rates
 - but, domestic debt crowds out investment in capital

Motivation

- Emerging countries borrow large share of their government debt from foreign investors
 → they are exposed to world interest rate fluctuations
- Increase in US interest rates associated with large declines in output in emerging countries
- Why not borrow *domestically* instead?
 - would avoid external shocks that affect interest rates
 - but, domestic debt crowds out investment in capital
- This paper:
 - quantitative sovereign default model with endogenous decision on debt composition
 - accounts for patterns observed in data
 - quantify the role of financial development and domestic debt to mitigate exposure

Summary of empirical evidence

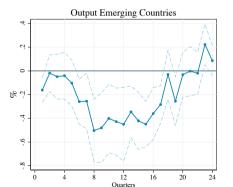
- Panel of 14 emerging countries during 1960-2007 (some analyses restricted to 1969-1996)
- Domestic debt and defaults data from Reinhart and Rogoff (2011)

Main results:

- 1. Financial development positively related to share of domestic debt
 - financial development measured as liquid liabilities to GDP (direct link to model)
- 2. Negative effects of increase in U.S. interest rate on emerging economies output
 - larger drop in output if less financially developed
- 3. Domestic debt crowds out capital
 - Broner et al (2014): \uparrow banks' holdings of gov't debt, \downarrow private credit in Euro Area
 - I document crowding out in emerging countries

Summary of empirical evidence

- Panel of 14 emerging countries during 1960-2007 (some analyses restricted to 1969-1996)
- Domestic debt and defaults data from Reinhart and Rogoff (2011)


Main results:

- 1. Financial development positively related to share of domestic debt
 - financial development measured as liquid liabilities to GDP (direct link to model)
- 2. Negative effects of increase in U.S. interest rate on emerging economies output
 - larger drop in output if less financially developed
- 3. Domestic debt crowds out capital
 - Broner et al (2014): \uparrow banks' holdings of gov't debt, \downarrow private credit in Euro Area
 - I document crowding out in emerging countries

Output response to increase in U.S. interest rate

$$y_{it+h} = \beta_h u_t^r + \Gamma_{ih} X_{it}' + \alpha_{ih} + \varepsilon_{it+h} \tag{1}$$

- Controls, X_{it} include:
 - lagged output, interest rates, exchange rates, and linear and quadratic time trends
- After a shock that \uparrow U.S. interest rate by 1 pp, real GDP $\downarrow 0.4\%$ in emerging countries

- Romer-Romer shocks: 1969-1996
- Other specifications: [see]
 - real exchange rates
 - other shocks
 - time period 1960-2007

Output response and financial development

$$y_{it+h} = \beta_h u_t^r + \gamma_h (u_t^r \times \operatorname{Fin} \operatorname{Dev}_{it-1}) + \Gamma_{ih} X_{it}' + \alpha_{ih} + \varepsilon_{it+h}$$
(2)

- Financial development: measure of liquid liabilities to GDP
- If coefficient γ_h is positive: financial dev. *mitigates* the drop in output after shock

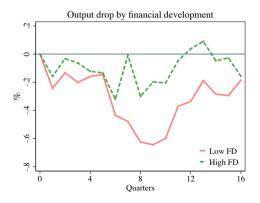
Output response and financial development

$$y_{it+h} = \beta_h u_t^r + \gamma_h (u_t^r \times \operatorname{Fin} \operatorname{Dev}_{it-1}) + \Gamma_{ih} X_{it}' + \alpha_{ih} + \varepsilon_{it+h}$$
(2)

- Financial development: measure of liquid liabilities to GDP ٠
- If coefficient γ_h is positive: financial dev. *mitigates* the drop in output after shock

	Interaction coefficient, γ_h					
Quarters after shock:	4	6	8	10	12	16
	0.008	0.012	0.018^{*}	0.020^{**}	0.022^{**}	0.000
	(0.006)	(0.008)	(0.010)	(0.009)	(0.010)	(0.008)

Driscoll-Kray standard errors in parentheses. *p<0.1, **p<0.05, ***p<0.01


- At the 75th percentile of financial dev. (*high FD*), output drops less than 0.2pp
- At the 25th percentile (low FD), output drops 0.6pp

-

Output response and financial development

• Alternatively, consider two separate regressions: for low and high financial dev.

$$y_{it+h} = \beta_h^{\text{Low}} u_t^r + \Gamma_{ih}^{\text{Low}} X_{it}' + \alpha_{ih}^{\text{Low}} + \varepsilon_{it+h}^{\text{Low}} \quad \text{if} \quad \text{Fin } \text{Dev}_{it} < \text{P50}(\text{Fin } \text{Dev}_t)$$
$$y_{it+h} = \beta_h^{\text{High}} u_t^r + \Gamma_{ih}^{\text{High}} X_{it}' + \alpha_{ih}^{\text{High}} + \varepsilon_{it+h}^{\text{High}} \quad \text{if} \quad \text{Fin } \text{Dev}_{it} > \text{P50}(\text{Fin } \text{Dev}_t)$$

[other specifications]

Key ingredients and intuition for model

- Emerging countries suffer output losses after increase in international interest rates
 - exposed through sovereign debt issued to external creditors
 - \rightarrow important to consider sovereign debt composition

Key ingredients and intuition for model

- Emerging countries suffer output losses after increase in international interest rates
 - exposed through sovereign debt issued to external creditors
 - \rightarrow important to consider sovereign debt composition
- Model introduces key trade-offs between domestic and external debt
 - domestic debt could mitigate exposure to international shocks
 - but, crowds out capital: especially costly if $\mathit{less}\ \mathit{financially}\ \mathit{developed}$

Key ingredients and intuition for model

- Emerging countries suffer output losses after increase in international interest rates
 - exposed through sovereign debt issued to external creditors
 - \rightarrow important to consider sovereign debt composition
- Model introduces key trade-offs between domestic and external debt
 - domestic debt could mitigate exposure to international shocks
 - but, crowds out capital: especially costly if $\mathit{less}\ \mathit{financially}\ \mathit{developed}$
- Main intuition in line with empirical results
 - financial development mitigates effect on output of an increase in interest rates
 - because it allows countries to borrow more domestically
 - this mechanism is present in data: more financial dev., larger domestic debt share [see]
 - $\rightarrow\,$ model must introduce financial intermediaries to capture notion of financial development

- Small open economy business cycle model that integrates
- banking sector (financial intermediaries)
- into sovereign default model with productivity and interest rate shocks
- domestic and external government debt

- Small open economy business cycle model that integrates
- banking sector (financial intermediaries)
- into sovereign default model with productivity and interest rate shocks
- domestic and external government debt
- Households: consume and save using deposits at banks
 - supply labor and pay taxes

- Small open economy business cycle model that integrates
- banking sector (financial intermediaries)
- into sovereign default model with productivity and interest rate shocks
- domestic and external government debt
- Households: consume and save using deposits at banks
 - supply labor and pay taxes

• Firms:

- production: Y = zF(K, L)
- z is aggregate productivity shock that follows AR1 process
- working capital

- Small open economy business cycle model that integrates
- banking sector (financial intermediaries)
- into sovereign default model with productivity and interest rate shocks
- domestic and external government debt
- Households: consume and save using deposits at banks
 - supply labor and pay taxes

• Firms:

- production: Y = zF(K, L)
- z is aggregate productivity shock that follows AR1 process
- working capital

• Int'l creditors: - risk neutral and unconstrained, invest in external government debt

- stochastic international risk free rate, R^\ast

[see details]

• Banks:

- financial intermediaries
- receive deposits from households
- invest in capital and domestic government debt
- collateral constraint limits borrowing from households
- \rightarrow financial development captured by collateral constraint
- \rightarrow domestic gov't debt crowds out investment in capital due to collateral constraint

• Banks:

- financial intermediaries
- receive deposits from households
- invest in capital and domestic government debt
- collateral constraint limits borrowing from households
- \rightarrow financial development captured by collateral constraint
- \rightarrow domestic gov't debt crowds out investment in capital due to collateral constraint
- Government: finances public expenditures using
 - $\circ\,$ distortionary taxes on labor income
 - $\circ\,$ government debt: external and domestic
 - can separately default on external and domestic debt

- note: bonds are long-term, but here for exposition show model with one-period bonds

- Aggregate state: $S = (A, a, z, R^*)$
 - $A = (B^*, B, K, D)$ are assets: bonds, capital, and deposits
 - *a* is default or autarky state (defined later)
 - z and R^* are stochastic states

- Aggregate state: $S = (A, a, z, R^*)$
 - $A = (B^*, B, K, D)$ are assets: bonds, capital, and deposits
 - *a* is default or autarky state (defined later)
 - z and R^* are stochastic states
- Banks receive deposits, d, from households at price q^D
- Invest in: capital with stochastic returns $R_K = zF_K + 1 \delta_K$ - defaultable domestic bonds, b, at price q
- Collateral constraint: can only obtain fraction θ of net worth from deposits
- Die with probability 1σ . If so, transfer net worth, n, to household
 - ensures banks build up of net worth limited, so collateral constraint binds

Value of bank with net worth n:

$$V^{b}(n;S) = \max_{k',b',d'} \left\{ \beta \mathbb{E}[(1-\sigma)n' + \sigma V^{b}(n';S')] \right\}$$

s.t.

- Budget constraint: $k' + q(S)b' = n + q^D(S)d'$
- Collateral constraint: $q^D(S)d' \leq \theta n$
- Evolution of net worth: $n' = R_K(S')k' + \delta(S')b' d'$

where $\delta(S) = \{0, 1\}$ is government repayment decision on domestic debt

Value of bank with net worth n:

$$V^{b}(n;S) = \max_{k',b',d'} \left\{ \beta \mathbb{E}[(1-\sigma)n' + \sigma V^{b}(n';S')] \right\}$$

s.t.

- Budget constraint: $k' + q(S)b' = n + q^D(S)d'$
- Collateral constraint: $q^D(S)d' \le \theta n$
- Evolution of net worth: $n' = R_K(S')k' + \delta(S')b' d'$

where $\delta(S) = \{0, 1\}$ is government repayment decision on domestic debt

- note: assume households utility is U(C, L) = C + v(L), so, deposits price: $q^D(S) = \beta$

Government

- Provides public goods G and maximizes utility by choosing
 - taxes on labor income: τ
 - domestic and external debt: B, B^*
 - domestic and external repayment: δ, δ^*
- Resulting optimal program: smoothes tax distortions by borrowing
- Exogenous default costs: identical for both types of default
 - autarky: lose access to credit market in which it defaults (re-enter with probability γ)
 - productivity during autarky: $h(z) \leq z$
- Autarky states $a = \{\text{normal, domestic autarky, external autarky, both}\}$

Government Budget Constraint

Government budget constraint in four states:

• Normal times:

$$G + \delta B + \delta^* B^* = \tau w(S)L + \delta q(S)B' + \delta^* q^*(S)B^{*'}$$

• Domestic autarky: no B

$$G + \delta^* B^* = \tau w(S)L + \delta^* q^* B^{*\prime}$$

Government Budget Constraint

Government budget constraint in four states:

• Normal times:

$$G + \delta B + \delta^* B^* = \tau w(S)L + \delta q(S)B' + \delta^* q^*(S)B^{*'}$$

• Domestic autarky: no B

$$G + \delta^* B^* = \tau w(S) L + \delta^* q^* B^{*\prime}$$

• External autarky: no B^*

$$G + \delta B = \tau w(S)L + \delta q(S)B'$$

• Autarky in both markets: no B or B^\ast

$$G = \tau w(S)L$$

Markov Equilibrium

- A Markov equilibrium consists of
 - policy functions $\pi(S) = (\delta^*, \delta, B^{*\prime}, B', \tau)$
 - allocation rules $Y(S) = (C, L, B^{*\prime}, B', K', D')$
 - pricing functions $P(S) = (q, q^*, q^D, R_K, w)$

such that

- i. associated outcomes are competitive equilibria [see definition]
- ii. given allocation rules, pricing rules, and future policy rules, then the current policy $\pi(S)$ is optimal for the government

Markov Equilibrium

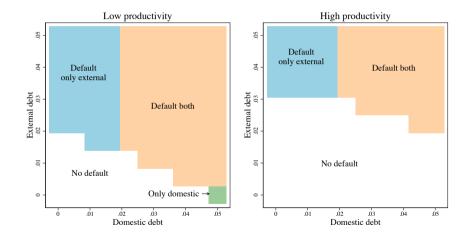
- A Markov equilibrium consists of
 - policy functions $\pi(S) = (\delta^*, \delta, B^{*\prime}, B', \tau)$
 - allocation rules $Y(S) = (C, L, B^{*\prime}, B', K', D')$
 - pricing functions $P(S) = (q, q^*, q^D, R_K, w)$

such that

- i. associated outcomes are competitive equilibria [see definition]
- ii. given allocation rules, pricing rules, and future policy rules, then the current policy $\pi(S)$ is optimal for the government
- Use primal approach:
 - government directly chooses current allocations and policies
 - s.t. implementability constraints: constraints that summarize all FOC and budget constraints of competitive equilibrium

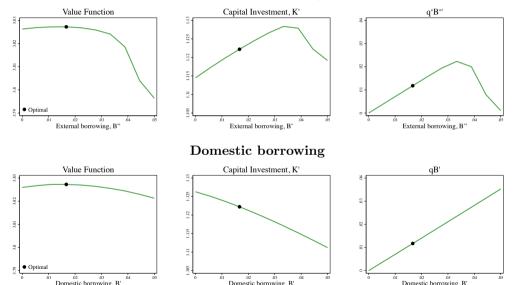
Main mechanisms of the model

- 1. Main trade-offs in sovereign debt compositon: [see FOC]
 - cost of domestic debt: it crowds out investment in capital
 - bank budget + collateral constraint: $K' = (1 + \theta)N qB'$
 - $\rightarrow \ {\rm crowding \ out \ effect}$


Main mechanisms of the model

- 1. Main trade-offs in sovereign debt compositon: [see FOC]
 - cost of domestic debt: it crowds out investment in capital
 - $\circ\;$ bank budget + collateral constraint: $K' = (1+\theta)N qB'$
 - $\rightarrow \ {\rm crowding \ out \ effect}$
 - benefit of domestic debt: lower default probability on domestic \Rightarrow lower interest rate
 - $\circ~$ domestic default hurts own banks as it decreases its net worth

$$N = \sigma(R_K K + \delta B - D) + (1 - \sigma)\bar{n}$$


Ex-post incentives to default

Default decisions for a given amount of external and domestic debt

Government borrowing decisions

External borrowing

16/24

Main mechanisms of the model

- 1. Main trade-offs in sovereign debt compositon: [see FOC]
 - cost of domestic debt: it crowds out investment in capital
 - bank budget + collateral constraint: $K' = (1 + \theta)N qB'$
 - $\rightarrow \ {\rm crowding \ out \ effect}$
 - benefit of domestic debt: lower default probability on domestic \Rightarrow lower interest rate
 - $\circ~$ domestic default hurts own banks as it decreases its net worth

$$N = \sigma(R_K K + \delta B - D) + (1 - \sigma)\bar{n}$$

- 2. How does an increase in interest rate affect output?
 - gov't budget constraint: $G + B + B^* = T(L) + qB' + \downarrow q^*B^{*'}$
 - substitute external debt with taxes $(\downarrow L)$ and domestic debt $(\downarrow K')$

Quantitative analysis

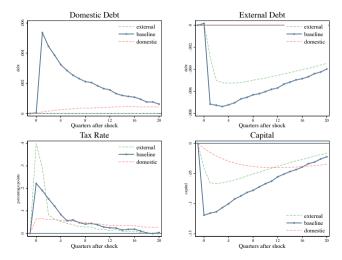
- Set model parameters to match features of emerging economies on average [see all]
 - government expenditures to GDP, total debt to GDP, default rates, and
 - share of domestic rate and deposits to GDP

Quantitative analysis

- Set model parameters to match features of emerging economies on average [see all]
 - government expenditures to GDP, total debt to GDP, default rates, and
 - share of domestic rate and deposits to GDP

Results:

- 1. Model can generate drop in output after increase in \mathbb{R}^*
 - role of domestic debt: mitigates the decrease in output
- 2. The role of financial development:
 - change collateral constraint parameter θ to capture low and high financial development
 - model accounts for key empirical findings on debt composition and financial dev.
- 3. Pecking order of default: in mild recessions default only on external

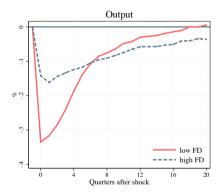

Output response to $\uparrow R^*$

- Impulse response to shock that increases R^* by 100 basis points
- Conterfactuals: only allow for domestic or external debt (keeping parameters the same)
 - domestic debt mitigates drop in output

Output response to $\uparrow R^*$

• Domestic debt mitigates drop in output

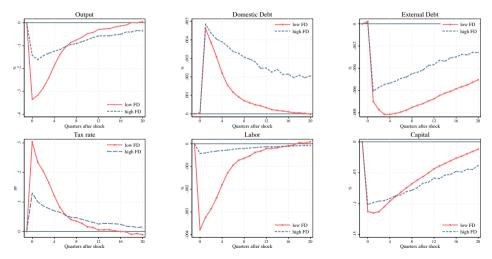
The role of financial development


- Bank collateral constraint: $\beta D' \leq \theta N$
- Level of financial development captured by θ
 - baseline: choose θ to match average deposits to GDP
 - now: change only θ to match low (25th perc.) and high (75th) deposits to GDP from data

	D	ata	Model		
	Low FD	High FD	Low θ	High θ	
Deposits to GDP	0.20	0.45	0.22	0.42	
Domestic debt share	0.36	0.68	0.18	0.71	

- Model predicts: less financial development, lower share of domestic government debt
 - consistent with data [see]

Financial development and output response


• Impulse response to shock that increases R^* by 1pp

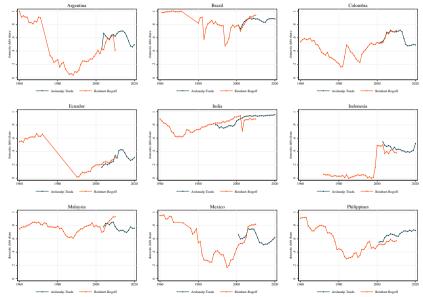
- When financial development is low, output drop is larger, as in data
 - low financial development: larger crowding out effect of domestic debt
 - more costly to replace external debt by domestic debt due to crowding out

Output response to $\uparrow R^*$

• Impulse response to shock that increases R^* by 1pp

Patterns of discriminatory default

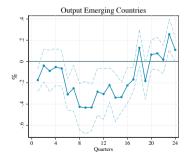
- In mild recessions: default only on external debt
- In severe/long recessions: default on both


	Data		Model		
Output deviation from trend:	External only	Both	External only	Both	
Before default	-0.8%	-1.9%	-0.3%	-2.5%	
Default period	-0.7%	-4.2%	-2.9%	-2.9%	
After default	-0.6%	-2.2%	-2.3%	-3.4%	
Frequency of default:	74%	26%	67%	33%	
Note: the periods before and after	-	to the ave	erage over the previ	ious and	
following year of default, respectiv	ely.				

• Key for this result: model generates countercyclical share of domestic debt (as in the data)

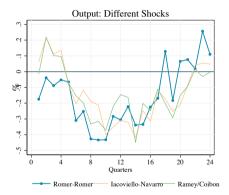
Conclusions

- This paper develops a business cycle model of sovereign default with
 - endogenous debt composition
 - separate default by type of debt
 - theory of vulnerability by level of financial development
- Model consistent with
 - relationship btw financial development and vulnerability of countries to external shocks
 - patterns of discriminatory default and pecking order to default
- Evaluate policies to limit vulnerability
 - domestic debt mitigates effect of external shocks: but only if financially developed
 - restricting external debt could depress economy by crowding out capital

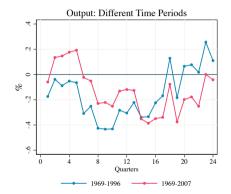

Comparison of domestic debt databases

[back]

- Real exchange rates:
 - an increase in U.S. interest rates might cause a change in real exchange rates
 - this could affect decision on domestic vs. external debt, and output response to the shock
- Add current bilateral real exchange rates, e_{it} in regressions


$$y_{it+h} = \beta_h u_t^r + \rho_{ih} e_{it+h} + \Gamma_{ih} X_{it}' + \alpha_{ih} + \varepsilon_{it+h}$$
(3)

- Large literature on how to measure *monetary policy shocks*
- In the baseline specification, I considered Romer and Romer shocks
 - most used in recent studies
- Other shocks:
 - define shock to interest rate as residual from Taylor rule


$$r_t^{\rm US} = \sum_{j=1}^4 \beta_{1j} y_{t-1}^{US} + \sum_{j=1}^4 \beta_{2j} r_{t-1}^{US} + \sum_{j=1}^4 \beta_{3j} p_{t-1}^{\rm US} + \sum_{j=1}^4 \beta_{4j} M_{t-1}^{US} + \frac{u_t}{u_t}$$
(4)

- Other shocks:
 - define shock to interest rate as residual from Taylor rule

• Very similar results when using other shocks specifications

• For the period 1969-2007: similar in magnitude but maximum response comes later

Output response and financial development

$$y_{it+h} = \beta_h u_t^r + \gamma_h (u_t^r \times \text{Fin Dev}_{it-1}) + \rho_{ih} e_{it+h} + \Gamma_{ih} X_{it}' + \alpha_{ih} + \varepsilon_{it+h}$$
(5)

- If coefficient γ_h is positive:
 - higher financial dev. *mitigates* the drop in output after a shock that \uparrow U.S. interest rate

Output response and financial development

$$y_{it+h} = \beta_h u_t^r + \gamma_h (u_t^r \times \text{Fin Dev}_{it-1}) + \rho_{ih} e_{it+h} + \Gamma_{ih} X_{it}' + \alpha_{ih} + \varepsilon_{it+h}$$
(5)

- If coefficient γ_h is positive:
 - higher financial dev. *mitigates* the drop in output after a shock that \uparrow U.S. interest rate

	Interaction coefficient, γ_h						
Quarters after shock:	1	4	6	8	10	12	16
1969-1996	0.006	0.008	0.012	0.018^{*}	0.020**	0.022^{**}	0.000
	(0.005)	(0.006)	(0.008)	(0.010)	(0.009)	(0.010)	(0.008)
1969-2007	0.004	0.014^{**}	0.024^{***}	0.021^{***}	0.018^{**}	0.010	-0.006
	(0.003)	(0.005)	(0.008)	(0.008)	(0.008)	(0.009)	(0.010)

Driscoll-Kray standard errors in parentheses. $~^{*}p{<}0.1,~^{**}p{<}0.05,~^{***}p{<}0.01$

- At the 75th percentile of financial dev. (high FD), output drops less than 0.2pp
- At the 25th percentile (*low FD*), output drops 0.6pp

Household Problem

- State of households: existing deposits, D
- Aggregate state $S = (A, a, z, R^*)$ where $A = (B^*, B, K, D)$ are assets and a is default state
- Value of the household:

$$V^{h}(D;S) = \max_{L,D'} \{ C + v(L) + G + \beta \mathbb{E} V^{h}(D';S') \}$$

subject to budget constraint

$$C + q^{D}(S)D' = (1 - \tau)w(S)L + D + X - (1 - \sigma)\bar{n}$$

where

- X are aggregate dividends from banks
- w are wages
- $(1 \sigma)\bar{n}$ are transfers s.t. each newborn bank has initial net worth \bar{n} [back]

Firm Problem

- Rent capital from banks at price R_K , depreciates at rate δ_K
- Hire workers at wage w
- Working capital: pay a fraction κ of salaries in advance

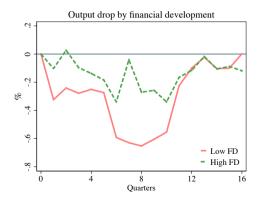
$$\max_{K,L} zF(K,L) + (1-\delta_K)K - R_K K - wL(1+r^*\kappa)$$

• FOC:

$$R_K = zF_K(K, L) + 1 - \delta_K$$
$$w(1 + r^*\kappa) = zF_L(K, L)$$

International Creditors

- Competitive risk neutral international creditors can invest in
 - defaultable external government debt
 - international risk free asset: return R^{\ast} follows AR1
- Given the repayment rule of the government, $\delta^*(\cdot)$, schedule of bond prices $q^*(\cdot)$ offered to a government depends on
 - new assets: $A' \equiv (B^{*\prime}, B', K', D')$
 - productivity z, world interest rate, R^* , and autarky state \tilde{a}
- Bond prices: lenders indifferent risk free asset and lending to gov't


$$R^{*} = \frac{\mathbb{E}\Big[\delta^{*}(A'; a', z', R^{*\prime}) \big| \tilde{a}, z, R^{*}\Big]}{q^{*}(A'; \tilde{a}, z, R^{*})}$$

determines bond schedule $q^*(\cdot)$ [back]

Output response and financial development

• Alternatively, consider two separate regressions: for low and high financial dev.

$$y_{it+h} = \beta_h^{\text{Low}} u_t^r + \Gamma_{ih}^{\text{Low}} X_{it}' + \alpha_{ih}^{\text{Low}} + \varepsilon_{it+h}^{\text{Low}} \quad \text{if} \quad \text{Fin } \text{Dev}_{it} < \text{P50}_t(\text{Fin } \text{Dev}_t)$$
$$y_{it+h} = \beta_h^{\text{High}} u_t^r + \Gamma_{ih}^{\text{High}} X_{it}' + \alpha_{ih}^{\text{High}} + \varepsilon_{it+h}^{\text{High}} \quad \text{if} \quad \text{Fin } \text{Dev}_{it} > \text{P50}_t(\text{Fin } \text{Dev}_t)$$

Competitive Equilibrium

Given policy $\pi(S)=(\tau,B',B^{*\prime},\delta,\delta^*)$ a competitive equilibrium consists of

- allocations Y(S) = (C, L, A'),
- value functions of households and banks, $V^h(S), \nu(S)$
- pricing functions $P(S) = (q, q^*, q^D, R_K, w)$

such that:

- i. solve households, banks, and firms optimization problem
- ii. international creditors' condition is satisfied
- iii. policy satisfies government budget constraint
- iv. allocation satisfies country-level budget constraint

[back]

Parameters

- Disutility of labor: $v(L) = \psi \frac{L^{1+\phi}}{1+\phi}$
- Exogenous productivity loss in autarky: $h(z) = z \max{\{\zeta_0 z + \zeta_1 z^2, 0\}}$

Assigned parameters:		
Parameter		Source
Average world risk free rate	$\mu_R = 0.017$	Average US interest rate (quarterly rate)
Risk free rate autocorrelation	$\rho_R = 0.955$	AR(1) on US interest rate
Risk free rate standard dev.	$\sigma_R = 0.003$	AR(1) on US interest rate
Capital share	$\alpha = 0.3$	Standard capital share
Debt decay rate	$\lambda = 0.05$	Average maturity
Autarky duration	$\gamma = 0.080$	Gelos et al 2011
Inverse Frisch elasticity	$\phi = 0.5$	Keane and Rogerson 2012
Productivity autocorrelation	$\rho_z = 0.95$	Neumeyer and Perri 2005
Working capital	$\kappa=0.26$	Neumeyer and Perri 2005

Parameters

Parameter		Moment matched
Discount factor	$\beta = 0.986$	Default probability
Banks survival rate	$\sigma=0.92$	Share of domestic debt
Collateral constraint	$\theta = 0.46$	Deposits to GDP
Banks initial net worth	$\bar{n} = 0.70$	Returns on equity
Gov. expenditures	G = 0.035	Government expenditures to GDI
Disutility of working	$\xi = -2.15$	Hours worked
Productivity standard dev.	$\sigma_z = 0.009$	Volatility of GDP
Productivity cost of default	$\zeta_0 = -0.182$	Debt to GDP
Productivity cost of default	$\zeta_1 = 0.195$	Average spread

[back]

Model fit

	Data	Model
Default probability, annual $\%$	4.51	1.05
Debt to GDP, $\%$	32.5	30.9
Deposits to GDP	0.32	0.33
Share of domestic debt	0.54	0.52
Return on equity, %	12.5	16.5
Government expenditures to GDP	0.14	0.13
Hours worked	0.22	0.22
Output volatility	3.08	3.11
Average spread	2.45	2.14

[back]

Financial development and domestic debt

• Panel regression: share of domestic debt on financial development + controls

Dom Debt_{it} =
$$\beta$$
Fin Dev_{it-1} + $\Gamma X'_{it-1} + \alpha_i + \delta_t + \varepsilon_{it}$

	1960-1996			1960-2007			
	(1)	(2)	(3)	(4)	(5)	(6)	
Financial dev.	0.464^{***}	0.399^{***}	0.343***	0.331^{***}	0.388^{***}	0.200***	
Debt to GDP	-0.247^{***}	-0.249^{***}	-0.255^{***}	-0.155^{***}	-0.138^{***}	-0.105***	
GDP	-2.341*	-17.781^{***}	-11.059**	-0.023	-10.091^{***}	-2.406	
Country Effects	No	Yes	Yes	No	Yes	Yes	
Year Effects	No	No	Yes	No	No	Yes	
Observations	365	365	365	516	516	516	

Standard errors in parentheses

* p<0.1, ** p<0.05, *** p<0.01

• A 10pp increase in financial dev., increases share of domestic debt by \approx 2–4.6pp

Problem with Only External Debt: FOC

 $\mu =$ Lagrange multiplier on government budget constraint

$$\mu(S): \quad G+B^* \leq q^*(B^{*\prime},K',D';z,R^*)B^{*\prime}+T(L;S)$$

Only external debt:

$$\underbrace{\left(q^{*} + \frac{\partial q^{*}}{\partial B^{*'}}B^{*'}\right)}_{\text{revenue effect}}(1+\mu) = \beta \mathbb{E}\left[\underbrace{\delta'\left(1+\mu'\right)}_{\text{repayment effect}}\right] + X_{e}(S'$$

- Revenue effect: how much more government gets from increasing debt
 - gets q^* but additional unit of borrowing decreases q^*
 - increases consumption and relaxes gov't budget constraint
- Repayment effect: cost of repaying debt tomorrow
 - decreases consumption and tightens gov't budget constraint

Both External and Domestic Debt: FOCs

- $\mu =$ Lagrange multiplier on government budget constraint
- $\rho =$ Lagrange multiplier on bank budget constraint

 $FOC(B^{*\prime})$:

$$\mu\left(q^* + \frac{\partial q^*}{\partial B^{*\prime}}B^{*\prime} + \frac{\partial q}{\partial B^{*\prime}}B^{\prime}\right) + q^* + \frac{\partial q^*}{\partial B^{*\prime}}B^{*\prime} = \beta \mathbb{E}\left[\tilde{\delta}^{\prime}\left(\mu^{\prime} + 1\right)\right] + \rho \frac{\partial q}{\partial B^{*\prime}}B^{\prime}$$

where $\frac{\partial q}{\partial B^{*\prime}}B' < 0$ captures indirect effect on the price of the other type of debt

Both External and Domestic Debt: FOCs

- $\mu =$ Lagrange multiplier on government budget constraint
- $\rho =$ Lagrange multiplier on bank budget constraint
- $\eta = \text{Lagrange}$ multiplier on bank collateral constraint

FOC(*B**'):

$$\mu\left(q^* + \frac{\partial q^*}{\partial B^{*\prime}}B^{*\prime} + \frac{\partial q}{\partial B^{*\prime}}B^{\prime}\right) + q^* + \frac{\partial q^*}{\partial B^{*\prime}}B^{*\prime} = \beta \mathbb{E}\left[\tilde{\delta}^{\prime}\left(\mu^{\prime} + 1\right)\right] + \rho \frac{\partial q}{\partial B^{*\prime}}B^{\prime}$$

FOC(B'):

$$\mu\left(q + \frac{\partial q}{\partial B'}B' + \frac{\partial q^*}{\partial B'}B^{*\prime}\right) + \frac{\partial q^*}{\partial B'}B^{*\prime} = \beta \mathbb{E}\left[\tilde{\delta'}\left(\mu' - \sigma\left(\rho' + \theta\eta'\right)\right)\right] + \rho\left(q + \frac{\partial q}{\partial B'}B'\right)$$

where $\rho\left(q + \frac{\partial q}{\partial B'}B'\right) > 0$ captures crowding out effect

[back]

Markov Problem

The problem for the government under repayment in normal times is then

$$V(S) = \max \quad C + v(L) + \beta \mathbb{E} \max\{V(S'), W^{\text{default}}(S')\}$$

subject to the implementability constraints:

- Country aggregate budget constraint: $zF(K,L) = C + K' (1 \delta_K)K + G + \delta^*B^* \delta^*q^*B^{*\prime}$
- Government budget constraint

$$G + \delta B + \delta^* B^* = \underbrace{(zF_L - v'(L))L}_{T(L;S)} + \delta q(S)B' + \delta^* q^*(S)B^{*\prime}$$

- Bank aggregate budget constraint
- Bank aggregate collateral constraint
- And, pricing equations for domestic and external bonds

Markov Problem

• International lenders break-even condition

$$\frac{\mathbb{E}\Big[\delta^*(S')\big|z,R^*\Big]}{q^*(A';z,R^*)} = R^*$$

• Domestic bank first order condition

$$\frac{\mathbb{E}\Big[m(S')\delta(S')\Big]}{q(A';z,R^*)} = \mathbb{E}\big[m(S')(z'F_K(S') + 1 - \delta_K)\big]$$

- where, $m(S) = 1 - \sigma + \sigma \nu(S)$

- and,
$$\nu(S) = \mathbb{E}\left[m(S')\left((1+\theta)(z'F_K(S')+1-\delta_K)-\theta\right)\right]$$